linux/arch/x86/kvm/svm.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * AMD SVM support
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 *
   9 * Authors:
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *
  13 * This work is licensed under the terms of the GNU GPL, version 2.  See
  14 * the COPYING file in the top-level directory.
  15 *
  16 */
  17
  18#define pr_fmt(fmt) "SVM: " fmt
  19
  20#include <linux/kvm_host.h>
  21
  22#include "irq.h"
  23#include "mmu.h"
  24#include "kvm_cache_regs.h"
  25#include "x86.h"
  26#include "cpuid.h"
  27#include "pmu.h"
  28
  29#include <linux/module.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/kernel.h>
  32#include <linux/vmalloc.h>
  33#include <linux/highmem.h>
  34#include <linux/sched.h>
  35#include <linux/trace_events.h>
  36#include <linux/slab.h>
  37#include <linux/amd-iommu.h>
  38#include <linux/hashtable.h>
  39#include <linux/frame.h>
  40
  41#include <asm/apic.h>
  42#include <asm/perf_event.h>
  43#include <asm/tlbflush.h>
  44#include <asm/desc.h>
  45#include <asm/debugreg.h>
  46#include <asm/kvm_para.h>
  47#include <asm/irq_remapping.h>
  48
  49#include <asm/virtext.h>
  50#include "trace.h"
  51
  52#define __ex(x) __kvm_handle_fault_on_reboot(x)
  53
  54MODULE_AUTHOR("Qumranet");
  55MODULE_LICENSE("GPL");
  56
  57static const struct x86_cpu_id svm_cpu_id[] = {
  58        X86_FEATURE_MATCH(X86_FEATURE_SVM),
  59        {}
  60};
  61MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  62
  63#define IOPM_ALLOC_ORDER 2
  64#define MSRPM_ALLOC_ORDER 1
  65
  66#define SEG_TYPE_LDT 2
  67#define SEG_TYPE_BUSY_TSS16 3
  68
  69#define SVM_FEATURE_NPT            (1 <<  0)
  70#define SVM_FEATURE_LBRV           (1 <<  1)
  71#define SVM_FEATURE_SVML           (1 <<  2)
  72#define SVM_FEATURE_NRIP           (1 <<  3)
  73#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  74#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  75#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  76#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  77#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  78
  79#define SVM_AVIC_DOORBELL       0xc001011b
  80
  81#define NESTED_EXIT_HOST        0       /* Exit handled on host level */
  82#define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
  83#define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
  84
  85#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  86
  87#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  88#define TSC_RATIO_MIN           0x0000000000000001ULL
  89#define TSC_RATIO_MAX           0x000000ffffffffffULL
  90
  91#define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
  92
  93/*
  94 * 0xff is broadcast, so the max index allowed for physical APIC ID
  95 * table is 0xfe.  APIC IDs above 0xff are reserved.
  96 */
  97#define AVIC_MAX_PHYSICAL_ID_COUNT      255
  98
  99#define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
 100#define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
 101#define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
 102
 103/* AVIC GATAG is encoded using VM and VCPU IDs */
 104#define AVIC_VCPU_ID_BITS               8
 105#define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
 106
 107#define AVIC_VM_ID_BITS                 24
 108#define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
 109#define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
 110
 111#define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
 112                                                (y & AVIC_VCPU_ID_MASK))
 113#define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
 114#define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
 115
 116static bool erratum_383_found __read_mostly;
 117
 118static const u32 host_save_user_msrs[] = {
 119#ifdef CONFIG_X86_64
 120        MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
 121        MSR_FS_BASE,
 122#endif
 123        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 124        MSR_TSC_AUX,
 125};
 126
 127#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
 128
 129struct kvm_vcpu;
 130
 131struct nested_state {
 132        struct vmcb *hsave;
 133        u64 hsave_msr;
 134        u64 vm_cr_msr;
 135        u64 vmcb;
 136
 137        /* These are the merged vectors */
 138        u32 *msrpm;
 139
 140        /* gpa pointers to the real vectors */
 141        u64 vmcb_msrpm;
 142        u64 vmcb_iopm;
 143
 144        /* A VMEXIT is required but not yet emulated */
 145        bool exit_required;
 146
 147        /* cache for intercepts of the guest */
 148        u32 intercept_cr;
 149        u32 intercept_dr;
 150        u32 intercept_exceptions;
 151        u64 intercept;
 152
 153        /* Nested Paging related state */
 154        u64 nested_cr3;
 155};
 156
 157#define MSRPM_OFFSETS   16
 158static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 159
 160/*
 161 * Set osvw_len to higher value when updated Revision Guides
 162 * are published and we know what the new status bits are
 163 */
 164static uint64_t osvw_len = 4, osvw_status;
 165
 166struct vcpu_svm {
 167        struct kvm_vcpu vcpu;
 168        struct vmcb *vmcb;
 169        unsigned long vmcb_pa;
 170        struct svm_cpu_data *svm_data;
 171        uint64_t asid_generation;
 172        uint64_t sysenter_esp;
 173        uint64_t sysenter_eip;
 174        uint64_t tsc_aux;
 175
 176        u64 next_rip;
 177
 178        u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 179        struct {
 180                u16 fs;
 181                u16 gs;
 182                u16 ldt;
 183                u64 gs_base;
 184        } host;
 185
 186        u32 *msrpm;
 187
 188        ulong nmi_iret_rip;
 189
 190        struct nested_state nested;
 191
 192        bool nmi_singlestep;
 193        u64 nmi_singlestep_guest_rflags;
 194
 195        unsigned int3_injected;
 196        unsigned long int3_rip;
 197
 198        /* cached guest cpuid flags for faster access */
 199        bool nrips_enabled      : 1;
 200
 201        u32 ldr_reg;
 202        struct page *avic_backing_page;
 203        u64 *avic_physical_id_cache;
 204        bool avic_is_running;
 205
 206        /*
 207         * Per-vcpu list of struct amd_svm_iommu_ir:
 208         * This is used mainly to store interrupt remapping information used
 209         * when update the vcpu affinity. This avoids the need to scan for
 210         * IRTE and try to match ga_tag in the IOMMU driver.
 211         */
 212        struct list_head ir_list;
 213        spinlock_t ir_list_lock;
 214};
 215
 216/*
 217 * This is a wrapper of struct amd_iommu_ir_data.
 218 */
 219struct amd_svm_iommu_ir {
 220        struct list_head node;  /* Used by SVM for per-vcpu ir_list */
 221        void *data;             /* Storing pointer to struct amd_ir_data */
 222};
 223
 224#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
 225#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
 226
 227#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
 228#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
 229#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
 230#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
 231
 232static DEFINE_PER_CPU(u64, current_tsc_ratio);
 233#define TSC_RATIO_DEFAULT       0x0100000000ULL
 234
 235#define MSR_INVALID                     0xffffffffU
 236
 237static const struct svm_direct_access_msrs {
 238        u32 index;   /* Index of the MSR */
 239        bool always; /* True if intercept is always on */
 240} direct_access_msrs[] = {
 241        { .index = MSR_STAR,                            .always = true  },
 242        { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
 243#ifdef CONFIG_X86_64
 244        { .index = MSR_GS_BASE,                         .always = true  },
 245        { .index = MSR_FS_BASE,                         .always = true  },
 246        { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
 247        { .index = MSR_LSTAR,                           .always = true  },
 248        { .index = MSR_CSTAR,                           .always = true  },
 249        { .index = MSR_SYSCALL_MASK,                    .always = true  },
 250#endif
 251        { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
 252        { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
 253        { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
 254        { .index = MSR_IA32_LASTINTTOIP,                .always = false },
 255        { .index = MSR_INVALID,                         .always = false },
 256};
 257
 258/* enable NPT for AMD64 and X86 with PAE */
 259#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 260static bool npt_enabled = true;
 261#else
 262static bool npt_enabled;
 263#endif
 264
 265/* allow nested paging (virtualized MMU) for all guests */
 266static int npt = true;
 267module_param(npt, int, S_IRUGO);
 268
 269/* allow nested virtualization in KVM/SVM */
 270static int nested = true;
 271module_param(nested, int, S_IRUGO);
 272
 273/* enable / disable AVIC */
 274static int avic;
 275#ifdef CONFIG_X86_LOCAL_APIC
 276module_param(avic, int, S_IRUGO);
 277#endif
 278
 279/* enable/disable Virtual VMLOAD VMSAVE */
 280static int vls = true;
 281module_param(vls, int, 0444);
 282
 283/* AVIC VM ID bit masks and lock */
 284static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
 285static DEFINE_SPINLOCK(avic_vm_id_lock);
 286
 287static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 288static void svm_flush_tlb(struct kvm_vcpu *vcpu);
 289static void svm_complete_interrupts(struct vcpu_svm *svm);
 290
 291static int nested_svm_exit_handled(struct vcpu_svm *svm);
 292static int nested_svm_intercept(struct vcpu_svm *svm);
 293static int nested_svm_vmexit(struct vcpu_svm *svm);
 294static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 295                                      bool has_error_code, u32 error_code);
 296
 297enum {
 298        VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 299                            pause filter count */
 300        VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 301        VMCB_ASID,       /* ASID */
 302        VMCB_INTR,       /* int_ctl, int_vector */
 303        VMCB_NPT,        /* npt_en, nCR3, gPAT */
 304        VMCB_CR,         /* CR0, CR3, CR4, EFER */
 305        VMCB_DR,         /* DR6, DR7 */
 306        VMCB_DT,         /* GDT, IDT */
 307        VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 308        VMCB_CR2,        /* CR2 only */
 309        VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 310        VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
 311                          * AVIC PHYSICAL_TABLE pointer,
 312                          * AVIC LOGICAL_TABLE pointer
 313                          */
 314        VMCB_DIRTY_MAX,
 315};
 316
 317/* TPR and CR2 are always written before VMRUN */
 318#define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
 319
 320#define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
 321
 322static inline void mark_all_dirty(struct vmcb *vmcb)
 323{
 324        vmcb->control.clean = 0;
 325}
 326
 327static inline void mark_all_clean(struct vmcb *vmcb)
 328{
 329        vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 330                               & ~VMCB_ALWAYS_DIRTY_MASK;
 331}
 332
 333static inline void mark_dirty(struct vmcb *vmcb, int bit)
 334{
 335        vmcb->control.clean &= ~(1 << bit);
 336}
 337
 338static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 339{
 340        return container_of(vcpu, struct vcpu_svm, vcpu);
 341}
 342
 343static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
 344{
 345        svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
 346        mark_dirty(svm->vmcb, VMCB_AVIC);
 347}
 348
 349static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
 350{
 351        struct vcpu_svm *svm = to_svm(vcpu);
 352        u64 *entry = svm->avic_physical_id_cache;
 353
 354        if (!entry)
 355                return false;
 356
 357        return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
 358}
 359
 360static void recalc_intercepts(struct vcpu_svm *svm)
 361{
 362        struct vmcb_control_area *c, *h;
 363        struct nested_state *g;
 364
 365        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 366
 367        if (!is_guest_mode(&svm->vcpu))
 368                return;
 369
 370        c = &svm->vmcb->control;
 371        h = &svm->nested.hsave->control;
 372        g = &svm->nested;
 373
 374        c->intercept_cr = h->intercept_cr | g->intercept_cr;
 375        c->intercept_dr = h->intercept_dr | g->intercept_dr;
 376        c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 377        c->intercept = h->intercept | g->intercept;
 378}
 379
 380static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 381{
 382        if (is_guest_mode(&svm->vcpu))
 383                return svm->nested.hsave;
 384        else
 385                return svm->vmcb;
 386}
 387
 388static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 389{
 390        struct vmcb *vmcb = get_host_vmcb(svm);
 391
 392        vmcb->control.intercept_cr |= (1U << bit);
 393
 394        recalc_intercepts(svm);
 395}
 396
 397static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 398{
 399        struct vmcb *vmcb = get_host_vmcb(svm);
 400
 401        vmcb->control.intercept_cr &= ~(1U << bit);
 402
 403        recalc_intercepts(svm);
 404}
 405
 406static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 407{
 408        struct vmcb *vmcb = get_host_vmcb(svm);
 409
 410        return vmcb->control.intercept_cr & (1U << bit);
 411}
 412
 413static inline void set_dr_intercepts(struct vcpu_svm *svm)
 414{
 415        struct vmcb *vmcb = get_host_vmcb(svm);
 416
 417        vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
 418                | (1 << INTERCEPT_DR1_READ)
 419                | (1 << INTERCEPT_DR2_READ)
 420                | (1 << INTERCEPT_DR3_READ)
 421                | (1 << INTERCEPT_DR4_READ)
 422                | (1 << INTERCEPT_DR5_READ)
 423                | (1 << INTERCEPT_DR6_READ)
 424                | (1 << INTERCEPT_DR7_READ)
 425                | (1 << INTERCEPT_DR0_WRITE)
 426                | (1 << INTERCEPT_DR1_WRITE)
 427                | (1 << INTERCEPT_DR2_WRITE)
 428                | (1 << INTERCEPT_DR3_WRITE)
 429                | (1 << INTERCEPT_DR4_WRITE)
 430                | (1 << INTERCEPT_DR5_WRITE)
 431                | (1 << INTERCEPT_DR6_WRITE)
 432                | (1 << INTERCEPT_DR7_WRITE);
 433
 434        recalc_intercepts(svm);
 435}
 436
 437static inline void clr_dr_intercepts(struct vcpu_svm *svm)
 438{
 439        struct vmcb *vmcb = get_host_vmcb(svm);
 440
 441        vmcb->control.intercept_dr = 0;
 442
 443        recalc_intercepts(svm);
 444}
 445
 446static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 447{
 448        struct vmcb *vmcb = get_host_vmcb(svm);
 449
 450        vmcb->control.intercept_exceptions |= (1U << bit);
 451
 452        recalc_intercepts(svm);
 453}
 454
 455static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 456{
 457        struct vmcb *vmcb = get_host_vmcb(svm);
 458
 459        vmcb->control.intercept_exceptions &= ~(1U << bit);
 460
 461        recalc_intercepts(svm);
 462}
 463
 464static inline void set_intercept(struct vcpu_svm *svm, int bit)
 465{
 466        struct vmcb *vmcb = get_host_vmcb(svm);
 467
 468        vmcb->control.intercept |= (1ULL << bit);
 469
 470        recalc_intercepts(svm);
 471}
 472
 473static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 474{
 475        struct vmcb *vmcb = get_host_vmcb(svm);
 476
 477        vmcb->control.intercept &= ~(1ULL << bit);
 478
 479        recalc_intercepts(svm);
 480}
 481
 482static inline void enable_gif(struct vcpu_svm *svm)
 483{
 484        svm->vcpu.arch.hflags |= HF_GIF_MASK;
 485}
 486
 487static inline void disable_gif(struct vcpu_svm *svm)
 488{
 489        svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 490}
 491
 492static inline bool gif_set(struct vcpu_svm *svm)
 493{
 494        return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 495}
 496
 497static unsigned long iopm_base;
 498
 499struct kvm_ldttss_desc {
 500        u16 limit0;
 501        u16 base0;
 502        unsigned base1:8, type:5, dpl:2, p:1;
 503        unsigned limit1:4, zero0:3, g:1, base2:8;
 504        u32 base3;
 505        u32 zero1;
 506} __attribute__((packed));
 507
 508struct svm_cpu_data {
 509        int cpu;
 510
 511        u64 asid_generation;
 512        u32 max_asid;
 513        u32 next_asid;
 514        struct kvm_ldttss_desc *tss_desc;
 515
 516        struct page *save_area;
 517};
 518
 519static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 520
 521struct svm_init_data {
 522        int cpu;
 523        int r;
 524};
 525
 526static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 527
 528#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 529#define MSRS_RANGE_SIZE 2048
 530#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 531
 532static u32 svm_msrpm_offset(u32 msr)
 533{
 534        u32 offset;
 535        int i;
 536
 537        for (i = 0; i < NUM_MSR_MAPS; i++) {
 538                if (msr < msrpm_ranges[i] ||
 539                    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 540                        continue;
 541
 542                offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 543                offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 544
 545                /* Now we have the u8 offset - but need the u32 offset */
 546                return offset / 4;
 547        }
 548
 549        /* MSR not in any range */
 550        return MSR_INVALID;
 551}
 552
 553#define MAX_INST_SIZE 15
 554
 555static inline void clgi(void)
 556{
 557        asm volatile (__ex(SVM_CLGI));
 558}
 559
 560static inline void stgi(void)
 561{
 562        asm volatile (__ex(SVM_STGI));
 563}
 564
 565static inline void invlpga(unsigned long addr, u32 asid)
 566{
 567        asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
 568}
 569
 570static int get_npt_level(void)
 571{
 572#ifdef CONFIG_X86_64
 573        return PT64_ROOT_LEVEL;
 574#else
 575        return PT32E_ROOT_LEVEL;
 576#endif
 577}
 578
 579static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 580{
 581        vcpu->arch.efer = efer;
 582        if (!npt_enabled && !(efer & EFER_LMA))
 583                efer &= ~EFER_LME;
 584
 585        to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 586        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 587}
 588
 589static int is_external_interrupt(u32 info)
 590{
 591        info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 592        return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 593}
 594
 595static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 596{
 597        struct vcpu_svm *svm = to_svm(vcpu);
 598        u32 ret = 0;
 599
 600        if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 601                ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 602        return ret;
 603}
 604
 605static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 606{
 607        struct vcpu_svm *svm = to_svm(vcpu);
 608
 609        if (mask == 0)
 610                svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 611        else
 612                svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 613
 614}
 615
 616static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 617{
 618        struct vcpu_svm *svm = to_svm(vcpu);
 619
 620        if (svm->vmcb->control.next_rip != 0) {
 621                WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 622                svm->next_rip = svm->vmcb->control.next_rip;
 623        }
 624
 625        if (!svm->next_rip) {
 626                if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
 627                                EMULATE_DONE)
 628                        printk(KERN_DEBUG "%s: NOP\n", __func__);
 629                return;
 630        }
 631        if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 632                printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
 633                       __func__, kvm_rip_read(vcpu), svm->next_rip);
 634
 635        kvm_rip_write(vcpu, svm->next_rip);
 636        svm_set_interrupt_shadow(vcpu, 0);
 637}
 638
 639static void svm_queue_exception(struct kvm_vcpu *vcpu)
 640{
 641        struct vcpu_svm *svm = to_svm(vcpu);
 642        unsigned nr = vcpu->arch.exception.nr;
 643        bool has_error_code = vcpu->arch.exception.has_error_code;
 644        bool reinject = vcpu->arch.exception.reinject;
 645        u32 error_code = vcpu->arch.exception.error_code;
 646
 647        /*
 648         * If we are within a nested VM we'd better #VMEXIT and let the guest
 649         * handle the exception
 650         */
 651        if (!reinject &&
 652            nested_svm_check_exception(svm, nr, has_error_code, error_code))
 653                return;
 654
 655        if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 656                unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 657
 658                /*
 659                 * For guest debugging where we have to reinject #BP if some
 660                 * INT3 is guest-owned:
 661                 * Emulate nRIP by moving RIP forward. Will fail if injection
 662                 * raises a fault that is not intercepted. Still better than
 663                 * failing in all cases.
 664                 */
 665                skip_emulated_instruction(&svm->vcpu);
 666                rip = kvm_rip_read(&svm->vcpu);
 667                svm->int3_rip = rip + svm->vmcb->save.cs.base;
 668                svm->int3_injected = rip - old_rip;
 669        }
 670
 671        svm->vmcb->control.event_inj = nr
 672                | SVM_EVTINJ_VALID
 673                | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 674                | SVM_EVTINJ_TYPE_EXEPT;
 675        svm->vmcb->control.event_inj_err = error_code;
 676}
 677
 678static void svm_init_erratum_383(void)
 679{
 680        u32 low, high;
 681        int err;
 682        u64 val;
 683
 684        if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 685                return;
 686
 687        /* Use _safe variants to not break nested virtualization */
 688        val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 689        if (err)
 690                return;
 691
 692        val |= (1ULL << 47);
 693
 694        low  = lower_32_bits(val);
 695        high = upper_32_bits(val);
 696
 697        native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 698
 699        erratum_383_found = true;
 700}
 701
 702static void svm_init_osvw(struct kvm_vcpu *vcpu)
 703{
 704        /*
 705         * Guests should see errata 400 and 415 as fixed (assuming that
 706         * HLT and IO instructions are intercepted).
