linux/arch/x86/kernel/irq.c
<<
>>
Prefs
   1/*
   2 * Common interrupt code for 32 and 64 bit
   3 */
   4#include <linux/cpu.h>
   5#include <linux/interrupt.h>
   6#include <linux/kernel_stat.h>
   7#include <linux/of.h>
   8#include <linux/seq_file.h>
   9#include <linux/smp.h>
  10#include <linux/ftrace.h>
  11#include <linux/delay.h>
  12#include <linux/export.h>
  13
  14#include <asm/apic.h>
  15#include <asm/io_apic.h>
  16#include <asm/irq.h>
  17#include <asm/mce.h>
  18#include <asm/hw_irq.h>
  19#include <asm/desc.h>
  20
  21#define CREATE_TRACE_POINTS
  22#include <asm/trace/irq_vectors.h>
  23
  24DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
  25EXPORT_PER_CPU_SYMBOL(irq_stat);
  26
  27DEFINE_PER_CPU(struct pt_regs *, irq_regs);
  28EXPORT_PER_CPU_SYMBOL(irq_regs);
  29
  30atomic_t irq_err_count;
  31
  32/* Function pointer for generic interrupt vector handling */
  33void (*x86_platform_ipi_callback)(void) = NULL;
  34
  35/*
  36 * 'what should we do if we get a hw irq event on an illegal vector'.
  37 * each architecture has to answer this themselves.
  38 */
  39void ack_bad_irq(unsigned int irq)
  40{
  41        if (printk_ratelimit())
  42                pr_err("unexpected IRQ trap at vector %02x\n", irq);
  43
  44        /*
  45         * Currently unexpected vectors happen only on SMP and APIC.
  46         * We _must_ ack these because every local APIC has only N
  47         * irq slots per priority level, and a 'hanging, unacked' IRQ
  48         * holds up an irq slot - in excessive cases (when multiple
  49         * unexpected vectors occur) that might lock up the APIC
  50         * completely.
  51         * But only ack when the APIC is enabled -AK
  52         */
  53        ack_APIC_irq();
  54}
  55
  56#define irq_stats(x)            (&per_cpu(irq_stat, x))
  57/*
  58 * /proc/interrupts printing for arch specific interrupts
  59 */
  60int arch_show_interrupts(struct seq_file *p, int prec)
  61{
  62        int j;
  63
  64        seq_printf(p, "%*s: ", prec, "NMI");
  65        for_each_online_cpu(j)
  66                seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
  67        seq_puts(p, "  Non-maskable interrupts\n");
  68#ifdef CONFIG_X86_LOCAL_APIC
  69        seq_printf(p, "%*s: ", prec, "LOC");
  70        for_each_online_cpu(j)
  71                seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
  72        seq_puts(p, "  Local timer interrupts\n");
  73
  74        seq_printf(p, "%*s: ", prec, "SPU");
  75        for_each_online_cpu(j)
  76                seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
  77        seq_puts(p, "  Spurious interrupts\n");
  78        seq_printf(p, "%*s: ", prec, "PMI");
  79        for_each_online_cpu(j)
  80                seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
  81        seq_puts(p, "  Performance monitoring interrupts\n");
  82        seq_printf(p, "%*s: ", prec, "IWI");
  83        for_each_online_cpu(j)
  84                seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
  85        seq_puts(p, "  IRQ work interrupts\n");
  86        seq_printf(p, "%*s: ", prec, "RTR");
  87        for_each_online_cpu(j)
  88                seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
  89        seq_puts(p, "  APIC ICR read retries\n");
  90#endif
  91        if (x86_platform_ipi_callback) {
  92                seq_printf(p, "%*s: ", prec, "PLT");
  93                for_each_online_cpu(j)
  94                        seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
  95                seq_puts(p, "  Platform interrupts\n");
  96        }
  97#ifdef CONFIG_SMP
  98        seq_printf(p, "%*s: ", prec, "RES");
  99        for_each_online_cpu(j)
 100                seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
 101        seq_puts(p, "  Rescheduling interrupts\n");
 102        seq_printf(p, "%*s: ", prec, "CAL");
 103        for_each_online_cpu(j)
 104                seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
 105        seq_puts(p, "  Function call interrupts\n");
 106        seq_printf(p, "%*s: ", prec, "TLB");
 107        for_each_online_cpu(j)
