linux/arch/x86/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/spinlock.h>
  19#include <linux/kprobes.h>
  20#include <linux/uaccess.h>
  21#include <linux/kdebug.h>
  22#include <linux/kgdb.h>
  23#include <linux/kernel.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/string.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <linux/kexec.h>
  31#include <linux/sched.h>
  32#include <linux/sched/task_stack.h>
  33#include <linux/timer.h>
  34#include <linux/init.h>
  35#include <linux/bug.h>
  36#include <linux/nmi.h>
  37#include <linux/mm.h>
  38#include <linux/smp.h>
  39#include <linux/io.h>
  40
  41#ifdef CONFIG_EISA
  42#include <linux/ioport.h>
  43#include <linux/eisa.h>
  44#endif
  45
  46#if defined(CONFIG_EDAC)
  47#include <linux/edac.h>
  48#endif
  49
  50#include <asm/kmemcheck.h>
  51#include <asm/stacktrace.h>
  52#include <asm/processor.h>
  53#include <asm/debugreg.h>
  54#include <linux/atomic.h>
  55#include <asm/text-patching.h>
  56#include <asm/ftrace.h>
  57#include <asm/traps.h>
  58#include <asm/desc.h>
  59#include <asm/fpu/internal.h>
  60#include <asm/mce.h>
  61#include <asm/fixmap.h>
  62#include <asm/mach_traps.h>
  63#include <asm/alternative.h>
  64#include <asm/fpu/xstate.h>
  65#include <asm/trace/mpx.h>
  66#include <asm/mpx.h>
  67#include <asm/vm86.h>
  68
  69#ifdef CONFIG_X86_64
  70#include <asm/x86_init.h>
  71#include <asm/pgalloc.h>
  72#include <asm/proto.h>
  73
  74/* No need to be aligned, but done to keep all IDTs defined the same way. */
  75gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
  76#else
  77#include <asm/processor-flags.h>
  78#include <asm/setup.h>
  79#include <asm/proto.h>
  80#endif
  81
  82/* Must be page-aligned because the real IDT is used in a fixmap. */
  83gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
  84
  85DECLARE_BITMAP(used_vectors, NR_VECTORS);
  86EXPORT_SYMBOL_GPL(used_vectors);
  87
  88static inline void cond_local_irq_enable(struct pt_regs *regs)
  89{
  90        if (regs->flags & X86_EFLAGS_IF)
  91                local_irq_enable();
  92}
  93
  94static inline void cond_local_irq_disable(struct pt_regs *regs)
  95{
  96        if (regs->flags & X86_EFLAGS_IF)
  97                local_irq_disable();
  98}
  99
 100/*
 101 * In IST context, we explicitly disable preemption.  This serves two
 102 * purposes: it makes it much less likely that we would accidentally
 103 * schedule in IST context and it will force a warning if we somehow
 104 * manage to schedule by accident.
 105 */
 106void ist_enter(struct pt_regs *regs)
 107{
 108        if (user_mode(regs)) {
 109                RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 110        } else {
 111                /*
 112                 * We might have interrupted pretty much anything.  In
 113                 * fact, if we're a machine check, we can even interrupt
 114                 * NMI processing.  We don't want in_nmi() to return true,
 115                 * but we need to notify RCU.
 116                 */
 117                rcu_nmi_enter();
 118        }
 119
 120        preempt_disable();
 121
 122        /* This code is a bit fragile.  Test it. */
 123        RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
 124}
 125
 126void ist_exit(struct pt_regs *regs)
 127{
 128        preempt_enable_no_resched();
 129
 130        if (!user_mode(regs))
 131                rcu_nmi_exit();
 132}
 133
 134/**
 135 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
 136 * @regs:       regs passed to the IST exception handler
 137 *
 138 * IST exception handlers normally cannot schedule.  As a special
 139 * exception, if the exception interrupted userspace code (i.e.
 140 * user_mode(regs) would return true) and the exception was not
 141 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
 142 * begins a non-atomic section within an ist_enter()/ist_exit() region.
 143 * Callers are responsible for enabling interrupts themselves inside
 144 * the non-atomic section, and callers must call ist_end_non_atomic()
 145 * before ist_exit().
