linux/drivers/auxdisplay/panel.c
<<
>>
Prefs
   1/*
   2 * Front panel driver for Linux
   3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   4 * Copyright (C) 2016-2017 Glider bvba
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 *
  11 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
  12 * connected to a parallel printer port.
  13 *
  14 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  15 * serial module compatible with Samsung's KS0074. The pins may be connected in
  16 * any combination, everything is programmable.
  17 *
  18 * The keypad consists in a matrix of push buttons connecting input pins to
  19 * data output pins or to the ground. The combinations have to be hard-coded
  20 * in the driver, though several profiles exist and adding new ones is easy.
  21 *
  22 * Several profiles are provided for commonly found LCD+keypad modules on the
  23 * market, such as those found in Nexcom's appliances.
  24 *
  25 * FIXME:
  26 *      - the initialization/deinitialization process is very dirty and should
  27 *        be rewritten. It may even be buggy.
  28 *
  29 * TODO:
  30 *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  31 *      - make the LCD a part of a virtual screen of Vx*Vy
  32 *      - make the inputs list smp-safe
  33 *      - change the keyboard to a double mapping : signals -> key_id -> values
  34 *        so that applications can change values without knowing signals
  35 *
  36 */
  37
  38#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  39
  40#include <linux/module.h>
  41
  42#include <linux/types.h>
  43#include <linux/errno.h>
  44#include <linux/signal.h>
  45#include <linux/sched.h>
  46#include <linux/spinlock.h>
  47#include <linux/interrupt.h>
  48#include <linux/miscdevice.h>
  49#include <linux/slab.h>
  50#include <linux/ioport.h>
  51#include <linux/fcntl.h>
  52#include <linux/init.h>
  53#include <linux/delay.h>
  54#include <linux/kernel.h>
  55#include <linux/ctype.h>
  56#include <linux/parport.h>
  57#include <linux/list.h>
  58
  59#include <linux/io.h>
  60#include <linux/uaccess.h>
  61
  62#include <misc/charlcd.h>
  63
  64#define KEYPAD_MINOR            185
  65
  66#define LCD_MAXBYTES            256     /* max burst write */
  67
  68#define KEYPAD_BUFFER           64
  69
  70/* poll the keyboard this every second */
  71#define INPUT_POLL_TIME         (HZ / 50)
  72/* a key starts to repeat after this times INPUT_POLL_TIME */
  73#define KEYPAD_REP_START        (10)
  74/* a key repeats this times INPUT_POLL_TIME */
  75#define KEYPAD_REP_DELAY        (2)
  76
  77/* converts an r_str() input to an active high, bits string : 000BAOSE */
  78#define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  79
  80#define PNL_PBUSY               0x80    /* inverted input, active low */
  81#define PNL_PACK                0x40    /* direct input, active low */
  82#define PNL_POUTPA              0x20    /* direct input, active high */
  83#define PNL_PSELECD             0x10    /* direct input, active high */
  84#define PNL_PERRORP             0x08    /* direct input, active low */
  85
  86#define PNL_PBIDIR              0x20    /* bi-directional ports */
  87/* high to read data in or-ed with data out */
  88#define PNL_PINTEN              0x10
  89#define PNL_PSELECP             0x08    /* inverted output, active low */
  90#define PNL_PINITP              0x04    /* direct output, active low */
  91#define PNL_PAUTOLF             0x02    /* inverted output, active low */
  92#define PNL_PSTROBE             0x01    /* inverted output */
  93
  94#define PNL_PD0                 0x01
  95#define PNL_PD1                 0x02
  96#define PNL_PD2                 0x04
  97#define PNL_PD3                 0x08
  98#define PNL_PD4                 0x10
  99#define PNL_PD5                 0x20
 100#define PNL_PD6                 0x40
 101#define PNL_PD7                 0x80
 102
 103#define PIN_NONE                0
 104#define PIN_STROBE              1
 105#define PIN_D0                  2
 106#define PIN_D1                  3
 107#define PIN_D2                  4
 108#define PIN_D3                  5
 109#define PIN_D4                  6
 110#define PIN_D5                  7
 111#define PIN_D6                  8
 112#define PIN_D7                  9
 113#define PIN_AUTOLF              14
 114#define PIN_INITP               16
 115#define PIN_SELECP              17
 116#define PIN_NOT_SET             127
 117
 118#define NOT_SET                 -1
 119
 120/* macros to simplify use of the parallel port */
 121#define r_ctr(x)        (parport_read_control((x)->port))
 122#define r_dtr(x)        (parport_read_data((x)->port))
 123#define r_str(x)        (parport_read_status((x)->port))
 124#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 125#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 126
 127/* this defines which bits are to be used and which ones to be ignored */
 128/* logical or of the output bits involved in the scan matrix */
 129static __u8 scan_mask_o;
 130/* logical or of the input bits involved in the scan matrix */
 131static __u8 scan_mask_i;
 132
 133enum input_type {
 134        INPUT_TYPE_STD,
 135        INPUT_TYPE_KBD,
 136};
 137
 138enum input_state {
 139        INPUT_ST_LOW,
 140        INPUT_ST_RISING,
 141        INPUT_ST_HIGH,
 142        INPUT_ST_FALLING,
 143};
 144
 145struct logical_input {
 146        struct list_head list;
 147        __u64 mask;
 148        __u64 value;
 149        enum input_type type;
 150        enum input_state state;
 151        __u8 rise_time, fall_time;
 152        __u8 rise_timer, fall_timer, high_timer;
 153
 154        union {
 155                struct {        /* valid when type == INPUT_TYPE_STD */
 156                        void (*press_fct)(int);
 157                        void (*release_fct)(int);
 158                        int press_data;
 159                        int release_data;
 160                } std;
 161                struct {        /* valid when type == INPUT_TYPE_KBD */
 162                        /* strings can be non null-terminated */
 163                        char press_str[sizeof(void *) + sizeof(int)];
 164                        char repeat_str[sizeof(void *) + sizeof(int)];
 165                        char release_str[sizeof(void *) + sizeof(int)];
 166                } kbd;
 167        } u;
 168};
 169
 170static LIST_HEAD(logical_inputs);       /* list of all defined logical inputs */
 171
 172/* physical contacts history
 173 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 174 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 175 * corresponds to the ground.
 176 * Within each group, bits are stored in the same order as read on the port :
 177 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 178 * So, each __u64 is represented like this :
 179 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 180 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 181 */
 182
 183/* what has just been read from the I/O ports */
 184static __u64 phys_read;
 185/* previous phys_read */
 186static __u64 phys_read_prev;
 187/* stabilized phys_read (phys_read|phys_read_prev) */
 188static __u64 phys_curr;
 189/* previous phys_curr */
 190static __u64 phys_prev;
 191/* 0 means that at least one logical signal needs be computed */
 192static char inputs_stable;
 193
 194/* these variables are specific to the keypad */
 195static struct {
 196        bool enabled;
 197} keypad;
 198
 199static char keypad_buffer[KEYPAD_BUFFER];
 200static int keypad_buflen;
 201static int keypad_start;
 202static char keypressed;
 203static wait_queue_head_t keypad_read_wait;
 204
 205/* lcd-specific variables */
 206static struct {
 207        bool enabled;
 208        bool initialized;
 209
 210        int charset;
 211        int proto;
 212
 213        /* TODO: use union here? */
 214        struct {
 215                int e;
 216                int rs;
 217                int rw;
 218                int cl;
 219                int da;
 220                int bl;
 221        } pins;
 222
 223        struct charlcd *charlcd;
 224} lcd;
 225
 226/* Needed only for init */
 227static int selected_lcd_type = NOT_SET;
 228
 229/*
 230 * Bit masks to convert LCD signals to parallel port outputs.