 108                seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
 109        seq_puts(p, "  TLB shootdowns\n");
 110#endif
 111#ifdef CONFIG_X86_THERMAL_VECTOR
 112        seq_printf(p, "%*s: ", prec, "TRM");
 113        for_each_online_cpu(j)
 114                seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
 115        seq_puts(p, "  Thermal event interrupts\n");
 116#endif
 117#ifdef CONFIG_X86_MCE_THRESHOLD
 118        seq_printf(p, "%*s: ", prec, "THR");
 119        for_each_online_cpu(j)
 120                seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
 121        seq_puts(p, "  Threshold APIC interrupts\n");
 122#endif
 123#ifdef CONFIG_X86_MCE_AMD
 124        seq_printf(p, "%*s: ", prec, "DFR");
 125        for_each_online_cpu(j)
 126                seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
 127        seq_puts(p, "  Deferred Error APIC interrupts\n");
 128#endif
 129#ifdef CONFIG_X86_MCE
 130        seq_printf(p, "%*s: ", prec, "MCE");
 131        for_each_online_cpu(j)
 132                seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
 133        seq_puts(p, "  Machine check exceptions\n");
 134        seq_printf(p, "%*s: ", prec, "MCP");
 135        for_each_online_cpu(j)
 136                seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
 137        seq_puts(p, "  Machine check polls\n");
 138#endif
 139#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
 140        if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
 141                seq_printf(p, "%*s: ", prec, "HYP");
 142                for_each_online_cpu(j)
 143                        seq_printf(p, "%10u ",
 144                                   irq_stats(j)->irq_hv_callback_count);
 145                seq_puts(p, "  Hypervisor callback interrupts\n");
 146        }
 147#endif
 148        seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
 149#if defined(CONFIG_X86_IO_APIC)
 150        seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
 151#endif
 152#ifdef CONFIG_HAVE_KVM
 153        seq_printf(p, "%*s: ", prec, "PIN");
 154        for_each_online_cpu(j)
 155                seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
 156        seq_puts(p, "  Posted-interrupt notification event\n");
 157
 158        seq_printf(p, "%*s: ", prec, "NPI");
 159        for_each_online_cpu(j)
 160                seq_printf(p, "%10u ",
 161                           irq_stats(j)->kvm_posted_intr_nested_ipis);
 162        seq_puts(p, "  Nested posted-interrupt event\n");
 163
 164        seq_printf(p, "%*s: ", prec, "PIW");
 165        for_each_online_cpu(j)
 166                seq_printf(p, "%10u ",
 167                           irq_stats(j)->kvm_posted_intr_wakeup_ipis);
 168        seq_puts(p, "  Posted-interrupt wakeup event\n");
 169#endif
 170        return 0;
 171}
 172
 173/*
 174 * /proc/stat helpers
 175 */
 176u64 arch_irq_stat_cpu(unsigned int cpu)
 177{
 178        u64 sum = irq_stats(cpu)->__nmi_count;
 179
 180#ifdef CONFIG_X86_LOCAL_APIC
 181        sum += irq_stats(cpu)->apic_timer_irqs;
 182        sum += irq_stats(cpu)->irq_spurious_count;
 183        sum += irq_stats(cpu)->apic_perf_irqs;
 184        sum += irq_stats(cpu)->apic_irq_work_irqs;
 185        sum += irq_stats(cpu)->icr_read_retry_count;
 186#endif
 187        if (x86_platform_ipi_callback)
 188                sum += irq_stats(cpu)->x86_platform_ipis;
 189#ifdef CONFIG_SMP
 190        sum += irq_stats(cpu)->irq_resched_count;
 191        sum += irq_stats(cpu)->irq_call_count;
 192#endif
 193#ifdef CONFIG_X86_THERMAL_VECTOR
 194        sum += irq_stats(cpu)->irq_thermal_count;
 195#endif
 196#ifdef CONFIG_X86_MCE_THRESHOLD
 197        sum += irq_stats(cpu)->irq_threshold_count;
 198#endif
 199#ifdef CONFIG_X86_MCE
 200        sum += per_cpu(mce_exception_count, cpu);
 201        sum += per_cpu(mce_poll_count, cpu);
 202#endif
 203        return sum;
 204}
 205
 206u64 arch_irq_stat(void)
 207{
 208        u64 sum = atomic_read(&irq_err_count);
 209        return sum;
 210}
 211
 212
 213/*
 214 * do_IRQ handles all normal device IRQ's (the special
 215 * SMP cross-CPU interrupts have their own specific
 216 * handlers).
