linux/arch/x86/kernel/kvmclock.c
<<
>>
Prefs
   1/*  KVM paravirtual clock driver. A clocksource implementation
   2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
   3
   4    This program is free software; you can redistribute it and/or modify
   5    it under the terms of the GNU General Public License as published by
   6    the Free Software Foundation; either version 2 of the License, or
   7    (at your option) any later version.
   8
   9    This program is distributed in the hope that it will be useful,
  10    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12    GNU General Public License for more details.
  13
  14    You should have received a copy of the GNU General Public License
  15    along with this program; if not, write to the Free Software
  16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17*/
  18
  19#include <linux/clocksource.h>
  20#include <linux/kvm_para.h>
  21#include <asm/pvclock.h>
  22#include <asm/msr.h>
  23#include <asm/apic.h>
  24#include <linux/percpu.h>
  25#include <linux/hardirq.h>
  26#include <linux/memblock.h>
  27#include <linux/sched.h>
  28#include <linux/sched/clock.h>
  29
  30#include <asm/x86_init.h>
  31#include <asm/reboot.h>
  32#include <asm/kvmclock.h>
  33
  34static int kvmclock __ro_after_init = 1;
  35static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
  36static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
  37static u64 kvm_sched_clock_offset;
  38
  39static int parse_no_kvmclock(char *arg)
  40{
  41        kvmclock = 0;
  42        return 0;
  43}
  44early_param("no-kvmclock", parse_no_kvmclock);
  45
  46/* The hypervisor will put information about time periodically here */
  47static struct pvclock_vsyscall_time_info *hv_clock;
  48static struct pvclock_wall_clock wall_clock;
  49
  50struct pvclock_vsyscall_time_info *pvclock_pvti_cpu0_va(void)
  51{
  52        return hv_clock;
  53}
  54EXPORT_SYMBOL_GPL(pvclock_pvti_cpu0_va);
  55
  56/*
  57 * The wallclock is the time of day when we booted. Since then, some time may
  58 * have elapsed since the hypervisor wrote the data. So we try to account for
  59 * that with system time
  60 */
  61static void kvm_get_wallclock(struct timespec *now)
  62{
  63        struct pvclock_vcpu_time_info *vcpu_time;
  64        int low, high;
  65        int cpu;
  66
  67        low = (int)__pa_symbol(&wall_clock);
  68        high = ((u64)__pa_symbol(&wall_clock) >> 32);
  69
  70        native_write_msr(msr_kvm_wall_clock, low, high);
  71
  72        cpu = get_cpu();
  73
  74        vcpu_time = &hv_clock[cpu].pvti;
  75        pvclock_read_wallclock(&wall_clock, vcpu_time, now);
  76
  77        put_cpu();
  78}
  79
  80static int kvm_set_wallclock(const struct timespec *now)
  81{
  82        return -1;
  83}
  84
  85static u64 kvm_clock_read(void)
  86{
  87        struct pvclock_vcpu_time_info *src;
  88        u64 ret;
  89        int cpu;
  90
  91        preempt_disable_notrace();
  92        cpu = smp_processor_id();
  93        src = &hv_clock[cpu].pvti;
  94        ret = pvclock_clocksource_read(src);
  95        preempt_enable_notrace();
  96        return ret;
  97}
  98
  99static u64 kvm_clock_get_cycles(struct clocksource *cs)
 100{
 101        return kvm_clock_read();
 102}
 103
 104static u64 kvm_sched_clock_read(void)
 105{
 106        return kvm_clock_read() - kvm_sched_clock_offset;
 107}
 108
 109static inline void kvm_sched_clock_init(bool stable)
 110{
 111        if (!stable) {
 112                pv_time_ops.sched_clock = kvm_clock_read;
 113                clear_sched_clock_stable();
 114                return;
 115        }
 116
 117        kvm_sched_clock_offset = kvm_clock_read();
 118        pv_time_ops.sched_clock = kvm_sched_clock_read;
 119
 120        printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
 121                        kvm_sched_clock_offset);
 122
 123        BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
 124                 sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
 125}
 126
 127/*
 128 * If we don't do that, there is the possibility that the guest
 129 * will calibrate under heavy load - thus, getting a lower lpj -
 130 * and execute the delays themselves without load. This is wrong,
 131 * because no delay loop can finish beforehand.