 146 */
 147void ist_begin_non_atomic(struct pt_regs *regs)
 148{
 149        BUG_ON(!user_mode(regs));
 150
 151        /*
 152         * Sanity check: we need to be on the normal thread stack.  This
 153         * will catch asm bugs and any attempt to use ist_preempt_enable
 154         * from double_fault.
 155         */
 156        BUG_ON((unsigned long)(current_top_of_stack() -
 157                               current_stack_pointer()) >= THREAD_SIZE);
 158
 159        preempt_enable_no_resched();
 160}
 161
 162/**
 163 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
 164 *
 165 * Ends a non-atomic section started with ist_begin_non_atomic().
 166 */
 167void ist_end_non_atomic(void)
 168{
 169        preempt_disable();
 170}
 171
 172int is_valid_bugaddr(unsigned long addr)
 173{
 174        unsigned short ud;
 175
 176        if (addr < TASK_SIZE_MAX)
 177                return 0;
 178
 179        if (probe_kernel_address((unsigned short *)addr, ud))
 180                return 0;
 181
 182        return ud == INSN_UD0 || ud == INSN_UD2;
 183}
 184
 185int fixup_bug(struct pt_regs *regs, int trapnr)
 186{
 187        if (trapnr != X86_TRAP_UD)
 188                return 0;
 189
 190        switch (report_bug(regs->ip, regs)) {
 191        case BUG_TRAP_TYPE_NONE:
 192        case BUG_TRAP_TYPE_BUG:
 193                break;
 194
 195        case BUG_TRAP_TYPE_WARN:
 196                regs->ip += LEN_UD0;
 197                return 1;
 198        }
 199
 200        return 0;
 201}
 202
 203static nokprobe_inline int
 204do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
 205                  struct pt_regs *regs, long error_code)
 206{
 207        if (v8086_mode(regs)) {
 208                /*
 209                 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 210                 * On nmi (interrupt 2), do_trap should not be called.
 211                 */
 212                if (trapnr < X86_TRAP_UD) {
 213                        if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 214                                                error_code, trapnr))
 215                                return 0;
 216                }
 217                return -1;
 218        }
 219
 220        if (!user_mode(regs)) {
 221                if (fixup_exception(regs, trapnr))
 222                        return 0;
 223
 224                if (fixup_bug(regs, trapnr))
 225                        return 0;
 226
 227                tsk->thread.error_code = error_code;
 228                tsk->thread.trap_nr = trapnr;
 229                die(str, regs, error_code);
 230        }
 231
 232        return -1;
 233}
 234
 235static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
 236                                siginfo_t *info)
 237{
 238        unsigned long siaddr;
 239        int sicode;
 240
 241        switch (trapnr) {
 242        default:
 243                return SEND_SIG_PRIV;
 244
 245        case X86_TRAP_DE:
 246                sicode = FPE_INTDIV;
 247                siaddr = uprobe_get_trap_addr(regs);
 248                break;
 249        case X86_TRAP_UD:
 250                sicode = ILL_ILLOPN;
 251                siaddr = uprobe_get_trap_addr(regs);
 252                break;
 253        case X86_TRAP_AC:
 254                sicode = BUS_ADRALN;
 255                siaddr = 0;
 256                break;
 257        }
 258
 259        info->si_signo = signr;
 260        info->si_errno = 0;
 261        info->si_code = sicode;
 262        info->si_addr = (void __user *)siaddr;
 263        return info;
 264}
 265
 266static void
 267do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 268        long error_code, siginfo_t *info)
 269{
 270        struct task_struct *tsk = current;
 271
 272
 273        if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 274                return;
 275        /*
 276         * We want error_code and trap_nr set for userspace faults and
 277         * kernelspace faults which result in die(), but not
 278         * kernelspace faults which are fixed up.  die() gives the
 279         * process no chance to handle the signal and notice the
 280         * kernel fault information, so that won't result in polluting
 281         * the information about previously queued, but not yet
 282         * delivered, faults.  See also do_general_protection below.