 231 * _d_ are values for data port, _c_ are for control port.
 232 * [0] = signal OFF, [1] = signal ON, [2] = mask
 233 */
 234#define BIT_CLR         0
 235#define BIT_SET         1
 236#define BIT_MSK         2
 237#define BIT_STATES      3
 238/*
 239 * one entry for each bit on the LCD
 240 */
 241#define LCD_BIT_E       0
 242#define LCD_BIT_RS      1
 243#define LCD_BIT_RW      2
 244#define LCD_BIT_BL      3
 245#define LCD_BIT_CL      4
 246#define LCD_BIT_DA      5
 247#define LCD_BITS        6
 248
 249/*
 250 * each bit can be either connected to a DATA or CTRL port
 251 */
 252#define LCD_PORT_C      0
 253#define LCD_PORT_D      1
 254#define LCD_PORTS       2
 255
 256static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 257
 258/*
 259 * LCD protocols
 260 */
 261#define LCD_PROTO_PARALLEL      0
 262#define LCD_PROTO_SERIAL        1
 263#define LCD_PROTO_TI_DA8XX_LCD  2
 264
 265/*
 266 * LCD character sets
 267 */
 268#define LCD_CHARSET_NORMAL      0
 269#define LCD_CHARSET_KS0074      1
 270
 271/*
 272 * LCD types
 273 */
 274#define LCD_TYPE_NONE           0
 275#define LCD_TYPE_CUSTOM         1
 276#define LCD_TYPE_OLD            2
 277#define LCD_TYPE_KS0074         3
 278#define LCD_TYPE_HANTRONIX      4
 279#define LCD_TYPE_NEXCOM         5
 280
 281/*
 282 * keypad types
 283 */
 284#define KEYPAD_TYPE_NONE        0
 285#define KEYPAD_TYPE_OLD         1
 286#define KEYPAD_TYPE_NEW         2
 287#define KEYPAD_TYPE_NEXCOM      3
 288
 289/*
 290 * panel profiles
 291 */
 292#define PANEL_PROFILE_CUSTOM    0
 293#define PANEL_PROFILE_OLD       1
 294#define PANEL_PROFILE_NEW       2
 295#define PANEL_PROFILE_HANTRONIX 3
 296#define PANEL_PROFILE_NEXCOM    4
 297#define PANEL_PROFILE_LARGE     5
 298
 299/*
 300 * Construct custom config from the kernel's configuration
 301 */
 302#define DEFAULT_PARPORT         0
 303#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 304#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
 305#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
 306#define DEFAULT_LCD_HEIGHT      2
 307#define DEFAULT_LCD_WIDTH       40
 308#define DEFAULT_LCD_BWIDTH      40
 309#define DEFAULT_LCD_HWIDTH      64
 310#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 311#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 312
 313#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 314#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 315#define DEFAULT_LCD_PIN_RW      PIN_INITP
 316#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 317#define DEFAULT_LCD_PIN_SDA     PIN_D0
 318#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 319
 320#ifdef CONFIG_PANEL_PARPORT
 321#undef DEFAULT_PARPORT
 322#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 323#endif
 324
 325#ifdef CONFIG_PANEL_PROFILE
 326#undef DEFAULT_PROFILE
 327#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 328#endif
 329
 330#if DEFAULT_PROFILE == 0        /* custom */
 331#ifdef CONFIG_PANEL_KEYPAD
 332#undef DEFAULT_KEYPAD_TYPE
 333#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
 334#endif
 335
 336#ifdef CONFIG_PANEL_LCD
 337#undef DEFAULT_LCD_TYPE
 338#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
 339#endif
 340
 341#ifdef CONFIG_PANEL_LCD_HEIGHT
 342#undef DEFAULT_LCD_HEIGHT
 343#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 344#endif
 345
 346#ifdef CONFIG_PANEL_LCD_WIDTH
 347#undef DEFAULT_LCD_WIDTH
 348#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 349#endif
 350
 351#ifdef CONFIG_PANEL_LCD_BWIDTH
 352#undef DEFAULT_LCD_BWIDTH
 353#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 354#endif
 355
 356#ifdef CONFIG_PANEL_LCD_HWIDTH
 357#undef DEFAULT_LCD_HWIDTH
 358#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 359#endif
 360
 361#ifdef CONFIG_PANEL_LCD_CHARSET
 362#undef DEFAULT_LCD_CHARSET
 363#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 364#endif
 365
 366#ifdef CONFIG_PANEL_LCD_PROTO
 367#undef DEFAULT_LCD_PROTO
 368#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 369#endif
 370
 371#ifdef CONFIG_PANEL_LCD_PIN_E
 372#undef DEFAULT_LCD_PIN_E
 373#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 374#endif
 375
 376#ifdef CONFIG_PANEL_LCD_PIN_RS
 377#undef DEFAULT_LCD_PIN_RS
 378#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 379#endif
 380
 381#ifdef CONFIG_PANEL_LCD_PIN_RW
 382#undef DEFAULT_LCD_PIN_RW
 383#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 384#endif
 385
 386#ifdef CONFIG_PANEL_LCD_PIN_SCL
 387#undef DEFAULT_LCD_PIN_SCL
 388#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 389#endif
 390
 391#ifdef CONFIG_PANEL_LCD_PIN_SDA
 392#undef DEFAULT_LCD_PIN_SDA
 393#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 394#endif
 395
 396#ifdef CONFIG_PANEL_LCD_PIN_BL
 397#undef DEFAULT_LCD_PIN_BL
 398#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 399#endif
 400
 401#endif /* DEFAULT_PROFILE == 0 */
 402
 403/* global variables */
 404
 405/* Device single-open policy control */
 406static atomic_t keypad_available = ATOMIC_INIT(1);
 407
 408static struct pardevice *pprt;
 409
 410static int keypad_initialized;
 411
 412static DEFINE_SPINLOCK(pprt_lock);
 413static struct timer_list scan_timer;
 414
 415MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 416
 417static int parport = DEFAULT_PARPORT;
 418module_param(parport, int, 0000);
 419MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 420
 421static int profile = DEFAULT_PROFILE;
 422module_param(profile, int, 0000);
 423MODULE_PARM_DESC(profile,
 424                 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 425                 "4=16x2 nexcom; default=40x2, old kp");
 426
 427static int keypad_type = NOT_SET;
 428module_param(keypad_type, int, 0000);
 429MODULE_PARM_DESC(keypad_type,
 430                 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 431
 432static int lcd_type = NOT_SET;
 433module_param(lcd_type, int, 0000);
 434MODULE_PARM_DESC(lcd_type,
 435                 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
 436
 437static int lcd_height = NOT_SET;
 438module_param(lcd_height, int, 0000);
 439MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 440
 441static int lcd_width = NOT_SET;
 442module_param(lcd_width, int, 0000);
 443MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 444
 445static int lcd_bwidth = NOT_SET;        /* internal buffer width (usually 40) */
 446module_param(lcd_bwidth, int, 0000);
 447MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 448
 449static int lcd_hwidth = NOT_SET;        /* hardware buffer width (usually 64) */
 450module_param(lcd_hwidth, int, 0000);
 451MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 452
 453static int lcd_charset = NOT_SET;
 454module_param(lcd_charset, int, 0000);
 455MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 456
 457static int lcd_proto = NOT_SET;
 458module_param(lcd_proto, int, 0000);
 459MODULE_PARM_DESC(lcd_proto,
 460                 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 461
 462/*
 463 * These are the parallel port pins the LCD control signals are connected to.