 217 */
 218__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
 219{
 220        struct pt_regs *old_regs = set_irq_regs(regs);
 221        struct irq_desc * desc;
 222        /* high bit used in ret_from_ code  */
 223        unsigned vector = ~regs->orig_ax;
 224
 225        /*
 226         * NB: Unlike exception entries, IRQ entries do not reliably
 227         * handle context tracking in the low-level entry code.  This is
 228         * because syscall entries execute briefly with IRQs on before
 229         * updating context tracking state, so we can take an IRQ from
 230         * kernel mode with CONTEXT_USER.  The low-level entry code only
 231         * updates the context if we came from user mode, so we won't
 232         * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
 233         * code is cleaned up enough that we can cleanly defer enabling
 234         * IRQs.
 235         */
 236
 237        entering_irq();
 238
 239        /* entering_irq() tells RCU that we're not quiescent.  Check it. */
 240        RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
 241
 242        desc = __this_cpu_read(vector_irq[vector]);
 243
 244        if (!handle_irq(desc, regs)) {
 245                ack_APIC_irq();
 246
 247                if (desc != VECTOR_RETRIGGERED) {
 248                        pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
 249                                             __func__, smp_processor_id(),
 250                                             vector);
 251                } else {
 252                        __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
 253                }
 254        }
 255
 256        exiting_irq();
 257
 258        set_irq_regs(old_regs);
 259        return 1;
 260}
 261
 262/*
 263 * Handler for X86_PLATFORM_IPI_VECTOR.
 264 */
 265void __smp_x86_platform_ipi(void)
 266{
 267        inc_irq_stat(x86_platform_ipis);
 268
 269        if (x86_platform_ipi_callback)
 270                x86_platform_ipi_callback();
 271}
 272
 273__visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
 274{
 275        struct pt_regs *old_regs = set_irq_regs(regs);
 276
 277        entering_ack_irq();
 278        __smp_x86_platform_ipi();
 279        exiting_irq();
 280        set_irq_regs(old_regs);
 281}
 282
 283#ifdef CONFIG_HAVE_KVM
 284static void dummy_handler(void) {}
 285static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
 286
 287void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
 288{
 289        if (handler)
 290                kvm_posted_intr_wakeup_handler = handler;
 291        else
 292                kvm_posted_intr_wakeup_handler = dummy_handler;
 293}
 294EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
 295
 296/*
 297 * Handler for POSTED_INTERRUPT_VECTOR.
 298 */
 299__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
 300{
 301        struct pt_regs *old_regs = set_irq_regs(regs);
 302
 303        entering_ack_irq();
 304        inc_irq_stat(kvm_posted_intr_ipis);
 305        exiting_irq();
 306        set_irq_regs(old_regs);
 307}
 308
 309/*
 310 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
 311 */
 312__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
 313{
 314        struct pt_regs *old_regs = set_irq_regs(regs);
 315
 316        entering_ack_irq();
 317        inc_irq_stat(kvm_posted_intr_wakeup_ipis);
 318        kvm_posted_intr_wakeup_handler();
 319        exiting_irq();
 320        set_irq_regs(old_regs);
 321}
 322
 323/*
 324 * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
 325 */
 326__visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs)
 327{
 328        struct pt_regs *old_regs = set_irq_regs(regs);
 329
 330        entering_ack_irq();
 331        inc_irq_stat(kvm_posted_intr_nested_ipis);
 332        exiting_irq();
 333        set_irq_regs(old_regs);
 334}
 335#endif
 336
 337__visible void __irq_entry smp_trace_x86_platform_ipi(struct pt_regs *regs)
 338{
 339        struct pt_regs *old_regs = set_irq_regs(regs);
 340
 341        entering_ack_irq();
 342        trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
 343        __smp_x86_platform_ipi();
 344        trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
 345        exiting_irq();
 346        set_irq_regs(old_regs);
 347}
 348
 349EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
 350
 351#ifdef CONFIG_HOTPLUG_CPU
 352
 353/* These two declarations are only used in check_irq_vectors_for_cpu_disable()
 354 * below, which is protected by stop_machine().  Putting them on the stack
 355 * results in a stack frame overflow.  Dynamically allocating could result in a
 356 * failure so declare these two cpumasks as global.
 357 */
 358static struct cpumask affinity_new, online_new;
 359
 360/*
 361 * This cpu is going to be removed and its vectors migrated to the remaining
 362 * online cpus.  Check to see if there are enough vectors in the remaining cpus.
 363 * This function is protected by stop_machine().