 283         */
 284        tsk->thread.error_code = error_code;
 285        tsk->thread.trap_nr = trapnr;
 286
 287        if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 288            printk_ratelimit()) {
 289                pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
 290                        tsk->comm, tsk->pid, str,
 291                        regs->ip, regs->sp, error_code);
 292                print_vma_addr(KERN_CONT " in ", regs->ip);
 293                pr_cont("\n");
 294        }
 295
 296        force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
 297}
 298NOKPROBE_SYMBOL(do_trap);
 299
 300static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 301                          unsigned long trapnr, int signr)
 302{
 303        siginfo_t info;
 304
 305        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 306
 307        if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 308                        NOTIFY_STOP) {
 309                cond_local_irq_enable(regs);
 310                do_trap(trapnr, signr, str, regs, error_code,
 311                        fill_trap_info(regs, signr, trapnr, &info));
 312        }
 313}
 314
 315#define DO_ERROR(trapnr, signr, str, name)                              \
 316dotraplinkage void do_##name(struct pt_regs *regs, long error_code)     \
 317{                                                                       \
 318        do_error_trap(regs, error_code, str, trapnr, signr);            \
 319}
 320
 321DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",              divide_error)
 322DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",                  overflow)
 323DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",            invalid_op)
 324DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
 325DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",               invalid_TSS)
 326DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",       segment_not_present)
 327DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",             stack_segment)
 328DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",           alignment_check)
 329
 330#ifdef CONFIG_VMAP_STACK
 331__visible void __noreturn handle_stack_overflow(const char *message,
 332                                                struct pt_regs *regs,
 333                                                unsigned long fault_address)
 334{
 335        printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
 336                 (void *)fault_address, current->stack,
 337                 (char *)current->stack + THREAD_SIZE - 1);
 338        die(message, regs, 0);
 339
 340        /* Be absolutely certain we don't return. */
 341        panic(message);
 342}
 343#endif
 344
 345#ifdef CONFIG_X86_64
 346/* Runs on IST stack */
 347dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
 348{
 349        static const char str[] = "double fault";
 350        struct task_struct *tsk = current;
 351#ifdef CONFIG_VMAP_STACK
 352        unsigned long cr2;
 353#endif
 354
 355#ifdef CONFIG_X86_ESPFIX64
 356        extern unsigned char native_irq_return_iret[];
 357
 358        /*
 359         * If IRET takes a non-IST fault on the espfix64 stack, then we
 360         * end up promoting it to a doublefault.  In that case, modify
 361         * the stack to make it look like we just entered the #GP
 362         * handler from user space, similar to bad_iret.
 363         *
 364         * No need for ist_enter here because we don't use RCU.
 365         */
 366        if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
 367                regs->cs == __KERNEL_CS &&
 368                regs->ip == (unsigned long)native_irq_return_iret)
 369        {
 370                struct pt_regs *normal_regs = task_pt_regs(current);
 371
 372                /* Fake a #GP(0) from userspace. */
 373                memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
 374                normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
 375                regs->ip = (unsigned long)general_protection;
 376                regs->sp = (unsigned long)&normal_regs->orig_ax;
 377
 378                return;
 379        }
 380#endif
 381
 382        ist_enter(regs);
 383        notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 384
 385        tsk->thread.error_code = error_code;
 386        tsk->thread.trap_nr = X86_TRAP_DF;
 387
 388#ifdef CONFIG_VMAP_STACK
 389        /*
 390         * If we overflow the stack into a guard page, the CPU will fail
 391         * to deliver #PF and will send #DF instead.  Similarly, if we
 392         * take any non-IST exception while too close to the bottom of
 393         * the stack, the processor will get a page fault while
 394         * delivering the exception and will generate a double fault.
 395         *
 396         * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 397         * Page-Fault Exception (#PF):
 398         *
 399         *   Processors update CR2 whenever a page fault is detected. If a
 400         *   second page fault occurs while an earlier page fault is being
 401         *   deliv- ered, the faulting linear address of the second fault will
 402         *   overwrite the contents of CR2 (replacing the previous
 403         *   address). These updates to CR2 occur even if the page fault
 404         *   results in a double fault or occurs during the delivery of a
 405         *   double fault.