 707         */
 708        vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 709        vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 710
 711        /*
 712         * By increasing VCPU's osvw.length to 3 we are telling the guest that
 713         * all osvw.status bits inside that length, including bit 0 (which is
 714         * reserved for erratum 298), are valid. However, if host processor's
 715         * osvw_len is 0 then osvw_status[0] carries no information. We need to
 716         * be conservative here and therefore we tell the guest that erratum 298
 717         * is present (because we really don't know).
 718         */
 719        if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 720                vcpu->arch.osvw.status |= 1;
 721}
 722
 723static int has_svm(void)
 724{
 725        const char *msg;
 726
 727        if (!cpu_has_svm(&msg)) {
 728                printk(KERN_INFO "has_svm: %s\n", msg);
 729                return 0;
 730        }
 731
 732        return 1;
 733}
 734
 735static void svm_hardware_disable(void)
 736{
 737        /* Make sure we clean up behind us */
 738        if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 739                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 740
 741        cpu_svm_disable();
 742
 743        amd_pmu_disable_virt();
 744}
 745
 746static int svm_hardware_enable(void)
 747{
 748
 749        struct svm_cpu_data *sd;
 750        uint64_t efer;
 751        struct desc_struct *gdt;
 752        int me = raw_smp_processor_id();
 753
 754        rdmsrl(MSR_EFER, efer);
 755        if (efer & EFER_SVME)
 756                return -EBUSY;
 757
 758        if (!has_svm()) {
 759                pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 760                return -EINVAL;
 761        }
 762        sd = per_cpu(svm_data, me);
 763        if (!sd) {
 764                pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 765                return -EINVAL;
 766        }
 767
 768        sd->asid_generation = 1;
 769        sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 770        sd->next_asid = sd->max_asid + 1;
 771
 772        gdt = get_current_gdt_rw();
 773        sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 774
 775        wrmsrl(MSR_EFER, efer | EFER_SVME);
 776
 777        wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 778
 779        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 780                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 781                __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
 782        }
 783
 784
 785        /*
 786         * Get OSVW bits.
 787         *
 788         * Note that it is possible to have a system with mixed processor
 789         * revisions and therefore different OSVW bits. If bits are not the same
 790         * on different processors then choose the worst case (i.e. if erratum
 791         * is present on one processor and not on another then assume that the
 792         * erratum is present everywhere).
 793         */
 794        if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 795                uint64_t len, status = 0;
 796                int err;
 797
 798                len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 799                if (!err)
 800                        status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 801                                                      &err);
 802
 803                if (err)
 804                        osvw_status = osvw_len = 0;
 805                else {
 806                        if (len < osvw_len)
 807                                osvw_len = len;
 808                        osvw_status |= status;
 809                        osvw_status &= (1ULL << osvw_len) - 1;
 810                }
 811        } else
 812                osvw_status = osvw_len = 0;
 813
 814        svm_init_erratum_383();
 815
 816        amd_pmu_enable_virt();
 817
 818        return 0;
 819}
 820
 821static void svm_cpu_uninit(int cpu)
 822{
 823        struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 824
 825        if (!sd)
 826                return;
 827
 828        per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 829        __free_page(sd->save_area);
 830        kfree(sd);
 831}
 832
 833static int svm_cpu_init(int cpu)
 834{
 835        struct svm_cpu_data *sd;
 836        int r;
 837
 838        sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 839        if (!sd)
 840                return -ENOMEM;
 841        sd->cpu = cpu;
 842        sd->save_area = alloc_page(GFP_KERNEL);
 843        r = -ENOMEM;
 844        if (!sd->save_area)
 845                goto err_1;
 846
 847        per_cpu(svm_data, cpu) = sd;
 848
 849        return 0;
 850
 851err_1:
 852        kfree(sd);
 853        return r;
 854
 855}
 856
 857static bool valid_msr_intercept(u32 index)
 858{
 859        int i;
 860
 861        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
 862                if (direct_access_msrs[i].index == index)
 863                        return true;
 864
 865        return false;
 866}
 867
 868static void set_msr_interception(u32 *msrpm, unsigned msr,
 869                                 int read, int write)
 870{
 871        u8 bit_read, bit_write;
 872        unsigned long tmp;
 873        u32 offset;
 874
 875        /*
 876         * If this warning triggers extend the direct_access_msrs list at the
 877         * beginning of the file
 878         */
 879        WARN_ON(!valid_msr_intercept(msr));
 880
 881        offset    = svm_msrpm_offset(msr);
 882        bit_read  = 2 * (msr & 0x0f);
 883        bit_write = 2 * (msr & 0x0f) + 1;
 884        tmp       = msrpm[offset];
 885
 886        BUG_ON(offset == MSR_INVALID);
 887
 888        read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
 889        write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
 890
 891        msrpm[offset] = tmp;
 892}
 893
 894static void svm_vcpu_init_msrpm(u32 *msrpm)
 895{
 896        int i;
 897
 898        memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
 899
 900        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 901                if (!direct_access_msrs[i].always)
 902                        continue;
 903
 904                set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
 905        }
 906}
 907
 908static void add_msr_offset(u32 offset)
 909{
 910        int i;
 911
 912        for (i = 0; i < MSRPM_OFFSETS; ++i) {
 913
 914                /* Offset already in list? */
 915                if (msrpm_offsets[i] == offset)
 916                        return;
 917
 918                /* Slot used by another offset? */
 919                if (msrpm_offsets[i] != MSR_INVALID)
 920                        continue;
 921
 922                /* Add offset to list */
 923                msrpm_offsets[i] = offset;
 924
 925                return;
 926        }
 927
 928        /*
 929         * If this BUG triggers the msrpm_offsets table has an overflow. Just
 930         * increase MSRPM_OFFSETS in this case.
 931         */
 932        BUG();
 933}
 934
 935static void init_msrpm_offsets(void)
 936{
 937        int i;
 938
 939        memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
 940
 941        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 942                u32 offset;
 943
 944                offset = svm_msrpm_offset(direct_access_msrs[i].index);
 945                BUG_ON(offset == MSR_INVALID);
 946
 947                add_msr_offset(offset);
 948        }
 949}
 950
 951static void svm_enable_lbrv(struct vcpu_svm *svm)
 952{
 953        u32 *msrpm = svm->msrpm;
 954
 955        svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
 956        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
 957        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
 958        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
 959        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
 960}
 961
 962static void svm_disable_lbrv(struct vcpu_svm *svm)
 963{
 964        u32 *msrpm = svm->msrpm;
 965
 966        svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
 967        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
 968        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
 969        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
 970        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
 971}
 972
 973static void disable_nmi_singlestep(struct vcpu_svm *svm)
 974{
 975        svm->nmi_singlestep = false;
 976        if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
 977                /* Clear our flags if they were not set by the guest */
 978                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
 979                        svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
 980                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
 981                        svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
 982        }
 983}
 984
 985/* Note:
 986 * This hash table is used to map VM_ID to a struct kvm_arch,
 987 * when handling AMD IOMMU GALOG notification to schedule in
 988 * a particular vCPU.
 989 */
 990#define SVM_VM_DATA_HASH_BITS   8
 991static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
 992static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
 993
 994/* Note:
 995 * This function is called from IOMMU driver to notify
 996 * SVM to schedule in a particular vCPU of a particular VM.
 997 */
 998static int avic_ga_log_notifier(u32 ga_tag)
 999{
1000        unsigned long flags;
1001        struct kvm_arch *ka = NULL;
1002        struct kvm_vcpu *vcpu = NULL;
1003        u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1004        u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1005
1006        pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1007
1008        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1009        hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1010                struct kvm *kvm = container_of(ka, struct kvm, arch);
1011                struct kvm_arch *vm_data = &kvm->arch;
1012
1013                if (vm_data->avic_vm_id != vm_id)
1014                        continue;
1015                vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1016                break;
1017        }
1018        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1019
1020        if (!vcpu)
1021                return 0;
1022
1023        /* Note:
1024         * At this point, the IOMMU should have already set the pending
1025         * bit in the vAPIC backing page. So, we just need to schedule
1026         * in the vcpu.
1027         */
1028        if (vcpu->mode == OUTSIDE_GUEST_MODE)
1029                kvm_vcpu_wake_up(vcpu);
1030
1031        return 0;
1032}
1033
1034static __init int svm_hardware_setup(void)
1035{
1036        int cpu;
1037        struct page *iopm_pages;
1038        void *iopm_va;
1039        int r;
1040
1041        iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1042
1043        if (!iopm_pages)
1044                return -ENOMEM;
1045
1046        iopm_va = page_address(iopm_pages);
1047        memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1048        iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1049
1050        init_msrpm_offsets();
1051
1052        if (boot_cpu_has(X86_FEATURE_NX))
1053                kvm_enable_efer_bits(EFER_NX);
1054
1055        if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1056                kvm_enable_efer_bits(EFER_FFXSR);
1057
1058        if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1059                kvm_has_tsc_control = true;
1060                kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1061                kvm_tsc_scaling_ratio_frac_bits = 32;
1062        }
1063
1064        if (nested) {
1065                printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1066                kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1067        }
1068
1069        for_each_possible_cpu(cpu) {
1070                r = svm_cpu_init(cpu);
1071                if (r)
1072                        goto err;
1073        }
1074
1075        if (!boot_cpu_has(X86_FEATURE_NPT))
1076                npt_enabled = false;
1077
1078        if (npt_enabled && !npt) {
1079                printk(KERN_INFO "kvm: Nested Paging disabled\n");
1080                npt_enabled = false;
1081        }
1082
1083        if (npt_enabled) {
1084                printk(KERN_INFO "kvm: Nested Paging enabled\n");
1085                kvm_enable_tdp();
1086        } else
1087                kvm_disable_tdp();
1088
1089        if (avic) {
1090                if (!npt_enabled ||
1091                    !boot_cpu_has(X86_FEATURE_AVIC) ||
1092                    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1093                        avic = false;
1094                } else {
1095                        pr_info("AVIC enabled\n");
1096
1097                        amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1098                }
1099        }
1100
1101        if (vls) {
1102                if (!npt_enabled ||
1103                    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1104                    !IS_ENABLED(CONFIG_X86_64)) {
1105                        vls = false;
1106                } else {
1107                        pr_info("Virtual VMLOAD VMSAVE supported\n");
1108                }
1109        }
1110
1111        return 0;
1112
1113err:
1114        __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1115        iopm_base = 0;
1116        return r;
1117}
1118
1119static __exit void svm_hardware_unsetup(void)
1120{
1121        int cpu;
1122
1123        for_each_possible_cpu(cpu)
1124                svm_cpu_uninit(cpu);
1125
1126        __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1127        iopm_base = 0;
1128}
1129
1130static void init_seg(struct vmcb_seg *seg)
1131{
1132        seg->selector = 0;
1133        seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1134                      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1135        seg->limit = 0xffff;
1136        seg->base = 0;
1137}
1138
1139static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1140{
1141        seg->selector = 0;
1142        seg->attrib = SVM_SELECTOR_P_MASK | type;
1143        seg->limit = 0xffff;
1144        seg->base = 0;
1145}
1146
1147static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1148{
1149        struct vcpu_svm *svm = to_svm(vcpu);
1150        u64 g_tsc_offset = 0;
1151
1152        if (is_guest_mode(vcpu)) {
1153                g_tsc_offset = svm->vmcb->control.tsc_offset -
1154                               svm->nested.hsave->control.tsc_offset;
1155                svm->nested.hsave->control.tsc_offset = offset;
1156        } else
1157                trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1158                                           svm->vmcb->control.tsc_offset,
1159                                           offset);
1160
1161        svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1162
1163        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1164}
1165
1166static void avic_init_vmcb(struct vcpu_svm *svm)
1167{
1168        struct vmcb *vmcb = svm->vmcb;
1169        struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1170        phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1171        phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1172        phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1173
1174        vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1175        vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1176        vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1177        vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1178        vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1179        svm->vcpu.arch.apicv_active = true;
1180}
1181
1182static void init_vmcb(struct vcpu_svm *svm)
1183{
1184        struct vmcb_control_area *control = &svm->vmcb->control;
1185        struct vmcb_save_area *save = &svm->vmcb->save;
1186
1187        svm->vcpu.arch.hflags = 0;
1188
1189        set_cr_intercept(svm, INTERCEPT_CR0_READ);
1190        set_cr_intercept(svm, INTERCEPT_CR3_READ);
1191        set_cr_intercept(svm, INTERCEPT_CR4_READ);
1192        set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1193        set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1194        set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1195        if (!kvm_vcpu_apicv_active(&svm->vcpu))
1196                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1197
1198        set_dr_intercepts(svm);
1199
1200        set_exception_intercept(svm, PF_VECTOR);
1201        set_exception_intercept(svm, UD_VECTOR);
1202        set_exception_intercept(svm, MC_VECTOR);
1203        set_exception_intercept(svm, AC_VECTOR);
1204        set_exception_intercept(svm, DB_VECTOR);
1205
1206        set_intercept(svm, INTERCEPT_INTR);
1207        set_intercept(svm, INTERCEPT_NMI);
1208        set_intercept(svm, INTERCEPT_SMI);
1209        set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1210        set_intercept(svm, INTERCEPT_RDPMC);
1211        set_intercept(svm, INTERCEPT_CPUID);
1212        set_intercept(svm, INTERCEPT_INVD);
1213        set_intercept(svm, INTERCEPT_HLT);
1214        set_intercept(svm, INTERCEPT_INVLPG);
1215        set_intercept(svm, INTERCEPT_INVLPGA);
1216        set_intercept(svm, INTERCEPT_IOIO_PROT);
1217        set_intercept(svm, INTERCEPT_MSR_PROT);
1218        set_intercept(svm, INTERCEPT_TASK_SWITCH);
1219        set_intercept(svm, INTERCEPT_SHUTDOWN);
1220        set_intercept(svm, INTERCEPT_VMRUN);
1221        set_intercept(svm, INTERCEPT_VMMCALL);
1222        set_intercept(svm, INTERCEPT_VMLOAD);
1223        set_intercept(svm, INTERCEPT_VMSAVE);
1224        set_intercept(svm, INTERCEPT_STGI);
1225        set_intercept(svm, INTERCEPT_CLGI);
1226        set_intercept(svm, INTERCEPT_SKINIT);
1227        set_intercept(svm, INTERCEPT_WBINVD);
1228        set_intercept(svm, INTERCEPT_XSETBV);
1229
1230        if (!kvm_mwait_in_guest()) {
1231                set_intercept(svm, INTERCEPT_MONITOR);
1232                set_intercept(svm, INTERCEPT_MWAIT);
1233        }
1234
1235        control->iopm_base_pa = iopm_base;
1236        control->msrpm_base_pa = __pa(svm->msrpm);
1237        control->int_ctl = V_INTR_MASKING_MASK;
1238
1239        init_seg(&save->es);
1240        init_seg(&save->ss);
1241        init_seg(&save->ds);
1242        init_seg(&save->fs);
1243        init_seg(&save->gs);
1244
1245        save->cs.selector = 0xf000;
1246        save->cs.base = 0xffff0000;
1247        /* Executable/Readable Code Segment */
1248        save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1249                SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1250        save->cs.limit = 0xffff;
1251
1252        save->gdtr.limit = 0xffff;
1253        save->idtr.limit = 0xffff;
1254
1255        init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1256        init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1257
1258        svm_set_efer(&svm->vcpu, 0);
1259        save->dr6 = 0xffff0ff0;
1260        kvm_set_rflags(&svm->vcpu, 2);
1261        save->rip = 0x0000fff0;
1262        svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1263
1264        /*
1265         * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1266         * It also updates the guest-visible cr0 value.
1267         */
1268        svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1269        kvm_mmu_reset_context(&svm->vcpu);
1270
1271        save->cr4 = X86_CR4_PAE;
1272        /* rdx = ?? */
1273
1274        if (npt_enabled) {
1275                /* Setup VMCB for Nested Paging */
1276                control->nested_ctl = 1;
1277                clr_intercept(svm, INTERCEPT_INVLPG);
1278                clr_exception_intercept(svm, PF_VECTOR);
1279                clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1280                clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1281                save->g_pat = svm->vcpu.arch.pat;
1282                save->cr3 = 0;
1283                save->cr4 = 0;
1284        }
1285        svm->asid_generation = 0;
1286
1287        svm->nested.vmcb = 0;
1288        svm->vcpu.arch.hflags = 0;
1289
1290        if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1291                control->pause_filter_count = 3000;
1292                set_intercept(svm, INTERCEPT_PAUSE);
1293        }
1294
1295        if (avic)
1296                avic_init_vmcb(svm);
1297
1298        /*
1299         * If hardware supports Virtual VMLOAD VMSAVE then enable it
1300         * in VMCB and clear intercepts to avoid #VMEXIT.
1301         */
1302        if (vls) {
1303                clr_intercept(svm, INTERCEPT_VMLOAD);
1304                clr_intercept(svm, INTERCEPT_VMSAVE);
1305                svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1306        }
1307
1308        mark_all_dirty(svm->vmcb);
1309
1310        enable_gif(svm);
1311
1312}
1313
1314static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1315                                       unsigned int index)
1316{
1317        u64 *avic_physical_id_table;
1318        struct kvm_arch *vm_data = &vcpu->kvm->arch;
1319
1320        if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1321                return NULL;
1322
1323        avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1324
1325        return &avic_physical_id_table[index];
1326}
1327
1328/**
1329 * Note:
1330 * AVIC hardware walks the nested page table to check permissions,
1331 * but does not use the SPA address specified in the leaf page
1332 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1333 * field of the VMCB. Therefore, we set up the
1334 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1335 */
1336static int avic_init_access_page(struct kvm_vcpu *vcpu)
1337{
1338        struct kvm *kvm = vcpu->kvm;
1339        int ret;
1340
1341        if (kvm->arch.apic_access_page_done)
1342                return 0;
1343
1344        ret = x86_set_memory_region(kvm,
1345                                    APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1346                                    APIC_DEFAULT_PHYS_BASE,
1347                                    PAGE_SIZE);
1348        if (ret)
1349                return ret;
1350
1351        kvm->arch.apic_access_page_done = true;
1352        return 0;
1353}
1354
1355static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1356{
1357        int ret;
1358        u64 *entry, new_entry;
1359        int id = vcpu->vcpu_id;
1360        struct vcpu_svm *svm = to_svm(vcpu);
1361
1362        ret = avic_init_access_page(vcpu);
1363        if (ret)
1364                return ret;
1365
1366        if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1367                return -EINVAL;
1368
1369        if (!svm->vcpu.arch.apic->regs)
1370                return -EINVAL;
1371
1372        svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1373
1374        /* Setting AVIC backing page address in the phy APIC ID table */
1375        entry = avic_get_physical_id_entry(vcpu, id);
1376        if (!entry)
1377                return -EINVAL;
1378
1379        new_entry = READ_ONCE(*entry);
1380        new_entry = (page_to_phys(svm->avic_backing_page) &
1381                     AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1382                     AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1383        WRITE_ONCE(*entry, new_entry);
1384
1385        svm->avic_physical_id_cache = entry;
1386
1387        return 0;
1388}
1389
1390static inline int avic_get_next_vm_id(void)
1391{
1392        int id;
1393
1394        spin_lock(&avic_vm_id_lock);
1395
1396        /* AVIC VM ID is one-based. */
1397        id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1398        if (id <= AVIC_VM_ID_MASK)
1399                __set_bit(id, avic_vm_id_bitmap);
1400        else
1401                id = -EAGAIN;
1402
1403        spin_unlock(&avic_vm_id_lock);
1404        return id;
1405}
1406
1407static inline int avic_free_vm_id(int id)
1408{
1409        if (id <= 0 || id > AVIC_VM_ID_MASK)
1410                return -EINVAL;
1411
1412        spin_lock(&avic_vm_id_lock);
1413        __clear_bit(id, avic_vm_id_bitmap);
1414        spin_unlock(&avic_vm_id_lock);
1415        return 0;
1416}
1417
1418static void avic_vm_destroy(struct kvm *kvm)
1419{
1420        unsigned long flags;
1421        struct kvm_arch *vm_data = &kvm->arch;
1422
1423        if (!avic)
1424                return;
1425
1426        avic_free_vm_id(vm_data->avic_vm_id);
1427
1428        if (vm_data->avic_logical_id_table_page)
1429                __free_page(vm_data->avic_logical_id_table_page);
1430        if (vm_data->avic_physical_id_table_page)
1431                __free_page(vm_data->avic_physical_id_table_page);
1432
1433        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1434        hash_del(&vm_data->hnode);
1435        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1436}
1437
1438static int avic_vm_init(struct kvm *kvm)
1439{
1440        unsigned long flags;
1441        int vm_id, err = -ENOMEM;
1442        struct kvm_arch *vm_data = &kvm->arch;
1443        struct page *p_page;
1444        struct page *l_page;
1445
1446        if (!avic)
1447                return 0;
1448
1449        vm_id = avic_get_next_vm_id();
1450        if (vm_id < 0)
1451                return vm_id;
1452        vm_data->avic_vm_id = (u32)vm_id;
1453
1454        /* Allocating physical APIC ID table (4KB) */
1455        p_page = alloc_page(GFP_KERNEL);
1456        if (!p_page)
1457                goto free_avic;
1458
1459        vm_data->avic_physical_id_table_page = p_page;
1460        clear_page(page_address(p_page));
1461
1462        /* Allocating logical APIC ID table (4KB) */
1463        l_page = alloc_page(GFP_KERNEL);
1464        if (!l_page)
1465                goto free_avic;
1466
1467        vm_data->avic_logical_id_table_page = l_page;
1468        clear_page(page_address(l_page));
1469
1470        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1471        hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1472        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1473
1474        return 0;
1475
1476free_avic:
1477        avic_vm_destroy(kvm);
1478        return err;
1479}
1480
1481static inline int
1482avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1483{
1484        int ret = 0;
1485        unsigned long flags;
1486        struct amd_svm_iommu_ir *ir;
1487        struct vcpu_svm *svm = to_svm(vcpu);
1488
1489        if (!kvm_arch_has_assigned_device(vcpu->kvm))
1490                return 0;
1491
1492        /*
1493         * Here, we go through the per-vcpu ir_list to update all existing
1494         * interrupt remapping table entry targeting this vcpu.
