linux/drivers/base/dma-mapping.c
<<
>>
Prefs
   1/*
   2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
   3 *
   4 * Copyright (c) 2006  SUSE Linux Products GmbH
   5 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
   6 *
   7 * This file is released under the GPLv2.
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/export.h>
  13#include <linux/gfp.h>
  14#include <linux/of_device.h>
  15#include <linux/slab.h>
  16#include <linux/vmalloc.h>
  17
  18/*
  19 * Managed DMA API
  20 */
  21struct dma_devres {
  22        size_t          size;
  23        void            *vaddr;
  24        dma_addr_t      dma_handle;
  25        unsigned long   attrs;
  26};
  27
  28static void dmam_release(struct device *dev, void *res)
  29{
  30        struct dma_devres *this = res;
  31
  32        dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
  33                        this->attrs);
  34}
  35
  36static int dmam_match(struct device *dev, void *res, void *match_data)
  37{
  38        struct dma_devres *this = res, *match = match_data;
  39
  40        if (this->vaddr == match->vaddr) {
  41                WARN_ON(this->size != match->size ||
  42                        this->dma_handle != match->dma_handle);
  43                return 1;
  44        }
  45        return 0;
  46}
  47
  48/**
  49 * dmam_alloc_coherent - Managed dma_alloc_coherent()
  50 * @dev: Device to allocate coherent memory for
  51 * @size: Size of allocation
  52 * @dma_handle: Out argument for allocated DMA handle
  53 * @gfp: Allocation flags
  54 *
  55 * Managed dma_alloc_coherent().  Memory allocated using this function
  56 * will be automatically released on driver detach.
  57 *
  58 * RETURNS:
  59 * Pointer to allocated memory on success, NULL on failure.
  60 */
  61void *dmam_alloc_coherent(struct device *dev, size_t size,
  62                           dma_addr_t *dma_handle, gfp_t gfp)
  63{
  64        struct dma_devres *dr;
  65        void *vaddr;
  66
  67        dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
  68        if (!dr)
  69                return NULL;
  70
  71        vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
  72        if (!vaddr) {
  73                devres_free(dr);
  74                return NULL;
  75        }
  76
  77        dr->vaddr = vaddr;
  78        dr->dma_handle = *dma_handle;
  79        dr->size = size;
  80
  81        devres_add(dev, dr);
  82
  83        return vaddr;
  84}
  85EXPORT_SYMBOL(dmam_alloc_coherent);
  86
  87/**
  88 * dmam_free_coherent - Managed dma_free_coherent()
  89 * @dev: Device to free coherent memory for
  90 * @size: Size of allocation
  91 * @vaddr: Virtual address of the memory to free
  92 * @dma_handle: DMA handle of the memory to free
  93 *
  94 * Managed dma_free_coherent().
  95 */
  96void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
  97                        dma_addr_t dma_handle)
  98{
  99        struct dma_devres match_data = { size, vaddr, dma_handle };
 100
 101        dma_free_coherent(dev, size, vaddr, dma_handle);
 102        WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 103}
 104EXPORT_SYMBOL(dmam_free_coherent);
 105
 106/**
 107 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 108 * @dev: Device to allocate non_coherent memory for
 109 * @size: Size of allocation
 110 * @dma_handle: Out argument for allocated DMA handle
 111 * @gfp: Allocation flags
 112 * @attrs: Flags in the DMA_ATTR_* namespace.
 113 *
 114 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 115 * automatically released on driver detach.
 116 *
 117 * RETURNS:
 118 * Pointer to allocated memory on success, NULL on failure.
 119 */
 120void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 121                gfp_t gfp, unsigned long attrs)
 122{
 123        struct dma_devres *dr;
 124        void *vaddr;
 125
 126        dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 127        if (!dr)
 128                return NULL;
 129
 130        vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
 131        if (!vaddr) {
 132                devres_free(dr);
 133                return NULL;
 134        }
 135
 136        dr->vaddr = vaddr;
 137        dr->dma_handle = *dma_handle;
 138        dr->size = size;
 139        dr->attrs = attrs;
 140
 141        devres_add(dev, dr);
 142
 143        return vaddr;
 144}
 145EXPORT_SYMBOL(dmam_alloc_attrs);
 146
 147#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
 148
 149static void dmam_coherent_decl_release(struct device *dev, void *res)
 150{
 151        dma_release_declared_memory(dev);
 152}
 153
 154/**
 155 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
 156 * @dev: Device to declare coherent memory for
 157 * @phys_addr: Physical address of coherent memory to be declared
 158 * @device_addr: Device address of coherent memory to be declared
 159 * @size: Size of coherent memory to be declared
 160 * @flags: Flags
 161 *
 162 * Managed dma_declare_coherent_memory().
 163 *
 164 * RETURNS:
 165 * 0 on success, -errno on failure.
 166 */
 167int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
 168                                 dma_addr_t device_addr, size_t size, int flags)
 169{
 170        void *res;
 171        int rc;
 172
 173        res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
 174        if (!res)
 175                return -ENOMEM;
 176
 177        rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
 178                                         flags);
 179        if (rc) {
 180                devres_add(dev, res);
 181                rc = 0;
 182        } else {
 183                devres_free(res);
 184                rc = -ENOMEM;
 185        }
 186
 187        return rc;
 188}
 189EXPORT_SYMBOL(dmam_declare_coherent_memory);
 190
 191/**
 192 * dmam_release_declared_memory - Managed dma_release_declared_memory().