 406         *
 407         * The logic below has a small possibility of incorrectly diagnosing
 408         * some errors as stack overflows.  For example, if the IDT or GDT
 409         * gets corrupted such that #GP delivery fails due to a bad descriptor
 410         * causing #GP and we hit this condition while CR2 coincidentally
 411         * points to the stack guard page, we'll think we overflowed the
 412         * stack.  Given that we're going to panic one way or another
 413         * if this happens, this isn't necessarily worth fixing.
 414         *
 415         * If necessary, we could improve the test by only diagnosing
 416         * a stack overflow if the saved RSP points within 47 bytes of
 417         * the bottom of the stack: if RSP == tsk_stack + 48 and we
 418         * take an exception, the stack is already aligned and there
 419         * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 420         * possible error code, so a stack overflow would *not* double
 421         * fault.  With any less space left, exception delivery could
 422         * fail, and, as a practical matter, we've overflowed the
 423         * stack even if the actual trigger for the double fault was
 424         * something else.
 425         */
 426        cr2 = read_cr2();
 427        if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
 428                handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
 429#endif
 430
 431#ifdef CONFIG_DOUBLEFAULT
 432        df_debug(regs, error_code);
 433#endif
 434        /*
 435         * This is always a kernel trap and never fixable (and thus must
 436         * never return).
 437         */
 438        for (;;)
 439                die(str, regs, error_code);
 440}
 441#endif
 442
 443dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
 444{
 445        const struct mpx_bndcsr *bndcsr;
 446        siginfo_t *info;
 447
 448        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 449        if (notify_die(DIE_TRAP, "bounds", regs, error_code,
 450                        X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 451                return;
 452        cond_local_irq_enable(regs);
 453
 454        if (!user_mode(regs))
 455                die("bounds", regs, error_code);
 456
 457        if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
 458                /* The exception is not from Intel MPX */
 459                goto exit_trap;
 460        }
 461
 462        /*
 463         * We need to look at BNDSTATUS to resolve this exception.
 464         * A NULL here might mean that it is in its 'init state',
 465         * which is all zeros which indicates MPX was not
 466         * responsible for the exception.
 467         */
 468        bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 469        if (!bndcsr)
 470                goto exit_trap;
 471
 472        trace_bounds_exception_mpx(bndcsr);
 473        /*
 474         * The error code field of the BNDSTATUS register communicates status
 475         * information of a bound range exception #BR or operation involving
 476         * bound directory.
 477         */
 478        switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
 479        case 2: /* Bound directory has invalid entry. */
 480                if (mpx_handle_bd_fault())
 481                        goto exit_trap;
 482                break; /* Success, it was handled */
 483        case 1: /* Bound violation. */
 484                info = mpx_generate_siginfo(regs);
 485                if (IS_ERR(info)) {
 486                        /*
 487                         * We failed to decode the MPX instruction.  Act as if
 488                         * the exception was not caused by MPX.
 489                         */
 490                        goto exit_trap;
 491                }
 492                /*
 493                 * Success, we decoded the instruction and retrieved
 494                 * an 'info' containing the address being accessed
 495                 * which caused the exception.  This information
 496                 * allows and application to possibly handle the
 497                 * #BR exception itself.
 498                 */
 499                do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
 500                kfree(info);
 501                break;
 502        case 0: /* No exception caused by Intel MPX operations. */
 503                goto exit_trap;
 504        default:
 505                die("bounds", regs, error_code);
 506        }
 507
 508        return;
 509
 510exit_trap:
 511        /*
 512         * This path out is for all the cases where we could not
 513         * handle the exception in some way (like allocating a
 514         * table or telling userspace about it.  We will also end
 515         * up here if the kernel has MPX turned off at compile
 516         * time..