 464 * Set this to 0 if the signal is not used. Set it to its opposite value
 465 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 466 * pin has not been explicitly specified.
 467 *
 468 * WARNING! no check will be performed about collisions with keypad !
 469 */
 470
 471static int lcd_e_pin  = PIN_NOT_SET;
 472module_param(lcd_e_pin, int, 0000);
 473MODULE_PARM_DESC(lcd_e_pin,
 474                 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 475
 476static int lcd_rs_pin = PIN_NOT_SET;
 477module_param(lcd_rs_pin, int, 0000);
 478MODULE_PARM_DESC(lcd_rs_pin,
 479                 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 480
 481static int lcd_rw_pin = PIN_NOT_SET;
 482module_param(lcd_rw_pin, int, 0000);
 483MODULE_PARM_DESC(lcd_rw_pin,
 484                 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 485
 486static int lcd_cl_pin = PIN_NOT_SET;
 487module_param(lcd_cl_pin, int, 0000);
 488MODULE_PARM_DESC(lcd_cl_pin,
 489                 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 490
 491static int lcd_da_pin = PIN_NOT_SET;
 492module_param(lcd_da_pin, int, 0000);
 493MODULE_PARM_DESC(lcd_da_pin,
 494                 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 495
 496static int lcd_bl_pin = PIN_NOT_SET;
 497module_param(lcd_bl_pin, int, 0000);
 498MODULE_PARM_DESC(lcd_bl_pin,
 499                 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 500
 501/* Deprecated module parameters - consider not using them anymore */
 502
 503static int lcd_enabled = NOT_SET;
 504module_param(lcd_enabled, int, 0000);
 505MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 506
 507static int keypad_enabled = NOT_SET;
 508module_param(keypad_enabled, int, 0000);
 509MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 510
 511/* for some LCD drivers (ks0074) we need a charset conversion table. */
 512static const unsigned char lcd_char_conv_ks0074[256] = {
 513        /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 514        /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 515        /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 516        /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 517        /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 518        /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 519        /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 520        /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 521        /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 522        /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 523        /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 524        /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 525        /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 526        /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 527        /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 528        /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 529        /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 530        /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 531        /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 532        /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 533        /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 534        /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 535        /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 536        /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 537        /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 538        /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 539        /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 540        /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 541        /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 542        /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 543        /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 544        /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 545        /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 546};
 547
 548static const char old_keypad_profile[][4][9] = {
 549        {"S0", "Left\n", "Left\n", ""},
 550        {"S1", "Down\n", "Down\n", ""},
 551        {"S2", "Up\n", "Up\n", ""},
 552        {"S3", "Right\n", "Right\n", ""},
 553        {"S4", "Esc\n", "Esc\n", ""},
 554        {"S5", "Ret\n", "Ret\n", ""},
 555        {"", "", "", ""}
 556};
 557
 558/* signals, press, repeat, release */
 559static const char new_keypad_profile[][4][9] = {
 560        {"S0", "Left\n", "Left\n", ""},
 561        {"S1", "Down\n", "Down\n", ""},
 562        {"S2", "Up\n", "Up\n", ""},
 563        {"S3", "Right\n", "Right\n", ""},
 564        {"S4s5", "", "Esc\n", "Esc\n"},
 565        {"s4S5", "", "Ret\n", "Ret\n"},
 566        {"S4S5", "Help\n", "", ""},
 567        /* add new signals above this line */
 568        {"", "", "", ""}
 569};
 570
 571/* signals, press, repeat, release */
 572static const char nexcom_keypad_profile[][4][9] = {
 573        {"a-p-e-", "Down\n", "Down\n", ""},
 574        {"a-p-E-", "Ret\n", "Ret\n", ""},
 575        {"a-P-E-", "Esc\n", "Esc\n", ""},
 576        {"a-P-e-", "Up\n", "Up\n", ""},
 577        /* add new signals above this line */
 578        {"", "", "", ""}
 579};
 580
 581static const char (*keypad_profile)[4][9] = old_keypad_profile;
 582
 583static DECLARE_BITMAP(bits, LCD_BITS);
 584
 585static void lcd_get_bits(unsigned int port, int *val)
 586{
 587        unsigned int bit, state;
 588
 589        for (bit = 0; bit < LCD_BITS; bit++) {
 590                state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
 591                *val &= lcd_bits[port][bit][BIT_MSK];
 592                *val |= lcd_bits[port][bit][state];
 593        }
 594}
 595
 596/* sets data port bits according to current signals values */
 597static int set_data_bits(void)
 598{
 599        int val;
 600
 601        val = r_dtr(pprt);
 602        lcd_get_bits(LCD_PORT_D, &val);
 603        w_dtr(pprt, val);
 604        return val;
 605}
 606
 607/* sets ctrl port bits according to current signals values */
 608static int set_ctrl_bits(void)
 609{
 610        int val;
 611
 612        val = r_ctr(pprt);
 613        lcd_get_bits(LCD_PORT_C, &val);
 614        w_ctr(pprt, val);
 615        return val;
 616}
 617
 618/* sets ctrl & data port bits according to current signals values */
 619static void panel_set_bits(void)
 620{
 621        set_data_bits();
 622        set_ctrl_bits();
 623}
 624
 625/*
 626 * Converts a parallel port pin (from -25 to 25) to data and control ports
 627 * masks, and data and control port bits. The signal will be considered
 628 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 629 *
 630 * Result will be used this way :
 631 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 632 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 633 */
 634static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 635{
 636        int d_bit, c_bit, inv;
 637
 638        d_val[0] = 0;
 639        c_val[0] = 0;
 640        d_val[1] = 0;
 641        c_val[1] = 0;
 642        d_val[2] = 0xFF;
 643        c_val[2] = 0xFF;
 644
 645        if (pin == 0)
 646                return;
 647
 648        inv = (pin < 0);
 649        if (inv)
 650                pin = -pin;
 651
 652        d_bit = 0;
 653        c_bit = 0;
 654
 655        switch (pin) {
 656        case PIN_STROBE:        /* strobe, inverted */
 657                c_bit = PNL_PSTROBE;
 658                inv = !inv;
 659                break;
 660        case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 661                d_bit = 1 << (pin - 2);
 662                break;
 663        case PIN_AUTOLF:        /* autofeed, inverted */
 664                c_bit = PNL_PAUTOLF;
 665                inv = !inv;
 666                break;
 667        case PIN_INITP:         /* init, direct */
 668                c_bit = PNL_PINITP;
 669                break;
 670        case PIN_SELECP:        /* select_in, inverted */
 671                c_bit = PNL_PSELECP;
 672                inv = !inv;
 673                break;
 674        default:                /* unknown pin, ignore */
 675                break;
 676        }
 677
 678        if (c_bit) {
 679                c_val[2] &= ~c_bit;
 680                c_val[!inv] = c_bit;
 681        } else if (d_bit) {
 682                d_val[2] &= ~d_bit;
 683                d_val[!inv] = d_bit;
 684        }
 685}
 686
 687/*
 688 * send a serial byte to the LCD panel. The caller is responsible for locking
 689 * if needed.
 690 */
 691static void lcd_send_serial(int byte)
 692{
 693        int bit;
 694
 695        /*
 696         * the data bit is set on D0, and the clock on STROBE.
 697         * LCD reads D0 on STROBE's rising edge.
