linux/arch/x86/mm/pat_rbtree.c
<<
>>
Prefs
   1/*
   2 * Handle caching attributes in page tables (PAT)
   3 *
   4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   5 *          Suresh B Siddha <suresh.b.siddha@intel.com>
   6 *
   7 * Interval tree (augmented rbtree) used to store the PAT memory type
   8 * reservations.
   9 */
  10
  11#include <linux/seq_file.h>
  12#include <linux/debugfs.h>
  13#include <linux/kernel.h>
  14#include <linux/rbtree_augmented.h>
  15#include <linux/sched.h>
  16#include <linux/gfp.h>
  17
  18#include <asm/pgtable.h>
  19#include <asm/pat.h>
  20
  21#include "pat_internal.h"
  22
  23/*
  24 * The memtype tree keeps track of memory type for specific
  25 * physical memory areas. Without proper tracking, conflicting memory
  26 * types in different mappings can cause CPU cache corruption.
  27 *
  28 * The tree is an interval tree (augmented rbtree) with tree ordered
  29 * on starting address. Tree can contain multiple entries for
  30 * different regions which overlap. All the aliases have the same
  31 * cache attributes of course.
  32 *
  33 * memtype_lock protects the rbtree.
  34 */
  35
  36static struct rb_root memtype_rbroot = RB_ROOT;
  37
  38static int is_node_overlap(struct memtype *node, u64 start, u64 end)
  39{
  40        if (node->start >= end || node->end <= start)
  41                return 0;
  42
  43        return 1;
  44}
  45
  46static u64 get_subtree_max_end(struct rb_node *node)
  47{
  48        u64 ret = 0;
  49        if (node) {
  50                struct memtype *data = rb_entry(node, struct memtype, rb);
  51                ret = data->subtree_max_end;
  52        }
  53        return ret;
  54}
  55
  56static u64 compute_subtree_max_end(struct memtype *data)
  57{
  58        u64 max_end = data->end, child_max_end;
  59
  60        child_max_end = get_subtree_max_end(data->rb.rb_right);
  61        if (child_max_end > max_end)
  62                max_end = child_max_end;
  63
  64        child_max_end = get_subtree_max_end(data->rb.rb_left);
  65        if (child_max_end > max_end)
  66                max_end = child_max_end;
  67
  68        return max_end;
  69}
  70
  71RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb,
  72                     u64, subtree_max_end, compute_subtree_max_end)
  73
  74/* Find the first (lowest start addr) overlapping range from rb tree */
  75static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
  76                                u64 start, u64 end)
  77{
  78        struct rb_node *node = root->rb_node;
  79        struct memtype *last_lower = NULL;
  80
  81        while (node) {
  82                struct memtype *data = rb_entry(node, struct memtype, rb);
  83
  84                if (get_subtree_max_end(node->rb_left) > start) {
  85                        /* Lowest overlap if any must be on left side */
  86                        node = node->rb_left;
  87                } else if (is_node_overlap(data, start, end)) {
  88                        last_lower = data;
  89                        break;
  90                } else if (start >= data->start) {
  91                        /* Lowest overlap if any must be on right side */
  92                        node = node->rb_right;
  93                } else {
  94                        break;
  95                }
  96        }
  97        return last_lower; /* Returns NULL if there is no overlap */
  98}
  99
 100enum {
 101        MEMTYPE_EXACT_MATCH     = 0,
 102        MEMTYPE_END_MATCH       = 1
 103};
 104
 105static struct memtype *memtype_rb_match(struct rb_root *root,
 106                                u64 start, u64 end, int match_type)
 107{
 108        struct memtype *match;
 109
 110        match = memtype_rb_lowest_match(root, start, end);
 111        while (match != NULL && match->start < end) {
 112                struct rb_node *node;
 113
 114                if ((match_type == MEMTYPE_EXACT_MATCH) &&
 115                    (match->start == start) && (match->end == end))
 116                        return match;
 117
 118                if ((match_type == MEMTYPE_END_MATCH) &&
 119                    (match->start < start) && (match->end == end))
 120                        return match;
 121
 122                node = rb_next(&match->rb);
 123                if (node)
 124                        match = rb_entry(node, struct memtype, rb);
 125                else
 126                        match = NULL;
 127        }
 128
 129        return NULL; /* Returns NULL if there is no match */
 130}
 131
 132static int memtype_rb_check_conflict(struct rb_root *root,
 133                                u64 start, u64 end,
 134                                enum page_cache_mode reqtype,
 135                                enum page_cache_mode *newtype)
 136{
 137        struct rb_node *node;
 138        struct memtype *match;
 139        enum page_cache_mode found_type = reqtype;
 140