1495         */
1496        spin_lock_irqsave(&svm->ir_list_lock, flags);
1497
1498        if (list_empty(&svm->ir_list))
1499                goto out;
1500
1501        list_for_each_entry(ir, &svm->ir_list, node) {
1502                ret = amd_iommu_update_ga(cpu, r, ir->data);
1503                if (ret)
1504                        break;
1505        }
1506out:
1507        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1508        return ret;
1509}
1510
1511static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1512{
1513        u64 entry;
1514        /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1515        int h_physical_id = kvm_cpu_get_apicid(cpu);
1516        struct vcpu_svm *svm = to_svm(vcpu);
1517
1518        if (!kvm_vcpu_apicv_active(vcpu))
1519                return;
1520
1521        if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1522                return;
1523
1524        entry = READ_ONCE(*(svm->avic_physical_id_cache));
1525        WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1526
1527        entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1528        entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1529
1530        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1531        if (svm->avic_is_running)
1532                entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1533
1534        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1535        avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1536                                        svm->avic_is_running);
1537}
1538
1539static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1540{
1541        u64 entry;
1542        struct vcpu_svm *svm = to_svm(vcpu);
1543
1544        if (!kvm_vcpu_apicv_active(vcpu))
1545                return;
1546
1547        entry = READ_ONCE(*(svm->avic_physical_id_cache));
1548        if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1549                avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1550
1551        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1552        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1553}
1554
1555/**
1556 * This function is called during VCPU halt/unhalt.
1557 */
1558static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1559{
1560        struct vcpu_svm *svm = to_svm(vcpu);
1561
1562        svm->avic_is_running = is_run;
1563        if (is_run)
1564                avic_vcpu_load(vcpu, vcpu->cpu);
1565        else
1566                avic_vcpu_put(vcpu);
1567}
1568
1569static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1570{
1571        struct vcpu_svm *svm = to_svm(vcpu);
1572        u32 dummy;
1573        u32 eax = 1;
1574
1575        if (!init_event) {
1576                svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1577                                           MSR_IA32_APICBASE_ENABLE;
1578                if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1579                        svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1580        }
1581        init_vmcb(svm);
1582
1583        kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1584        kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1585
1586        if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1587                avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1588}
1589
1590static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1591{
1592        struct vcpu_svm *svm;
1593        struct page *page;
1594        struct page *msrpm_pages;
1595        struct page *hsave_page;
1596        struct page *nested_msrpm_pages;
1597        int err;
1598
1599        svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1600        if (!svm) {
1601                err = -ENOMEM;
1602                goto out;
1603        }
1604
1605        err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1606        if (err)
1607                goto free_svm;
1608
1609        err = -ENOMEM;
1610        page = alloc_page(GFP_KERNEL);
1611        if (!page)
1612                goto uninit;
1613
1614        msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1615        if (!msrpm_pages)
1616                goto free_page1;
1617
1618        nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1619        if (!nested_msrpm_pages)
1620                goto free_page2;
1621
1622        hsave_page = alloc_page(GFP_KERNEL);
1623        if (!hsave_page)
1624                goto free_page3;
1625
1626        if (avic) {
1627                err = avic_init_backing_page(&svm->vcpu);
1628                if (err)
1629                        goto free_page4;
1630
1631                INIT_LIST_HEAD(&svm->ir_list);
1632                spin_lock_init(&svm->ir_list_lock);
1633        }
1634
1635        /* We initialize this flag to true to make sure that the is_running
1636         * bit would be set the first time the vcpu is loaded.
1637         */
1638        svm->avic_is_running = true;
1639
1640        svm->nested.hsave = page_address(hsave_page);
1641
1642        svm->msrpm = page_address(msrpm_pages);
1643        svm_vcpu_init_msrpm(svm->msrpm);
1644
1645        svm->nested.msrpm = page_address(nested_msrpm_pages);
1646        svm_vcpu_init_msrpm(svm->nested.msrpm);
1647
1648        svm->vmcb = page_address(page);
1649        clear_page(svm->vmcb);
1650        svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1651        svm->asid_generation = 0;
1652        init_vmcb(svm);
1653
1654        svm_init_osvw(&svm->vcpu);
1655
1656        return &svm->vcpu;
1657
1658free_page4:
1659        __free_page(hsave_page);
1660free_page3:
1661        __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1662free_page2:
1663        __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1664free_page1:
1665        __free_page(page);
1666uninit:
1667        kvm_vcpu_uninit(&svm->vcpu);
1668free_svm:
1669        kmem_cache_free(kvm_vcpu_cache, svm);
1670out:
1671        return ERR_PTR(err);
1672}
1673
1674static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1675{
1676        struct vcpu_svm *svm = to_svm(vcpu);
1677
1678        __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1679        __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1680        __free_page(virt_to_page(svm->nested.hsave));
1681        __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1682        kvm_vcpu_uninit(vcpu);
1683        kmem_cache_free(kvm_vcpu_cache, svm);
1684}
1685
1686static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1687{
1688        struct vcpu_svm *svm = to_svm(vcpu);
1689        int i;
1690
1691        if (unlikely(cpu != vcpu->cpu)) {
1692                svm->asid_generation = 0;
1693                mark_all_dirty(svm->vmcb);
1694        }
1695
1696#ifdef CONFIG_X86_64
1697        rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1698#endif
1699        savesegment(fs, svm->host.fs);
1700        savesegment(gs, svm->host.gs);
1701        svm->host.ldt = kvm_read_ldt();
1702
1703        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1704                rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1705
1706        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1707                u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1708                if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1709                        __this_cpu_write(current_tsc_ratio, tsc_ratio);
1710                        wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1711                }
1712        }
1713        /* This assumes that the kernel never uses MSR_TSC_AUX */
1714        if (static_cpu_has(X86_FEATURE_RDTSCP))
1715                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1716
1717        avic_vcpu_load(vcpu, cpu);
1718}
1719
1720static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1721{
1722        struct vcpu_svm *svm = to_svm(vcpu);
1723        int i;
1724
1725        avic_vcpu_put(vcpu);
1726
1727        ++vcpu->stat.host_state_reload;
1728        kvm_load_ldt(svm->host.ldt);
1729#ifdef CONFIG_X86_64
1730        loadsegment(fs, svm->host.fs);
1731        wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1732        load_gs_index(svm->host.gs);
1733#else
1734#ifdef CONFIG_X86_32_LAZY_GS
1735        loadsegment(gs, svm->host.gs);
1736#endif
1737#endif
1738        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1739                wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1740}
1741
1742static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1743{
1744        avic_set_running(vcpu, false);
1745}
1746
1747static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1748{
1749        avic_set_running(vcpu, true);
1750}
1751
1752static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1753{
1754        struct vcpu_svm *svm = to_svm(vcpu);
1755        unsigned long rflags = svm->vmcb->save.rflags;
1756
1757        if (svm->nmi_singlestep) {
1758                /* Hide our flags if they were not set by the guest */
1759                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1760                        rflags &= ~X86_EFLAGS_TF;
1761                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1762                        rflags &= ~X86_EFLAGS_RF;
1763        }
1764        return rflags;
1765}
1766
1767static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1768{
1769        if (to_svm(vcpu)->nmi_singlestep)
1770                rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1771
1772       /*
1773        * Any change of EFLAGS.VM is accompanied by a reload of SS
1774        * (caused by either a task switch or an inter-privilege IRET),
1775        * so we do not need to update the CPL here.
1776        */
1777        to_svm(vcpu)->vmcb->save.rflags = rflags;
1778}
1779
1780static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1781{
1782        switch (reg) {
1783        case VCPU_EXREG_PDPTR:
1784                BUG_ON(!npt_enabled);
1785                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1786                break;
1787        default:
1788                BUG();
1789        }
1790}
1791
1792static void svm_set_vintr(struct vcpu_svm *svm)
1793{
1794        set_intercept(svm, INTERCEPT_VINTR);
1795}
1796
1797static void svm_clear_vintr(struct vcpu_svm *svm)
1798{
1799        clr_intercept(svm, INTERCEPT_VINTR);
1800}
1801
1802static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1803{
1804        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1805
1806        switch (seg) {
1807        case VCPU_SREG_CS: return &save->cs;
1808        case VCPU_SREG_DS: return &save->ds;
1809        case VCPU_SREG_ES: return &save->es;
1810        case VCPU_SREG_FS: return &save->fs;
1811        case VCPU_SREG_GS: return &save->gs;
1812        case VCPU_SREG_SS: return &save->ss;
1813        case VCPU_SREG_TR: return &save->tr;
1814        case VCPU_SREG_LDTR: return &save->ldtr;
1815        }
1816        BUG();
1817        return NULL;
1818}
1819
1820static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1821{
1822        struct vmcb_seg *s = svm_seg(vcpu, seg);
1823
1824        return s->base;
1825}
1826
1827static void svm_get_segment(struct kvm_vcpu *vcpu,
1828                            struct kvm_segment *var, int seg)
1829{
1830        struct vmcb_seg *s = svm_seg(vcpu, seg);
1831
1832        var->base = s->base;
1833        var->limit = s->limit;
1834        var->selector = s->selector;
1835        var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1836        var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1837        var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1838        var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1839        var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1840        var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1841        var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1842
1843        /*
1844         * AMD CPUs circa 2014 track the G bit for all segments except CS.
1845         * However, the SVM spec states that the G bit is not observed by the
1846         * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1847         * So let's synthesize a legal G bit for all segments, this helps
1848         * running KVM nested. It also helps cross-vendor migration, because
1849         * Intel's vmentry has a check on the 'G' bit.
1850         */
1851        var->g = s->limit > 0xfffff;
1852
1853        /*
1854         * AMD's VMCB does not have an explicit unusable field, so emulate it
1855         * for cross vendor migration purposes by "not present"
1856         */
1857        var->unusable = !var->present;
1858
1859        switch (seg) {
1860        case VCPU_SREG_TR:
1861                /*
1862                 * Work around a bug where the busy flag in the tr selector
1863                 * isn't exposed
1864                 */
1865                var->type |= 0x2;
1866                break;
1867        case VCPU_SREG_DS:
1868        case VCPU_SREG_ES:
1869        case VCPU_SREG_FS:
1870        case VCPU_SREG_GS:
1871                /*
1872                 * The accessed bit must always be set in the segment
1873                 * descriptor cache, although it can be cleared in the
1874                 * descriptor, the cached bit always remains at 1. Since
1875                 * Intel has a check on this, set it here to support
1876                 * cross-vendor migration.
1877                 */
1878                if (!var->unusable)
1879                        var->type |= 0x1;
1880                break;
1881        case VCPU_SREG_SS:
1882                /*
1883                 * On AMD CPUs sometimes the DB bit in the segment
1884                 * descriptor is left as 1, although the whole segment has
1885                 * been made unusable. Clear it here to pass an Intel VMX
1886                 * entry check when cross vendor migrating.
1887                 */
1888                if (var->unusable)
1889                        var->db = 0;
1890                /* This is symmetric with svm_set_segment() */
1891                var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1892                break;
1893        }
1894}
1895
1896static int svm_get_cpl(struct kvm_vcpu *vcpu)
1897{
1898        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1899
1900        return save->cpl;
1901}
1902
1903static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1904{
1905        struct vcpu_svm *svm = to_svm(vcpu);
1906
1907        dt->size = svm->vmcb->save.idtr.limit;
1908        dt->address = svm->vmcb->save.idtr.base;
1909}
1910
1911static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1912{
1913        struct vcpu_svm *svm = to_svm(vcpu);
1914
1915        svm->vmcb->save.idtr.limit = dt->size;
1916        svm->vmcb->save.idtr.base = dt->address ;
1917        mark_dirty(svm->vmcb, VMCB_DT);
1918}
1919
1920static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1921{
1922        struct vcpu_svm *svm = to_svm(vcpu);
1923
1924        dt->size = svm->vmcb->save.gdtr.limit;
1925        dt->address = svm->vmcb->save.gdtr.base;
1926}
1927
1928static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1929{
1930        struct vcpu_svm *svm = to_svm(vcpu);
1931
1932        svm->vmcb->save.gdtr.limit = dt->size;
1933        svm->vmcb->save.gdtr.base = dt->address ;
1934        mark_dirty(svm->vmcb, VMCB_DT);
1935}
1936
1937static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1938{
1939}
1940
1941static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1942{
1943}
1944
1945static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1946{
1947}
1948
1949static void update_cr0_intercept(struct vcpu_svm *svm)
1950{
1951        ulong gcr0 = svm->vcpu.arch.cr0;
1952        u64 *hcr0 = &svm->vmcb->save.cr0;
1953
1954        *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1955                | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1956
1957        mark_dirty(svm->vmcb, VMCB_CR);
1958
1959        if (gcr0 == *hcr0) {
1960                clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1961                clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1962        } else {
1963                set_cr_intercept(svm, INTERCEPT_CR0_READ);
1964                set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1965        }
1966}
1967
1968static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1969{
1970        struct vcpu_svm *svm = to_svm(vcpu);
1971
1972#ifdef CONFIG_X86_64
1973        if (vcpu->arch.efer & EFER_LME) {
1974                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1975                        vcpu->arch.efer |= EFER_LMA;
1976                        svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1977                }
1978
1979                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1980                        vcpu->arch.efer &= ~EFER_LMA;
1981                        svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1982                }
1983        }
1984#endif
1985        vcpu->arch.cr0 = cr0;
1986
1987        if (!npt_enabled)
1988                cr0 |= X86_CR0_PG | X86_CR0_WP;
1989
1990        /*
1991         * re-enable caching here because the QEMU bios
1992         * does not do it - this results in some delay at
1993         * reboot
1994         */
1995        if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1996                cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1997        svm->vmcb->save.cr0 = cr0;
1998        mark_dirty(svm->vmcb, VMCB_CR);
1999        update_cr0_intercept(svm);
2000}
2001
2002static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2003{
2004        unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2005        unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2006
2007        if (cr4 & X86_CR4_VMXE)
2008                return 1;
2009
2010        if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2011                svm_flush_tlb(vcpu);
2012
2013        vcpu->arch.cr4 = cr4;
2014        if (!npt_enabled)
2015                cr4 |= X86_CR4_PAE;
2016        cr4 |= host_cr4_mce;
2017        to_svm(vcpu)->vmcb->save.cr4 = cr4;
2018        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2019        return 0;
2020}
2021
2022static void svm_set_segment(struct kvm_vcpu *vcpu,
2023                            struct kvm_segment *var, int seg)
2024{
2025        struct vcpu_svm *svm = to_svm(vcpu);
2026        struct vmcb_seg *s = svm_seg(vcpu, seg);
2027
2028        s->base = var->base;
2029        s->limit = var->limit;
2030        s->selector = var->selector;
2031        s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2032        s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2033        s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2034        s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2035        s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2036        s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2037        s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2038        s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2039
2040        /*
2041         * This is always accurate, except if SYSRET returned to a segment
2042         * with SS.DPL != 3.  Intel does not have this quirk, and always
2043         * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2044         * would entail passing the CPL to userspace and back.