 698         */
 699        for (bit = 0; bit < 8; bit++) {
 700                clear_bit(LCD_BIT_CL, bits);    /* CLK low */
 701                panel_set_bits();
 702                if (byte & 1) {
 703                        set_bit(LCD_BIT_DA, bits);
 704                } else {
 705                        clear_bit(LCD_BIT_DA, bits);
 706                }
 707
 708                panel_set_bits();
 709                udelay(2);  /* maintain the data during 2 us before CLK up */
 710                set_bit(LCD_BIT_CL, bits);      /* CLK high */
 711                panel_set_bits();
 712                udelay(1);  /* maintain the strobe during 1 us */
 713                byte >>= 1;
 714        }
 715}
 716
 717/* turn the backlight on or off */
 718static void lcd_backlight(struct charlcd *charlcd, int on)
 719{
 720        if (lcd.pins.bl == PIN_NONE)
 721                return;
 722
 723        /* The backlight is activated by setting the AUTOFEED line to +5V  */
 724        spin_lock_irq(&pprt_lock);
 725        if (on)
 726                set_bit(LCD_BIT_BL, bits);
 727        else
 728                clear_bit(LCD_BIT_BL, bits);
 729        panel_set_bits();
 730        spin_unlock_irq(&pprt_lock);
 731}
 732
 733/* send a command to the LCD panel in serial mode */
 734static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
 735{
 736        spin_lock_irq(&pprt_lock);
 737        lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 738        lcd_send_serial(cmd & 0x0F);
 739        lcd_send_serial((cmd >> 4) & 0x0F);
 740        udelay(40);             /* the shortest command takes at least 40 us */
 741        spin_unlock_irq(&pprt_lock);
 742}
 743
 744/* send data to the LCD panel in serial mode */
 745static void lcd_write_data_s(struct charlcd *charlcd, int data)
 746{
 747        spin_lock_irq(&pprt_lock);
 748        lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 749        lcd_send_serial(data & 0x0F);
 750        lcd_send_serial((data >> 4) & 0x0F);
 751        udelay(40);             /* the shortest data takes at least 40 us */
 752        spin_unlock_irq(&pprt_lock);
 753}
 754
 755/* send a command to the LCD panel in 8 bits parallel mode */
 756static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
 757{
 758        spin_lock_irq(&pprt_lock);
 759        /* present the data to the data port */
 760        w_dtr(pprt, cmd);
 761        udelay(20);     /* maintain the data during 20 us before the strobe */
 762
 763        set_bit(LCD_BIT_E, bits);
 764        clear_bit(LCD_BIT_RS, bits);
 765        clear_bit(LCD_BIT_RW, bits);
 766        set_ctrl_bits();
 767
 768        udelay(40);     /* maintain the strobe during 40 us */
 769
 770        clear_bit(LCD_BIT_E, bits);
 771        set_ctrl_bits();
 772
 773        udelay(120);    /* the shortest command takes at least 120 us */
 774        spin_unlock_irq(&pprt_lock);
 775}
 776
 777/* send data to the LCD panel in 8 bits parallel mode */
 778static void lcd_write_data_p8(struct charlcd *charlcd, int data)
 779{
 780        spin_lock_irq(&pprt_lock);
 781        /* present the data to the data port */
 782        w_dtr(pprt, data);
 783        udelay(20);     /* maintain the data during 20 us before the strobe */
 784
 785        set_bit(LCD_BIT_E, bits);
 786        set_bit(LCD_BIT_RS, bits);
 787        clear_bit(LCD_BIT_RW, bits);
 788        set_ctrl_bits();
 789
 790        udelay(40);     /* maintain the strobe during 40 us */
 791
 792        clear_bit(LCD_BIT_E, bits);
 793        set_ctrl_bits();
 794
 795        udelay(45);     /* the shortest data takes at least 45 us */
 796        spin_unlock_irq(&pprt_lock);
 797}
 798
 799/* send a command to the TI LCD panel */
 800static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
 801{
 802        spin_lock_irq(&pprt_lock);
 803        /* present the data to the control port */
 804        w_ctr(pprt, cmd);
 805        udelay(60);
 806        spin_unlock_irq(&pprt_lock);
 807}
 808
 809/* send data to the TI LCD panel */
 810static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
 811{
 812        spin_lock_irq(&pprt_lock);
 813        /* present the data to the data port */
 814        w_dtr(pprt, data);
 815        udelay(60);
 816        spin_unlock_irq(&pprt_lock);
 817}
 818
 819/* fills the display with spaces and resets X/Y */
 820static void lcd_clear_fast_s(struct charlcd *charlcd)
 821{
 822        int pos;
 823
 824        spin_lock_irq(&pprt_lock);
 825        for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 826                lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 827                lcd_send_serial(' ' & 0x0F);
 828                lcd_send_serial((' ' >> 4) & 0x0F);
 829                /* the shortest data takes at least 40 us */
 830                udelay(40);
 831        }
 832        spin_unlock_irq(&pprt_lock);
 833}
 834
 835/* fills the display with spaces and resets X/Y */
 836static void lcd_clear_fast_p8(struct charlcd *charlcd)
 837{
 838        int pos;
 839
 840        spin_lock_irq(&pprt_lock);
 841        for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 842                /* present the data to the data port */
 843                w_dtr(pprt, ' ');
 844
 845                /* maintain the data during 20 us before the strobe */
 846                udelay(20);
 847
 848                set_bit(LCD_BIT_E, bits);
 849                set_bit(LCD_BIT_RS, bits);
 850                clear_bit(LCD_BIT_RW, bits);
 851                set_ctrl_bits();
 852
 853                /* maintain the strobe during 40 us */
 854                udelay(40);
 855
 856                clear_bit(LCD_BIT_E, bits);
 857                set_ctrl_bits();
 858
 859                /* the shortest data takes at least 45 us */
 860                udelay(45);
 861        }
 862        spin_unlock_irq(&pprt_lock);
 863}
 864
 865/* fills the display with spaces and resets X/Y */
 866static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
 867{
 868        int pos;
 869
 870        spin_lock_irq(&pprt_lock);
 871        for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 872                /* present the data to the data port */
 873                w_dtr(pprt, ' ');
 874                udelay(60);
 875        }
 876
 877        spin_unlock_irq(&pprt_lock);
 878}
 879
 880static struct charlcd_ops charlcd_serial_ops = {
 881        .write_cmd      = lcd_write_cmd_s,
 882        .write_data     = lcd_write_data_s,
 883        .clear_fast     = lcd_clear_fast_s,
 884        .backlight      = lcd_backlight,
 885};
 886
 887static struct charlcd_ops charlcd_parallel_ops = {
 888        .write_cmd      = lcd_write_cmd_p8,
 889        .write_data     = lcd_write_data_p8,
 890        .clear_fast     = lcd_clear_fast_p8,
 891        .backlight      = lcd_backlight,
 892};
 893
 894static struct charlcd_ops charlcd_tilcd_ops = {
 895        .write_cmd      = lcd_write_cmd_tilcd,
 896        .write_data     = lcd_write_data_tilcd,
 897        .clear_fast     = lcd_clear_fast_tilcd,
 898        .backlight      = lcd_backlight,
 899};
 900
 901/* initialize the LCD driver */
 902static void lcd_init(void)
 903{
 904        struct charlcd *charlcd;
 905
 906        charlcd = charlcd_alloc(0);
 907        if (!charlcd)
 908                return;
 909
 910        /*
 911         * Init lcd struct with load-time values to preserve exact
 912         * current functionality (at least for now).