 364 */
 365int check_irq_vectors_for_cpu_disable(void)
 366{
 367        unsigned int this_cpu, vector, this_count, count;
 368        struct irq_desc *desc;
 369        struct irq_data *data;
 370        int cpu;
 371
 372        this_cpu = smp_processor_id();
 373        cpumask_copy(&online_new, cpu_online_mask);
 374        cpumask_clear_cpu(this_cpu, &online_new);
 375
 376        this_count = 0;
 377        for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
 378                desc = __this_cpu_read(vector_irq[vector]);
 379                if (IS_ERR_OR_NULL(desc))
 380                        continue;
 381                /*
 382                 * Protect against concurrent action removal, affinity
 383                 * changes etc.
 384                 */
 385                raw_spin_lock(&desc->lock);
 386                data = irq_desc_get_irq_data(desc);
 387                cpumask_copy(&affinity_new,
 388                             irq_data_get_affinity_mask(data));
 389                cpumask_clear_cpu(this_cpu, &affinity_new);
 390
 391                /* Do not count inactive or per-cpu irqs. */
 392                if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
 393                        raw_spin_unlock(&desc->lock);
 394                        continue;
 395                }
 396
 397                raw_spin_unlock(&desc->lock);
 398                /*
 399                 * A single irq may be mapped to multiple cpu's
 400                 * vector_irq[] (for example IOAPIC cluster mode).  In
 401                 * this case we have two possibilities:
 402                 *
 403                 * 1) the resulting affinity mask is empty; that is
 404                 * this the down'd cpu is the last cpu in the irq's
 405                 * affinity mask, or
 406                 *
 407                 * 2) the resulting affinity mask is no longer a
 408                 * subset of the online cpus but the affinity mask is
 409                 * not zero; that is the down'd cpu is the last online
 410                 * cpu in a user set affinity mask.
 411                 */
 412                if (cpumask_empty(&affinity_new) ||
 413                    !cpumask_subset(&affinity_new, &online_new))
 414                        this_count++;
 415        }
 416        /* No need to check any further. */
 417        if (!this_count)
 418                return 0;
 419
 420        count = 0;
 421        for_each_online_cpu(cpu) {
 422                if (cpu == this_cpu)
 423                        continue;
 424                /*
 425                 * We scan from FIRST_EXTERNAL_VECTOR to first system
 426                 * vector. If the vector is marked in the used vectors
 427                 * bitmap or an irq is assigned to it, we don't count
 428                 * it as available.
 429                 *
 430                 * As this is an inaccurate snapshot anyway, we can do
 431                 * this w/o holding vector_lock.
 432                 */
 433                for (vector = FIRST_EXTERNAL_VECTOR;
 434                     vector < first_system_vector; vector++) {
 435                        if (!test_bit(vector, used_vectors) &&
 436                            IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) {
 437                                if (++count == this_count)
 438                                        return 0;
 439                        }
 440                }
 441        }
 442
 443        if (count < this_count) {
 444                pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
 445                        this_cpu, this_count, count);
 446                return -ERANGE;
 447        }
 448        return 0;
 449}
 450
 451/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
 452void fixup_irqs(void)
 453{
 454        unsigned int irr, vector;
 455        struct irq_desc *desc;
 456        struct irq_data *data;
 457        struct irq_chip *chip;
 458
 459        irq_migrate_all_off_this_cpu();
 460
 461        /*
 462         * We can remove mdelay() and then send spuriuous interrupts to
 463         * new cpu targets for all the irqs that were handled previously by
 464         * this cpu. While it works, I have seen spurious interrupt messages
 465         * (nothing wrong but still...).
 466         *
 467         * So for now, retain mdelay(1) and check the IRR and then send those
 468         * interrupts to new targets as this cpu is already offlined...
 469         */
 470        mdelay(1);
 471
 472        /*
 473         * We can walk the vector array of this cpu without holding
 474         * vector_lock because the cpu is already marked !online, so
 475         * nothing else will touch it.
 476         */
 477        for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
 478                if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
 479                        continue;
 480
 481                irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
 482                if (irr  & (1 << (vector % 32))) {
 483                        desc = __this_cpu_read(vector_irq[vector]);
 484
 485                        raw_spin_lock(&desc->lock);
 486                        data = irq_desc_get_irq_data(desc);
 487                        chip = irq_data_get_irq_chip(data);
 488                        if (chip->irq_retrigger) {
 489                                chip->irq_retrigger(data);
 490                                __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
 491                        }
 492                        raw_spin_unlock(&desc->lock);
 493                }
 494                if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
 495                        __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
 496        }
 497}
 498#endif
 499