2045         */
2046        if (seg == VCPU_SREG_SS)
2047                /* This is symmetric with svm_get_segment() */
2048                svm->vmcb->save.cpl = (var->dpl & 3);
2049
2050        mark_dirty(svm->vmcb, VMCB_SEG);
2051}
2052
2053static void update_bp_intercept(struct kvm_vcpu *vcpu)
2054{
2055        struct vcpu_svm *svm = to_svm(vcpu);
2056
2057        clr_exception_intercept(svm, BP_VECTOR);
2058
2059        if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2060                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2061                        set_exception_intercept(svm, BP_VECTOR);
2062        } else
2063                vcpu->guest_debug = 0;
2064}
2065
2066static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2067{
2068        if (sd->next_asid > sd->max_asid) {
2069                ++sd->asid_generation;
2070                sd->next_asid = 1;
2071                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2072        }
2073
2074        svm->asid_generation = sd->asid_generation;
2075        svm->vmcb->control.asid = sd->next_asid++;
2076
2077        mark_dirty(svm->vmcb, VMCB_ASID);
2078}
2079
2080static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2081{
2082        return to_svm(vcpu)->vmcb->save.dr6;
2083}
2084
2085static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2086{
2087        struct vcpu_svm *svm = to_svm(vcpu);
2088
2089        svm->vmcb->save.dr6 = value;
2090        mark_dirty(svm->vmcb, VMCB_DR);
2091}
2092
2093static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2094{
2095        struct vcpu_svm *svm = to_svm(vcpu);
2096
2097        get_debugreg(vcpu->arch.db[0], 0);
2098        get_debugreg(vcpu->arch.db[1], 1);
2099        get_debugreg(vcpu->arch.db[2], 2);
2100        get_debugreg(vcpu->arch.db[3], 3);
2101        vcpu->arch.dr6 = svm_get_dr6(vcpu);
2102        vcpu->arch.dr7 = svm->vmcb->save.dr7;
2103
2104        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2105        set_dr_intercepts(svm);
2106}
2107
2108static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2109{
2110        struct vcpu_svm *svm = to_svm(vcpu);
2111
2112        svm->vmcb->save.dr7 = value;
2113        mark_dirty(svm->vmcb, VMCB_DR);
2114}
2115
2116static int pf_interception(struct vcpu_svm *svm)
2117{
2118        u64 fault_address = svm->vmcb->control.exit_info_2;
2119        u64 error_code = svm->vmcb->control.exit_info_1;
2120
2121        return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2122                        svm->vmcb->control.insn_bytes,
2123                        svm->vmcb->control.insn_len, !npt_enabled);
2124}
2125
2126static int db_interception(struct vcpu_svm *svm)
2127{
2128        struct kvm_run *kvm_run = svm->vcpu.run;
2129
2130        if (!(svm->vcpu.guest_debug &
2131              (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2132                !svm->nmi_singlestep) {
2133                kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2134                return 1;
2135        }
2136
2137        if (svm->nmi_singlestep) {
2138                disable_nmi_singlestep(svm);
2139        }
2140
2141        if (svm->vcpu.guest_debug &
2142            (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2143                kvm_run->exit_reason = KVM_EXIT_DEBUG;
2144                kvm_run->debug.arch.pc =
2145                        svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2146                kvm_run->debug.arch.exception = DB_VECTOR;
2147                return 0;
2148        }
2149
2150        return 1;
2151}
2152
2153static int bp_interception(struct vcpu_svm *svm)
2154{
2155        struct kvm_run *kvm_run = svm->vcpu.run;
2156
2157        kvm_run->exit_reason = KVM_EXIT_DEBUG;
2158        kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2159        kvm_run->debug.arch.exception = BP_VECTOR;
2160        return 0;
2161}
2162
2163static int ud_interception(struct vcpu_svm *svm)
2164{
2165        int er;
2166
2167        er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2168        if (er != EMULATE_DONE)
2169                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2170        return 1;
2171}
2172
2173static int ac_interception(struct vcpu_svm *svm)
2174{
2175        kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2176        return 1;
2177}
2178
2179static bool is_erratum_383(void)
2180{
2181        int err, i;
2182        u64 value;
2183
2184        if (!erratum_383_found)
2185                return false;
2186
2187        value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2188        if (err)
2189                return false;
2190
2191        /* Bit 62 may or may not be set for this mce */
2192        value &= ~(1ULL << 62);
2193
2194        if (value != 0xb600000000010015ULL)
2195                return false;
2196
2197        /* Clear MCi_STATUS registers */
2198        for (i = 0; i < 6; ++i)
2199                native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2200
2201        value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2202        if (!err) {
2203                u32 low, high;
2204
2205                value &= ~(1ULL << 2);
2206                low    = lower_32_bits(value);
2207                high   = upper_32_bits(value);
2208
2209                native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2210        }
2211
2212        /* Flush tlb to evict multi-match entries */
2213        __flush_tlb_all();
2214
2215        return true;
2216}
2217
2218static void svm_handle_mce(struct vcpu_svm *svm)
2219{
2220        if (is_erratum_383()) {
2221                /*
2222                 * Erratum 383 triggered. Guest state is corrupt so kill the
2223                 * guest.
2224                 */
2225                pr_err("KVM: Guest triggered AMD Erratum 383\n");
2226
2227                kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2228
2229                return;
2230        }
2231
2232        /*
2233         * On an #MC intercept the MCE handler is not called automatically in
2234         * the host. So do it by hand here.
2235         */
2236        asm volatile (
2237                "int $0x12\n");
2238        /* not sure if we ever come back to this point */
2239
2240        return;
2241}
2242
2243static int mc_interception(struct vcpu_svm *svm)
2244{
2245        return 1;
2246}
2247
2248static int shutdown_interception(struct vcpu_svm *svm)
2249{
2250        struct kvm_run *kvm_run = svm->vcpu.run;
2251
2252        /*
2253         * VMCB is undefined after a SHUTDOWN intercept
2254         * so reinitialize it.
2255         */
2256        clear_page(svm->vmcb);
2257        init_vmcb(svm);
2258
2259        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2260        return 0;
2261}
2262
2263static int io_interception(struct vcpu_svm *svm)
2264{
2265        struct kvm_vcpu *vcpu = &svm->vcpu;
2266        u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2267        int size, in, string, ret;
2268        unsigned port;
2269
2270        ++svm->vcpu.stat.io_exits;
2271        string = (io_info & SVM_IOIO_STR_MASK) != 0;
2272        in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2273        if (string)
2274                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2275
2276        port = io_info >> 16;
2277        size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2278        svm->next_rip = svm->vmcb->control.exit_info_2;
2279        ret = kvm_skip_emulated_instruction(&svm->vcpu);
2280
2281        /*
2282         * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2283         * KVM_EXIT_DEBUG here.
2284         */
2285        if (in)
2286                return kvm_fast_pio_in(vcpu, size, port) && ret;
2287        else
2288                return kvm_fast_pio_out(vcpu, size, port) && ret;
2289}
2290
2291static int nmi_interception(struct vcpu_svm *svm)
2292{
2293        return 1;
2294}
2295
2296static int intr_interception(struct vcpu_svm *svm)
2297{
2298        ++svm->vcpu.stat.irq_exits;
2299        return 1;
2300}
2301
2302static int nop_on_interception(struct vcpu_svm *svm)
2303{
2304        return 1;
2305}
2306
2307static int halt_interception(struct vcpu_svm *svm)
2308{
2309        svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2310        return kvm_emulate_halt(&svm->vcpu);
2311}
2312
2313static int vmmcall_interception(struct vcpu_svm *svm)
2314{
2315        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2316        return kvm_emulate_hypercall(&svm->vcpu);
2317}
2318
2319static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2320{
2321        struct vcpu_svm *svm = to_svm(vcpu);
2322
2323        return svm->nested.nested_cr3;
2324}
2325
2326static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2327{
2328        struct vcpu_svm *svm = to_svm(vcpu);
2329        u64 cr3 = svm->nested.nested_cr3;
2330        u64 pdpte;
2331        int ret;
2332
2333        ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2334                                       offset_in_page(cr3) + index * 8, 8);
2335        if (ret)
2336                return 0;
2337        return pdpte;
2338}
2339
2340static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2341                                   unsigned long root)
2342{
2343        struct vcpu_svm *svm = to_svm(vcpu);
2344
2345        svm->vmcb->control.nested_cr3 = root;
2346        mark_dirty(svm->vmcb, VMCB_NPT);
2347        svm_flush_tlb(vcpu);
2348}
2349
2350static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2351                                       struct x86_exception *fault)
2352{
2353        struct vcpu_svm *svm = to_svm(vcpu);
2354
2355        if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2356                /*
2357                 * TODO: track the cause of the nested page fault, and
2358                 * correctly fill in the high bits of exit_info_1.
2359                 */
2360                svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2361                svm->vmcb->control.exit_code_hi = 0;
2362                svm->vmcb->control.exit_info_1 = (1ULL << 32);
2363                svm->vmcb->control.exit_info_2 = fault->address;
2364        }
2365
2366        svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2367        svm->vmcb->control.exit_info_1 |= fault->error_code;
2368
2369        /*
2370         * The present bit is always zero for page structure faults on real
2371         * hardware.
2372         */
2373        if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2374                svm->vmcb->control.exit_info_1 &= ~1;
2375
2376        nested_svm_vmexit(svm);
2377}
2378
2379static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2380{
2381        WARN_ON(mmu_is_nested(vcpu));
2382        kvm_init_shadow_mmu(vcpu);
2383        vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2384        vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2385        vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2386        vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2387        vcpu->arch.mmu.shadow_root_level = get_npt_level();
2388        reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2389        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2390}
2391
2392static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2393{
2394        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2395}
2396
2397static int nested_svm_check_permissions(struct vcpu_svm *svm)
2398{
2399        if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2400            !is_paging(&svm->vcpu)) {
2401                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2402                return 1;
2403        }
2404
2405        if (svm->vmcb->save.cpl) {
2406                kvm_inject_gp(&svm->vcpu, 0);
2407                return 1;
2408        }
2409
2410        return 0;
2411}
2412
2413static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2414                                      bool has_error_code, u32 error_code)
2415{
2416        int vmexit;
2417
2418        if (!is_guest_mode(&svm->vcpu))
2419                return 0;
2420
2421        vmexit = nested_svm_intercept(svm);
2422        if (vmexit != NESTED_EXIT_DONE)
2423                return 0;
2424
2425        svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2426        svm->vmcb->control.exit_code_hi = 0;
2427        svm->vmcb->control.exit_info_1 = error_code;
2428
2429        /*
2430         * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2431         * The fix is to add the ancillary datum (CR2 or DR6) to structs
2432         * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2433         * written only when inject_pending_event runs (DR6 would written here
2434         * too).  This should be conditional on a new capability---if the
2435         * capability is disabled, kvm_multiple_exception would write the
2436         * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2437         */
2438        if (svm->vcpu.arch.exception.nested_apf)
2439                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2440        else
2441                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2442
2443        svm->nested.exit_required = true;
2444        return vmexit;
2445}
2446
2447/* This function returns true if it is save to enable the irq window */
2448static inline bool nested_svm_intr(struct vcpu_svm *svm)
2449{
2450        if (!is_guest_mode(&svm->vcpu))
2451                return true;
2452
2453        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2454                return true;
2455
2456        if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2457                return false;
2458
2459        /*
2460         * if vmexit was already requested (by intercepted exception
2461         * for instance) do not overwrite it with "external interrupt"
2462         * vmexit.
2463         */
2464        if (svm->nested.exit_required)
2465                return false;
2466
2467        svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2468        svm->vmcb->control.exit_info_1 = 0;
2469        svm->vmcb->control.exit_info_2 = 0;
2470
2471        if (svm->nested.intercept & 1ULL) {
2472                /*
2473                 * The #vmexit can't be emulated here directly because this
2474                 * code path runs with irqs and preemption disabled. A
2475                 * #vmexit emulation might sleep. Only signal request for
2476                 * the #vmexit here.
2477                 */
2478                svm->nested.exit_required = true;
2479                trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2480                return false;
2481        }
2482
2483        return true;
2484}
2485
2486/* This function returns true if it is save to enable the nmi window */
2487static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2488{
2489        if (!is_guest_mode(&svm->vcpu))
2490                return true;
2491
2492        if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2493                return true;
2494
2495        svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2496        svm->nested.exit_required = true;
2497
2498        return false;
2499}
2500
2501static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2502{
2503        struct page *page;
2504
2505        might_sleep();
2506
2507        page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2508        if (is_error_page(page))
2509                goto error;
2510
2511        *_page = page;
2512
2513        return kmap(page);
2514
2515error:
2516        kvm_inject_gp(&svm->vcpu, 0);
2517
2518        return NULL;
2519}
2520
2521static void nested_svm_unmap(struct page *page)
2522{
2523        kunmap(page);
2524        kvm_release_page_dirty(page);
2525}
2526
2527static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2528{
2529        unsigned port, size, iopm_len;
2530        u16 val, mask;
2531        u8 start_bit;
2532        u64 gpa;
2533
2534        if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2535                return NESTED_EXIT_HOST;
2536
2537        port = svm->vmcb->control.exit_info_1 >> 16;
2538        size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2539                SVM_IOIO_SIZE_SHIFT;
2540        gpa  = svm->nested.vmcb_iopm + (port / 8);
2541        start_bit = port % 8;
2542        iopm_len = (start_bit + size > 8) ? 2 : 1;
2543        mask = (0xf >> (4 - size)) << start_bit;
2544        val = 0;
2545
2546        if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2547                return NESTED_EXIT_DONE;
2548
2549        return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2550}
2551
2552static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2553{
2554        u32 offset, msr, value;
2555        int write, mask;
2556
2557        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2558                return NESTED_EXIT_HOST;
2559
2560        msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2561        offset = svm_msrpm_offset(msr);
2562        write  = svm->vmcb->control.exit_info_1 & 1;
2563        mask   = 1 << ((2 * (msr & 0xf)) + write);
2564
2565        if (offset == MSR_INVALID)
2566                return NESTED_EXIT_DONE;
2567
2568        /* Offset is in 32 bit units but need in 8 bit units */
2569        offset *= 4;
2570
2571        if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2572                return NESTED_EXIT_DONE;
2573
2574        return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2575}
2576
2577/* DB exceptions for our internal use must not cause vmexit */
2578static int nested_svm_intercept_db(struct vcpu_svm *svm)
2579{
2580        unsigned long dr6;
2581
2582        /* if we're not singlestepping, it's not ours */
2583        if (!svm->nmi_singlestep)
2584                return NESTED_EXIT_DONE;
2585
2586        /* if it's not a singlestep exception, it's not ours */
2587        if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2588                return NESTED_EXIT_DONE;
2589        if (!(dr6 & DR6_BS))
2590                return NESTED_EXIT_DONE;
2591
2592        /* if the guest is singlestepping, it should get the vmexit */
2593        if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2594                disable_nmi_singlestep(svm);
2595                return NESTED_EXIT_DONE;
2596        }
2597
2598        /* it's ours, the nested hypervisor must not see this one */
2599        return NESTED_EXIT_HOST;
2600}
2601
2602static int nested_svm_exit_special(struct vcpu_svm *svm)
2603{
2604        u32 exit_code = svm->vmcb->control.exit_code;
2605
2606        switch (exit_code) {
2607        case SVM_EXIT_INTR:
2608        case SVM_EXIT_NMI:
2609        case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2610                return NESTED_EXIT_HOST;
2611        case SVM_EXIT_NPF:
2612                /* For now we are always handling NPFs when using them */
2613                if (npt_enabled)
2614                        return NESTED_EXIT_HOST;
2615                break;
2616        case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2617                /* When we're shadowing, trap PFs, but not async PF */
2618                if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2619                        return NESTED_EXIT_HOST;
2620                break;
2621        default:
2622                break;
2623        }
2624
2625        return NESTED_EXIT_CONTINUE;
2626}
2627
2628/*
2629 * If this function returns true, this #vmexit was already handled
2630 */
2631static int nested_svm_intercept(struct vcpu_svm *svm)
2632{
2633        u32 exit_code = svm->vmcb->control.exit_code;
2634        int vmexit = NESTED_EXIT_HOST;
2635
2636        switch (exit_code) {
2637        case SVM_EXIT_MSR:
2638                vmexit = nested_svm_exit_handled_msr(svm);
2639                break;
2640        case SVM_EXIT_IOIO:
2641                vmexit = nested_svm_intercept_ioio(svm);
2642                break;
2643        case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2644                u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2645                if (svm->nested.intercept_cr & bit)
2646                        vmexit = NESTED_EXIT_DONE;
2647                break;
2648        }
2649        case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2650                u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2651                if (svm->nested.intercept_dr & bit)
2652                        vmexit = NESTED_EXIT_DONE;
2653                break;
2654        }
2655        case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2656                u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2657                if (svm->nested.intercept_exceptions & excp_bits) {
2658                        if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2659                                vmexit = nested_svm_intercept_db(svm);
2660                        else
2661                                vmexit = NESTED_EXIT_DONE;
2662                }
2663                /* async page fault always cause vmexit */
2664                else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2665                         svm->vcpu.arch.exception.nested_apf != 0)
2666                        vmexit = NESTED_EXIT_DONE;
2667                break;
2668        }
2669        case SVM_EXIT_ERR: {
2670                vmexit = NESTED_EXIT_DONE;
2671                break;
2672        }
2673        default: {
2674                u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2675                if (svm->nested.intercept & exit_bits)
2676                        vmexit = NESTED_EXIT_DONE;
2677        }
2678        }
2679
2680        return vmexit;
2681}
2682
2683static int nested_svm_exit_handled(struct vcpu_svm *svm)
2684{
2685        int vmexit;
2686
2687        vmexit = nested_svm_intercept(svm);
2688
2689        if (vmexit == NESTED_EXIT_DONE)
2690                nested_svm_vmexit(svm);
2691
2692        return vmexit;
2693}
2694
2695static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2696{
2697        struct vmcb_control_area *dst  = &dst_vmcb->control;
2698        struct vmcb_control_area *from = &from_vmcb->control;
2699
2700        dst->intercept_cr         = from->intercept_cr;
2701        dst->intercept_dr         = from->intercept_dr;
2702        dst->intercept_exceptions = from->intercept_exceptions;
2703        dst->intercept            = from->intercept;
2704        dst->iopm_base_pa         = from->iopm_base_pa;
2705        dst->msrpm_base_pa        = from->msrpm_base_pa;
2706        dst->tsc_offset           = from->tsc_offset;
2707        dst->asid                 = from->asid;
2708        dst->tlb_ctl              = from->tlb_ctl;
2709        dst->int_ctl              = from->int_ctl;
2710        dst->int_vector           = from->int_vector;
2711        dst->int_state            = from->int_state;
2712        dst->exit_code            = from->exit_code;
2713        dst->exit_code_hi         = from->exit_code_hi;
2714        dst->exit_info_1          = from->exit_info_1;
2715        dst->exit_info_2          = from->exit_info_2;
2716        dst->exit_int_info        = from->exit_int_info;
2717        dst->exit_int_info_err    = from->exit_int_info_err;
2718        dst->nested_ctl           = from->nested_ctl;
2719        dst->event_inj            = from->event_inj;
2720        dst->event_inj_err        = from->event_inj_err;
2721        dst->nested_cr3           = from->nested_cr3;
2722        dst->virt_ext              = from->virt_ext;
2723}
2724
2725static int nested_svm_vmexit(struct vcpu_svm *svm)
2726{
2727        struct vmcb *nested_vmcb;
2728        struct vmcb *hsave = svm->nested.hsave;
2729        struct vmcb *vmcb = svm->vmcb;
2730        struct page *page;
2731
2732        trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2733                                       vmcb->control.exit_info_1,
2734                                       vmcb->control.exit_info_2,
2735                                       vmcb->control.exit_int_info,
2736                                       vmcb->control.exit_int_info_err,
2737                                       KVM_ISA_SVM);
2738
2739        nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2740        if (!nested_vmcb)
2741                return 1;
2742
2743        /* Exit Guest-Mode */
2744        leave_guest_mode(&svm->vcpu);
2745        svm->nested.vmcb = 0;
2746
2747        /* Give the current vmcb to the guest */
2748        disable_gif(svm);
2749
2750        nested_vmcb->save.es     = vmcb->save.es;
2751        nested_vmcb->save.cs     = vmcb->save.cs;
2752        nested_vmcb->save.ss     = vmcb->save.ss;
2753        nested_vmcb->save.ds     = vmcb->save.ds;
2754        nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2755        nested_vmcb->save.idtr   = vmcb->save.idtr;
2756        nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2757        nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2758        nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2759        nested_vmcb->save.cr2    = vmcb->save.cr2;
2760        nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2761        nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2762        nested_vmcb->save.rip    = vmcb->save.rip;
2763        nested_vmcb->save.rsp    = vmcb->save.rsp;
2764        nested_vmcb->save.rax    = vmcb->save.rax;
2765        nested_vmcb->save.dr7    = vmcb->save.dr7;
2766        nested_vmcb->save.dr6    = vmcb->save.dr6;
2767        nested_vmcb->save.cpl    = vmcb->save.cpl;
2768
2769        nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2770        nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2771        nested_vmcb->control.int_state         = vmcb->control.int_state;
2772        nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2773        nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2774        nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2775        nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2776        nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2777        nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2778
2779        if (svm->nrips_enabled)
2780                nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2781
2782        /*
2783         * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2784         * to make sure that we do not lose injected events. So check event_inj
2785         * here and copy it to exit_int_info if it is valid.
2786         * Exit_int_info and event_inj can't be both valid because the case
2787         * below only happens on a VMRUN instruction intercept which has
2788         * no valid exit_int_info set.