 517         */
 518        do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
 519}
 520
 521dotraplinkage void
 522do_general_protection(struct pt_regs *regs, long error_code)
 523{
 524        struct task_struct *tsk;
 525
 526        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 527        cond_local_irq_enable(regs);
 528
 529        if (v8086_mode(regs)) {
 530                local_irq_enable();
 531                handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 532                return;
 533        }
 534
 535        tsk = current;
 536        if (!user_mode(regs)) {
 537                if (fixup_exception(regs, X86_TRAP_GP))
 538                        return;
 539
 540                tsk->thread.error_code = error_code;
 541                tsk->thread.trap_nr = X86_TRAP_GP;
 542                if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
 543                               X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
 544                        die("general protection fault", regs, error_code);
 545                return;
 546        }
 547
 548        tsk->thread.error_code = error_code;
 549        tsk->thread.trap_nr = X86_TRAP_GP;
 550
 551        if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
 552                        printk_ratelimit()) {
 553                pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
 554                        tsk->comm, task_pid_nr(tsk),
 555                        regs->ip, regs->sp, error_code);
 556                print_vma_addr(KERN_CONT " in ", regs->ip);
 557                pr_cont("\n");
 558        }
 559
 560        force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
 561}
 562NOKPROBE_SYMBOL(do_general_protection);
 563
 564/* May run on IST stack. */
 565dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
 566{
 567#ifdef CONFIG_DYNAMIC_FTRACE
 568        /*
 569         * ftrace must be first, everything else may cause a recursive crash.
 570         * See note by declaration of modifying_ftrace_code in ftrace.c
 571         */
 572        if (unlikely(atomic_read(&modifying_ftrace_code)) &&
 573            ftrace_int3_handler(regs))
 574                return;
 575#endif
 576        if (poke_int3_handler(regs))
 577                return;
 578
 579        ist_enter(regs);
 580        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 581#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 582        if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
 583                                SIGTRAP) == NOTIFY_STOP)
 584                goto exit;
 585#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 586
 587#ifdef CONFIG_KPROBES
 588        if (kprobe_int3_handler(regs))
 589                goto exit;
 590#endif
 591
 592        if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
 593                        SIGTRAP) == NOTIFY_STOP)
 594                goto exit;
 595
 596        /*
 597         * Let others (NMI) know that the debug stack is in use
 598         * as we may switch to the interrupt stack.
 599         */
 600        debug_stack_usage_inc();
 601        cond_local_irq_enable(regs);
 602        do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
 603        cond_local_irq_disable(regs);
 604        debug_stack_usage_dec();
 605exit:
 606        ist_exit(regs);
 607}
 608NOKPROBE_SYMBOL(do_int3);
 609
 610#ifdef CONFIG_X86_64
 611/*
 612 * Help handler running on IST stack to switch off the IST stack if the
 613 * interrupted code was in user mode. The actual stack switch is done in
 614 * entry_64.S
 615 */
 616asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
 617{
 618        struct pt_regs *regs = task_pt_regs(current);
 619        *regs = *eregs;
 620        return regs;
 621}
 622NOKPROBE_SYMBOL(sync_regs);
 623
 624struct bad_iret_stack {
 625        void *error_entry_ret;
 626        struct pt_regs regs;
 627};
 628
 629asmlinkage __visible notrace
 630struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 631{
 632        /*
 633         * This is called from entry_64.S early in handling a fault
 634         * caused by a bad iret to user mode.  To handle the fault
 635         * correctly, we want move our stack frame to task_pt_regs
 636         * and we want to pretend that the exception came from the
 637         * iret target.
 638         */
 639        struct bad_iret_stack *new_stack =
 640                container_of(task_pt_regs(current),
 641                             struct bad_iret_stack, regs);
 642
 643        /* Copy the IRET target to the new stack. */
 644        memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
 645
 646        /* Copy the remainder of the stack from the current stack. */
 647        memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
 648
 649        BUG_ON(!user_mode(&new_stack->regs));
 650        return new_stack;
 651}
 652NOKPROBE_SYMBOL(fixup_bad_iret);
 653#endif
 654
 655static bool is_sysenter_singlestep(struct pt_regs *regs)
 656{
 657        /*
 658         * We don't try for precision here.  If we're anywhere in the region of
 659         * code that can be single-stepped in the SYSENTER entry path, then
 660         * assume that this is a useless single-step trap due to SYSENTER
 661         * being invoked with TF set.  (We don't know in advance exactly
 662         * which instructions will be hit because BTF could plausibly
 663         * be set.)
 664         */
 665#ifdef CONFIG_X86_32
 666        return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 667                (unsigned long)__end_SYSENTER_singlestep_region -
 668                (unsigned long)__begin_SYSENTER_singlestep_region;
 669#elif defined(CONFIG_IA32_EMULATION)
 670        return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 671                (unsigned long)__end_entry_SYSENTER_compat -
 672                (unsigned long)entry_SYSENTER_compat;
 673#else
 674        return false;
 675#endif
 676}
 677
 678/*
 679 * Our handling of the processor debug registers is non-trivial.
