linux/drivers/acpi/processor_idle.c
<<
>>
Prefs
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *                      - Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *                      - Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25 */
  26#define pr_fmt(fmt) "ACPI: " fmt
  27
  28#include <linux/module.h>
  29#include <linux/acpi.h>
  30#include <linux/dmi.h>
  31#include <linux/sched.h>       /* need_resched() */
  32#include <linux/tick.h>
  33#include <linux/cpuidle.h>
  34#include <linux/cpu.h>
  35#include <acpi/processor.h>
  36
  37/*
  38 * Include the apic definitions for x86 to have the APIC timer related defines
  39 * available also for UP (on SMP it gets magically included via linux/smp.h).
  40 * asm/acpi.h is not an option, as it would require more include magic. Also
  41 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  42 */
  43#ifdef CONFIG_X86
  44#include <asm/apic.h>
  45#endif
  46
  47#define ACPI_PROCESSOR_CLASS            "processor"
  48#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  49ACPI_MODULE_NAME("processor_idle");
  50
  51static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  52module_param(max_cstate, uint, 0000);
  53static unsigned int nocst __read_mostly;
  54module_param(nocst, uint, 0000);
  55static int bm_check_disable __read_mostly;
  56module_param(bm_check_disable, uint, 0000);
  57
  58static unsigned int latency_factor __read_mostly = 2;
  59module_param(latency_factor, uint, 0644);
  60
  61static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  62
  63struct cpuidle_driver acpi_idle_driver = {
  64        .name =         "acpi_idle",
  65        .owner =        THIS_MODULE,
  66};
  67
  68#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  69static
  70DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  71
  72static int disabled_by_idle_boot_param(void)
  73{
  74        return boot_option_idle_override == IDLE_POLL ||
  75                boot_option_idle_override == IDLE_HALT;
  76}
  77
  78/*
  79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  80 * For now disable this. Probably a bug somewhere else.
  81 *
  82 * To skip this limit, boot/load with a large max_cstate limit.
  83 */
  84static int set_max_cstate(const struct dmi_system_id *id)
  85{
  86        if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  87                return 0;
  88
  89        pr_notice("%s detected - limiting to C%ld max_cstate."
  90                  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  91                  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  92
  93        max_cstate = (long)id->driver_data;
  94
  95        return 0;
  96}
  97
  98static const struct dmi_system_id processor_power_dmi_table[] = {
  99        { set_max_cstate, "Clevo 5600D", {
 100          DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 101          DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 102         (void *)2},
 103        { set_max_cstate, "Pavilion zv5000", {
 104          DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 105          DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 106         (void *)1},
 107        { set_max_cstate, "Asus L8400B", {
 108          DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 109          DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 110         (void *)1},
 111        {},
 112};
 113
 114
 115/*
 116 * Callers should disable interrupts before the call and enable
 117 * interrupts after return.
 118 */
 119static void __cpuidle acpi_safe_halt(void)
 120{
 121        if (!tif_need_resched()) {
 122                safe_halt();
 123                local_irq_disable();
 124        }
 125}
 126
 127#ifdef ARCH_APICTIMER_STOPS_ON_C3
 128
 129/*
 130 * Some BIOS implementations switch to C3 in the published C2 state.
 131 * This seems to be a common problem on AMD boxen, but other vendors
 132 * are affected too. We pick the most conservative approach: we assume
 133 * that the local APIC stops in both C2 and C3.
 134 */
 135static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 136                                   struct acpi_processor_cx *cx)
 137{
 138        struct acpi_processor_power *pwr = &pr->power;
 139        u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 140
 141        if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 142                return;
 143
 144        if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 145                type = ACPI_STATE_C1;
 146
 147        /*
 148         * Check, if one of the previous states already marked the lapic
 149         * unstable
 150         */
 151        if (pwr->timer_broadcast_on_state < state)
 152                return;
 153
 154        if (cx->type >= type)
 155                pr->power.timer_broadcast_on_state = state;
 156}
 157
 158static void __lapic_timer_propagate_broadcast(void *arg)
 159{
 160        struct acpi_processor *pr = (struct acpi_processor *) arg;
 161
 162        if (pr->power.timer_broadcast_on_state < INT_MAX)
 163                tick_broadcast_enable();
 164        else
 165                tick_broadcast_disable();
 166}
 167
 168static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 169{
 170        smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 171                                 (void *)pr, 1);
 172}
 173
 174/* Power(C) State timer broadcast control */
 175static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 176                                       struct acpi_processor_cx *cx,
 177                                       int broadcast)
 178{
 179        int state = cx - pr->power.states;
 180
 181        if (state >= pr->power.timer_broadcast_on_state) {
 182                if (broadcast)
 183                        tick_broadcast_enter();
 184                else
 185                        tick_broadcast_exit();
 186        }
 187}
 188
 189#else
 190
 191static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 192                                   struct acpi_processor_cx *cstate) { }
 193static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 194static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 195                                       struct acpi_processor_cx *cx,
 196                                       int broadcast)
 197{
 198}
 199
 200#endif
 201
 202#if defined(CONFIG_X86)
 203static void tsc_check_state(int state)
 204{
 205        switch (boot_cpu_data.x86_vendor) {
 206        case X86_VENDOR_AMD:
 207        case X86_VENDOR_INTEL:
 208                /*
 209                 * AMD Fam10h TSC will tick in all
 210                 * C/P/S0/S1 states when this bit is set.