2789         */
2790        if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2791                struct vmcb_control_area *nc = &nested_vmcb->control;
2792
2793                nc->exit_int_info     = vmcb->control.event_inj;
2794                nc->exit_int_info_err = vmcb->control.event_inj_err;
2795        }
2796
2797        nested_vmcb->control.tlb_ctl           = 0;
2798        nested_vmcb->control.event_inj         = 0;
2799        nested_vmcb->control.event_inj_err     = 0;
2800
2801        /* We always set V_INTR_MASKING and remember the old value in hflags */
2802        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2803                nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2804
2805        /* Restore the original control entries */
2806        copy_vmcb_control_area(vmcb, hsave);
2807
2808        kvm_clear_exception_queue(&svm->vcpu);
2809        kvm_clear_interrupt_queue(&svm->vcpu);
2810
2811        svm->nested.nested_cr3 = 0;
2812
2813        /* Restore selected save entries */
2814        svm->vmcb->save.es = hsave->save.es;
2815        svm->vmcb->save.cs = hsave->save.cs;
2816        svm->vmcb->save.ss = hsave->save.ss;
2817        svm->vmcb->save.ds = hsave->save.ds;
2818        svm->vmcb->save.gdtr = hsave->save.gdtr;
2819        svm->vmcb->save.idtr = hsave->save.idtr;
2820        kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2821        svm_set_efer(&svm->vcpu, hsave->save.efer);
2822        svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2823        svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2824        if (npt_enabled) {
2825                svm->vmcb->save.cr3 = hsave->save.cr3;
2826                svm->vcpu.arch.cr3 = hsave->save.cr3;
2827        } else {
2828                (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2829        }
2830        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2831        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2832        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2833        svm->vmcb->save.dr7 = 0;
2834        svm->vmcb->save.cpl = 0;
2835        svm->vmcb->control.exit_int_info = 0;
2836
2837        mark_all_dirty(svm->vmcb);
2838
2839        nested_svm_unmap(page);
2840
2841        nested_svm_uninit_mmu_context(&svm->vcpu);
2842        kvm_mmu_reset_context(&svm->vcpu);
2843        kvm_mmu_load(&svm->vcpu);
2844
2845        return 0;
2846}
2847
2848static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2849{
2850        /*
2851         * This function merges the msr permission bitmaps of kvm and the
2852         * nested vmcb. It is optimized in that it only merges the parts where
2853         * the kvm msr permission bitmap may contain zero bits
2854         */
2855        int i;
2856
2857        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2858                return true;
2859
2860        for (i = 0; i < MSRPM_OFFSETS; i++) {
2861                u32 value, p;
2862                u64 offset;
2863
2864                if (msrpm_offsets[i] == 0xffffffff)
2865                        break;
2866
2867                p      = msrpm_offsets[i];
2868                offset = svm->nested.vmcb_msrpm + (p * 4);
2869
2870                if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2871                        return false;
2872
2873                svm->nested.msrpm[p] = svm->msrpm[p] | value;
2874        }
2875
2876        svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2877
2878        return true;
2879}
2880
2881static bool nested_vmcb_checks(struct vmcb *vmcb)
2882{
2883        if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2884                return false;
2885
2886        if (vmcb->control.asid == 0)
2887                return false;
2888
2889        if (vmcb->control.nested_ctl && !npt_enabled)
2890                return false;
2891
2892        return true;
2893}
2894
2895static bool nested_svm_vmrun(struct vcpu_svm *svm)
2896{
2897        struct vmcb *nested_vmcb;
2898        struct vmcb *hsave = svm->nested.hsave;
2899        struct vmcb *vmcb = svm->vmcb;
2900        struct page *page;
2901        u64 vmcb_gpa;
2902
2903        vmcb_gpa = svm->vmcb->save.rax;
2904
2905        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2906        if (!nested_vmcb)
2907                return false;
2908
2909        if (!nested_vmcb_checks(nested_vmcb)) {
2910                nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2911                nested_vmcb->control.exit_code_hi = 0;
2912                nested_vmcb->control.exit_info_1  = 0;
2913                nested_vmcb->control.exit_info_2  = 0;
2914
2915                nested_svm_unmap(page);
2916
2917                return false;
2918        }
2919
2920        trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2921                               nested_vmcb->save.rip,
2922                               nested_vmcb->control.int_ctl,
2923                               nested_vmcb->control.event_inj,
2924                               nested_vmcb->control.nested_ctl);
2925
2926        trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2927                                    nested_vmcb->control.intercept_cr >> 16,
2928                                    nested_vmcb->control.intercept_exceptions,
2929                                    nested_vmcb->control.intercept);
2930
2931        /* Clear internal status */
2932        kvm_clear_exception_queue(&svm->vcpu);
2933        kvm_clear_interrupt_queue(&svm->vcpu);
2934
2935        /*
2936         * Save the old vmcb, so we don't need to pick what we save, but can
2937         * restore everything when a VMEXIT occurs
2938         */
2939        hsave->save.es     = vmcb->save.es;
2940        hsave->save.cs     = vmcb->save.cs;
2941        hsave->save.ss     = vmcb->save.ss;
2942        hsave->save.ds     = vmcb->save.ds;
2943        hsave->save.gdtr   = vmcb->save.gdtr;
2944        hsave->save.idtr   = vmcb->save.idtr;
2945        hsave->save.efer   = svm->vcpu.arch.efer;
2946        hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2947        hsave->save.cr4    = svm->vcpu.arch.cr4;
2948        hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2949        hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2950        hsave->save.rsp    = vmcb->save.rsp;
2951        hsave->save.rax    = vmcb->save.rax;
2952        if (npt_enabled)
2953                hsave->save.cr3    = vmcb->save.cr3;
2954        else
2955                hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2956
2957        copy_vmcb_control_area(hsave, vmcb);
2958
2959        if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2960                svm->vcpu.arch.hflags |= HF_HIF_MASK;
2961        else
2962                svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2963
2964        if (nested_vmcb->control.nested_ctl) {
2965                kvm_mmu_unload(&svm->vcpu);
2966                svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2967                nested_svm_init_mmu_context(&svm->vcpu);
2968        }
2969
2970        /* Load the nested guest state */
2971        svm->vmcb->save.es = nested_vmcb->save.es;
2972        svm->vmcb->save.cs = nested_vmcb->save.cs;
2973        svm->vmcb->save.ss = nested_vmcb->save.ss;
2974        svm->vmcb->save.ds = nested_vmcb->save.ds;
2975        svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2976        svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2977        kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2978        svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2979        svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2980        svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2981        if (npt_enabled) {
2982                svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2983                svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2984        } else
2985                (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2986
2987        /* Guest paging mode is active - reset mmu */
2988        kvm_mmu_reset_context(&svm->vcpu);
2989
2990        svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2991        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2992        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2993        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2994
2995        /* In case we don't even reach vcpu_run, the fields are not updated */
2996        svm->vmcb->save.rax = nested_vmcb->save.rax;
2997        svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2998        svm->vmcb->save.rip = nested_vmcb->save.rip;
2999        svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3000        svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3001        svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3002
3003        svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3004        svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3005
3006        /* cache intercepts */
3007        svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3008        svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3009        svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3010        svm->nested.intercept            = nested_vmcb->control.intercept;
3011
3012        svm_flush_tlb(&svm->vcpu);
3013        svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3014        if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3015                svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3016        else
3017                svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3018
3019        if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3020                /* We only want the cr8 intercept bits of the guest */
3021                clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3022                clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3023        }
3024
3025        /* We don't want to see VMMCALLs from a nested guest */
3026        clr_intercept(svm, INTERCEPT_VMMCALL);
3027
3028        svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3029        svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3030        svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3031        svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3032        svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3033        svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3034
3035        nested_svm_unmap(page);
3036
3037        /* Enter Guest-Mode */
3038        enter_guest_mode(&svm->vcpu);
3039
3040        /*
3041         * Merge guest and host intercepts - must be called  with vcpu in
3042         * guest-mode to take affect here
3043         */
3044        recalc_intercepts(svm);
3045
3046        svm->nested.vmcb = vmcb_gpa;
3047
3048        enable_gif(svm);
3049
3050        mark_all_dirty(svm->vmcb);
3051
3052        return true;
3053}
3054
3055static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3056{
3057        to_vmcb->save.fs = from_vmcb->save.fs;
3058        to_vmcb->save.gs = from_vmcb->save.gs;
3059        to_vmcb->save.tr = from_vmcb->save.tr;
3060        to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3061        to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3062        to_vmcb->save.star = from_vmcb->save.star;
3063        to_vmcb->save.lstar = from_vmcb->save.lstar;
3064        to_vmcb->save.cstar = from_vmcb->save.cstar;
3065        to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3066        to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3067        to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3068        to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3069}
3070
3071static int vmload_interception(struct vcpu_svm *svm)
3072{
3073        struct vmcb *nested_vmcb;
3074        struct page *page;
3075        int ret;
3076
3077        if (nested_svm_check_permissions(svm))
3078                return 1;
3079
3080        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3081        if (!nested_vmcb)
3082                return 1;
3083
3084        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3085        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3086
3087        nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3088        nested_svm_unmap(page);
3089
3090        return ret;
3091}
3092
3093static int vmsave_interception(struct vcpu_svm *svm)
3094{
3095        struct vmcb *nested_vmcb;
3096        struct page *page;
3097        int ret;
3098
3099        if (nested_svm_check_permissions(svm))
3100                return 1;
3101
3102        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3103        if (!nested_vmcb)
3104                return 1;
3105
3106        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3107        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3108
3109        nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3110        nested_svm_unmap(page);
3111
3112        return ret;
3113}
3114
3115static int vmrun_interception(struct vcpu_svm *svm)
3116{
3117        if (nested_svm_check_permissions(svm))
3118                return 1;
3119
3120        /* Save rip after vmrun instruction */
3121        kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3122
3123        if (!nested_svm_vmrun(svm))
3124                return 1;
3125
3126        if (!nested_svm_vmrun_msrpm(svm))
3127                goto failed;
3128
3129        return 1;
3130
3131failed:
3132
3133        svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3134        svm->vmcb->control.exit_code_hi = 0;
3135        svm->vmcb->control.exit_info_1  = 0;
3136        svm->vmcb->control.exit_info_2  = 0;
3137
3138        nested_svm_vmexit(svm);
3139
3140        return 1;
3141}
3142
3143static int stgi_interception(struct vcpu_svm *svm)
3144{
3145        int ret;
3146
3147        if (nested_svm_check_permissions(svm))
3148                return 1;
3149
3150        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3151        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3152        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3153
3154        enable_gif(svm);
3155
3156        return ret;
3157}
3158
3159static int clgi_interception(struct vcpu_svm *svm)
3160{
3161        int ret;
3162
3163        if (nested_svm_check_permissions(svm))
3164                return 1;
3165
3166        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3167        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3168
3169        disable_gif(svm);
3170
3171        /* After a CLGI no interrupts should come */
3172        if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3173                svm_clear_vintr(svm);
3174                svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3175                mark_dirty(svm->vmcb, VMCB_INTR);
3176        }
3177
3178        return ret;
3179}
3180
3181static int invlpga_interception(struct vcpu_svm *svm)
3182{
3183        struct kvm_vcpu *vcpu = &svm->vcpu;
3184
3185        trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3186                          kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3187
3188        /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3189        kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3190
3191        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3192        return kvm_skip_emulated_instruction(&svm->vcpu);
3193}
3194
3195static int skinit_interception(struct vcpu_svm *svm)
3196{
3197        trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3198
3199        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3200        return 1;
3201}
3202
3203static int wbinvd_interception(struct vcpu_svm *svm)
3204{
3205        return kvm_emulate_wbinvd(&svm->vcpu);
3206}
3207
3208static int xsetbv_interception(struct vcpu_svm *svm)
3209{
3210        u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3211        u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3212
3213        if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3214                svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3215                return kvm_skip_emulated_instruction(&svm->vcpu);
3216        }
3217
3218        return 1;
3219}
3220
3221static int task_switch_interception(struct vcpu_svm *svm)
3222{
3223        u16 tss_selector;
3224        int reason;
3225        int int_type = svm->vmcb->control.exit_int_info &
3226                SVM_EXITINTINFO_TYPE_MASK;
3227        int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3228        uint32_t type =
3229                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3230        uint32_t idt_v =
3231                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3232        bool has_error_code = false;
3233        u32 error_code = 0;
3234
3235        tss_selector = (u16)svm->vmcb->control.exit_info_1;
3236
3237        if (svm->vmcb->control.exit_info_2 &
3238            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3239                reason = TASK_SWITCH_IRET;
3240        else if (svm->vmcb->control.exit_info_2 &
3241                 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3242                reason = TASK_SWITCH_JMP;
3243        else if (idt_v)
3244                reason = TASK_SWITCH_GATE;
3245        else
3246                reason = TASK_SWITCH_CALL;
3247
3248        if (reason == TASK_SWITCH_GATE) {
3249                switch (type) {
3250                case SVM_EXITINTINFO_TYPE_NMI:
3251                        svm->vcpu.arch.nmi_injected = false;
3252                        break;
3253                case SVM_EXITINTINFO_TYPE_EXEPT:
3254                        if (svm->vmcb->control.exit_info_2 &
3255                            (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3256                                has_error_code = true;
3257                                error_code =
3258                                        (u32)svm->vmcb->control.exit_info_2;
3259                        }
3260                        kvm_clear_exception_queue(&svm->vcpu);
3261                        break;
3262                case SVM_EXITINTINFO_TYPE_INTR:
3263                        kvm_clear_interrupt_queue(&svm->vcpu);
3264                        break;
3265                default:
3266                        break;
3267                }
3268        }
3269
3270        if (reason != TASK_SWITCH_GATE ||
3271            int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3272            (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3273             (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3274                skip_emulated_instruction(&svm->vcpu);
3275
3276        if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3277                int_vec = -1;
3278
3279        if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3280                                has_error_code, error_code) == EMULATE_FAIL) {
3281                svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3282                svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3283                svm->vcpu.run->internal.ndata = 0;
3284                return 0;
3285        }
3286        return 1;
3287}
3288
3289static int cpuid_interception(struct vcpu_svm *svm)
3290{
3291        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3292        return kvm_emulate_cpuid(&svm->vcpu);
3293}
3294
3295static int iret_interception(struct vcpu_svm *svm)
3296{
3297        ++svm->vcpu.stat.nmi_window_exits;
3298        clr_intercept(svm, INTERCEPT_IRET);
3299        svm->vcpu.arch.hflags |= HF_IRET_MASK;
3300        svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3301        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3302        return 1;
3303}
3304
3305static int invlpg_interception(struct vcpu_svm *svm)
3306{
3307        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3308                return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3309
3310        kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3311        return kvm_skip_emulated_instruction(&svm->vcpu);
3312}
3313
3314static int emulate_on_interception(struct vcpu_svm *svm)
3315{
3316        return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3317}
3318
3319static int rdpmc_interception(struct vcpu_svm *svm)
3320{
3321        int err;
3322
3323        if (!static_cpu_has(X86_FEATURE_NRIPS))
3324                return emulate_on_interception(svm);
3325
3326        err = kvm_rdpmc(&svm->vcpu);
3327        return kvm_complete_insn_gp(&svm->vcpu, err);
3328}
3329
3330static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3331                                            unsigned long val)
3332{
3333        unsigned long cr0 = svm->vcpu.arch.cr0;
3334        bool ret = false;
3335        u64 intercept;
3336
3337        intercept = svm->nested.intercept;
3338
3339        if (!is_guest_mode(&svm->vcpu) ||
3340            (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3341                return false;
3342
3343        cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3344        val &= ~SVM_CR0_SELECTIVE_MASK;
3345
3346        if (cr0 ^ val) {
3347                svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3348                ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3349        }
3350
3351        return ret;
3352}
3353
3354#define CR_VALID (1ULL << 63)
3355
3356static int cr_interception(struct vcpu_svm *svm)
3357{
3358        int reg, cr;
3359        unsigned long val;
3360        int err;
3361
3362        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3363                return emulate_on_interception(svm);
3364
3365        if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3366                return emulate_on_interception(svm);
3367
3368        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3369        if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3370                cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3371        else
3372                cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3373
3374        err = 0;
3375        if (cr >= 16) { /* mov to cr */
3376                cr -= 16;
3377                val = kvm_register_read(&svm->vcpu, reg);
3378                switch (cr) {
3379                case 0:
3380                        if (!check_selective_cr0_intercepted(svm, val))
3381                                err = kvm_set_cr0(&svm->vcpu, val);
3382                        else
3383                                return 1;
3384
3385                        break;
3386                case 3:
3387                        err = kvm_set_cr3(&svm->vcpu, val);
3388                        break;
3389                case 4:
3390                        err = kvm_set_cr4(&svm->vcpu, val);
3391                        break;
3392                case 8:
3393                        err = kvm_set_cr8(&svm->vcpu, val);
3394                        break;
3395                default:
3396                        WARN(1, "unhandled write to CR%d", cr);
3397                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3398                        return 1;
3399                }
3400        } else { /* mov from cr */
3401                switch (cr) {
3402                case 0:
3403                        val = kvm_read_cr0(&svm->vcpu);
3404                        break;
3405                case 2:
3406                        val = svm->vcpu.arch.cr2;
3407                        break;
3408                case 3:
3409                        val = kvm_read_cr3(&svm->vcpu);
3410                        break;
3411                case 4:
3412                        val = kvm_read_cr4(&svm->vcpu);
3413                        break;
3414                case 8:
3415                        val = kvm_get_cr8(&svm->vcpu);
3416                        break;
3417                default:
3418                        WARN(1, "unhandled read from CR%d", cr);
3419                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3420                        return 1;
3421                }
3422                kvm_register_write(&svm->vcpu, reg, val);
3423        }
3424        return kvm_complete_insn_gp(&svm->vcpu, err);
3425}
3426
3427static int dr_interception(struct vcpu_svm *svm)
3428{
3429        int reg, dr;
3430        unsigned long val;
3431
3432        if (svm->vcpu.guest_debug == 0) {
3433                /*
3434                 * No more DR vmexits; force a reload of the debug registers
3435                 * and reenter on this instruction.  The next vmexit will
3436                 * retrieve the full state of the debug registers.
3437                 */
3438                clr_dr_intercepts(svm);
3439                svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3440                return 1;
3441        }
3442
3443        if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3444                return emulate_on_interception(svm);
3445
3446        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3447        dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3448
3449        if (dr >= 16) { /* mov to DRn */
3450                if (!kvm_require_dr(&svm->vcpu, dr - 16))
3451                        return 1;
3452                val = kvm_register_read(&svm->vcpu, reg);
3453                kvm_set_dr(&svm->vcpu, dr - 16, val);
3454        } else {
3455                if (!kvm_require_dr(&svm->vcpu, dr))
3456                        return 1;
3457                kvm_get_dr(&svm->vcpu, dr, &val);
3458                kvm_register_write(&svm->vcpu, reg, val);
3459        }
3460
3461        return kvm_skip_emulated_instruction(&svm->vcpu);
3462}
3463
3464static int cr8_write_interception(struct vcpu_svm *svm)
3465{
3466        struct kvm_run *kvm_run = svm->vcpu.run;
3467        int r;
3468
3469        u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3470        /* instruction emulation calls kvm_set_cr8() */
3471        r = cr_interception(svm);
3472        if (lapic_in_kernel(&svm->vcpu))
3473                return r;
3474        if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3475                return r;
3476        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3477        return 0;
3478}
3479
3480static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3481{
3482        struct vcpu_svm *svm = to_svm(vcpu);
3483
3484        switch (msr_info->index) {
3485        case MSR_IA32_TSC: {
3486                msr_info->data = svm->vmcb->control.tsc_offset +
3487                        kvm_scale_tsc(vcpu, rdtsc());
3488
3489                break;
3490        }
3491        case MSR_STAR:
3492                msr_info->data = svm->vmcb->save.star;
3493                break;
3494#ifdef CONFIG_X86_64
3495        case MSR_LSTAR:
3496                msr_info->data = svm->vmcb->save.lstar;
3497                break;
3498        case MSR_CSTAR:
3499                msr_info->data = svm->vmcb->save.cstar;
3500                break;
3501        case MSR_KERNEL_GS_BASE:
3502                msr_info->data = svm->vmcb->save.kernel_gs_base;
3503                break;
3504        case MSR_SYSCALL_MASK:
3505                msr_info->data = svm->vmcb->save.sfmask;
3506                break;
3507#endif
3508        case MSR_IA32_SYSENTER_CS:
3509                msr_info->data = svm->vmcb->save.sysenter_cs;
3510                break;
3511        case MSR_IA32_SYSENTER_EIP:
3512                msr_info->data = svm->sysenter_eip;
3513                break;
3514        case MSR_IA32_SYSENTER_ESP:
3515                msr_info->data = svm->sysenter_esp;
3516                break;
3517        case MSR_TSC_AUX:
3518                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3519                        return 1;
3520                msr_info->data = svm->tsc_aux;
3521                break;
3522        /*
3523         * Nobody will change the following 5 values in the VMCB so we can
3524         * safely return them on rdmsr. They will always be 0 until LBRV is
3525         * implemented.