 132 * Any heuristics is subject to fail, because ultimately, a large
 133 * poll of guests can be running and trouble each other. So we preset
 134 * lpj here
 135 */
 136static unsigned long kvm_get_tsc_khz(void)
 137{
 138        struct pvclock_vcpu_time_info *src;
 139        int cpu;
 140        unsigned long tsc_khz;
 141
 142        cpu = get_cpu();
 143        src = &hv_clock[cpu].pvti;
 144        tsc_khz = pvclock_tsc_khz(src);
 145        put_cpu();
 146        return tsc_khz;
 147}
 148
 149static void kvm_get_preset_lpj(void)
 150{
 151        unsigned long khz;
 152        u64 lpj;
 153
 154        khz = kvm_get_tsc_khz();
 155
 156        lpj = ((u64)khz * 1000);
 157        do_div(lpj, HZ);
 158        preset_lpj = lpj;
 159}
 160
 161bool kvm_check_and_clear_guest_paused(void)
 162{
 163        bool ret = false;
 164        struct pvclock_vcpu_time_info *src;
 165        int cpu = smp_processor_id();
 166
 167        if (!hv_clock)
 168                return ret;
 169
 170        src = &hv_clock[cpu].pvti;
 171        if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
 172                src->flags &= ~PVCLOCK_GUEST_STOPPED;
 173                pvclock_touch_watchdogs();
 174                ret = true;
 175        }
 176
 177        return ret;
 178}
 179
 180struct clocksource kvm_clock = {
 181        .name = "kvm-clock",
 182        .read = kvm_clock_get_cycles,
 183        .rating = 400,
 184        .mask = CLOCKSOURCE_MASK(64),
 185        .flags = CLOCK_SOURCE_IS_CONTINUOUS,
 186};
 187EXPORT_SYMBOL_GPL(kvm_clock);
 188
 189int kvm_register_clock(char *txt)
 190{
 191        int cpu = smp_processor_id();
 192        int low, high, ret;
 193        struct pvclock_vcpu_time_info *src;
 194
 195        if (!hv_clock)
 196                return 0;
 197
 198        src = &hv_clock[cpu].pvti;
 199        low = (int)slow_virt_to_phys(src) | 1;
 200        high = ((u64)slow_virt_to_phys(src) >> 32);
 201        ret = native_write_msr_safe(msr_kvm_system_time, low, high);
 202        printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
 203               cpu, high, low, txt);
 204
 205        return ret;
 206}
 207
 208static void kvm_save_sched_clock_state(void)
 209{
 210}
 211
 212static void kvm_restore_sched_clock_state(void)
 213{
 214        kvm_register_clock("primary cpu clock, resume");
 215}
 216
 217#ifdef CONFIG_X86_LOCAL_APIC
 218static void kvm_setup_secondary_clock(void)
 219{
 220        /*
 221         * Now that the first cpu already had this clocksource initialized,
 222         * we shouldn't fail.
 223         */
 224        WARN_ON(kvm_register_clock("secondary cpu clock"));
 225}
 226#endif
 227
 228/*
 229 * After the clock is registered, the host will keep writing to the
 230 * registered memory location. If the guest happens to shutdown, this memory
 231 * won't be valid. In cases like kexec, in which you install a new kernel, this
 232 * means a random memory location will be kept being written. So before any
 233 * kind of shutdown from our side, we unregister the clock by writing anything
 234 * that does not have the 'enable' bit set in the msr
 235 */
 236#ifdef CONFIG_KEXEC_CORE
 237static void kvm_crash_shutdown(struct pt_regs *regs)
 238{
 239        native_write_msr(msr_kvm_system_time, 0, 0);
 240        kvm_disable_steal_time();
 241        native_machine_crash_shutdown(regs);
 242}
 243#endif
 244
 245static void kvm_shutdown(void)
 246{
 247        native_write_msr(msr_kvm_system_time, 0, 0);
 248        kvm_disable_steal_time();
 249        native_machine_shutdown();
 250}
 251
 252void __init kvmclock_init(void)
 253{
 254        struct pvclock_vcpu_time_info *vcpu_time;
 255        unsigned long mem;
 256        int size, cpu;
 257        u8 flags;
 258
 259        size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
 260
 261        if (!kvm_para_available())
 262                return;
 263
 264        if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
 265                msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
 266                msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
 267        } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
 268                return;
 269
 270        printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
 271                msr_kvm_system_time, msr_kvm_wall_clock);
 272
 273        mem = memblock_alloc(size, PAGE_SIZE);
 274        if (!mem)
 275                return;
 276        hv_clock = __va(mem);
 277        memset(hv_clock, 0, size);
 278
 279        if (kvm_register_clock("primary cpu clock")) {
 280                hv_clock = NULL;
 281                memblock_free(mem, size);
 282                return;
 283        }
 284
 285        if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
 286                pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
 287
 288        cpu = get_cpu();
 289        vcpu_time = &hv_clock[cpu].pvti;
 290        flags = pvclock_read_flags(vcpu_time);
 291
 292        kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
 293        put_cpu();
 294
 295        x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 296        x86_platform.calibrate_cpu = kvm_get_tsc_khz;
 297        x86_platform.get_wallclock = kvm_get_wallclock;
 298        x86_platform.set_wallclock = kvm_set_wallclock;
 299#ifdef CONFIG_X86_LOCAL_APIC
 300        x86_cpuinit.early_percpu_clock_init =
 301                kvm_setup_secondary_clock;
 302#endif
 303        x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
 304        x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
 305        machine_ops.shutdown  = kvm_shutdown;
 306#ifdef CONFIG_KEXEC_CORE
 307        machine_ops.crash_shutdown  = kvm_crash_shutdown;
 308#endif
 309        kvm_get_preset_lpj();
 310        clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
 311        pv_info.name = "KVM";
 312}
 313
 314int __init kvm_setup_vsyscall_timeinfo(void)
 315{
 316#ifdef CONFIG_X86_64
 317        int cpu;
 318        u8 flags;
 319        struct pvclock_vcpu_time_info *vcpu_time;
 320        unsigned int size;
 321
 322        if (!hv_clock)
 323                return 0;
 324
 325        size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
 326
 327        cpu = get_cpu();
 328
 329        vcpu_time = &hv_clock[cpu].pvti;
 330        flags = pvclock_read_flags(vcpu_time);
 331
 332        if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
 333                put_cpu();
 334                return 1;
 335        }
 336
 337        put_cpu();
 338
 339        kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
 340#endif
 341        return 0;
 342}
 343