 211                 */
 212                if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 213                        return;
 214
 215                /*FALL THROUGH*/
 216        default:
 217                /* TSC could halt in idle, so notify users */
 218                if (state > ACPI_STATE_C1)
 219                        mark_tsc_unstable("TSC halts in idle");
 220        }
 221}
 222#else
 223static void tsc_check_state(int state) { return; }
 224#endif
 225
 226static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 227{
 228
 229        if (!pr->pblk)
 230                return -ENODEV;
 231
 232        /* if info is obtained from pblk/fadt, type equals state */
 233        pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 234        pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 235
 236#ifndef CONFIG_HOTPLUG_CPU
 237        /*
 238         * Check for P_LVL2_UP flag before entering C2 and above on
 239         * an SMP system.
 240         */
 241        if ((num_online_cpus() > 1) &&
 242            !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 243                return -ENODEV;
 244#endif
 245
 246        /* determine C2 and C3 address from pblk */
 247        pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 248        pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 249
 250        /* determine latencies from FADT */
 251        pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 252        pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 253
 254        /*
 255         * FADT specified C2 latency must be less than or equal to
 256         * 100 microseconds.
 257         */
 258        if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 259                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 260                        "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 261                /* invalidate C2 */
 262                pr->power.states[ACPI_STATE_C2].address = 0;
 263        }
 264
 265        /*
 266         * FADT supplied C3 latency must be less than or equal to
 267         * 1000 microseconds.
 268         */
 269        if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 270                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 271                        "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 272                /* invalidate C3 */
 273                pr->power.states[ACPI_STATE_C3].address = 0;
 274        }
 275
 276        ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 277                          "lvl2[0x%08x] lvl3[0x%08x]\n",
 278                          pr->power.states[ACPI_STATE_C2].address,
 279                          pr->power.states[ACPI_STATE_C3].address));
 280
 281        return 0;
 282}
 283
 284static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 285{
 286        if (!pr->power.states[ACPI_STATE_C1].valid) {
 287                /* set the first C-State to C1 */
 288                /* all processors need to support C1 */
 289                pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 290                pr->power.states[ACPI_STATE_C1].valid = 1;
 291                pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 292        }
 293        /* the C0 state only exists as a filler in our array */
 294        pr->power.states[ACPI_STATE_C0].valid = 1;
 295        return 0;
 296}
 297
 298static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 299{
 300        acpi_status status;
 301        u64 count;
 302        int current_count;
 303        int i, ret = 0;
 304        struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 305        union acpi_object *cst;
 306
 307        if (nocst)
 308                return -ENODEV;
 309
 310        current_count = 0;
 311
 312        status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 313        if (ACPI_FAILURE(status)) {
 314                ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 315                return -ENODEV;
 316        }
 317
 318        cst = buffer.pointer;
 319
 320        /* There must be at least 2 elements */
 321        if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 322                pr_err("not enough elements in _CST\n");
 323                ret = -EFAULT;
 324                goto end;
 325        }
 326
 327        count = cst->package.elements[0].integer.value;
 328
 329        /* Validate number of power states. */
 330        if (count < 1 || count != cst->package.count - 1) {
 331                pr_err("count given by _CST is not valid\n");
 332                ret = -EFAULT;
 333                goto end;
 334        }
 335
 336        /* Tell driver that at least _CST is supported. */
 337        pr->flags.has_cst = 1;
 338
 339        for (i = 1; i <= count; i++) {
 340                union acpi_object *element;
 341                union acpi_object *obj;
 342                struct acpi_power_register *reg;
 343                struct acpi_processor_cx cx;
 344
 345                memset(&cx, 0, sizeof(cx));
 346
 347                element = &(cst->package.elements[i]);
 348                if (element->type != ACPI_TYPE_PACKAGE)
 349                        continue;
 350
 351                if (element->package.count != 4)
 352                        continue;
 353
 354                obj = &(element->package.elements[0]);
 355
 356                if (obj->type != ACPI_TYPE_BUFFER)
 357                        continue;
 358
 359                reg = (struct acpi_power_register *)obj->buffer.pointer;
 360
 361                if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 362                    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 363                        continue;
 364
 365                /* There should be an easy way to extract an integer... */
 366                obj = &(element->package.elements[1]);
 367                if (obj->type != ACPI_TYPE_INTEGER)
 368                        continue;
 369
 370                cx.type = obj->integer.value;
 371                /*
 372                 * Some buggy BIOSes won't list C1 in _CST -
 373                 * Let acpi_processor_get_power_info_default() handle them later
 374                 */
 375                if (i == 1 && cx.type != ACPI_STATE_C1)
 376                        current_count++;
 377
 378                cx.address = reg->address;
 379                cx.index = current_count + 1;
 380
 381                cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 382                if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 383                        if (acpi_processor_ffh_cstate_probe
 384                                        (pr->id, &cx, reg) == 0) {
 385                                cx.entry_method = ACPI_CSTATE_FFH;
 386                        } else if (cx.type == ACPI_STATE_C1) {
 387                                /*
 388                                 * C1 is a special case where FIXED_HARDWARE
 389                                 * can be handled in non-MWAIT way as well.
 390                                 * In that case, save this _CST entry info.
 391                                 * Otherwise, ignore this info and continue.
 392                                 */
 393                                cx.entry_method = ACPI_CSTATE_HALT;
 394                                snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 395                        } else {
 396                                continue;
 397                        }
 398                        if (cx.type == ACPI_STATE_C1 &&
 399                            (boot_option_idle_override == IDLE_NOMWAIT)) {
 400                                /*
 401                                 * In most cases the C1 space_id obtained from
 402                                 * _CST object is FIXED_HARDWARE access mode.