3526         */
3527        case MSR_IA32_DEBUGCTLMSR:
3528                msr_info->data = svm->vmcb->save.dbgctl;
3529                break;
3530        case MSR_IA32_LASTBRANCHFROMIP:
3531                msr_info->data = svm->vmcb->save.br_from;
3532                break;
3533        case MSR_IA32_LASTBRANCHTOIP:
3534                msr_info->data = svm->vmcb->save.br_to;
3535                break;
3536        case MSR_IA32_LASTINTFROMIP:
3537                msr_info->data = svm->vmcb->save.last_excp_from;
3538                break;
3539        case MSR_IA32_LASTINTTOIP:
3540                msr_info->data = svm->vmcb->save.last_excp_to;
3541                break;
3542        case MSR_VM_HSAVE_PA:
3543                msr_info->data = svm->nested.hsave_msr;
3544                break;
3545        case MSR_VM_CR:
3546                msr_info->data = svm->nested.vm_cr_msr;
3547                break;
3548        case MSR_IA32_UCODE_REV:
3549                msr_info->data = 0x01000065;
3550                break;
3551        case MSR_F15H_IC_CFG: {
3552
3553                int family, model;
3554
3555                family = guest_cpuid_family(vcpu);
3556                model  = guest_cpuid_model(vcpu);
3557
3558                if (family < 0 || model < 0)
3559                        return kvm_get_msr_common(vcpu, msr_info);
3560
3561                msr_info->data = 0;
3562
3563                if (family == 0x15 &&
3564                    (model >= 0x2 && model < 0x20))
3565                        msr_info->data = 0x1E;
3566                }
3567                break;
3568        default:
3569                return kvm_get_msr_common(vcpu, msr_info);
3570        }
3571        return 0;
3572}
3573
3574static int rdmsr_interception(struct vcpu_svm *svm)
3575{
3576        u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3577        struct msr_data msr_info;
3578
3579        msr_info.index = ecx;
3580        msr_info.host_initiated = false;
3581        if (svm_get_msr(&svm->vcpu, &msr_info)) {
3582                trace_kvm_msr_read_ex(ecx);
3583                kvm_inject_gp(&svm->vcpu, 0);
3584                return 1;
3585        } else {
3586                trace_kvm_msr_read(ecx, msr_info.data);
3587
3588                kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3589                                   msr_info.data & 0xffffffff);
3590                kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3591                                   msr_info.data >> 32);
3592                svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3593                return kvm_skip_emulated_instruction(&svm->vcpu);
3594        }
3595}
3596
3597static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3598{
3599        struct vcpu_svm *svm = to_svm(vcpu);
3600        int svm_dis, chg_mask;
3601
3602        if (data & ~SVM_VM_CR_VALID_MASK)
3603                return 1;
3604
3605        chg_mask = SVM_VM_CR_VALID_MASK;
3606
3607        if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3608                chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3609
3610        svm->nested.vm_cr_msr &= ~chg_mask;
3611        svm->nested.vm_cr_msr |= (data & chg_mask);
3612
3613        svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3614
3615        /* check for svm_disable while efer.svme is set */
3616        if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3617                return 1;
3618
3619        return 0;
3620}
3621
3622static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3623{
3624        struct vcpu_svm *svm = to_svm(vcpu);
3625
3626        u32 ecx = msr->index;
3627        u64 data = msr->data;
3628        switch (ecx) {
3629        case MSR_IA32_TSC:
3630                kvm_write_tsc(vcpu, msr);
3631                break;
3632        case MSR_STAR:
3633                svm->vmcb->save.star = data;
3634                break;
3635#ifdef CONFIG_X86_64
3636        case MSR_LSTAR:
3637                svm->vmcb->save.lstar = data;
3638                break;
3639        case MSR_CSTAR:
3640                svm->vmcb->save.cstar = data;
3641                break;
3642        case MSR_KERNEL_GS_BASE:
3643                svm->vmcb->save.kernel_gs_base = data;
3644                break;
3645        case MSR_SYSCALL_MASK:
3646                svm->vmcb->save.sfmask = data;
3647                break;
3648#endif
3649        case MSR_IA32_SYSENTER_CS:
3650                svm->vmcb->save.sysenter_cs = data;
3651                break;
3652        case MSR_IA32_SYSENTER_EIP:
3653                svm->sysenter_eip = data;
3654                svm->vmcb->save.sysenter_eip = data;
3655                break;
3656        case MSR_IA32_SYSENTER_ESP:
3657                svm->sysenter_esp = data;
3658                svm->vmcb->save.sysenter_esp = data;
3659                break;
3660        case MSR_TSC_AUX:
3661                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3662                        return 1;
3663
3664                /*
3665                 * This is rare, so we update the MSR here instead of using
3666                 * direct_access_msrs.  Doing that would require a rdmsr in
3667                 * svm_vcpu_put.
3668                 */
3669                svm->tsc_aux = data;
3670                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3671                break;
3672        case MSR_IA32_DEBUGCTLMSR:
3673                if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3674                        vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3675                                    __func__, data);
3676                        break;
3677                }
3678                if (data & DEBUGCTL_RESERVED_BITS)
3679                        return 1;
3680
3681                svm->vmcb->save.dbgctl = data;
3682                mark_dirty(svm->vmcb, VMCB_LBR);
3683                if (data & (1ULL<<0))
3684                        svm_enable_lbrv(svm);
3685                else
3686                        svm_disable_lbrv(svm);
3687                break;
3688        case MSR_VM_HSAVE_PA:
3689                svm->nested.hsave_msr = data;
3690                break;
3691        case MSR_VM_CR:
3692                return svm_set_vm_cr(vcpu, data);
3693        case MSR_VM_IGNNE:
3694                vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3695                break;
3696        case MSR_IA32_APICBASE:
3697                if (kvm_vcpu_apicv_active(vcpu))
3698                        avic_update_vapic_bar(to_svm(vcpu), data);
3699                /* Follow through */
3700        default:
3701                return kvm_set_msr_common(vcpu, msr);
3702        }
3703        return 0;
3704}
3705
3706static int wrmsr_interception(struct vcpu_svm *svm)
3707{
3708        struct msr_data msr;
3709        u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3710        u64 data = kvm_read_edx_eax(&svm->vcpu);
3711
3712        msr.data = data;
3713        msr.index = ecx;
3714        msr.host_initiated = false;
3715
3716        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3717        if (kvm_set_msr(&svm->vcpu, &msr)) {
3718                trace_kvm_msr_write_ex(ecx, data);
3719                kvm_inject_gp(&svm->vcpu, 0);
3720                return 1;
3721        } else {
3722                trace_kvm_msr_write(ecx, data);
3723                return kvm_skip_emulated_instruction(&svm->vcpu);
3724        }
3725}
3726
3727static int msr_interception(struct vcpu_svm *svm)
3728{
3729        if (svm->vmcb->control.exit_info_1)
3730                return wrmsr_interception(svm);
3731        else
3732                return rdmsr_interception(svm);
3733}
3734
3735static int interrupt_window_interception(struct vcpu_svm *svm)
3736{
3737        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3738        svm_clear_vintr(svm);
3739        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3740        mark_dirty(svm->vmcb, VMCB_INTR);
3741        ++svm->vcpu.stat.irq_window_exits;
3742        return 1;
3743}
3744
3745static int pause_interception(struct vcpu_svm *svm)
3746{
3747        kvm_vcpu_on_spin(&(svm->vcpu));
3748        return 1;
3749}
3750
3751static int nop_interception(struct vcpu_svm *svm)
3752{
3753        return kvm_skip_emulated_instruction(&(svm->vcpu));
3754}
3755
3756static int monitor_interception(struct vcpu_svm *svm)
3757{
3758        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3759        return nop_interception(svm);
3760}
3761
3762static int mwait_interception(struct vcpu_svm *svm)
3763{
3764        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3765        return nop_interception(svm);
3766}
3767
3768enum avic_ipi_failure_cause {
3769        AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3770        AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3771        AVIC_IPI_FAILURE_INVALID_TARGET,
3772        AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3773};
3774
3775static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3776{
3777        u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3778        u32 icrl = svm->vmcb->control.exit_info_1;
3779        u32 id = svm->vmcb->control.exit_info_2 >> 32;
3780        u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3781        struct kvm_lapic *apic = svm->vcpu.arch.apic;
3782
3783        trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3784
3785        switch (id) {
3786        case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3787                /*
3788                 * AVIC hardware handles the generation of
3789                 * IPIs when the specified Message Type is Fixed
3790                 * (also known as fixed delivery mode) and
3791                 * the Trigger Mode is edge-triggered. The hardware
3792                 * also supports self and broadcast delivery modes
3793                 * specified via the Destination Shorthand(DSH)
3794                 * field of the ICRL. Logical and physical APIC ID
3795                 * formats are supported. All other IPI types cause
3796                 * a #VMEXIT, which needs to emulated.
3797                 */
3798                kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3799                kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3800                break;
3801        case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3802                int i;
3803                struct kvm_vcpu *vcpu;
3804                struct kvm *kvm = svm->vcpu.kvm;
3805                struct kvm_lapic *apic = svm->vcpu.arch.apic;
3806
3807                /*
3808                 * At this point, we expect that the AVIC HW has already
3809                 * set the appropriate IRR bits on the valid target
3810                 * vcpus. So, we just need to kick the appropriate vcpu.
3811                 */
3812                kvm_for_each_vcpu(i, vcpu, kvm) {
3813                        bool m = kvm_apic_match_dest(vcpu, apic,
3814                                                     icrl & KVM_APIC_SHORT_MASK,
3815                                                     GET_APIC_DEST_FIELD(icrh),
3816                                                     icrl & KVM_APIC_DEST_MASK);
3817
3818                        if (m && !avic_vcpu_is_running(vcpu))
3819                                kvm_vcpu_wake_up(vcpu);
3820                }
3821                break;
3822        }
3823        case AVIC_IPI_FAILURE_INVALID_TARGET:
3824                break;
3825        case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3826                WARN_ONCE(1, "Invalid backing page\n");
3827                break;
3828        default:
3829                pr_err("Unknown IPI interception\n");
3830        }
3831
3832        return 1;
3833}
3834
3835static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3836{
3837        struct kvm_arch *vm_data = &vcpu->kvm->arch;
3838        int index;
3839        u32 *logical_apic_id_table;
3840        int dlid = GET_APIC_LOGICAL_ID(ldr);
3841
3842        if (!dlid)
3843                return NULL;
3844
3845        if (flat) { /* flat */
3846                index = ffs(dlid) - 1;
3847                if (index > 7)
3848                        return NULL;
3849        } else { /* cluster */
3850                int cluster = (dlid & 0xf0) >> 4;
3851                int apic = ffs(dlid & 0x0f) - 1;
3852
3853                if ((apic < 0) || (apic > 7) ||
3854                    (cluster >= 0xf))
3855                        return NULL;
3856                index = (cluster << 2) + apic;
3857        }
3858
3859        logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3860
3861        return &logical_apic_id_table[index];
3862}
3863
3864static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3865                          bool valid)
3866{
3867        bool flat;
3868        u32 *entry, new_entry;
3869
3870        flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3871        entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3872        if (!entry)
3873                return -EINVAL;
3874
3875        new_entry = READ_ONCE(*entry);
3876        new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3877        new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3878        if (valid)
3879                new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3880        else
3881                new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3882        WRITE_ONCE(*entry, new_entry);
3883
3884        return 0;
3885}
3886
3887static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3888{
3889        int ret;
3890        struct vcpu_svm *svm = to_svm(vcpu);
3891        u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3892
3893        if (!ldr)
3894                return 1;
3895
3896        ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3897        if (ret && svm->ldr_reg) {
3898                avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3899                svm->ldr_reg = 0;
3900        } else {
3901                svm->ldr_reg = ldr;
3902        }
3903        return ret;
3904}
3905
3906static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3907{
3908        u64 *old, *new;
3909        struct vcpu_svm *svm = to_svm(vcpu);
3910        u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3911        u32 id = (apic_id_reg >> 24) & 0xff;
3912
3913        if (vcpu->vcpu_id == id)
3914                return 0;
3915
3916        old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3917        new = avic_get_physical_id_entry(vcpu, id);
3918        if (!new || !old)
3919                return 1;
3920
3921        /* We need to move physical_id_entry to new offset */
3922        *new = *old;
3923        *old = 0ULL;
3924        to_svm(vcpu)->avic_physical_id_cache = new;
3925
3926        /*
3927         * Also update the guest physical APIC ID in the logical
3928         * APIC ID table entry if already setup the LDR.
3929         */
3930        if (svm->ldr_reg)
3931                avic_handle_ldr_update(vcpu);
3932
3933        return 0;
3934}
3935
3936static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3937{
3938        struct vcpu_svm *svm = to_svm(vcpu);
3939        struct kvm_arch *vm_data = &vcpu->kvm->arch;
3940        u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3941        u32 mod = (dfr >> 28) & 0xf;
3942
3943        /*
3944         * We assume that all local APICs are using the same type.
3945         * If this changes, we need to flush the AVIC logical
3946         * APID id table.
3947         */
3948        if (vm_data->ldr_mode == mod)
3949                return 0;
3950
3951        clear_page(page_address(vm_data->avic_logical_id_table_page));
3952        vm_data->ldr_mode = mod;
3953
3954        if (svm->ldr_reg)
3955                avic_handle_ldr_update(vcpu);
3956        return 0;
3957}
3958
3959static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3960{
3961        struct kvm_lapic *apic = svm->vcpu.arch.apic;
3962        u32 offset = svm->vmcb->control.exit_info_1 &
3963                                AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3964
3965        switch (offset) {
3966        case APIC_ID:
3967                if (avic_handle_apic_id_update(&svm->vcpu))
3968                        return 0;
3969                break;
3970        case APIC_LDR:
3971                if (avic_handle_ldr_update(&svm->vcpu))
3972                        return 0;
3973                break;
3974        case APIC_DFR:
3975                avic_handle_dfr_update(&svm->vcpu);
3976                break;
3977        default:
3978                break;
3979        }
3980
3981        kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3982
3983        return 1;
3984}
3985
3986static bool is_avic_unaccelerated_access_trap(u32 offset)
3987{
3988        bool ret = false;
3989
3990        switch (offset) {
3991        case APIC_ID:
3992        case APIC_EOI:
3993        case APIC_RRR:
3994        case APIC_LDR:
3995        case APIC_DFR:
3996        case APIC_SPIV:
3997        case APIC_ESR:
3998        case APIC_ICR:
3999        case APIC_LVTT:
4000        case APIC_LVTTHMR:
4001        case APIC_LVTPC:
4002        case APIC_LVT0:
4003        case APIC_LVT1:
4004        case APIC_LVTERR:
4005        case APIC_TMICT:
4006        case APIC_TDCR:
4007                ret = true;
4008                break;
4009        default:
4010                break;
4011        }
4012        return ret;
4013}
4014
4015static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4016{
4017        int ret = 0;
4018        u32 offset = svm->vmcb->control.exit_info_1 &
4019                     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4020        u32 vector = svm->vmcb->control.exit_info_2 &
4021                     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4022        bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4023                     AVIC_UNACCEL_ACCESS_WRITE_MASK;
4024        bool trap = is_avic_unaccelerated_access_trap(offset);
4025
4026        trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4027                                            trap, write, vector);
4028        if (trap) {
4029                /* Handling Trap */
4030                WARN_ONCE(!write, "svm: Handling trap read.\n");
4031                ret = avic_unaccel_trap_write(svm);
4032        } else {
4033                /* Handling Fault */
4034                ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4035        }
4036
4037        return ret;
4038}
4039
4040static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4041        [SVM_EXIT_READ_CR0]                     = cr_interception,
4042        [SVM_EXIT_READ_CR3]                     = cr_interception,
4043        [SVM_EXIT_READ_CR4]                     = cr_interception,
4044        [SVM_EXIT_READ_CR8]                     = cr_interception,
4045        [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4046        [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4047        [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4048        [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4049        [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4050        [SVM_EXIT_READ_DR0]                     = dr_interception,
4051        [SVM_EXIT_READ_DR1]                     = dr_interception,
4052        [SVM_EXIT_READ_DR2]                     = dr_interception,
4053        [SVM_EXIT_READ_DR3]                     = dr_interception,
4054        [SVM_EXIT_READ_DR4]                     = dr_interception,
4055        [SVM_EXIT_READ_DR5]                     = dr_interception,
4056        [SVM_EXIT_READ_DR6]                     = dr_interception,
4057        [SVM_EXIT_READ_DR7]                     = dr_interception,
4058        [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4059        [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4060        [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4061        [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4062        [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4063        [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4064        [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4065        [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4066        [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4067        [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4068        [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4069        [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4070        [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4071        [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4072        [SVM_EXIT_INTR]                         = intr_interception,
4073        [SVM_EXIT_NMI]                          = nmi_interception,
4074        [SVM_EXIT_SMI]                          = nop_on_interception,
4075        [SVM_EXIT_INIT]                         = nop_on_interception,
4076        [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4077        [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4078        [SVM_EXIT_CPUID]                        = cpuid_interception,
4079        [SVM_EXIT_IRET]                         = iret_interception,
4080        [SVM_EXIT_INVD]                         = emulate_on_interception,
4081        [SVM_EXIT_PAUSE]                        = pause_interception,
4082        [SVM_EXIT_HLT]                          = halt_interception,
4083        [SVM_EXIT_INVLPG]                       = invlpg_interception,
4084        [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4085        [SVM_EXIT_IOIO]                         = io_interception,
4086        [SVM_EXIT_MSR]                          = msr_interception,
4087        [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4088        [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4089        [SVM_EXIT_VMRUN]                        = vmrun_interception,
4090        [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4091        [SVM_EXIT_VMLOAD]                       = vmload_interception,
4092        [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4093        [SVM_EXIT_STGI]                         = stgi_interception,
4094        [SVM_EXIT_CLGI]                         = clgi_interception,
4095        [SVM_EXIT_SKINIT]                       = skinit_interception,
4096        [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4097        [SVM_EXIT_MONITOR]                      = monitor_interception,
4098        [SVM_EXIT_MWAIT]                        = mwait_interception,
4099        [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4100        [SVM_EXIT_NPF]                          = pf_interception,
4101        [SVM_EXIT_RSM]                          = emulate_on_interception,
4102        [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4103        [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4104};
4105
4106static void dump_vmcb(struct kvm_vcpu *vcpu)
4107{
4108        struct vcpu_svm *svm = to_svm(vcpu);
4109        struct vmcb_control_area *control = &svm->vmcb->control;
4110        struct vmcb_save_area *save = &svm->vmcb->save;
4111
4112        pr_err("VMCB Control Area:\n");
4113        pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4114        pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4115        pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4116        pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4117        pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4118        pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4119        pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4120        pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4121        pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4122        pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4123        pr_err("%-20s%d\n", "asid:", control->asid);
4124        pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4125        pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4126        pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4127        pr_err("%-20s%08x\n", "int_state:", control->int_state);
4128        pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4129        pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4130        pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4131        pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4132        pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4133        pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4134        pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4135        pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4136        pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4137        pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4138        pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4139        pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4140        pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4141        pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4142        pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4143        pr_err("VMCB State Save Area:\n");
4144        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4145               "es:",
4146               save->es.selector, save->es.attrib,
4147               save->es.limit, save->es.base);
4148        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4149               "cs:",
4150               save->cs.selector, save->cs.attrib,
4151               save->cs.limit, save->cs.base);
4152        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4153               "ss:",
4154               save->ss.selector, save->ss.attrib,
4155               save->ss.limit, save->ss.base);
4156        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4157               "ds:",
4158               save->ds.selector, save->ds.attrib,