 680 * We do not clear them on entry and exit from the kernel. Therefore
 681 * it is possible to get a watchpoint trap here from inside the kernel.
 682 * However, the code in ./ptrace.c has ensured that the user can
 683 * only set watchpoints on userspace addresses. Therefore the in-kernel
 684 * watchpoint trap can only occur in code which is reading/writing
 685 * from user space. Such code must not hold kernel locks (since it
 686 * can equally take a page fault), therefore it is safe to call
 687 * force_sig_info even though that claims and releases locks.
 688 *
 689 * Code in ./signal.c ensures that the debug control register
 690 * is restored before we deliver any signal, and therefore that
 691 * user code runs with the correct debug control register even though
 692 * we clear it here.
 693 *
 694 * Being careful here means that we don't have to be as careful in a
 695 * lot of more complicated places (task switching can be a bit lazy
 696 * about restoring all the debug state, and ptrace doesn't have to
 697 * find every occurrence of the TF bit that could be saved away even
 698 * by user code)
 699 *
 700 * May run on IST stack.
 701 */
 702dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
 703{
 704        struct task_struct *tsk = current;
 705        int user_icebp = 0;
 706        unsigned long dr6;
 707        int si_code;
 708
 709        ist_enter(regs);
 710
 711        get_debugreg(dr6, 6);
 712        /*
 713         * The Intel SDM says:
 714         *
 715         *   Certain debug exceptions may clear bits 0-3. The remaining
 716         *   contents of the DR6 register are never cleared by the
 717         *   processor. To avoid confusion in identifying debug
 718         *   exceptions, debug handlers should clear the register before
 719         *   returning to the interrupted task.
 720         *
 721         * Keep it simple: clear DR6 immediately.
 722         */
 723        set_debugreg(0, 6);
 724
 725        /* Filter out all the reserved bits which are preset to 1 */
 726        dr6 &= ~DR6_RESERVED;
 727
 728        /*
 729         * The SDM says "The processor clears the BTF flag when it
 730         * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
 731         * TIF_BLOCKSTEP in sync with the hardware BTF flag.
 732         */
 733        clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
 734
 735        if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
 736                     is_sysenter_singlestep(regs))) {
 737                dr6 &= ~DR_STEP;
 738                if (!dr6)
 739                        goto exit;
 740                /*
 741                 * else we might have gotten a single-step trap and hit a
 742                 * watchpoint at the same time, in which case we should fall
 743                 * through and handle the watchpoint.
 744                 */
 745        }
 746
 747        /*
 748         * If dr6 has no reason to give us about the origin of this trap,
 749         * then it's very likely the result of an icebp/int01 trap.
 750         * User wants a sigtrap for that.
 751         */
 752        if (!dr6 && user_mode(regs))
 753                user_icebp = 1;
 754
 755        /* Catch kmemcheck conditions! */
 756        if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
 757                goto exit;
 758
 759        /* Store the virtualized DR6 value */
 760        tsk->thread.debugreg6 = dr6;
 761
 762#ifdef CONFIG_KPROBES
 763        if (kprobe_debug_handler(regs))
 764                goto exit;
 765#endif
 766
 767        if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
 768                                                        SIGTRAP) == NOTIFY_STOP)
 769                goto exit;
 770
 771        /*
 772         * Let others (NMI) know that the debug stack is in use
 773         * as we may switch to the interrupt stack.
 774         */
 775        debug_stack_usage_inc();
 776
 777        /* It's safe to allow irq's after DR6 has been saved */
 778        cond_local_irq_enable(regs);
 779
 780        if (v8086_mode(regs)) {
 781                handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
 782                                        X86_TRAP_DB);
 783                cond_local_irq_disable(regs);
 784                debug_stack_usage_dec();
 785                goto exit;
 786        }
 787
 788        if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
 789                /*
 790                 * Historical junk that used to handle SYSENTER single-stepping.
