linux/arch/x86/mm/kaslr.c
<<
>>
Prefs
   1/*
   2 * This file implements KASLR memory randomization for x86_64. It randomizes
   3 * the virtual address space of kernel memory regions (physical memory
   4 * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
   5 * exploits relying on predictable kernel addresses.
   6 *
   7 * Entropy is generated using the KASLR early boot functions now shared in
   8 * the lib directory (originally written by Kees Cook). Randomization is
   9 * done on PGD & P4D/PUD page table levels to increase possible addresses.
  10 * The physical memory mapping code was adapted to support P4D/PUD level
  11 * virtual addresses. This implementation on the best configuration provides
  12 * 30,000 possible virtual addresses in average for each memory region.
  13 * An additional low memory page is used to ensure each CPU can start with
  14 * a PGD aligned virtual address (for realmode).
  15 *
  16 * The order of each memory region is not changed. The feature looks at
  17 * the available space for the regions based on different configuration
  18 * options and randomizes the base and space between each. The size of the
  19 * physical memory mapping is the available physical memory.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/init.h>
  24#include <linux/random.h>
  25
  26#include <asm/pgalloc.h>
  27#include <asm/pgtable.h>
  28#include <asm/setup.h>
  29#include <asm/kaslr.h>
  30
  31#include "mm_internal.h"
  32
  33#define TB_SHIFT 40
  34
  35/*
  36 * Virtual address start and end range for randomization. The end changes base
  37 * on configuration to have the highest amount of space for randomization.
  38 * It increases the possible random position for each randomized region.
  39 *
  40 * You need to add an if/def entry if you introduce a new memory region
  41 * compatible with KASLR. Your entry must be in logical order with memory
  42 * layout. For example, ESPFIX is before EFI because its virtual address is
  43 * before. You also need to add a BUILD_BUG_ON() in kernel_randomize_memory() to
  44 * ensure that this order is correct and won't be changed.
  45 */
  46static const unsigned long vaddr_start = __PAGE_OFFSET_BASE;
  47
  48#if defined(CONFIG_X86_ESPFIX64)
  49static const unsigned long vaddr_end = ESPFIX_BASE_ADDR;
  50#elif defined(CONFIG_EFI)
  51static const unsigned long vaddr_end = EFI_VA_END;
  52#else
  53static const unsigned long vaddr_end = __START_KERNEL_map;
  54#endif
  55
  56/* Default values */
  57unsigned long page_offset_base = __PAGE_OFFSET_BASE;
  58EXPORT_SYMBOL(page_offset_base);
  59unsigned long vmalloc_base = __VMALLOC_BASE;
  60EXPORT_SYMBOL(vmalloc_base);
  61unsigned long vmemmap_base = __VMEMMAP_BASE;
  62EXPORT_SYMBOL(vmemmap_base);
  63
  64/*
  65 * Memory regions randomized by KASLR (except modules that use a separate logic
  66 * earlier during boot). The list is ordered based on virtual addresses. This
  67 * order is kept after randomization.
  68 */
  69static __initdata struct kaslr_memory_region {
  70        unsigned long *base;
  71        unsigned long size_tb;
  72} kaslr_regions[] = {
  73        { &page_offset_base, 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT) /* Maximum */ },
  74        { &vmalloc_base, VMALLOC_SIZE_TB },
  75        { &vmemmap_base, 1 },
  76};
  77
  78/* Get size in bytes used by the memory region */
  79static inline unsigned long get_padding(struct kaslr_memory_region *region)
  80{
  81        return (region->size_tb << TB_SHIFT);
  82}
  83
  84/*
  85 * Apply no randomization if KASLR was disabled at boot or if KASAN
  86 * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
  87 */
  88static inline bool kaslr_memory_enabled(void)
  89{
  90        return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
  91}
  92
  93/* Initialize base and padding for each memory region randomized with KASLR */
  94void __init kernel_randomize_memory(void)
  95{
  96        size_t i;
  97        unsigned long vaddr = vaddr_start;
  98        unsigned long rand, memory_tb;
  99        struct rnd_state rand_state;
 100        unsigned long remain_entropy;
 101
 102        /*
 103         * All these BUILD_BUG_ON checks ensures the memory layout is
 104         * consistent with the vaddr_start/vaddr_end variables.