 913         */
 914        charlcd->height = lcd_height;
 915        charlcd->width = lcd_width;
 916        charlcd->bwidth = lcd_bwidth;
 917        charlcd->hwidth = lcd_hwidth;
 918
 919        switch (selected_lcd_type) {
 920        case LCD_TYPE_OLD:
 921                /* parallel mode, 8 bits */
 922                lcd.proto = LCD_PROTO_PARALLEL;
 923                lcd.charset = LCD_CHARSET_NORMAL;
 924                lcd.pins.e = PIN_STROBE;
 925                lcd.pins.rs = PIN_AUTOLF;
 926
 927                charlcd->width = 40;
 928                charlcd->bwidth = 40;
 929                charlcd->hwidth = 64;
 930                charlcd->height = 2;
 931                break;
 932        case LCD_TYPE_KS0074:
 933                /* serial mode, ks0074 */
 934                lcd.proto = LCD_PROTO_SERIAL;
 935                lcd.charset = LCD_CHARSET_KS0074;
 936                lcd.pins.bl = PIN_AUTOLF;
 937                lcd.pins.cl = PIN_STROBE;
 938                lcd.pins.da = PIN_D0;
 939
 940                charlcd->width = 16;
 941                charlcd->bwidth = 40;
 942                charlcd->hwidth = 16;
 943                charlcd->height = 2;
 944                break;
 945        case LCD_TYPE_NEXCOM:
 946                /* parallel mode, 8 bits, generic */
 947                lcd.proto = LCD_PROTO_PARALLEL;
 948                lcd.charset = LCD_CHARSET_NORMAL;
 949                lcd.pins.e = PIN_AUTOLF;
 950                lcd.pins.rs = PIN_SELECP;
 951                lcd.pins.rw = PIN_INITP;
 952
 953                charlcd->width = 16;
 954                charlcd->bwidth = 40;
 955                charlcd->hwidth = 64;
 956                charlcd->height = 2;
 957                break;
 958        case LCD_TYPE_CUSTOM:
 959                /* customer-defined */
 960                lcd.proto = DEFAULT_LCD_PROTO;
 961                lcd.charset = DEFAULT_LCD_CHARSET;
 962                /* default geometry will be set later */
 963                break;
 964        case LCD_TYPE_HANTRONIX:
 965                /* parallel mode, 8 bits, hantronix-like */
 966        default:
 967                lcd.proto = LCD_PROTO_PARALLEL;
 968                lcd.charset = LCD_CHARSET_NORMAL;
 969                lcd.pins.e = PIN_STROBE;
 970                lcd.pins.rs = PIN_SELECP;
 971
 972                charlcd->width = 16;
 973                charlcd->bwidth = 40;
 974                charlcd->hwidth = 64;
 975                charlcd->height = 2;
 976                break;
 977        }
 978
 979        /* Overwrite with module params set on loading */
 980        if (lcd_height != NOT_SET)
 981                charlcd->height = lcd_height;
 982        if (lcd_width != NOT_SET)
 983                charlcd->width = lcd_width;
 984        if (lcd_bwidth != NOT_SET)
 985                charlcd->bwidth = lcd_bwidth;
 986        if (lcd_hwidth != NOT_SET)
 987                charlcd->hwidth = lcd_hwidth;
 988        if (lcd_charset != NOT_SET)
 989                lcd.charset = lcd_charset;
 990        if (lcd_proto != NOT_SET)
 991                lcd.proto = lcd_proto;
 992        if (lcd_e_pin != PIN_NOT_SET)
 993                lcd.pins.e = lcd_e_pin;
 994        if (lcd_rs_pin != PIN_NOT_SET)
 995                lcd.pins.rs = lcd_rs_pin;
 996        if (lcd_rw_pin != PIN_NOT_SET)
 997                lcd.pins.rw = lcd_rw_pin;
 998        if (lcd_cl_pin != PIN_NOT_SET)
 999                lcd.pins.cl = lcd_cl_pin;
1000        if (lcd_da_pin != PIN_NOT_SET)
1001                lcd.pins.da = lcd_da_pin;
1002        if (lcd_bl_pin != PIN_NOT_SET)
1003                lcd.pins.bl = lcd_bl_pin;
1004
1005        /* this is used to catch wrong and default values */
1006        if (charlcd->width <= 0)
1007                charlcd->width = DEFAULT_LCD_WIDTH;
1008        if (charlcd->bwidth <= 0)
1009                charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1010        if (charlcd->hwidth <= 0)
1011                charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1012        if (charlcd->height <= 0)
1013                charlcd->height = DEFAULT_LCD_HEIGHT;
1014
1015        if (lcd.proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1016                charlcd->ops = &charlcd_serial_ops;
1017
1018                if (lcd.pins.cl == PIN_NOT_SET)
1019                        lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1020                if (lcd.pins.da == PIN_NOT_SET)
1021                        lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1022
1023        } else if (lcd.proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1024                charlcd->ops = &charlcd_parallel_ops;
1025
1026                if (lcd.pins.e == PIN_NOT_SET)
1027                        lcd.pins.e = DEFAULT_LCD_PIN_E;
1028                if (lcd.pins.rs == PIN_NOT_SET)
1029                        lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1030                if (lcd.pins.rw == PIN_NOT_SET)
1031                        lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1032        } else {
1033                charlcd->ops = &charlcd_tilcd_ops;
1034        }
1035
1036        if (lcd.pins.bl == PIN_NOT_SET)
1037                lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1038
1039        if (lcd.pins.e == PIN_NOT_SET)
1040                lcd.pins.e = PIN_NONE;
1041        if (lcd.pins.rs == PIN_NOT_SET)
1042                lcd.pins.rs = PIN_NONE;
1043        if (lcd.pins.rw == PIN_NOT_SET)
1044                lcd.pins.rw = PIN_NONE;
1045        if (lcd.pins.bl == PIN_NOT_SET)
1046                lcd.pins.bl = PIN_NONE;
1047        if (lcd.pins.cl == PIN_NOT_SET)
1048                lcd.pins.cl = PIN_NONE;
1049        if (lcd.pins.da == PIN_NOT_SET)
1050                lcd.pins.da = PIN_NONE;
1051
1052        if (lcd.charset == NOT_SET)
1053                lcd.charset = DEFAULT_LCD_CHARSET;
1054
1055        if (lcd.charset == LCD_CHARSET_KS0074)
1056                charlcd->char_conv = lcd_char_conv_ks0074;
1057        else
1058                charlcd->char_conv = NULL;
1059
1060        pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1061                    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1062        pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1063                    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1064        pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1065                    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1066        pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1067                    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1068        pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1069                    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1070        pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1071                    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1072
1073        lcd.charlcd = charlcd;
1074        lcd.initialized = true;
1075}
1076
1077/*
1078 * These are the file operation function for user access to /dev/keypad
1079 */
1080
1081static ssize_t keypad_read(struct file *file,
1082                           char __user *buf, size_t count, loff_t *ppos)
1083{
1084        unsigned i = *ppos;
1085        char __user *tmp = buf;
1086
1087        if (keypad_buflen == 0) {
1088                if (file->f_flags & O_NONBLOCK)
1089                        return -EAGAIN;
1090
1091                if (wait_event_interruptible(keypad_read_wait,
1092                                             keypad_buflen != 0))
1093                        return -EINTR;
1094        }
1095
1096        for (; count-- > 0 && (keypad_buflen > 0);
1097             ++i, ++tmp, --keypad_buflen) {
1098                put_user(keypad_buffer[keypad_start], tmp);
1099                keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1100        }
1101        *ppos = i;
1102
1103        return tmp - buf;
1104}
1105
1106static int keypad_open(struct inode *inode, struct file *file)
1107{
1108        if (!atomic_dec_and_test(&keypad_available))
1109                return -EBUSY;  /* open only once at a time */
1110
1111        if (file->f_mode & FMODE_WRITE) /* device is read-only */
1112                return -EPERM;
1113
1114        keypad_buflen = 0;      /* flush the buffer on opening */
1115        return 0;
1116}
1117
1118static int keypad_release(struct inode *inode, struct file *file)
1119{
1120        atomic_inc(&keypad_available);
1121        return 0;
1122}
1123
1124static const struct file_operations keypad_fops = {
1125        .read    = keypad_read,         /* read */
1126        .open    = keypad_open,         /* open */
1127        .release = keypad_release,      /* close */
1128        .llseek  = default_llseek,
1129};
1130
1131static struct miscdevice keypad_dev = {
1132        .minor  = KEYPAD_MINOR,
1133        .name   = "keypad",
1134        .fops   = &keypad_fops,
1135};
1136
1137static void keypad_send_key(const char *string, int max_len)
1138{
1139        /* send the key to the device only if a process is attached to it. */
1140        if (!atomic_read(&keypad_available)) {
1141                while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1142                        keypad_buffer[(keypad_start + keypad_buflen++) %
1143                                      KEYPAD_BUFFER] = *string++;
1144                }
1145                wake_up_interruptible(&keypad_read_wait);
1146        }
1147}
1148
1149/* this function scans all the bits involving at least one logical signal,
1150 * and puts the results in the bitfield "phys_read" (one bit per established
1151 * contact), and sets "phys_read_prev" to "phys_read".