 791                 * This should be unreachable now.  If we survive for a while
 792                 * without anyone hitting this warning, we'll turn this into
 793                 * an oops.
 794                 */
 795                tsk->thread.debugreg6 &= ~DR_STEP;
 796                set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
 797                regs->flags &= ~X86_EFLAGS_TF;
 798        }
 799        si_code = get_si_code(tsk->thread.debugreg6);
 800        if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
 801                send_sigtrap(tsk, regs, error_code, si_code);
 802        cond_local_irq_disable(regs);
 803        debug_stack_usage_dec();
 804
 805exit:
 806#if defined(CONFIG_X86_32)
 807        /*
 808         * This is the most likely code path that involves non-trivial use
 809         * of the SYSENTER stack.  Check that we haven't overrun it.
 810         */
 811        WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
 812             "Overran or corrupted SYSENTER stack\n");
 813#endif
 814        ist_exit(regs);
 815}
 816NOKPROBE_SYMBOL(do_debug);
 817
 818/*
 819 * Note that we play around with the 'TS' bit in an attempt to get
 820 * the correct behaviour even in the presence of the asynchronous
 821 * IRQ13 behaviour
 822 */
 823static void math_error(struct pt_regs *regs, int error_code, int trapnr)
 824{
 825        struct task_struct *task = current;
 826        struct fpu *fpu = &task->thread.fpu;
 827        siginfo_t info;
 828        char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
 829                                                "simd exception";
 830
 831        if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
 832                return;
 833        cond_local_irq_enable(regs);
 834
 835        if (!user_mode(regs)) {
 836                if (!fixup_exception(regs, trapnr)) {
 837                        task->thread.error_code = error_code;
 838                        task->thread.trap_nr = trapnr;
 839                        die(str, regs, error_code);
 840                }
 841                return;
 842        }
 843
 844        /*
 845         * Save the info for the exception handler and clear the error.
 846         */
 847        fpu__save(fpu);
 848
 849        task->thread.trap_nr    = trapnr;
 850        task->thread.error_code = error_code;
 851        info.si_signo           = SIGFPE;
 852        info.si_errno           = 0;
 853        info.si_addr            = (void __user *)uprobe_get_trap_addr(regs);
 854
 855        info.si_code = fpu__exception_code(fpu, trapnr);
 856
 857        /* Retry when we get spurious exceptions: */
 858        if (!info.si_code)
 859                return;
 860
 861        force_sig_info(SIGFPE, &info, task);
 862}
 863
 864dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
 865{
 866        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 867        math_error(regs, error_code, X86_TRAP_MF);
 868}
 869
 870dotraplinkage void
 871do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
 872{
 873        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 874        math_error(regs, error_code, X86_TRAP_XF);
 875}
 876
 877dotraplinkage void
 878do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
 879{
 880        cond_local_irq_enable(regs);
 881}
 882
 883dotraplinkage void
 884do_device_not_available(struct pt_regs *regs, long error_code)
 885{
 886        unsigned long cr0;
 887
 888        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 889
 890#ifdef CONFIG_MATH_EMULATION
 891        if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
 892                struct math_emu_info info = { };
 893
 894                cond_local_irq_enable(regs);
 895
 896                info.regs = regs;
 897                math_emulate(&info);
 898                return;
 899        }
 900#endif
 901
 902        /* This should not happen. */
 903        cr0 = read_cr0();
 904        if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
 905                /* Try to fix it up and carry on. */
 906                write_cr0(cr0 & ~X86_CR0_TS);
 907        } else {
 908                /*
 909                 * Something terrible happened, and we're better off trying
 910                 * to kill the task than getting stuck in a never-ending
 911                 * loop of #NM faults.
 912                 */
 913                die("unexpected #NM exception", regs, error_code);
 914        }
 915}
 916NOKPROBE_SYMBOL(do_device_not_available);
 917
 918#ifdef CONFIG_X86_32
 919dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
 920{
 921        siginfo_t info;
 922
 923        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 924        local_irq_enable();
 925
 926        info.si_signo = SIGILL;
 927        info.si_errno = 0;
 928        info.si_code = ILL_BADSTK;
 929        info.si_addr = NULL;
 930        if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
 931                        X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
 932                do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
 933                        &info);
 934        }
 935}
 936#endif
 937
 938/* Set of traps needed for early debugging. */
 939void __init early_trap_init(void)
 940{
 941        /*
 942         * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
 943         * is ready in cpu_init() <-- trap_init(). Before trap_init(),
 944         * CPU runs at ring 0 so it is impossible to hit an invalid
 945         * stack.  Using the original stack works well enough at this
 946         * early stage. DEBUG_STACK will be equipped after cpu_init() in
 947         * trap_init().