 403                                 * But when the option of idle=halt is added,
 404                                 * the entry_method type should be changed from
 405                                 * CSTATE_FFH to CSTATE_HALT.
 406                                 * When the option of idle=nomwait is added,
 407                                 * the C1 entry_method type should be
 408                                 * CSTATE_HALT.
 409                                 */
 410                                cx.entry_method = ACPI_CSTATE_HALT;
 411                                snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 412                        }
 413                } else {
 414                        snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 415                                 cx.address);
 416                }
 417
 418                if (cx.type == ACPI_STATE_C1) {
 419                        cx.valid = 1;
 420                }
 421
 422                obj = &(element->package.elements[2]);
 423                if (obj->type != ACPI_TYPE_INTEGER)
 424                        continue;
 425
 426                cx.latency = obj->integer.value;
 427
 428                obj = &(element->package.elements[3]);
 429                if (obj->type != ACPI_TYPE_INTEGER)
 430                        continue;
 431
 432                current_count++;
 433                memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 434
 435                /*
 436                 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 437                 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 438                 */
 439                if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 440                        pr_warn("Limiting number of power states to max (%d)\n",
 441                                ACPI_PROCESSOR_MAX_POWER);
 442                        pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 443                        break;
 444                }
 445        }
 446
 447        ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 448                          current_count));
 449
 450        /* Validate number of power states discovered */
 451        if (current_count < 2)
 452                ret = -EFAULT;
 453
 454      end:
 455        kfree(buffer.pointer);
 456
 457        return ret;
 458}
 459
 460static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 461                                           struct acpi_processor_cx *cx)
 462{
 463        static int bm_check_flag = -1;
 464        static int bm_control_flag = -1;
 465
 466
 467        if (!cx->address)
 468                return;
 469
 470        /*
 471         * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 472         * DMA transfers are used by any ISA device to avoid livelock.
 473         * Note that we could disable Type-F DMA (as recommended by
 474         * the erratum), but this is known to disrupt certain ISA
 475         * devices thus we take the conservative approach.
 476         */
 477        else if (errata.piix4.fdma) {
 478                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 479                                  "C3 not supported on PIIX4 with Type-F DMA\n"));
 480                return;
 481        }
 482
 483        /* All the logic here assumes flags.bm_check is same across all CPUs */
 484        if (bm_check_flag == -1) {
 485                /* Determine whether bm_check is needed based on CPU  */
 486                acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 487                bm_check_flag = pr->flags.bm_check;
 488                bm_control_flag = pr->flags.bm_control;
 489        } else {
 490                pr->flags.bm_check = bm_check_flag;
 491                pr->flags.bm_control = bm_control_flag;
 492        }
 493
 494        if (pr->flags.bm_check) {
 495                if (!pr->flags.bm_control) {
 496                        if (pr->flags.has_cst != 1) {
 497                                /* bus mastering control is necessary */
 498                                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 499                                        "C3 support requires BM control\n"));
 500                                return;
 501                        } else {
 502                                /* Here we enter C3 without bus mastering */
 503                                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 504                                        "C3 support without BM control\n"));
 505                        }
 506                }
 507        } else {
 508                /*
 509                 * WBINVD should be set in fadt, for C3 state to be
 510                 * supported on when bm_check is not required.
 511                 */
 512                if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 513                        ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 514                                          "Cache invalidation should work properly"
 515                                          " for C3 to be enabled on SMP systems\n"));
 516                        return;
 517                }
 518        }
 519
 520        /*
 521         * Otherwise we've met all of our C3 requirements.
 522         * Normalize the C3 latency to expidite policy.  Enable
 523         * checking of bus mastering status (bm_check) so we can
 524         * use this in our C3 policy
 525         */
 526        cx->valid = 1;
 527
 528        /*
 529         * On older chipsets, BM_RLD needs to be set
 530         * in order for Bus Master activity to wake the
 531         * system from C3.  Newer chipsets handle DMA
 532         * during C3 automatically and BM_RLD is a NOP.
 533         * In either case, the proper way to
 534         * handle BM_RLD is to set it and leave it set.