1152 *
1153 * Note: to debounce input signals, we will only consider as switched a signal
1154 * which is stable across 2 measures. Signals which are different between two
1155 * reads will be kept as they previously were in their logical form (phys_prev).
1156 * A signal which has just switched will have a 1 in
1157 * (phys_read ^ phys_read_prev).
1158 */
1159static void phys_scan_contacts(void)
1160{
1161        int bit, bitval;
1162        char oldval;
1163        char bitmask;
1164        char gndmask;
1165
1166        phys_prev = phys_curr;
1167        phys_read_prev = phys_read;
1168        phys_read = 0;          /* flush all signals */
1169
1170        /* keep track of old value, with all outputs disabled */
1171        oldval = r_dtr(pprt) | scan_mask_o;
1172        /* activate all keyboard outputs (active low) */
1173        w_dtr(pprt, oldval & ~scan_mask_o);
1174
1175        /* will have a 1 for each bit set to gnd */
1176        bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1177        /* disable all matrix signals */
1178        w_dtr(pprt, oldval);
1179
1180        /* now that all outputs are cleared, the only active input bits are
1181         * directly connected to the ground
1182         */
1183
1184        /* 1 for each grounded input */
1185        gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1186
1187        /* grounded inputs are signals 40-44 */
1188        phys_read |= (__u64)gndmask << 40;
1189
1190        if (bitmask != gndmask) {
1191                /*
1192                 * since clearing the outputs changed some inputs, we know
1193                 * that some input signals are currently tied to some outputs.
1194                 * So we'll scan them.
1195                 */
1196                for (bit = 0; bit < 8; bit++) {
1197                        bitval = BIT(bit);
1198
1199                        if (!(scan_mask_o & bitval))    /* skip unused bits */
1200                                continue;
1201
1202                        w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1203                        bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1204                        phys_read |= (__u64)bitmask << (5 * bit);
1205                }
1206                w_dtr(pprt, oldval);    /* disable all outputs */
1207        }
1208        /*
1209         * this is easy: use old bits when they are flapping,
1210         * use new ones when stable
1211         */
1212        phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1213                    (phys_read & ~(phys_read ^ phys_read_prev));
1214}
1215
1216static inline int input_state_high(struct logical_input *input)
1217{
1218#if 0
1219        /* FIXME:
1220         * this is an invalid test. It tries to catch
1221         * transitions from single-key to multiple-key, but
1222         * doesn't take into account the contacts polarity.
1223         * The only solution to the problem is to parse keys
1224         * from the most complex to the simplest combinations,
1225         * and mark them as 'caught' once a combination
1226         * matches, then unmatch it for all other ones.
1227         */
1228
1229        /* try to catch dangerous transitions cases :
1230         * someone adds a bit, so this signal was a false
1231         * positive resulting from a transition. We should
1232         * invalidate the signal immediately and not call the
1233         * release function.
1234         * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1235         */
1236        if (((phys_prev & input->mask) == input->value) &&
1237            ((phys_curr & input->mask) >  input->value)) {
1238                input->state = INPUT_ST_LOW; /* invalidate */
1239                return 1;
1240        }
1241#endif
1242
1243        if ((phys_curr & input->mask) == input->value) {
1244                if ((input->type == INPUT_TYPE_STD) &&
1245                    (input->high_timer == 0)) {
1246                        input->high_timer++;
1247                        if (input->u.std.press_fct)
1248                                input->u.std.press_fct(input->u.std.press_data);
1249                } else if (input->type == INPUT_TYPE_KBD) {
1250                        /* will turn on the light */
1251                        keypressed = 1;
1252
1253                        if (input->high_timer == 0) {
1254                                char *press_str = input->u.kbd.press_str;
1255
1256                                if (press_str[0]) {
1257                                        int s = sizeof(input->u.kbd.press_str);
1258
1259                                        keypad_send_key(press_str, s);
1260                                }
1261                        }
1262
1263                        if (input->u.kbd.repeat_str[0]) {
1264                                char *repeat_str = input->u.kbd.repeat_str;
1265
1266                                if (input->high_timer >= KEYPAD_REP_START) {
1267                                        int s = sizeof(input->u.kbd.repeat_str);
1268
1269                                        input->high_timer -= KEYPAD_REP_DELAY;
1270                                        keypad_send_key(repeat_str, s);
1271                                }
1272                                /* we will need to come back here soon */
1273                                inputs_stable = 0;
1274                        }
1275
1276                        if (input->high_timer < 255)
1277                                input->high_timer++;
1278                }
1279                return 1;
1280        }
1281
1282        /* else signal falling down. Let's fall through. */
1283        input->state = INPUT_ST_FALLING;
1284        input->fall_timer = 0;
1285
1286        return 0;
1287}
1288
1289static inline void input_state_falling(struct logical_input *input)
1290{
1291#if 0
1292        /* FIXME !!! same comment as in input_state_high */
1293        if (((phys_prev & input->mask) == input->value) &&
1294            ((phys_curr & input->mask) >  input->value)) {
1295                input->state = INPUT_ST_LOW;    /* invalidate */
1296                return;
1297        }
1298#endif
1299
1300        if ((phys_curr & input->mask) == input->value) {
1301                if (input->type == INPUT_TYPE_KBD) {
1302                        /* will turn on the light */
1303                        keypressed = 1;
1304
1305                        if (input->u.kbd.repeat_str[0]) {
1306                                char *repeat_str = input->u.kbd.repeat_str;
1307
1308                                if (input->high_timer >= KEYPAD_REP_START) {
1309                                        int s = sizeof(input->u.kbd.repeat_str);
1310
1311                                        input->high_timer -= KEYPAD_REP_DELAY;
1312                                        keypad_send_key(repeat_str, s);
1313                                }
1314                                /* we will need to come back here soon */
1315                                inputs_stable = 0;
1316                        }
1317
1318                        if (input->high_timer < 255)
1319                                input->high_timer++;
1320                }
1321                input->state = INPUT_ST_HIGH;
1322        } else if (input->fall_timer >= input->fall_time) {
1323                /* call release event */
1324                if (input->type == INPUT_TYPE_STD) {
1325                        void (*release_fct)(int) = input->u.std.release_fct;
1326
1327                        if (release_fct)
1328                                release_fct(input->u.std.release_data);
1329                } else if (input->type == INPUT_TYPE_KBD) {
1330                        char *release_str = input->u.kbd.release_str;
1331
1332                        if (release_str[0]) {
1333                                int s = sizeof(input->u.kbd.release_str);
1334
1335                                keypad_send_key(release_str, s);
1336                        }
1337                }
1338
1339                input->state = INPUT_ST_LOW;
1340        } else {
1341                input->fall_timer++;
1342                inputs_stable = 0;
1343        }
1344}
1345
1346static void panel_process_inputs(void)
1347{
1348        struct logical_input *input;
1349
1350        keypressed = 0;
1351        inputs_stable = 1;
1352        list_for_each_entry(input, &logical_inputs, list) {
1353                switch (input->state) {
1354                case INPUT_ST_LOW:
1355                        if ((phys_curr & input->mask) != input->value)
1356                                break;
1357                        /* if all needed ones were already set previously,
1358                         * this means that this logical signal has been
1359                         * activated by the releasing of another combined
1360                         * signal, so we don't want to match.