 193 * @dev: Device to release declared coherent memory for
 194 *
 195 * Managed dmam_release_declared_memory().
 196 */
 197void dmam_release_declared_memory(struct device *dev)
 198{
 199        WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
 200}
 201EXPORT_SYMBOL(dmam_release_declared_memory);
 202
 203#endif
 204
 205/*
 206 * Create scatter-list for the already allocated DMA buffer.
 207 */
 208int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
 209                 void *cpu_addr, dma_addr_t handle, size_t size)
 210{
 211        struct page *page = virt_to_page(cpu_addr);
 212        int ret;
 213
 214        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 215        if (unlikely(ret))
 216                return ret;
 217
 218        sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 219        return 0;
 220}
 221EXPORT_SYMBOL(dma_common_get_sgtable);
 222
 223/*
 224 * Create userspace mapping for the DMA-coherent memory.
 225 */
 226int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
 227                    void *cpu_addr, dma_addr_t dma_addr, size_t size)
 228{
 229        int ret = -ENXIO;
 230#ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
 231        unsigned long user_count = vma_pages(vma);
 232        unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 233        unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
 234        unsigned long off = vma->vm_pgoff;
 235
 236        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 237
 238        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 239                return ret;
 240
 241        if (off < count && user_count <= (count - off)) {
 242                ret = remap_pfn_range(vma, vma->vm_start,
 243                                      pfn + off,
 244                                      user_count << PAGE_SHIFT,
 245                                      vma->vm_page_prot);
 246        }
 247#endif  /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
 248
 249        return ret;
 250}
 251EXPORT_SYMBOL(dma_common_mmap);
 252
 253#ifdef CONFIG_MMU
 254static struct vm_struct *__dma_common_pages_remap(struct page **pages,
 255                        size_t size, unsigned long vm_flags, pgprot_t prot,
 256                        const void *caller)
 257{
 258        struct vm_struct *area;
 259
 260        area = get_vm_area_caller(size, vm_flags, caller);
 261        if (!area)
 262                return NULL;
 263
 264        if (map_vm_area(area, prot, pages)) {
 265                vunmap(area->addr);
 266                return NULL;
 267        }
 268
 269        return area;
 270}
 271
 272/*
 273 * remaps an array of PAGE_SIZE pages into another vm_area
 274 * Cannot be used in non-sleeping contexts
 275 */
 276void *dma_common_pages_remap(struct page **pages, size_t size,
 277                        unsigned long vm_flags, pgprot_t prot,
 278                        const void *caller)
 279{
 280        struct vm_struct *area;
 281
 282        area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
 283        if (!area)
 284                return NULL;
 285
 286        area->pages = pages;
 287
 288        return area->addr;
 289}
 290
 291/*
 292 * remaps an allocated contiguous region into another vm_area.
 293 * Cannot be used in non-sleeping contexts
 294 */
 295
 296void *dma_common_contiguous_remap(struct page *page, size_t size,
 297                        unsigned long vm_flags,
 298                        pgprot_t prot, const void *caller)
 299{
 300        int i;
 301        struct page **pages;
 302        struct vm_struct *area;
 303
 304        pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
 305        if (!pages)
 306                return NULL;
 307
 308        for (i = 0; i < (size >> PAGE_SHIFT); i++)
 309                pages[i] = nth_page(page, i);
 310
 311        area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
 312
 313        kfree(pages);
 314
 315        if (!area)
 316                return NULL;
 317        return area->addr;
 318}
 319
 320/*
 321 * unmaps a range previously mapped by dma_common_*_remap
 322 */
 323void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
 324{
 325        struct vm_struct *area = find_vm_area(cpu_addr);
 326
 327        if (!area || (area->flags & vm_flags) != vm_flags) {
 328                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
 329                return;
 330        }
 331
 332        unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
 333        vunmap(cpu_addr);
 334}
 335#endif
 336
 337/*
 338 * Common configuration to enable DMA API use for a device
 339 */
 340#include <linux/pci.h>
 341
 342int dma_configure(struct device *dev)
 343{
 344        struct device *bridge = NULL, *dma_dev = dev;
 345        enum dev_dma_attr attr;
 346        int ret = 0;
 347
 348        if (dev_is_pci(dev)) {
 349                bridge = pci_get_host_bridge_device(to_pci_dev(dev));
 350                dma_dev = bridge;
 351                if (IS_ENABLED(CONFIG_OF) && dma_dev->parent &&
 352                    dma_dev->parent->of_node)
 353                        dma_dev = dma_dev->parent;
 354        }
 355
 356        if (dma_dev->of_node) {
 357                ret = of_dma_configure(dev, dma_dev->of_node);
 358        } else if (has_acpi_companion(dma_dev)) {
 359                attr = acpi_get_dma_attr(to_acpi_device_node(dma_dev->fwnode));
 360                if (attr != DEV_DMA_NOT_SUPPORTED)
 361                        ret = acpi_dma_configure(dev, attr);
 362        }
 363
 364        if (bridge)
 365                pci_put_host_bridge_device(bridge);
 366
 367        return ret;
 368}
 369
 370void dma_deconfigure(struct device *dev)
 371{
 372        of_dma_deconfigure(dev);
 373        acpi_dma_deconfigure(dev);
 374}
 375