 535         */
 536        acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 537
 538        return;
 539}
 540
 541static int acpi_processor_power_verify(struct acpi_processor *pr)
 542{
 543        unsigned int i;
 544        unsigned int working = 0;
 545
 546        pr->power.timer_broadcast_on_state = INT_MAX;
 547
 548        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 549                struct acpi_processor_cx *cx = &pr->power.states[i];
 550
 551                switch (cx->type) {
 552                case ACPI_STATE_C1:
 553                        cx->valid = 1;
 554                        break;
 555
 556                case ACPI_STATE_C2:
 557                        if (!cx->address)
 558                                break;
 559                        cx->valid = 1;
 560                        break;
 561
 562                case ACPI_STATE_C3:
 563                        acpi_processor_power_verify_c3(pr, cx);
 564                        break;
 565                }
 566                if (!cx->valid)
 567                        continue;
 568
 569                lapic_timer_check_state(i, pr, cx);
 570                tsc_check_state(cx->type);
 571                working++;
 572        }
 573
 574        lapic_timer_propagate_broadcast(pr);
 575
 576        return (working);
 577}
 578
 579static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 580{
 581        unsigned int i;
 582        int result;
 583
 584
 585        /* NOTE: the idle thread may not be running while calling
 586         * this function */
 587
 588        /* Zero initialize all the C-states info. */
 589        memset(pr->power.states, 0, sizeof(pr->power.states));
 590
 591        result = acpi_processor_get_power_info_cst(pr);
 592        if (result == -ENODEV)
 593                result = acpi_processor_get_power_info_fadt(pr);
 594
 595        if (result)
 596                return result;
 597
 598        acpi_processor_get_power_info_default(pr);
 599
 600        pr->power.count = acpi_processor_power_verify(pr);
 601
 602        /*
 603         * if one state of type C2 or C3 is available, mark this
 604         * CPU as being "idle manageable"
 605         */
 606        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 607                if (pr->power.states[i].valid) {
 608                        pr->power.count = i;
 609                        if (pr->power.states[i].type >= ACPI_STATE_C2)
 610                                pr->flags.power = 1;
 611                }
 612        }
 613
 614        return 0;
 615}
 616
 617/**
 618 * acpi_idle_bm_check - checks if bus master activity was detected
 619 */
 620static int acpi_idle_bm_check(void)
 621{
 622        u32 bm_status = 0;
 623
 624        if (bm_check_disable)
 625                return 0;
 626
 627        acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 628        if (bm_status)
 629                acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 630        /*
 631         * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 632         * the true state of bus mastering activity; forcing us to
 633         * manually check the BMIDEA bit of each IDE channel.
 634         */
 635        else if (errata.piix4.bmisx) {
 636                if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 637                    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 638                        bm_status = 1;
 639        }
 640        return bm_status;
 641}
 642
 643/**
 644 * acpi_idle_do_entry - enter idle state using the appropriate method
 645 * @cx: cstate data
 646 *
 647 * Caller disables interrupt before call and enables interrupt after return.
 648 */
 649static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 650{
 651        if (cx->entry_method == ACPI_CSTATE_FFH) {
 652                /* Call into architectural FFH based C-state */
 653                acpi_processor_ffh_cstate_enter(cx);
 654        } else if (cx->entry_method == ACPI_CSTATE_HALT) {
 655                acpi_safe_halt();
 656        } else {
 657                /* IO port based C-state */
 658                inb(cx->address);
 659                /* Dummy wait op - must do something useless after P_LVL2 read
 660                   because chipsets cannot guarantee that STPCLK# signal
 661                   gets asserted in time to freeze execution properly. */
 662                inl(acpi_gbl_FADT.xpm_timer_block.address);
 663        }
 664}
 665
 666/**
 667 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 668 * @dev: the target CPU
 669 * @index: the index of suggested state
 670 */
 671static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 672{
 673        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 674
 675        ACPI_FLUSH_CPU_CACHE();
 676
 677        while (1) {
 678
 679                if (cx->entry_method == ACPI_CSTATE_HALT)
 680                        safe_halt();
 681                else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 682                        inb(cx->address);
 683                        /* See comment in acpi_idle_do_entry() */
 684                        inl(acpi_gbl_FADT.xpm_timer_block.address);
 685                } else
 686                        return -ENODEV;
 687        }
 688
 689        /* Never reached */
 690        return 0;
 691}
 692
 693static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 694{
 695        return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 696                !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 697}
 698
 699static int c3_cpu_count;
 700static DEFINE_RAW_SPINLOCK(c3_lock);
 701
 702/**
 703 * acpi_idle_enter_bm - enters C3 with proper BM handling
 704 * @pr: Target processor
 705 * @cx: Target state context
 706 * @timer_bc: Whether or not to change timer mode to broadcast
 707 */
 708static void acpi_idle_enter_bm(struct acpi_processor *pr,
 709                               struct acpi_processor_cx *cx, bool timer_bc)
 710{
 711        acpi_unlazy_tlb(smp_processor_id());
 712
 713        /*
 714         * Must be done before busmaster disable as we might need to
 715         * access HPET !
 716         */
 717        if (timer_bc)
 718                lapic_timer_state_broadcast(pr, cx, 1);
 719
 720        /*
 721         * disable bus master
 722         * bm_check implies we need ARB_DIS
 723         * bm_control implies whether we can do ARB_DIS
 724         *
 725         * That leaves a case where bm_check is set and bm_control is
 726         * not set. In that case we cannot do much, we enter C3
 727         * without doing anything.