1361                         * eg: AB -(release B)-> A -(release A)-> 0 :
1362                         *     don't match A.
1363                         */
1364                        if ((phys_prev & input->mask) == input->value)
1365                                break;
1366                        input->rise_timer = 0;
1367                        input->state = INPUT_ST_RISING;
1368                        /* no break here, fall through */
1369                case INPUT_ST_RISING:
1370                        if ((phys_curr & input->mask) != input->value) {
1371                                input->state = INPUT_ST_LOW;
1372                                break;
1373                        }
1374                        if (input->rise_timer < input->rise_time) {
1375                                inputs_stable = 0;
1376                                input->rise_timer++;
1377                                break;
1378                        }
1379                        input->high_timer = 0;
1380                        input->state = INPUT_ST_HIGH;
1381                        /* no break here, fall through */
1382                case INPUT_ST_HIGH:
1383                        if (input_state_high(input))
1384                                break;
1385                        /* no break here, fall through */
1386                case INPUT_ST_FALLING:
1387                        input_state_falling(input);
1388                }
1389        }
1390}
1391
1392static void panel_scan_timer(void)
1393{
1394        if (keypad.enabled && keypad_initialized) {
1395                if (spin_trylock_irq(&pprt_lock)) {
1396                        phys_scan_contacts();
1397
1398                        /* no need for the parport anymore */
1399                        spin_unlock_irq(&pprt_lock);
1400                }
1401
1402                if (!inputs_stable || phys_curr != phys_prev)
1403                        panel_process_inputs();
1404        }
1405
1406        if (keypressed && lcd.enabled && lcd.initialized)
1407                charlcd_poke(lcd.charlcd);
1408
1409        mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1410}
1411
1412static void init_scan_timer(void)
1413{
1414        if (scan_timer.function)
1415                return;         /* already started */
1416
1417        setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
1418        scan_timer.expires = jiffies + INPUT_POLL_TIME;
1419        add_timer(&scan_timer);
1420}
1421
1422/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1423 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1424 * corresponding to out and in bits respectively.
1425 * returns 1 if ok, 0 if error (in which case, nothing is written).
1426 */
1427static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1428                          u8 *imask, u8 *omask)
1429{
1430        const char sigtab[] = "EeSsPpAaBb";
1431        u8 im, om;
1432        __u64 m, v;
1433
1434        om = 0;
1435        im = 0;
1436        m = 0ULL;
1437        v = 0ULL;
1438        while (*name) {
1439                int in, out, bit, neg;
1440                const char *idx;
1441
1442                idx = strchr(sigtab, *name);
1443                if (!idx)
1444                        return 0;       /* input name not found */
1445
1446                in = idx - sigtab;
1447                neg = (in & 1); /* odd (lower) names are negated */
1448                in >>= 1;
1449                im |= BIT(in);
1450
1451                name++;
1452                if (*name >= '0' && *name <= '7') {
1453                        out = *name - '0';
1454                        om |= BIT(out);
1455                } else if (*name == '-') {
1456                        out = 8;
1457                } else {
1458                        return 0;       /* unknown bit name */
1459                }
1460
1461                bit = (out * 5) + in;
1462
1463                m |= 1ULL << bit;
1464                if (!neg)
1465                        v |= 1ULL << bit;
1466                name++;
1467        }
1468        *mask = m;
1469        *value = v;
1470        if (imask)
1471                *imask |= im;
1472        if (omask)
1473                *omask |= om;
1474        return 1;
1475}
1476
1477/* tries to bind a key to the signal name <name>. The key will send the
1478 * strings <press>, <repeat>, <release> for these respective events.
1479 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1480 */
1481static struct logical_input *panel_bind_key(const char *name, const char *press,
1482                                            const char *repeat,
1483                                            const char *release)
1484{
1485        struct logical_input *key;
1486
1487        key = kzalloc(sizeof(*key), GFP_KERNEL);
1488        if (!key)
1489                return NULL;
1490
1491        if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1492                             &scan_mask_o)) {
1493                kfree(key);
1494                return NULL;
1495        }
1496
1497        key->type = INPUT_TYPE_KBD;
1498        key->state = INPUT_ST_LOW;
1499        key->rise_time = 1;
1500        key->fall_time = 1;
1501
1502        strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1503        strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1504        strncpy(key->u.kbd.release_str, release,
1505                sizeof(key->u.kbd.release_str));
1506        list_add(&key->list, &logical_inputs);
1507        return key;
1508}
1509
1510#if 0
1511/* tries to bind a callback function to the signal name <name>. The function
1512 * <press_fct> will be called with the <press_data> arg when the signal is
1513 * activated, and so on for <release_fct>/<release_data>
1514 * Returns the pointer to the new signal if ok, NULL if the signal could not
1515 * be bound.