 141        match = memtype_rb_lowest_match(&memtype_rbroot, start, end);
 142        if (match == NULL)
 143                goto success;
 144
 145        if (match->type != found_type && newtype == NULL)
 146                goto failure;
 147
 148        dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
 149        found_type = match->type;
 150
 151        node = rb_next(&match->rb);
 152        while (node) {
 153                match = rb_entry(node, struct memtype, rb);
 154
 155                if (match->start >= end) /* Checked all possible matches */
 156                        goto success;
 157
 158                if (is_node_overlap(match, start, end) &&
 159                    match->type != found_type) {
 160                        goto failure;
 161                }
 162
 163                node = rb_next(&match->rb);
 164        }
 165success:
 166        if (newtype)
 167                *newtype = found_type;
 168
 169        return 0;
 170
 171failure:
 172        pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
 173                current->comm, current->pid, start, end,
 174                cattr_name(found_type), cattr_name(match->type));
 175        return -EBUSY;
 176}
 177
 178static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
 179{
 180        struct rb_node **node = &(root->rb_node);
 181        struct rb_node *parent = NULL;
 182
 183        while (*node) {
 184                struct memtype *data = rb_entry(*node, struct memtype, rb);
 185
 186                parent = *node;
 187                if (data->subtree_max_end < newdata->end)
 188                        data->subtree_max_end = newdata->end;
 189                if (newdata->start <= data->start)
 190                        node = &((*node)->rb_left);
 191                else if (newdata->start > data->start)
 192                        node = &((*node)->rb_right);
 193        }
 194
 195        newdata->subtree_max_end = newdata->end;
 196        rb_link_node(&newdata->rb, parent, node);
 197        rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb);
 198}
 199
 200int rbt_memtype_check_insert(struct memtype *new,
 201                             enum page_cache_mode *ret_type)
 202{
 203        int err = 0;
 204
 205        err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end,
 206                                                new->type, ret_type);
 207
 208        if (!err) {
 209                if (ret_type)
 210                        new->type = *ret_type;
 211
 212                new->subtree_max_end = new->end;
 213                memtype_rb_insert(&memtype_rbroot, new);
 214        }
 215        return err;
 216}
 217
 218struct memtype *rbt_memtype_erase(u64 start, u64 end)
 219{
 220        struct memtype *data;
 221
 222        /*
 223         * Since the memtype_rbroot tree allows overlapping ranges,
 224         * rbt_memtype_erase() checks with EXACT_MATCH first, i.e. free
 225         * a whole node for the munmap case.  If no such entry is found,
 226         * it then checks with END_MATCH, i.e. shrink the size of a node
 227         * from the end for the mremap case.
 228         */
 229        data = memtype_rb_match(&memtype_rbroot, start, end,
 230                                MEMTYPE_EXACT_MATCH);
 231        if (!data) {
 232                data = memtype_rb_match(&memtype_rbroot, start, end,
 233                                        MEMTYPE_END_MATCH);
 234                if (!data)
 235                        return ERR_PTR(-EINVAL);
 236        }
 237
 238        if (data->start == start) {
 239                /* munmap: erase this node */
 240                rb_erase_augmented(&data->rb, &memtype_rbroot,
 241                                        &memtype_rb_augment_cb);
 242        } else {
 243                /* mremap: update the end value of this node */
 244                rb_erase_augmented(&data->rb, &memtype_rbroot,
 245                                        &memtype_rb_augment_cb);
 246                data->end = start;
 247                data->subtree_max_end = data->end;
 248                memtype_rb_insert(&memtype_rbroot, data);
 249                return NULL;
 250        }
 251
 252        return data;
 253}
 254
 255struct memtype *rbt_memtype_lookup(u64 addr)
 256{
 257        return memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE);
 258}
 259
 260#if defined(CONFIG_DEBUG_FS)
 261int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
 262{
 263        struct rb_node *node;
 264        int i = 1;
 265
 266        node = rb_first(&memtype_rbroot);
 267        while (node && pos != i) {
 268                node = rb_next(node);
 269                i++;
 270        }
 271
 272        if (node) { /* pos == i */
 273                struct memtype *this = rb_entry(node, struct memtype, rb);
 274                *out = *this;
 275                return 0;
 276        } else {
 277                return 1;
 278        }
 279}
 280#endif
 281