 728         */
 729        if (pr->flags.bm_control) {
 730                raw_spin_lock(&c3_lock);
 731                c3_cpu_count++;
 732                /* Disable bus master arbitration when all CPUs are in C3 */
 733                if (c3_cpu_count == num_online_cpus())
 734                        acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 735                raw_spin_unlock(&c3_lock);
 736        }
 737
 738        acpi_idle_do_entry(cx);
 739
 740        /* Re-enable bus master arbitration */
 741        if (pr->flags.bm_control) {
 742                raw_spin_lock(&c3_lock);
 743                acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 744                c3_cpu_count--;
 745                raw_spin_unlock(&c3_lock);
 746        }
 747
 748        if (timer_bc)
 749                lapic_timer_state_broadcast(pr, cx, 0);
 750}
 751
 752static int acpi_idle_enter(struct cpuidle_device *dev,
 753                           struct cpuidle_driver *drv, int index)
 754{
 755        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 756        struct acpi_processor *pr;
 757
 758        pr = __this_cpu_read(processors);
 759        if (unlikely(!pr))
 760                return -EINVAL;
 761
 762        if (cx->type != ACPI_STATE_C1) {
 763                if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 764                        index = CPUIDLE_DRIVER_STATE_START;
 765                        cx = per_cpu(acpi_cstate[index], dev->cpu);
 766                } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 767                        if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 768                                acpi_idle_enter_bm(pr, cx, true);
 769                                return index;
 770                        } else if (drv->safe_state_index >= 0) {
 771                                index = drv->safe_state_index;
 772                                cx = per_cpu(acpi_cstate[index], dev->cpu);
 773                        } else {
 774                                acpi_safe_halt();
 775                                return -EBUSY;
 776                        }
 777                }
 778        }
 779
 780        lapic_timer_state_broadcast(pr, cx, 1);
 781
 782        if (cx->type == ACPI_STATE_C3)
 783                ACPI_FLUSH_CPU_CACHE();
 784
 785        acpi_idle_do_entry(cx);
 786
 787        lapic_timer_state_broadcast(pr, cx, 0);
 788
 789        return index;
 790}
 791
 792static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
 793                                   struct cpuidle_driver *drv, int index)
 794{
 795        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 796
 797        if (cx->type == ACPI_STATE_C3) {
 798                struct acpi_processor *pr = __this_cpu_read(processors);
 799
 800                if (unlikely(!pr))
 801                        return;
 802
 803                if (pr->flags.bm_check) {
 804                        acpi_idle_enter_bm(pr, cx, false);
 805                        return;
 806                } else {
 807                        ACPI_FLUSH_CPU_CACHE();
 808                }
 809        }
 810        acpi_idle_do_entry(cx);
 811}
 812
 813static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 814                                           struct cpuidle_device *dev)
 815{
 816        int i, count = CPUIDLE_DRIVER_STATE_START;
 817        struct acpi_processor_cx *cx;
 818
 819        if (max_cstate == 0)
 820                max_cstate = 1;
 821
 822        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 823                cx = &pr->power.states[i];
 824
 825                if (!cx->valid)
 826                        continue;
 827
 828                per_cpu(acpi_cstate[count], dev->cpu) = cx;
 829
 830                count++;
 831                if (count == CPUIDLE_STATE_MAX)
 832                        break;
 833        }
 834
 835        if (!count)
 836                return -EINVAL;
 837
 838        return 0;
 839}
 840
 841static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 842{
 843        int i, count = CPUIDLE_DRIVER_STATE_START;
 844        struct acpi_processor_cx *cx;
 845        struct cpuidle_state *state;
 846        struct cpuidle_driver *drv = &acpi_idle_driver;
 847
 848        if (max_cstate == 0)
 849                max_cstate = 1;
 850
 851        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 852                cx = &pr->power.states[i];
 853
 854                if (!cx->valid)
 855                        continue;
 856
 857                state = &drv->states[count];
 858                snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 859                strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 860                state->exit_latency = cx->latency;
 861                state->target_residency = cx->latency * latency_factor;
 862                state->enter = acpi_idle_enter;
 863
 864                state->flags = 0;
 865                if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 866                        state->enter_dead = acpi_idle_play_dead;
 867                        drv->safe_state_index = count;
 868                }
 869                /*
 870                 * Halt-induced C1 is not good for ->enter_freeze, because it
 871                 * re-enables interrupts on exit.  Moreover, C1 is generally not
 872                 * particularly interesting from the suspend-to-idle angle, so
 873                 * avoid C1 and the situations in which we may need to fall back
 874                 * to it altogether.
 875                 */
 876                if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 877                        state->enter_freeze = acpi_idle_enter_freeze;
 878
 879                count++;
 880                if (count == CPUIDLE_STATE_MAX)
 881                        break;
 882        }
 883
 884        drv->state_count = count;
 885
 886        if (!count)
 887                return -EINVAL;
 888
 889        return 0;
 890}
 891
 892static inline void acpi_processor_cstate_first_run_checks(void)
 893{
 894        acpi_status status;
 895        static int first_run;
 896
 897        if (first_run)
 898                return;
 899        dmi_check_system(processor_power_dmi_table);
 900        max_cstate = acpi_processor_cstate_check(max_cstate);
 901        if (max_cstate < ACPI_C_STATES_MAX)
 902                pr_notice("ACPI: processor limited to max C-state %d\n",
 903                          max_cstate);
 904        first_run++;
 905
 906        if (acpi_gbl_FADT.cst_control && !nocst) {
 907                status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
 908                                            acpi_gbl_FADT.cst_control, 8);
 909                if (ACPI_FAILURE(status))
 910                        ACPI_EXCEPTION((AE_INFO, status,
 911                                        "Notifying BIOS of _CST ability failed"));
 912        }
 913}