 948         *
 949         * We don't need to set trace_idt_table like set_intr_gate(),
 950         * since we don't have trace_debug and it will be reset to
 951         * 'debug' in trap_init() by set_intr_gate_ist().
 952         */
 953        set_intr_gate_notrace(X86_TRAP_DB, debug);
 954        /* int3 can be called from all */
 955        set_system_intr_gate(X86_TRAP_BP, &int3);
 956#ifdef CONFIG_X86_32
 957        set_intr_gate(X86_TRAP_PF, page_fault);
 958#endif
 959        load_idt(&idt_descr);
 960}
 961
 962void __init early_trap_pf_init(void)
 963{
 964#ifdef CONFIG_X86_64
 965        set_intr_gate(X86_TRAP_PF, page_fault);
 966#endif
 967}
 968
 969void __init trap_init(void)
 970{
 971        int i;
 972
 973#ifdef CONFIG_EISA
 974        void __iomem *p = early_ioremap(0x0FFFD9, 4);
 975
 976        if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
 977                EISA_bus = 1;
 978        early_iounmap(p, 4);
 979#endif
 980
 981        set_intr_gate(X86_TRAP_DE, divide_error);
 982        set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
 983        /* int4 can be called from all */
 984        set_system_intr_gate(X86_TRAP_OF, &overflow);
 985        set_intr_gate(X86_TRAP_BR, bounds);
 986        set_intr_gate(X86_TRAP_UD, invalid_op);
 987        set_intr_gate(X86_TRAP_NM, device_not_available);
 988#ifdef CONFIG_X86_32
 989        set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
 990#else
 991        set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
 992#endif
 993        set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
 994        set_intr_gate(X86_TRAP_TS, invalid_TSS);
 995        set_intr_gate(X86_TRAP_NP, segment_not_present);
 996        set_intr_gate(X86_TRAP_SS, stack_segment);
 997        set_intr_gate(X86_TRAP_GP, general_protection);
 998        set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
 999        set_intr_gate(X86_TRAP_MF, coprocessor_error);
1000        set_intr_gate(X86_TRAP_AC, alignment_check);
1001#ifdef CONFIG_X86_MCE
1002        set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
1003#endif
1004        set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
1005
1006        /* Reserve all the builtin and the syscall vector: */
1007        for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
1008                set_bit(i, used_vectors);
1009
1010#ifdef CONFIG_IA32_EMULATION
1011        set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
1012        set_bit(IA32_SYSCALL_VECTOR, used_vectors);
1013#endif
1014
1015#ifdef CONFIG_X86_32
1016        set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
1017        set_bit(IA32_SYSCALL_VECTOR, used_vectors);
1018#endif
1019
1020        /*
1021         * Set the IDT descriptor to a fixed read-only location, so that the
1022         * "sidt" instruction will not leak the location of the kernel, and
1023         * to defend the IDT against arbitrary memory write vulnerabilities.
1024         * It will be reloaded in cpu_init() */
1025        __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
1026        idt_descr.address = fix_to_virt(FIX_RO_IDT);
1027
1028        /*
1029         * Should be a barrier for any external CPU state:
1030         */
1031        cpu_init();
1032
1033        /*
1034         * X86_TRAP_DB and X86_TRAP_BP have been set
1035         * in early_trap_init(). However, ITS works only after
1036         * cpu_init() loads TSS. See comments in early_trap_init().
1037         */
1038        set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
1039        /* int3 can be called from all */
1040        set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
1041
1042        x86_init.irqs.trap_init();
1043
1044#ifdef CONFIG_X86_64
1045        memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1046        set_nmi_gate(X86_TRAP_DB, &debug);
1047        set_nmi_gate(X86_TRAP_BP, &int3);
1048#endif
1049}
1050