4159               save->ds.limit, save->ds.base);
4160        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4161               "fs:",
4162               save->fs.selector, save->fs.attrib,
4163               save->fs.limit, save->fs.base);
4164        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4165               "gs:",
4166               save->gs.selector, save->gs.attrib,
4167               save->gs.limit, save->gs.base);
4168        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4169               "gdtr:",
4170               save->gdtr.selector, save->gdtr.attrib,
4171               save->gdtr.limit, save->gdtr.base);
4172        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4173               "ldtr:",
4174               save->ldtr.selector, save->ldtr.attrib,
4175               save->ldtr.limit, save->ldtr.base);
4176        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4177               "idtr:",
4178               save->idtr.selector, save->idtr.attrib,
4179               save->idtr.limit, save->idtr.base);
4180        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4181               "tr:",
4182               save->tr.selector, save->tr.attrib,
4183               save->tr.limit, save->tr.base);
4184        pr_err("cpl:            %d                efer:         %016llx\n",
4185                save->cpl, save->efer);
4186        pr_err("%-15s %016llx %-13s %016llx\n",
4187               "cr0:", save->cr0, "cr2:", save->cr2);
4188        pr_err("%-15s %016llx %-13s %016llx\n",
4189               "cr3:", save->cr3, "cr4:", save->cr4);
4190        pr_err("%-15s %016llx %-13s %016llx\n",
4191               "dr6:", save->dr6, "dr7:", save->dr7);
4192        pr_err("%-15s %016llx %-13s %016llx\n",
4193               "rip:", save->rip, "rflags:", save->rflags);
4194        pr_err("%-15s %016llx %-13s %016llx\n",
4195               "rsp:", save->rsp, "rax:", save->rax);
4196        pr_err("%-15s %016llx %-13s %016llx\n",
4197               "star:", save->star, "lstar:", save->lstar);
4198        pr_err("%-15s %016llx %-13s %016llx\n",
4199               "cstar:", save->cstar, "sfmask:", save->sfmask);
4200        pr_err("%-15s %016llx %-13s %016llx\n",
4201               "kernel_gs_base:", save->kernel_gs_base,
4202               "sysenter_cs:", save->sysenter_cs);
4203        pr_err("%-15s %016llx %-13s %016llx\n",
4204               "sysenter_esp:", save->sysenter_esp,
4205               "sysenter_eip:", save->sysenter_eip);
4206        pr_err("%-15s %016llx %-13s %016llx\n",
4207               "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4208        pr_err("%-15s %016llx %-13s %016llx\n",
4209               "br_from:", save->br_from, "br_to:", save->br_to);
4210        pr_err("%-15s %016llx %-13s %016llx\n",
4211               "excp_from:", save->last_excp_from,
4212               "excp_to:", save->last_excp_to);
4213}
4214
4215static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4216{
4217        struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4218
4219        *info1 = control->exit_info_1;
4220        *info2 = control->exit_info_2;
4221}
4222
4223static int handle_exit(struct kvm_vcpu *vcpu)
4224{
4225        struct vcpu_svm *svm = to_svm(vcpu);
4226        struct kvm_run *kvm_run = vcpu->run;
4227        u32 exit_code = svm->vmcb->control.exit_code;
4228
4229        trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4230
4231        vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
4232
4233        if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4234                vcpu->arch.cr0 = svm->vmcb->save.cr0;
4235        if (npt_enabled)
4236                vcpu->arch.cr3 = svm->vmcb->save.cr3;
4237
4238        if (unlikely(svm->nested.exit_required)) {
4239                nested_svm_vmexit(svm);
4240                svm->nested.exit_required = false;
4241
4242                return 1;
4243        }
4244
4245        if (is_guest_mode(vcpu)) {
4246                int vmexit;
4247
4248                trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4249                                        svm->vmcb->control.exit_info_1,
4250                                        svm->vmcb->control.exit_info_2,
4251                                        svm->vmcb->control.exit_int_info,
4252                                        svm->vmcb->control.exit_int_info_err,
4253                                        KVM_ISA_SVM);
4254
4255                vmexit = nested_svm_exit_special(svm);
4256
4257                if (vmexit == NESTED_EXIT_CONTINUE)
4258                        vmexit = nested_svm_exit_handled(svm);
4259
4260                if (vmexit == NESTED_EXIT_DONE)
4261                        return 1;
4262        }
4263
4264        svm_complete_interrupts(svm);
4265
4266        if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4267                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4268                kvm_run->fail_entry.hardware_entry_failure_reason
4269                        = svm->vmcb->control.exit_code;
4270                pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4271                dump_vmcb(vcpu);
4272                return 0;
4273        }
4274
4275        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4276            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4277            exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4278            exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4279                printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4280                       "exit_code 0x%x\n",
4281                       __func__, svm->vmcb->control.exit_int_info,
4282                       exit_code);
4283
4284        if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4285            || !svm_exit_handlers[exit_code]) {
4286                WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4287                kvm_queue_exception(vcpu, UD_VECTOR);
4288                return 1;
4289        }
4290
4291        return svm_exit_handlers[exit_code](svm);
4292}
4293
4294static void reload_tss(struct kvm_vcpu *vcpu)
4295{
4296        int cpu = raw_smp_processor_id();
4297
4298        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4299        sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4300        load_TR_desc();
4301}
4302
4303static void pre_svm_run(struct vcpu_svm *svm)
4304{
4305        int cpu = raw_smp_processor_id();
4306
4307        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4308
4309        /* FIXME: handle wraparound of asid_generation */
4310        if (svm->asid_generation != sd->asid_generation)
4311                new_asid(svm, sd);
4312}
4313
4314static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4315{
4316        struct vcpu_svm *svm = to_svm(vcpu);
4317
4318        svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4319        vcpu->arch.hflags |= HF_NMI_MASK;
4320        set_intercept(svm, INTERCEPT_IRET);
4321        ++vcpu->stat.nmi_injections;
4322}
4323
4324static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4325{
4326        struct vmcb_control_area *control;
4327
4328        /* The following fields are ignored when AVIC is enabled */
4329        control = &svm->vmcb->control;
4330        control->int_vector = irq;
4331        control->int_ctl &= ~V_INTR_PRIO_MASK;
4332        control->int_ctl |= V_IRQ_MASK |
4333                ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4334        mark_dirty(svm->vmcb, VMCB_INTR);
4335}
4336
4337static void svm_set_irq(struct kvm_vcpu *vcpu)
4338{
4339        struct vcpu_svm *svm = to_svm(vcpu);
4340
4341        BUG_ON(!(gif_set(svm)));
4342
4343        trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4344        ++vcpu->stat.irq_injections;
4345
4346        svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4347                SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4348}
4349
4350static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4351{
4352        return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4353}
4354
4355static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4356{
4357        struct vcpu_svm *svm = to_svm(vcpu);
4358
4359        if (svm_nested_virtualize_tpr(vcpu) ||
4360            kvm_vcpu_apicv_active(vcpu))
4361                return;
4362
4363        clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4364
4365        if (irr == -1)
4366                return;
4367
4368        if (tpr >= irr)
4369                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4370}
4371
4372static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4373{
4374        return;
4375}
4376
4377static bool svm_get_enable_apicv(void)
4378{
4379        return avic;
4380}
4381
4382static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4383{
4384}
4385
4386static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4387{
4388}
4389
4390/* Note: Currently only used by Hyper-V. */
4391static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4392{
4393        struct vcpu_svm *svm = to_svm(vcpu);
4394        struct vmcb *vmcb = svm->vmcb;
4395
4396        if (!avic)
4397                return;
4398
4399        vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4400        mark_dirty(vmcb, VMCB_INTR);
4401}
4402
4403static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4404{
4405        return;
4406}
4407
4408static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4409{
4410        kvm_lapic_set_irr(vec, vcpu->arch.apic);
4411        smp_mb__after_atomic();
4412
4413        if (avic_vcpu_is_running(vcpu))
4414                wrmsrl(SVM_AVIC_DOORBELL,
4415                       kvm_cpu_get_apicid(vcpu->cpu));
4416        else
4417                kvm_vcpu_wake_up(vcpu);
4418}
4419
4420static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4421{
4422        unsigned long flags;
4423        struct amd_svm_iommu_ir *cur;
4424
4425        spin_lock_irqsave(&svm->ir_list_lock, flags);
4426        list_for_each_entry(cur, &svm->ir_list, node) {
4427                if (cur->data != pi->ir_data)
4428                        continue;
4429                list_del(&cur->node);
4430                kfree(cur);
4431                break;
4432        }
4433        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4434}
4435
4436static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4437{
4438        int ret = 0;
4439        unsigned long flags;
4440        struct amd_svm_iommu_ir *ir;
4441
4442        /**
4443         * In some cases, the existing irte is updaed and re-set,
4444         * so we need to check here if it's already been * added
4445         * to the ir_list.
4446         */
4447        if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4448                struct kvm *kvm = svm->vcpu.kvm;
4449                u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4450                struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4451                struct vcpu_svm *prev_svm;
4452
4453                if (!prev_vcpu) {
4454                        ret = -EINVAL;
4455                        goto out;
4456                }
4457
4458                prev_svm = to_svm(prev_vcpu);
4459                svm_ir_list_del(prev_svm, pi);
4460        }
4461
4462        /**
4463         * Allocating new amd_iommu_pi_data, which will get
4464         * add to the per-vcpu ir_list.
4465         */
4466        ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4467        if (!ir) {
4468                ret = -ENOMEM;
4469                goto out;
4470        }
4471        ir->data = pi->ir_data;
4472
4473        spin_lock_irqsave(&svm->ir_list_lock, flags);
4474        list_add(&ir->node, &svm->ir_list);
4475        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4476out:
4477        return ret;
4478}
4479
4480/**
4481 * Note:
4482 * The HW cannot support posting multicast/broadcast
4483 * interrupts to a vCPU. So, we still use legacy interrupt
4484 * remapping for these kind of interrupts.
4485 *
4486 * For lowest-priority interrupts, we only support
4487 * those with single CPU as the destination, e.g. user
4488 * configures the interrupts via /proc/irq or uses
4489 * irqbalance to make the interrupts single-CPU.
4490 */
4491static int
4492get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4493                 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4494{
4495        struct kvm_lapic_irq irq;
4496        struct kvm_vcpu *vcpu = NULL;
4497
4498        kvm_set_msi_irq(kvm, e, &irq);
4499
4500        if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4501                pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4502                         __func__, irq.vector);
4503                return -1;
4504        }
4505
4506        pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4507                 irq.vector);
4508        *svm = to_svm(vcpu);
4509        vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4510        vcpu_info->vector = irq.vector;
4511
4512        return 0;
4513}
4514
4515/*
4516 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4517 *
4518 * @kvm: kvm
4519 * @host_irq: host irq of the interrupt
4520 * @guest_irq: gsi of the interrupt
4521 * @set: set or unset PI
4522 * returns 0 on success, < 0 on failure
4523 */
4524static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4525                              uint32_t guest_irq, bool set)
4526{
4527        struct kvm_kernel_irq_routing_entry *e;
4528        struct kvm_irq_routing_table *irq_rt;
4529        int idx, ret = -EINVAL;
4530
4531        if (!kvm_arch_has_assigned_device(kvm) ||
4532            !irq_remapping_cap(IRQ_POSTING_CAP))
4533                return 0;
4534
4535        pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4536                 __func__, host_irq, guest_irq, set);
4537
4538        idx = srcu_read_lock(&kvm->irq_srcu);
4539        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4540        WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4541
4542        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4543                struct vcpu_data vcpu_info;
4544                struct vcpu_svm *svm = NULL;
4545
4546                if (e->type != KVM_IRQ_ROUTING_MSI)
4547                        continue;
4548
4549                /**
4550                 * Here, we setup with legacy mode in the following cases:
4551                 * 1. When cannot target interrupt to a specific vcpu.
4552                 * 2. Unsetting posted interrupt.
4553                 * 3. APIC virtialization is disabled for the vcpu.
4554                 */
4555                if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4556                    kvm_vcpu_apicv_active(&svm->vcpu)) {
4557                        struct amd_iommu_pi_data pi;
4558
4559                        /* Try to enable guest_mode in IRTE */
4560                        pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4561                        pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4562                                                     svm->vcpu.vcpu_id);
4563                        pi.is_guest_mode = true;
4564                        pi.vcpu_data = &vcpu_info;
4565                        ret = irq_set_vcpu_affinity(host_irq, &pi);
4566
4567                        /**
4568                         * Here, we successfully setting up vcpu affinity in
4569                         * IOMMU guest mode. Now, we need to store the posted
4570                         * interrupt information in a per-vcpu ir_list so that
4571                         * we can reference to them directly when we update vcpu
4572                         * scheduling information in IOMMU irte.
4573                         */
4574                        if (!ret && pi.is_guest_mode)
4575                                svm_ir_list_add(svm, &pi);
4576                } else {
4577                        /* Use legacy mode in IRTE */
4578                        struct amd_iommu_pi_data pi;
4579
4580                        /**
4581                         * Here, pi is used to:
4582                         * - Tell IOMMU to use legacy mode for this interrupt.
4583                         * - Retrieve ga_tag of prior interrupt remapping data.
4584                         */
4585                        pi.is_guest_mode = false;
4586                        ret = irq_set_vcpu_affinity(host_irq, &pi);
4587
4588                        /**
4589                         * Check if the posted interrupt was previously
4590                         * setup with the guest_mode by checking if the ga_tag
4591                         * was cached. If so, we need to clean up the per-vcpu
4592                         * ir_list.
4593                         */
4594                        if (!ret && pi.prev_ga_tag) {
4595                                int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4596                                struct kvm_vcpu *vcpu;
4597
4598                                vcpu = kvm_get_vcpu_by_id(kvm, id);
4599                                if (vcpu)
4600                                        svm_ir_list_del(to_svm(vcpu), &pi);
4601                        }
4602                }
4603
4604                if (!ret && svm) {
4605                        trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4606                                                 host_irq, e->gsi,
4607                                                 vcpu_info.vector,
4608                                                 vcpu_info.pi_desc_addr, set);
4609                }
4610
4611                if (ret < 0) {
4612                        pr_err("%s: failed to update PI IRTE\n", __func__);
4613                        goto out;
4614                }
4615        }
4616
4617        ret = 0;
4618out:
4619        srcu_read_unlock(&kvm->irq_srcu, idx);
4620        return ret;
4621}
4622
4623static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4624{
4625        struct vcpu_svm *svm = to_svm(vcpu);
4626        struct vmcb *vmcb = svm->vmcb;
4627        int ret;
4628        ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4629              !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4630        ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4631
4632        return ret;
4633}
4634
4635static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4636{
4637        struct vcpu_svm *svm = to_svm(vcpu);
4638
4639        return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4640}
4641
4642static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4643{
4644        struct vcpu_svm *svm = to_svm(vcpu);
4645
4646        if (masked) {
4647                svm->vcpu.arch.hflags |= HF_NMI_MASK;
4648                set_intercept(svm, INTERCEPT_IRET);
4649        } else {
4650                svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4651                clr_intercept(svm, INTERCEPT_IRET);
4652        }
4653}
4654
4655static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4656{
4657        struct vcpu_svm *svm = to_svm(vcpu);
4658        struct vmcb *vmcb = svm->vmcb;
4659        int ret;
4660
4661        if (!gif_set(svm) ||
4662             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4663                return 0;
4664
4665        ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4666
4667        if (is_guest_mode(vcpu))
4668                return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4669
4670        return ret;
4671}
4672
4673static void enable_irq_window(struct kvm_vcpu *vcpu)
4674{
4675        struct vcpu_svm *svm = to_svm(vcpu);
4676
4677        if (kvm_vcpu_apicv_active(vcpu))
4678                return;
4679
4680        /*
4681         * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4682         * 1, because that's a separate STGI/VMRUN intercept.  The next time we
4683         * get that intercept, this function will be called again though and
4684         * we'll get the vintr intercept.
4685         */
4686        if (gif_set(svm) && nested_svm_intr(svm)) {
4687                svm_set_vintr(svm);
4688                svm_inject_irq(svm, 0x0);
4689        }
4690}
4691
4692static void enable_nmi_window(struct kvm_vcpu *vcpu)
4693{
4694        struct vcpu_svm *svm = to_svm(vcpu);
4695
4696        if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4697            == HF_NMI_MASK)
4698                return; /* IRET will cause a vm exit */
4699
4700        if ((svm->vcpu.arch.hflags & HF_GIF_MASK) == 0)
4701                return; /* STGI will cause a vm exit */
4702
4703        if (svm->nested.exit_required)
4704                return; /* we're not going to run the guest yet */
4705
4706        /*
4707         * Something prevents NMI from been injected. Single step over possible
4708         * problem (IRET or exception injection or interrupt shadow)
4709         */
4710        svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4711        svm->nmi_singlestep = true;
4712        svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4713}
4714
4715static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4716{
4717        return 0;
4718}
4719
4720static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4721{
4722        struct vcpu_svm *svm = to_svm(vcpu);
4723
4724        if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4725                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4726        else
4727                svm->asid_generation--;
4728}
4729
4730static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4731{
4732}
4733
4734static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4735{
4736        struct vcpu_svm *svm = to_svm(vcpu);
4737
4738        if (svm_nested_virtualize_tpr(vcpu))
4739                return;
4740
4741        if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4742                int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4743                kvm_set_cr8(vcpu, cr8);
4744        }
4745}
4746
4747static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4748{
4749        struct vcpu_svm *svm = to_svm(vcpu);
4750        u64 cr8;
4751
4752        if (svm_nested_virtualize_tpr(vcpu) ||
4753            kvm_vcpu_apicv_active(vcpu))
4754                return;
4755
4756        cr8 = kvm_get_cr8(vcpu);
4757        svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4758        svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4759}
4760
4761static void svm_complete_interrupts(struct vcpu_svm *svm)
4762{
4763        u8 vector;
4764        int type;
4765        u32 exitintinfo = svm->vmcb->control.exit_int_info;
4766        unsigned int3_injected = svm->int3_injected;
4767
4768        svm->int3_injected = 0;
4769
4770        /*
4771         * If we've made progress since setting HF_IRET_MASK, we've
4772         * executed an IRET and can allow NMI injection.
4773         */
4774        if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4775            && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4776                svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4777                kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4778        }
4779
4780        svm->vcpu.arch.nmi_injected = false;
4781        kvm_clear_exception_queue(&svm->vcpu);
4782        kvm_clear_interrupt_queue(&svm->vcpu);
4783
4784        if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4785                return;
4786
4787        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4788
4789        vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4790        type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4791
4792        switch (type) {
4793        case SVM_EXITINTINFO_TYPE_NMI:
4794                svm->vcpu.arch.nmi_injected = true;
4795                break;
4796        case SVM_EXITINTINFO_TYPE_EXEPT:
4797                /*
4798                 * In case of software exceptions, do not reinject the vector,
4799                 * but re-execute the instruction instead. Rewind RIP first
4800                 * if we emulated INT3 before.
4801                 */
4802                if (kvm_exception_is_soft(vector)) {
4803                        if (vector == BP_VECTOR && int3_injected &&
4804                            kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4805                                kvm_rip_write(&svm->vcpu,
4806                                              kvm_rip_read(&svm->vcpu) -
4807                                              int3_injected);
4808                        break;
4809                }
4810                if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4811                        u32 err = svm->vmcb->control.exit_int_info_err;
4812                        kvm_requeue_exception_e(&svm->vcpu, vector, err);
4813
4814                } else
4815                        kvm_requeue_exception(&svm->vcpu, vector);
4816                break;
4817        case SVM_EXITINTINFO_TYPE_INTR:
4818                kvm_queue_interrupt(&svm->vcpu, vector, false);
4819                break;
4820        default:
4821                break;
4822        }
4823}
4824
4825static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4826{
4827        struct vcpu_svm *svm = to_svm(vcpu);
4828        struct vmcb_control_area *control = &svm->vmcb->control;
4829
4830        control->exit_int_info = control->event_inj;
4831        control->exit_int_info_err = control->event_inj_err;
4832        control->event_inj = 0;
4833        svm_complete_interrupts(svm);
4834}
4835
4836static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4837{
4838        struct vcpu_svm *svm = to_svm(vcpu);
4839
4840        svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4841        svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4842        svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4843
4844        /*
4845         * A vmexit emulation is required before the vcpu can be executed
4846         * again.