1516 */
1517static struct logical_input *panel_bind_callback(char *name,
1518                                                 void (*press_fct)(int),
1519                                                 int press_data,
1520                                                 void (*release_fct)(int),
1521                                                 int release_data)
1522{
1523        struct logical_input *callback;
1524
1525        callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1526        if (!callback)
1527                return NULL;
1528
1529        memset(callback, 0, sizeof(struct logical_input));
1530        if (!input_name2mask(name, &callback->mask, &callback->value,
1531                             &scan_mask_i, &scan_mask_o))
1532                return NULL;
1533
1534        callback->type = INPUT_TYPE_STD;
1535        callback->state = INPUT_ST_LOW;
1536        callback->rise_time = 1;
1537        callback->fall_time = 1;
1538        callback->u.std.press_fct = press_fct;
1539        callback->u.std.press_data = press_data;
1540        callback->u.std.release_fct = release_fct;
1541        callback->u.std.release_data = release_data;
1542        list_add(&callback->list, &logical_inputs);
1543        return callback;
1544}
1545#endif
1546
1547static void keypad_init(void)
1548{
1549        int keynum;
1550
1551        init_waitqueue_head(&keypad_read_wait);
1552        keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
1553
1554        /* Let's create all known keys */
1555
1556        for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1557                panel_bind_key(keypad_profile[keynum][0],
1558                               keypad_profile[keynum][1],
1559                               keypad_profile[keynum][2],
1560                               keypad_profile[keynum][3]);
1561        }
1562
1563        init_scan_timer();
1564        keypad_initialized = 1;
1565}
1566
1567/**************************************************/
1568/* device initialization                          */
1569/**************************************************/
1570
1571static void panel_attach(struct parport *port)
1572{
1573        struct pardev_cb panel_cb;
1574
1575        if (port->number != parport)
1576                return;
1577
1578        if (pprt) {
1579                pr_err("%s: port->number=%d parport=%d, already registered!\n",
1580                       __func__, port->number, parport);
1581                return;
1582        }
1583
1584        memset(&panel_cb, 0, sizeof(panel_cb));
1585        panel_cb.private = &pprt;
1586        /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1587
1588        pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1589        if (!pprt) {
1590                pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1591                       __func__, port->number, parport);
1592                return;
1593        }
1594
1595        if (parport_claim(pprt)) {
1596                pr_err("could not claim access to parport%d. Aborting.\n",
1597                       parport);
1598                goto err_unreg_device;
1599        }
1600
1601        /* must init LCD first, just in case an IRQ from the keypad is
1602         * generated at keypad init
1603         */
1604        if (lcd.enabled) {
1605                lcd_init();
1606                if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1607                        goto err_unreg_device;
1608        }
1609
1610        if (keypad.enabled) {
1611                keypad_init();
1612                if (misc_register(&keypad_dev))
1613                        goto err_lcd_unreg;
1614        }
1615        return;
1616
1617err_lcd_unreg:
1618        if (lcd.enabled)
1619                charlcd_unregister(lcd.charlcd);
1620err_unreg_device:
1621        kfree(lcd.charlcd);
1622        lcd.charlcd = NULL;
1623        parport_unregister_device(pprt);
1624        pprt = NULL;
1625}
1626
1627static void panel_detach(struct parport *port)
1628{
1629        if (port->number != parport)
1630                return;
1631
1632        if (!pprt) {
1633                pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1634                       __func__, port->number, parport);
1635                return;
1636        }
1637        if (scan_timer.function)
1638                del_timer_sync(&scan_timer);
1639
1640        if (keypad.enabled) {
1641                misc_deregister(&keypad_dev);
1642                keypad_initialized = 0;
1643        }
1644
1645        if (lcd.enabled) {
1646                charlcd_unregister(lcd.charlcd);
1647                lcd.initialized = false;
1648                kfree(lcd.charlcd);
1649                lcd.charlcd = NULL;
1650        }
1651
1652        /* TODO: free all input signals */
1653        parport_release(pprt);
1654        parport_unregister_device(pprt);
1655        pprt = NULL;
1656}
1657
1658static struct parport_driver panel_driver = {
1659        .name = "panel",
1660        .match_port = panel_attach,
1661        .detach = panel_detach,
1662        .devmodel = true,
1663};
1664
1665/* init function */
1666static int __init panel_init_module(void)
1667{
1668        int selected_keypad_type = NOT_SET, err;
1669
1670        /* take care of an eventual profile */
1671        switch (profile) {
1672        case PANEL_PROFILE_CUSTOM:
1673                /* custom profile */
1674                selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1675                selected_lcd_type = DEFAULT_LCD_TYPE;
1676                break;
1677        case PANEL_PROFILE_OLD:
1678                /* 8 bits, 2*16, old keypad */
1679                selected_keypad_type = KEYPAD_TYPE_OLD;
1680                selected_lcd_type = LCD_TYPE_OLD;
1681
1682                /* TODO: This two are a little hacky, sort it out later */
1683                if (lcd_width == NOT_SET)
1684                        lcd_width = 16;
1685                if (lcd_hwidth == NOT_SET)
1686                        lcd_hwidth = 16;
1687                break;
1688        case PANEL_PROFILE_NEW:
1689                /* serial, 2*16, new keypad */
1690                selected_keypad_type = KEYPAD_TYPE_NEW;
1691                selected_lcd_type = LCD_TYPE_KS0074;
1692                break;
1693        case PANEL_PROFILE_HANTRONIX:
1694                /* 8 bits, 2*16 hantronix-like, no keypad */
1695                selected_keypad_type = KEYPAD_TYPE_NONE;
1696                selected_lcd_type = LCD_TYPE_HANTRONIX;
1697                break;
1698        case PANEL_PROFILE_NEXCOM:
1699                /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1700                selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1701                selected_lcd_type = LCD_TYPE_NEXCOM;
1702                break;
1703        case PANEL_PROFILE_LARGE:
1704                /* 8 bits, 2*40, old keypad */
1705                selected_keypad_type = KEYPAD_TYPE_OLD;
1706                selected_lcd_type = LCD_TYPE_OLD;
1707                break;
1708        }
1709
1710        /*
1711         * Overwrite selection with module param values (both keypad and lcd),
1712         * where the deprecated params have lower prio.
1713         */
1714        if (keypad_enabled != NOT_SET)
1715                selected_keypad_type = keypad_enabled;
1716        if (keypad_type != NOT_SET)
1717                selected_keypad_type = keypad_type;
1718
1719        keypad.enabled = (selected_keypad_type > 0);
1720
1721        if (lcd_enabled != NOT_SET)
1722                selected_lcd_type = lcd_enabled;
1723        if (lcd_type != NOT_SET)
1724                selected_lcd_type = lcd_type;
1725
1726        lcd.enabled = (selected_lcd_type > 0);
1727
1728        if (lcd.enabled) {
1729                /*
1730                 * Init lcd struct with load-time values to preserve exact
1731                 * current functionality (at least for now).
1732                 */
1733                lcd.charset = lcd_charset;
1734                lcd.proto = lcd_proto;
1735                lcd.pins.e = lcd_e_pin;
1736                lcd.pins.rs = lcd_rs_pin;
1737                lcd.pins.rw = lcd_rw_pin;
1738                lcd.pins.cl = lcd_cl_pin;
1739                lcd.pins.da = lcd_da_pin;
1740                lcd.pins.bl = lcd_bl_pin;
1741        }
1742
1743        switch (selected_keypad_type) {
1744        case KEYPAD_TYPE_OLD:
1745                keypad_profile = old_keypad_profile;
1746                break;
1747        case KEYPAD_TYPE_NEW:
1748                keypad_profile = new_keypad_profile;
1749                break;
1750        case KEYPAD_TYPE_NEXCOM:
1751                keypad_profile = nexcom_keypad_profile;
1752                break;
1753        default:
1754                keypad_profile = NULL;
1755                break;
1756        }
1757
1758        if (!lcd.enabled && !keypad.enabled) {
1759                /* no device enabled, let's exit */
1760                pr_err("panel driver disabled.\n");
1761                return -ENODEV;
1762        }
1763
1764        err = parport_register_driver(&panel_driver);
1765        if (err) {
1766                pr_err("could not register with parport. Aborting.\n");
1767                return err;
1768        }
1769
1770        if (pprt)
1771                pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1772                        parport, pprt->port->base);
1773        else
1774                pr_info("panel driver not yet registered\n");
1775        return 0;
1776}
1777
1778static void __exit panel_cleanup_module(void)
1779{
1780        parport_unregister_driver(&panel_driver);
1781}
1782
1783module_init(panel_init_module);
1784module_exit(panel_cleanup_module);
1785MODULE_AUTHOR("Willy Tarreau");
1786MODULE_LICENSE("GPL");
1787
1788/*
1789 * Local variables:
1790 *  c-indent-level: 4
1791 *  tab-width: 8
1792 * End:
1793 */
1794