 914#else
 915
 916static inline int disabled_by_idle_boot_param(void) { return 0; }
 917static inline void acpi_processor_cstate_first_run_checks(void) { }
 918static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 919{
 920        return -ENODEV;
 921}
 922
 923static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 924                                           struct cpuidle_device *dev)
 925{
 926        return -EINVAL;
 927}
 928
 929static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 930{
 931        return -EINVAL;
 932}
 933
 934#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 935
 936struct acpi_lpi_states_array {
 937        unsigned int size;
 938        unsigned int composite_states_size;
 939        struct acpi_lpi_state *entries;
 940        struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 941};
 942
 943static int obj_get_integer(union acpi_object *obj, u32 *value)
 944{
 945        if (obj->type != ACPI_TYPE_INTEGER)
 946                return -EINVAL;
 947
 948        *value = obj->integer.value;
 949        return 0;
 950}
 951
 952static int acpi_processor_evaluate_lpi(acpi_handle handle,
 953                                       struct acpi_lpi_states_array *info)
 954{
 955        acpi_status status;
 956        int ret = 0;
 957        int pkg_count, state_idx = 1, loop;
 958        struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 959        union acpi_object *lpi_data;
 960        struct acpi_lpi_state *lpi_state;
 961
 962        status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 963        if (ACPI_FAILURE(status)) {
 964                ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 965                return -ENODEV;
 966        }
 967
 968        lpi_data = buffer.pointer;
 969
 970        /* There must be at least 4 elements = 3 elements + 1 package */
 971        if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 972            lpi_data->package.count < 4) {
 973                pr_debug("not enough elements in _LPI\n");
 974                ret = -ENODATA;
 975                goto end;
 976        }
 977
 978        pkg_count = lpi_data->package.elements[2].integer.value;
 979
 980        /* Validate number of power states. */
 981        if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 982                pr_debug("count given by _LPI is not valid\n");
 983                ret = -ENODATA;
 984                goto end;
 985        }
 986
 987        lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 988        if (!lpi_state) {
 989                ret = -ENOMEM;
 990                goto end;
 991        }
 992
 993        info->size = pkg_count;
 994        info->entries = lpi_state;
 995
 996        /* LPI States start at index 3 */
 997        for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 998                union acpi_object *element, *pkg_elem, *obj;
 999
1000                element = &lpi_data->package.elements[loop];
1001                if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1002                        continue;
1003
1004                pkg_elem = element->package.elements;
1005
1006                obj = pkg_elem + 6;
1007                if (obj->type == ACPI_TYPE_BUFFER) {
1008                        struct acpi_power_register *reg;
1009
1010                        reg = (struct acpi_power_register *)obj->buffer.pointer;
1011                        if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1012                            reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1013                                continue;
1014
1015                        lpi_state->address = reg->address;
1016                        lpi_state->entry_method =
1017                                reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1018                                ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1019                } else if (obj->type == ACPI_TYPE_INTEGER) {
1020                        lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1021                        lpi_state->address = obj->integer.value;
1022                } else {
1023                        continue;
1024                }
1025
1026                /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1027
1028                obj = pkg_elem + 9;
1029                if (obj->type == ACPI_TYPE_STRING)
1030                        strlcpy(lpi_state->desc, obj->string.pointer,
1031                                ACPI_CX_DESC_LEN);
1032
1033                lpi_state->index = state_idx;
1034                if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1035                        pr_debug("No min. residency found, assuming 10 us\n");
1036                        lpi_state->min_residency = 10;
1037                }
1038
1039                if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1040                        pr_debug("No wakeup residency found, assuming 10 us\n");
1041                        lpi_state->wake_latency = 10;
1042                }
1043
1044                if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1045                        lpi_state->flags = 0;
1046
1047                if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1048                        lpi_state->arch_flags = 0;
1049
1050                if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1051                        lpi_state->res_cnt_freq = 1;
1052
1053                if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1054                        lpi_state->enable_parent_state = 0;
1055        }
1056
1057        acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1058end:
1059        kfree(buffer.pointer);
1060        return ret;
1061}
1062
1063/*
1064 * flat_state_cnt - the number of composite LPI states after the process of flattening
1065 */
1066static int flat_state_cnt;
1067
1068/**
1069 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1070 *
1071 * @local: local LPI state
1072 * @parent: parent LPI state
1073 * @result: composite LPI state
1074 */
1075static bool combine_lpi_states(struct acpi_lpi_state *local,
1076                               struct acpi_lpi_state *parent,
1077                               struct acpi_lpi_state *result)
1078{
1079        if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1080                if (!parent->address) /* 0 means autopromotable */
1081                        return false;
1082                result->address = local->address + parent->address;
1083        } else {
1084                result->address = parent->address;
1085        }
1086
1087        result->min_residency = max(local->min_residency, parent->min_residency);
1088        result->wake_latency = local->wake_latency + parent->wake_latency;
1089        result->enable_parent_state = parent->enable_parent_state;
1090        result->entry_method = local->entry_method;
1091
1092        result->flags = parent->flags;
1093        result->arch_flags = parent->arch_flags;