 105         */
 106        BUILD_BUG_ON(vaddr_start >= vaddr_end);
 107        BUILD_BUG_ON(IS_ENABLED(CONFIG_X86_ESPFIX64) &&
 108                     vaddr_end >= EFI_VA_END);
 109        BUILD_BUG_ON((IS_ENABLED(CONFIG_X86_ESPFIX64) ||
 110                      IS_ENABLED(CONFIG_EFI)) &&
 111                     vaddr_end >= __START_KERNEL_map);
 112        BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
 113
 114        if (!kaslr_memory_enabled())
 115                return;
 116
 117        /*
 118         * Update Physical memory mapping to available and
 119         * add padding if needed (especially for memory hotplug support).
 120         */
 121        BUG_ON(kaslr_regions[0].base != &page_offset_base);
 122        memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
 123                CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
 124
 125        /* Adapt phyiscal memory region size based on available memory */
 126        if (memory_tb < kaslr_regions[0].size_tb)
 127                kaslr_regions[0].size_tb = memory_tb;
 128
 129        /* Calculate entropy available between regions */
 130        remain_entropy = vaddr_end - vaddr_start;
 131        for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
 132                remain_entropy -= get_padding(&kaslr_regions[i]);
 133
 134        prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
 135
 136        for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
 137                unsigned long entropy;
 138
 139                /*
 140                 * Select a random virtual address using the extra entropy
 141                 * available.
 142                 */
 143                entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
 144                prandom_bytes_state(&rand_state, &rand, sizeof(rand));
 145                if (IS_ENABLED(CONFIG_X86_5LEVEL))
 146                        entropy = (rand % (entropy + 1)) & P4D_MASK;
 147                else
 148                        entropy = (rand % (entropy + 1)) & PUD_MASK;
 149                vaddr += entropy;
 150                *kaslr_regions[i].base = vaddr;
 151
 152                /*
 153                 * Jump the region and add a minimum padding based on
 154                 * randomization alignment.
 155                 */
 156                vaddr += get_padding(&kaslr_regions[i]);
 157                if (IS_ENABLED(CONFIG_X86_5LEVEL))
 158                        vaddr = round_up(vaddr + 1, P4D_SIZE);
 159                else
 160                        vaddr = round_up(vaddr + 1, PUD_SIZE);
 161                remain_entropy -= entropy;
 162        }
 163}
 164
 165static void __meminit init_trampoline_pud(void)
 166{
 167        unsigned long paddr, paddr_next;
 168        pgd_t *pgd;
 169        pud_t *pud_page, *pud_page_tramp;
 170        int i;
 171
 172        pud_page_tramp = alloc_low_page();
 173
 174        paddr = 0;
 175        pgd = pgd_offset_k((unsigned long)__va(paddr));
 176        pud_page = (pud_t *) pgd_page_vaddr(*pgd);
 177
 178        for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
 179                pud_t *pud, *pud_tramp;
 180                unsigned long vaddr = (unsigned long)__va(paddr);
 181
 182                pud_tramp = pud_page_tramp + pud_index(paddr);
 183                pud = pud_page + pud_index(vaddr);
 184                paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
 185
 186                *pud_tramp = *pud;
 187        }
 188
 189        set_pgd(&trampoline_pgd_entry,
 190                __pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
 191}
 192
 193static void __meminit init_trampoline_p4d(void)
 194{
 195        unsigned long paddr, paddr_next;
 196        pgd_t *pgd;
 197        p4d_t *p4d_page, *p4d_page_tramp;
 198        int i;
 199
 200        p4d_page_tramp = alloc_low_page();
 201
 202        paddr = 0;
 203        pgd = pgd_offset_k((unsigned long)__va(paddr));
 204        p4d_page = (p4d_t *) pgd_page_vaddr(*pgd);
 205
 206        for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) {
 207                p4d_t *p4d, *p4d_tramp;
 208                unsigned long vaddr = (unsigned long)__va(paddr);
 209
 210                p4d_tramp = p4d_page_tramp + p4d_index(paddr);
 211                p4d = p4d_page + p4d_index(vaddr);
 212                paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
 213
 214                *p4d_tramp = *p4d;
 215        }
 216
 217        set_pgd(&trampoline_pgd_entry,
 218                __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
 219}
 220
 221/*
 222 * Create PGD aligned trampoline table to allow real mode initialization
 223 * of additional CPUs. Consume only 1 low memory page.
 224 */
 225void __meminit init_trampoline(void)
 226{
 227
 228        if (!kaslr_memory_enabled()) {
 229                init_trampoline_default();
 230                return;
 231        }
 232
 233        if (IS_ENABLED(CONFIG_X86_5LEVEL))
 234                init_trampoline_p4d();
 235        else
 236                init_trampoline_pud();
 237}
 238