4847         */
4848        if (unlikely(svm->nested.exit_required))
4849                return;
4850
4851        /*
4852         * Disable singlestep if we're injecting an interrupt/exception.
4853         * We don't want our modified rflags to be pushed on the stack where
4854         * we might not be able to easily reset them if we disabled NMI
4855         * singlestep later.
4856         */
4857        if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4858                /*
4859                 * Event injection happens before external interrupts cause a
4860                 * vmexit and interrupts are disabled here, so smp_send_reschedule
4861                 * is enough to force an immediate vmexit.
4862                 */
4863                disable_nmi_singlestep(svm);
4864                smp_send_reschedule(vcpu->cpu);
4865        }
4866
4867        pre_svm_run(svm);
4868
4869        sync_lapic_to_cr8(vcpu);
4870
4871        svm->vmcb->save.cr2 = vcpu->arch.cr2;
4872
4873        clgi();
4874
4875        local_irq_enable();
4876
4877        asm volatile (
4878                "push %%" _ASM_BP "; \n\t"
4879                "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4880                "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4881                "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4882                "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4883                "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4884                "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4885#ifdef CONFIG_X86_64
4886                "mov %c[r8](%[svm]),  %%r8  \n\t"
4887                "mov %c[r9](%[svm]),  %%r9  \n\t"
4888                "mov %c[r10](%[svm]), %%r10 \n\t"
4889                "mov %c[r11](%[svm]), %%r11 \n\t"
4890                "mov %c[r12](%[svm]), %%r12 \n\t"
4891                "mov %c[r13](%[svm]), %%r13 \n\t"
4892                "mov %c[r14](%[svm]), %%r14 \n\t"
4893                "mov %c[r15](%[svm]), %%r15 \n\t"
4894#endif
4895
4896                /* Enter guest mode */
4897                "push %%" _ASM_AX " \n\t"
4898                "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4899                __ex(SVM_VMLOAD) "\n\t"
4900                __ex(SVM_VMRUN) "\n\t"
4901                __ex(SVM_VMSAVE) "\n\t"
4902                "pop %%" _ASM_AX " \n\t"
4903
4904                /* Save guest registers, load host registers */
4905                "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4906                "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4907                "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4908                "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4909                "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4910                "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4911#ifdef CONFIG_X86_64
4912                "mov %%r8,  %c[r8](%[svm]) \n\t"
4913                "mov %%r9,  %c[r9](%[svm]) \n\t"
4914                "mov %%r10, %c[r10](%[svm]) \n\t"
4915                "mov %%r11, %c[r11](%[svm]) \n\t"
4916                "mov %%r12, %c[r12](%[svm]) \n\t"
4917                "mov %%r13, %c[r13](%[svm]) \n\t"
4918                "mov %%r14, %c[r14](%[svm]) \n\t"
4919                "mov %%r15, %c[r15](%[svm]) \n\t"
4920#endif
4921                "pop %%" _ASM_BP
4922                :
4923                : [svm]"a"(svm),
4924                  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4925                  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4926                  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4927                  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4928                  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4929                  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4930                  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4931#ifdef CONFIG_X86_64
4932                  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4933                  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4934                  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4935                  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4936                  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4937                  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4938                  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4939                  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4940#endif
4941                : "cc", "memory"
4942#ifdef CONFIG_X86_64
4943                , "rbx", "rcx", "rdx", "rsi", "rdi"
4944                , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4945#else
4946                , "ebx", "ecx", "edx", "esi", "edi"
4947#endif
4948                );
4949
4950#ifdef CONFIG_X86_64
4951        wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4952#else
4953        loadsegment(fs, svm->host.fs);
4954#ifndef CONFIG_X86_32_LAZY_GS
4955        loadsegment(gs, svm->host.gs);
4956#endif
4957#endif
4958
4959        reload_tss(vcpu);
4960
4961        local_irq_disable();
4962
4963        vcpu->arch.cr2 = svm->vmcb->save.cr2;
4964        vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4965        vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4966        vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4967
4968        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4969                kvm_before_handle_nmi(&svm->vcpu);
4970
4971        stgi();
4972
4973        /* Any pending NMI will happen here */
4974
4975        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4976                kvm_after_handle_nmi(&svm->vcpu);
4977
4978        sync_cr8_to_lapic(vcpu);
4979
4980        svm->next_rip = 0;
4981
4982        svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4983
4984        /* if exit due to PF check for async PF */
4985        if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4986                svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
4987
4988        if (npt_enabled) {
4989                vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4990                vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4991        }
4992
4993        /*
4994         * We need to handle MC intercepts here before the vcpu has a chance to
4995         * change the physical cpu
4996         */
4997        if (unlikely(svm->vmcb->control.exit_code ==
4998                     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4999                svm_handle_mce(svm);
5000
5001        mark_all_clean(svm->vmcb);
5002}
5003STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5004
5005static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5006{
5007        struct vcpu_svm *svm = to_svm(vcpu);
5008
5009        svm->vmcb->save.cr3 = root;
5010        mark_dirty(svm->vmcb, VMCB_CR);
5011        svm_flush_tlb(vcpu);
5012}
5013
5014static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5015{
5016        struct vcpu_svm *svm = to_svm(vcpu);
5017
5018        svm->vmcb->control.nested_cr3 = root;
5019        mark_dirty(svm->vmcb, VMCB_NPT);
5020
5021        /* Also sync guest cr3 here in case we live migrate */
5022        svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5023        mark_dirty(svm->vmcb, VMCB_CR);
5024
5025        svm_flush_tlb(vcpu);
5026}
5027
5028static int is_disabled(void)
5029{
5030        u64 vm_cr;
5031
5032        rdmsrl(MSR_VM_CR, vm_cr);
5033        if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5034                return 1;
5035
5036        return 0;
5037}
5038
5039static void
5040svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5041{
5042        /*
5043         * Patch in the VMMCALL instruction:
5044         */
5045        hypercall[0] = 0x0f;
5046        hypercall[1] = 0x01;
5047        hypercall[2] = 0xd9;
5048}
5049
5050static void svm_check_processor_compat(void *rtn)
5051{
5052        *(int *)rtn = 0;
5053}
5054
5055static bool svm_cpu_has_accelerated_tpr(void)
5056{
5057        return false;
5058}
5059
5060static bool svm_has_high_real_mode_segbase(void)
5061{
5062        return true;
5063}
5064
5065static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5066{
5067        return 0;
5068}
5069
5070static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5071{
5072        struct vcpu_svm *svm = to_svm(vcpu);
5073        struct kvm_cpuid_entry2 *entry;
5074
5075        /* Update nrips enabled cache */
5076        svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
5077
5078        if (!kvm_vcpu_apicv_active(vcpu))
5079                return;
5080
5081        entry = kvm_find_cpuid_entry(vcpu, 1, 0);
5082        if (entry)
5083                entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5084}
5085
5086static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5087{
5088        switch (func) {
5089        case 0x1:
5090                if (avic)
5091                        entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5092                break;
5093        case 0x80000001:
5094                if (nested)
5095                        entry->ecx |= (1 << 2); /* Set SVM bit */
5096                break;
5097        case 0x8000000A:
5098                entry->eax = 1; /* SVM revision 1 */
5099                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5100                                   ASID emulation to nested SVM */
5101                entry->ecx = 0; /* Reserved */
5102                entry->edx = 0; /* Per default do not support any
5103                                   additional features */
5104
5105                /* Support next_rip if host supports it */
5106                if (boot_cpu_has(X86_FEATURE_NRIPS))
5107                        entry->edx |= SVM_FEATURE_NRIP;
5108
5109                /* Support NPT for the guest if enabled */
5110                if (npt_enabled)
5111                        entry->edx |= SVM_FEATURE_NPT;
5112
5113                break;
5114        }
5115}
5116
5117static int svm_get_lpage_level(void)
5118{
5119        return PT_PDPE_LEVEL;
5120}
5121
5122static bool svm_rdtscp_supported(void)
5123{
5124        return boot_cpu_has(X86_FEATURE_RDTSCP);
5125}
5126
5127static bool svm_invpcid_supported(void)
5128{
5129        return false;
5130}
5131
5132static bool svm_mpx_supported(void)
5133{
5134        return false;
5135}
5136
5137static bool svm_xsaves_supported(void)
5138{
5139        return false;
5140}
5141
5142static bool svm_has_wbinvd_exit(void)
5143{
5144        return true;
5145}
5146
5147#define PRE_EX(exit)  { .exit_code = (exit), \
5148                        .stage = X86_ICPT_PRE_EXCEPT, }
5149#define POST_EX(exit) { .exit_code = (exit), \
5150                        .stage = X86_ICPT_POST_EXCEPT, }
5151#define POST_MEM(exit) { .exit_code = (exit), \
5152                        .stage = X86_ICPT_POST_MEMACCESS, }
5153
5154static const struct __x86_intercept {
5155        u32 exit_code;
5156        enum x86_intercept_stage stage;
5157} x86_intercept_map[] = {
5158        [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5159        [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5160        [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5161        [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5162        [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5163        [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5164        [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5165        [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5166        [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5167        [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5168        [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5169        [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5170        [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5171        [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5172        [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5173        [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5174        [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5175        [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5176        [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5177        [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5178        [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5179        [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5180        [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5181        [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5182        [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5183        [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5184        [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5185        [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5186        [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5187        [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5188        [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5189        [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5190        [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5191        [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5192        [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5193        [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5194        [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5195        [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5196        [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5197        [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5198        [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5199        [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5200        [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5201        [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5202        [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5203        [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5204};
5205
5206#undef PRE_EX
5207#undef POST_EX
5208#undef POST_MEM
5209
5210static int svm_check_intercept(struct kvm_vcpu *vcpu,
5211                               struct x86_instruction_info *info,
5212                               enum x86_intercept_stage stage)
5213{
5214        struct vcpu_svm *svm = to_svm(vcpu);
5215        int vmexit, ret = X86EMUL_CONTINUE;
5216        struct __x86_intercept icpt_info;
5217        struct vmcb *vmcb = svm->vmcb;
5218
5219        if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5220                goto out;
5221
5222        icpt_info = x86_intercept_map[info->intercept];
5223
5224        if (stage != icpt_info.stage)
5225                goto out;
5226
5227        switch (icpt_info.exit_code) {
5228        case SVM_EXIT_READ_CR0:
5229                if (info->intercept == x86_intercept_cr_read)
5230                        icpt_info.exit_code += info->modrm_reg;
5231                break;
5232        case SVM_EXIT_WRITE_CR0: {
5233                unsigned long cr0, val;
5234                u64 intercept;
5235
5236                if (info->intercept == x86_intercept_cr_write)
5237                        icpt_info.exit_code += info->modrm_reg;
5238
5239                if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5240                    info->intercept == x86_intercept_clts)
5241                        break;
5242
5243                intercept = svm->nested.intercept;
5244
5245                if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5246                        break;
5247
5248                cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5249                val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
5250
5251                if (info->intercept == x86_intercept_lmsw) {
5252                        cr0 &= 0xfUL;
5253                        val &= 0xfUL;
5254                        /* lmsw can't clear PE - catch this here */
5255                        if (cr0 & X86_CR0_PE)
5256                                val |= X86_CR0_PE;
5257                }
5258
5259                if (cr0 ^ val)
5260                        icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5261
5262                break;
5263        }
5264        case SVM_EXIT_READ_DR0:
5265        case SVM_EXIT_WRITE_DR0:
5266                icpt_info.exit_code += info->modrm_reg;
5267                break;
5268        case SVM_EXIT_MSR:
5269                if (info->intercept == x86_intercept_wrmsr)
5270                        vmcb->control.exit_info_1 = 1;
5271                else
5272                        vmcb->control.exit_info_1 = 0;
5273                break;
5274        case SVM_EXIT_PAUSE:
5275                /*
5276                 * We get this for NOP only, but pause
5277                 * is rep not, check this here
5278                 */
5279                if (info->rep_prefix != REPE_PREFIX)
5280                        goto out;
5281        case SVM_EXIT_IOIO: {
5282                u64 exit_info;
5283                u32 bytes;
5284
5285                if (info->intercept == x86_intercept_in ||
5286                    info->intercept == x86_intercept_ins) {
5287                        exit_info = ((info->src_val & 0xffff) << 16) |
5288                                SVM_IOIO_TYPE_MASK;
5289                        bytes = info->dst_bytes;
5290                } else {
5291                        exit_info = (info->dst_val & 0xffff) << 16;
5292                        bytes = info->src_bytes;
5293                }
5294
5295                if (info->intercept == x86_intercept_outs ||
5296                    info->intercept == x86_intercept_ins)
5297                        exit_info |= SVM_IOIO_STR_MASK;
5298
5299                if (info->rep_prefix)
5300                        exit_info |= SVM_IOIO_REP_MASK;
5301
5302                bytes = min(bytes, 4u);
5303
5304                exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5305
5306                exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5307
5308                vmcb->control.exit_info_1 = exit_info;
5309                vmcb->control.exit_info_2 = info->next_rip;
5310
5311                break;
5312        }
5313        default:
5314                break;
5315        }
5316
5317        /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5318        if (static_cpu_has(X86_FEATURE_NRIPS))
5319                vmcb->control.next_rip  = info->next_rip;
5320        vmcb->control.exit_code = icpt_info.exit_code;
5321        vmexit = nested_svm_exit_handled(svm);
5322
5323        ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5324                                           : X86EMUL_CONTINUE;
5325
5326out:
5327        return ret;
5328}
5329
5330static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5331{
5332        local_irq_enable();
5333        /*
5334         * We must have an instruction with interrupts enabled, so
5335         * the timer interrupt isn't delayed by the interrupt shadow.
5336         */
5337        asm("nop");
5338        local_irq_disable();
5339}
5340
5341static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5342{
5343}
5344
5345static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5346{
5347        if (avic_handle_apic_id_update(vcpu) != 0)
5348                return;
5349        if (avic_handle_dfr_update(vcpu) != 0)
5350                return;
5351        avic_handle_ldr_update(vcpu);
5352}
5353
5354static void svm_setup_mce(struct kvm_vcpu *vcpu)
5355{
5356        /* [63:9] are reserved. */
5357        vcpu->arch.mcg_cap &= 0x1ff;
5358}
5359
5360static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5361        .cpu_has_kvm_support = has_svm,
5362        .disabled_by_bios = is_disabled,
5363        .hardware_setup = svm_hardware_setup,
5364        .hardware_unsetup = svm_hardware_unsetup,
5365        .check_processor_compatibility = svm_check_processor_compat,
5366        .hardware_enable = svm_hardware_enable,
5367        .hardware_disable = svm_hardware_disable,
5368        .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5369        .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5370
5371        .vcpu_create = svm_create_vcpu,
5372        .vcpu_free = svm_free_vcpu,
5373        .vcpu_reset = svm_vcpu_reset,
5374
5375        .vm_init = avic_vm_init,
5376        .vm_destroy = avic_vm_destroy,
5377
5378        .prepare_guest_switch = svm_prepare_guest_switch,
5379        .vcpu_load = svm_vcpu_load,
5380        .vcpu_put = svm_vcpu_put,
5381        .vcpu_blocking = svm_vcpu_blocking,
5382        .vcpu_unblocking = svm_vcpu_unblocking,
5383
5384        .update_bp_intercept = update_bp_intercept,
5385        .get_msr = svm_get_msr,
5386        .set_msr = svm_set_msr,
5387        .get_segment_base = svm_get_segment_base,
5388        .get_segment = svm_get_segment,
5389        .set_segment = svm_set_segment,
5390        .get_cpl = svm_get_cpl,
5391        .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5392        .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5393        .decache_cr3 = svm_decache_cr3,
5394        .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5395        .set_cr0 = svm_set_cr0,
5396        .set_cr3 = svm_set_cr3,
5397        .set_cr4 = svm_set_cr4,
5398        .set_efer = svm_set_efer,
5399        .get_idt = svm_get_idt,
5400        .set_idt = svm_set_idt,
5401        .get_gdt = svm_get_gdt,
5402        .set_gdt = svm_set_gdt,
5403        .get_dr6 = svm_get_dr6,
5404        .set_dr6 = svm_set_dr6,
5405        .set_dr7 = svm_set_dr7,
5406        .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5407        .cache_reg = svm_cache_reg,
5408        .get_rflags = svm_get_rflags,
5409        .set_rflags = svm_set_rflags,
5410
5411        .tlb_flush = svm_flush_tlb,
5412
5413        .run = svm_vcpu_run,
5414        .handle_exit = handle_exit,
5415        .skip_emulated_instruction = skip_emulated_instruction,
5416        .set_interrupt_shadow = svm_set_interrupt_shadow,
5417        .get_interrupt_shadow = svm_get_interrupt_shadow,
5418        .patch_hypercall = svm_patch_hypercall,
5419        .set_irq = svm_set_irq,
5420        .set_nmi = svm_inject_nmi,
5421        .queue_exception = svm_queue_exception,
5422        .cancel_injection = svm_cancel_injection,
5423        .interrupt_allowed = svm_interrupt_allowed,
5424        .nmi_allowed = svm_nmi_allowed,
5425        .get_nmi_mask = svm_get_nmi_mask,
5426        .set_nmi_mask = svm_set_nmi_mask,
5427        .enable_nmi_window = enable_nmi_window,
5428        .enable_irq_window = enable_irq_window,
5429        .update_cr8_intercept = update_cr8_intercept,
5430        .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5431        .get_enable_apicv = svm_get_enable_apicv,
5432        .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5433        .load_eoi_exitmap = svm_load_eoi_exitmap,
5434        .hwapic_irr_update = svm_hwapic_irr_update,
5435        .hwapic_isr_update = svm_hwapic_isr_update,
5436        .apicv_post_state_restore = avic_post_state_restore,
5437
5438        .set_tss_addr = svm_set_tss_addr,
5439        .get_tdp_level = get_npt_level,
5440        .get_mt_mask = svm_get_mt_mask,
5441
5442        .get_exit_info = svm_get_exit_info,
5443
5444        .get_lpage_level = svm_get_lpage_level,
5445
5446        .cpuid_update = svm_cpuid_update,
5447
5448        .rdtscp_supported = svm_rdtscp_supported,
5449        .invpcid_supported = svm_invpcid_supported,
5450        .mpx_supported = svm_mpx_supported,
5451        .xsaves_supported = svm_xsaves_supported,
5452
5453        .set_supported_cpuid = svm_set_supported_cpuid,
5454
5455        .has_wbinvd_exit = svm_has_wbinvd_exit,
5456
5457        .write_tsc_offset = svm_write_tsc_offset,
5458
5459        .set_tdp_cr3 = set_tdp_cr3,
5460
5461        .check_intercept = svm_check_intercept,
5462        .handle_external_intr = svm_handle_external_intr,
5463
5464        .sched_in = svm_sched_in,
5465
5466        .pmu_ops = &amd_pmu_ops,
5467        .deliver_posted_interrupt = svm_deliver_avic_intr,
5468        .update_pi_irte = svm_update_pi_irte,
5469        .setup_mce = svm_setup_mce,
5470};
5471
5472static int __init svm_init(void)
5473{
5474        return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5475                        __alignof__(struct vcpu_svm), THIS_MODULE);
5476}
5477
5478static void __exit svm_exit(void)
5479{
5480        kvm_exit();
5481}
5482
5483module_init(svm_init)
5484module_exit(svm_exit)
5485