1094        result->index = parent->index;
1095
1096        strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1097        strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1098        strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1099        return true;
1100}
1101
1102#define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1103
1104static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1105                                  struct acpi_lpi_state *t)
1106{
1107        curr_level->composite_states[curr_level->composite_states_size++] = t;
1108}
1109
1110static int flatten_lpi_states(struct acpi_processor *pr,
1111                              struct acpi_lpi_states_array *curr_level,
1112                              struct acpi_lpi_states_array *prev_level)
1113{
1114        int i, j, state_count = curr_level->size;
1115        struct acpi_lpi_state *p, *t = curr_level->entries;
1116
1117        curr_level->composite_states_size = 0;
1118        for (j = 0; j < state_count; j++, t++) {
1119                struct acpi_lpi_state *flpi;
1120
1121                if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1122                        continue;
1123
1124                if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1125                        pr_warn("Limiting number of LPI states to max (%d)\n",
1126                                ACPI_PROCESSOR_MAX_POWER);
1127                        pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1128                        break;
1129                }
1130
1131                flpi = &pr->power.lpi_states[flat_state_cnt];
1132
1133                if (!prev_level) { /* leaf/processor node */
1134                        memcpy(flpi, t, sizeof(*t));
1135                        stash_composite_state(curr_level, flpi);
1136                        flat_state_cnt++;
1137                        continue;
1138                }
1139
1140                for (i = 0; i < prev_level->composite_states_size; i++) {
1141                        p = prev_level->composite_states[i];
1142                        if (t->index <= p->enable_parent_state &&
1143                            combine_lpi_states(p, t, flpi)) {
1144                                stash_composite_state(curr_level, flpi);
1145                                flat_state_cnt++;
1146                                flpi++;
1147                        }
1148                }
1149        }
1150
1151        kfree(curr_level->entries);
1152        return 0;
1153}
1154
1155static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1156{
1157        int ret, i;
1158        acpi_status status;
1159        acpi_handle handle = pr->handle, pr_ahandle;
1160        struct acpi_device *d = NULL;
1161        struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1162
1163        if (!osc_pc_lpi_support_confirmed)
1164                return -EOPNOTSUPP;
1165
1166        if (!acpi_has_method(handle, "_LPI"))
1167                return -EINVAL;
1168
1169        flat_state_cnt = 0;
1170        prev = &info[0];
1171        curr = &info[1];
1172        handle = pr->handle;
1173        ret = acpi_processor_evaluate_lpi(handle, prev);
1174        if (ret)
1175                return ret;
1176        flatten_lpi_states(pr, prev, NULL);
1177
1178        status = acpi_get_parent(handle, &pr_ahandle);
1179        while (ACPI_SUCCESS(status)) {
1180                acpi_bus_get_device(pr_ahandle, &d);
1181                handle = pr_ahandle;
1182
1183                if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1184                        break;
1185
1186                /* can be optional ? */
1187                if (!acpi_has_method(handle, "_LPI"))
1188                        break;
1189
1190                ret = acpi_processor_evaluate_lpi(handle, curr);
1191                if (ret)
1192                        break;
1193
1194                /* flatten all the LPI states in this level of hierarchy */
1195                flatten_lpi_states(pr, curr, prev);
1196
1197                tmp = prev, prev = curr, curr = tmp;
1198
1199                status = acpi_get_parent(handle, &pr_ahandle);
1200        }
1201
1202        pr->power.count = flat_state_cnt;
1203        /* reset the index after flattening */
1204        for (i = 0; i < pr->power.count; i++)
1205                pr->power.lpi_states[i].index = i;
1206
1207        /* Tell driver that _LPI is supported. */
1208        pr->flags.has_lpi = 1;
1209        pr->flags.power = 1;
1210
1211        return 0;
1212}
1213
1214int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1215{
1216        return -ENODEV;
1217}
1218
1219int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1220{
1221        return -ENODEV;
1222}
1223
1224/**
1225 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1226 * @dev: the target CPU
1227 * @drv: cpuidle driver containing cpuidle state info
1228 * @index: index of target state
1229 *
1230 * Return: 0 for success or negative value for error
1231 */
1232static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1233                               struct cpuidle_driver *drv, int index)
1234{
1235        struct acpi_processor *pr;
1236        struct acpi_lpi_state *lpi;
1237
1238        pr = __this_cpu_read(processors);
1239
1240        if (unlikely(!pr))
1241                return -EINVAL;
1242
1243        lpi = &pr->power.lpi_states[index];
1244        if (lpi->entry_method == ACPI_CSTATE_FFH)
1245                return acpi_processor_ffh_lpi_enter(lpi);
1246
1247        return -EINVAL;
1248}
1249
1250static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1251{
1252        int i;
1253        struct acpi_lpi_state *lpi;
1254        struct cpuidle_state *state;
1255        struct cpuidle_driver *drv = &acpi_idle_driver;
1256
1257        if (!pr->flags.has_lpi)
1258                return -EOPNOTSUPP;
1259
1260        for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1261                lpi = &pr->power.lpi_states[i];
1262
1263                state = &drv->states[i];
1264                snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1265                strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1266                state->exit_latency = lpi->wake_latency;
1267                state->target_residency = lpi->min_residency;
1268                if (lpi->arch_flags)
1269                        state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1270                state->enter = acpi_idle_lpi_enter;
1271                drv->safe_state_index = i;
1272        }
1273
1274        drv->state_count = i;
1275
1276        return 0;
1277}
1278
1279/**
1280 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1281 * global state data i.e. idle routines
1282 *
1283 * @pr: the ACPI processor
1284 */
1285static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1286{
1287        int i;
1288        struct cpuidle_driver *drv = &acpi_idle_driver;
1289
1290        if (!pr->flags.power_setup_done || !pr->flags.power)
1291                return -EINVAL;
1292
1293        drv->safe_state_index = -1;
1294        for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1295                drv->states[i].name[0] = '\0';
1296                drv->states[i].desc[0] = '\0';
1297        }
1298
1299        if (pr->flags.has_lpi)
1300                return acpi_processor_setup_lpi_states(pr);
1301
1302        return acpi_processor_setup_cstates(pr);
1303}
1304
1305/**
1306 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1307 * device i.e. per-cpu data
1308 *
1309 * @pr: the ACPI processor
1310 * @dev : the cpuidle device
1311 */
1312static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1313                                            struct cpuidle_device *dev)
1314{
1315        if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1316                return -EINVAL;
1317
1318        dev->cpu = pr->id;
1319        if (pr->flags.has_lpi)
1320                return acpi_processor_ffh_lpi_probe(pr->id);
1321
1322        return acpi_processor_setup_cpuidle_cx(pr, dev);
1323}
1324
1325static int acpi_processor_get_power_info(struct acpi_processor *pr)
1326{
1327        int ret;
1328
1329        ret = acpi_processor_get_lpi_info(pr);
1330        if (ret)
1331                ret = acpi_processor_get_cstate_info(pr);
1332
1333        return ret;
1334}
1335
1336int acpi_processor_hotplug(struct acpi_processor *pr)
1337{
1338        int ret = 0;
1339        struct cpuidle_device *dev;
1340
1341        if (disabled_by_idle_boot_param())
1342                return 0;
1343
1344        if (!pr->flags.power_setup_done)
1345                return -ENODEV;
1346
1347        dev = per_cpu(acpi_cpuidle_device, pr->id);
1348        cpuidle_pause_and_lock();
1349        cpuidle_disable_device(dev);
1350        ret = acpi_processor_get_power_info(pr);
1351        if (!ret && pr->flags.power) {
1352                acpi_processor_setup_cpuidle_dev(pr, dev);
1353                ret = cpuidle_enable_device(dev);
1354        }
1355        cpuidle_resume_and_unlock();
1356
1357        return ret;
1358}
1359
1360int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1361{
1362        int cpu;
1363        struct acpi_processor *_pr;
1364        struct cpuidle_device *dev;
1365
1366        if (disabled_by_idle_boot_param())
1367                return 0;
1368
1369        if (!pr->flags.power_setup_done)
1370                return -ENODEV;
1371
1372        /*
1373         * FIXME:  Design the ACPI notification to make it once per
1374         * system instead of once per-cpu.  This condition is a hack
1375         * to make the code that updates C-States be called once.
1376         */
1377
1378        if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1379
1380                /* Protect against cpu-hotplug */
1381                get_online_cpus();
1382                cpuidle_pause_and_lock();
1383
1384                /* Disable all cpuidle devices */
1385                for_each_online_cpu(cpu) {
1386                        _pr = per_cpu(processors, cpu);
1387                        if (!_pr || !_pr->flags.power_setup_done)
1388                                continue;
1389                        dev = per_cpu(acpi_cpuidle_device, cpu);
1390                        cpuidle_disable_device(dev);
1391                }
1392
1393                /* Populate Updated C-state information */
1394                acpi_processor_get_power_info(pr);
1395                acpi_processor_setup_cpuidle_states(pr);
1396
1397                /* Enable all cpuidle devices */
1398                for_each_online_cpu(cpu) {
1399                        _pr = per_cpu(processors, cpu);
1400                        if (!_pr || !_pr->flags.power_setup_done)
1401                                continue;
1402                        acpi_processor_get_power_info(_pr);
1403                        if (_pr->flags.power) {
1404                                dev = per_cpu(acpi_cpuidle_device, cpu);
1405                                acpi_processor_setup_cpuidle_dev(_pr, dev);
1406                                cpuidle_enable_device(dev);
1407                        }
1408                }
1409                cpuidle_resume_and_unlock();
1410                put_online_cpus();
1411        }
1412
1413        return 0;
1414}
1415
1416static int acpi_processor_registered;
1417
1418int acpi_processor_power_init(struct acpi_processor *pr)
1419{
1420        int retval;
1421        struct cpuidle_device *dev;
1422
1423        if (disabled_by_idle_boot_param())
1424                return 0;
1425
1426        acpi_processor_cstate_first_run_checks();
1427
1428        if (!acpi_processor_get_power_info(pr))
1429                pr->flags.power_setup_done = 1;
1430
1431        /*
1432         * Install the idle handler if processor power management is supported.
1433         * Note that we use previously set idle handler will be used on
1434         * platforms that only support C1.
1435         */
1436        if (pr->flags.power) {
1437                /* Register acpi_idle_driver if not already registered */
1438                if (!acpi_processor_registered) {
1439                        acpi_processor_setup_cpuidle_states(pr);
1440                        retval = cpuidle_register_driver(&acpi_idle_driver);
1441                        if (retval)
1442                                return retval;
1443                        pr_debug("%s registered with cpuidle\n",
1444                                 acpi_idle_driver.name);
1445                }
1446
1447                dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1448                if (!dev)
1449                        return -ENOMEM;
1450                per_cpu(acpi_cpuidle_device, pr->id) = dev;
1451
1452                acpi_processor_setup_cpuidle_dev(pr, dev);
1453
1454                /* Register per-cpu cpuidle_device. Cpuidle driver
1455                 * must already be registered before registering device
1456                 */
1457                retval = cpuidle_register_device(dev);
1458                if (retval) {
1459                        if (acpi_processor_registered == 0)
1460                                cpuidle_unregister_driver(&acpi_idle_driver);
1461                        return retval;
1462                }
1463                acpi_processor_registered++;
1464        }
1465        return 0;
1466}
1467
1468int acpi_processor_power_exit(struct acpi_processor *pr)
1469{
1470        struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1471
1472        if (disabled_by_idle_boot_param())
1473                return 0;
1474
1475        if (pr->flags.power) {
1476                cpuidle_unregister_device(dev);
1477                acpi_processor_registered--;
1478                if (acpi_processor_registered == 0)
1479                        cpuidle_unregister_driver(&acpi_idle_driver);
1480        }
1481
1482        pr->flags.power_setup_done = 0;
1483        return 0;
1484}
1485