linux/drivers/block/umem.c
<<
>>
Prefs
   1/*
   2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
   3 *
   4 * (C) 2001 San Mehat <nettwerk@valinux.com>
   5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
   6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
   7 *
   8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
   9 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
  10 *
  11 * This driver is released to the public under the terms of the
  12 *  GNU GENERAL PUBLIC LICENSE version 2
  13 * See the file COPYING for details.
  14 *
  15 * This driver provides a standard block device interface for Micro Memory(tm)
  16 * PCI based RAM boards.
  17 * 10/05/01: Phap Nguyen - Rebuilt the driver
  18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
  20 *                       - use stand disk partitioning (so fdisk works).
  21 * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
  22 *                       - incorporate into main kernel
  23 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
  24 *                       - use spin_lock_bh instead of _irq
  25 *                       - Never block on make_request.  queue
  26 *                         bh's instead.
  27 *                       - unregister umem from devfs at mod unload
  28 *                       - Change version to 2.3
  29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
  31 * 15May2002:NeilBrown   - convert to bio for 2.5
  32 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
  33 *                       - a sequence of writes that cover the card, and
  34 *                       - set initialised bit then.
  35 */
  36
  37#undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
  38#include <linux/fs.h>
  39#include <linux/bio.h>
  40#include <linux/kernel.h>
  41#include <linux/mm.h>
  42#include <linux/mman.h>
  43#include <linux/gfp.h>
  44#include <linux/ioctl.h>
  45#include <linux/module.h>
  46#include <linux/init.h>
  47#include <linux/interrupt.h>
  48#include <linux/timer.h>
  49#include <linux/pci.h>
  50#include <linux/dma-mapping.h>
  51
  52#include <linux/fcntl.h>        /* O_ACCMODE */
  53#include <linux/hdreg.h>  /* HDIO_GETGEO */
  54
  55#include "umem.h"
  56
  57#include <linux/uaccess.h>
  58#include <asm/io.h>
  59
  60#define MM_MAXCARDS 4
  61#define MM_RAHEAD 2      /* two sectors */
  62#define MM_BLKSIZE 1024  /* 1k blocks */
  63#define MM_HARDSECT 512  /* 512-byte hardware sectors */
  64#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
  65
  66/*
  67 * Version Information
  68 */
  69
  70#define DRIVER_NAME     "umem"
  71#define DRIVER_VERSION  "v2.3"
  72#define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
  73#define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
  74
  75static int debug;
  76/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  77#define HW_TRACE(x)
  78
  79#define DEBUG_LED_ON_TRANSFER   0x01
  80#define DEBUG_BATTERY_POLLING   0x02
  81
  82module_param(debug, int, 0644);
  83MODULE_PARM_DESC(debug, "Debug bitmask");
  84
  85static int pci_read_cmd = 0x0C;         /* Read Multiple */
  86module_param(pci_read_cmd, int, 0);
  87MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  88
  89static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
  90module_param(pci_write_cmd, int, 0);
  91MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  92
  93static int pci_cmds;
  94
  95static int major_nr;
  96
  97#include <linux/blkdev.h>
  98#include <linux/blkpg.h>
  99
 100struct cardinfo {
 101        struct pci_dev  *dev;
 102
 103        unsigned char   __iomem *csr_remap;
 104        unsigned int    mm_size;  /* size in kbytes */
 105
 106        unsigned int    init_size; /* initial segment, in sectors,
 107                                    * that we know to
 108                                    * have been written
 109                                    */
 110        struct bio      *bio, *currentbio, **biotail;
 111        struct bvec_iter current_iter;
 112
 113        struct request_queue *queue;
 114
 115        struct mm_page {
 116                dma_addr_t              page_dma;
 117                struct mm_dma_desc      *desc;
 118                int                     cnt, headcnt;
 119                struct bio              *bio, **biotail;
 120                struct bvec_iter        iter;
 121        } mm_pages[2];
 122#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
 123
 124        int  Active, Ready;
 125
 126        struct tasklet_struct   tasklet;
 127        unsigned int dma_status;
 128
 129        struct {
 130                int             good;
 131                int             warned;
 132                unsigned long   last_change;
 133        } battery[2];
 134
 135        spinlock_t      lock;
 136        int             check_batteries;
 137
 138        int             flags;
 139};
 140
 141static struct cardinfo cards[MM_MAXCARDS];
 142static struct timer_list battery_timer;
 143
 144static int num_cards;
 145
 146static struct gendisk *mm_gendisk[MM_MAXCARDS];
 147
 148static void check_batteries(struct cardinfo *card);
 149
 150static int get_userbit(struct cardinfo *card, int bit)
 151{
 152        unsigned char led;
 153
 154        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 155        return led & bit;
 156}
 157
 158static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
 159{
 160        unsigned char led;
 161
 162        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 163        if (state)
 164                led |= bit;
 165        else
 166                led &= ~bit;
 167        writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 168
 169        return 0;
 170}
 171
 172/*
 173 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 174 */
 175static void set_led(struct cardinfo *card, int shift, unsigned char state)
 176{
 177        unsigned char led;
 178
 179        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 180        if (state == LED_FLIP)
 181                led ^= (1<<shift);
 182        else {
 183                led &= ~(0x03 << shift);
 184                led |= (state << shift);
 185        }
 186        writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 187
 188}
 189
 190#ifdef MM_DIAG
 191static void dump_regs(struct cardinfo *card)
 192{
 193        unsigned char *p;
 194        int i, i1;
 195
 196        p = card->csr_remap;
 197        for (i = 0; i < 8; i++) {
 198                printk(KERN_DEBUG "%p   ", p);
 199
 200                for (i1 = 0; i1 < 16; i1++)
 201                        printk("%02x ", *p++);
 202
 203                printk("\n");
 204        }
 205}
 206#endif
 207
 208static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
 209{
 210        dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
 211        if (dmastat & DMASCR_ANY_ERR)
 212                printk(KERN_CONT "ANY_ERR ");
 213        if (dmastat & DMASCR_MBE_ERR)
 214                printk(KERN_CONT "MBE_ERR ");
 215        if (dmastat & DMASCR_PARITY_ERR_REP)
 216                printk(KERN_CONT "PARITY_ERR_REP ");
 217        if (dmastat & DMASCR_PARITY_ERR_DET)
 218                printk(KERN_CONT "PARITY_ERR_DET ");
 219        if (dmastat & DMASCR_SYSTEM_ERR_SIG)
 220                printk(KERN_CONT "SYSTEM_ERR_SIG ");
 221        if (dmastat & DMASCR_TARGET_ABT)
 222                printk(KERN_CONT "TARGET_ABT ");
 223        if (dmastat & DMASCR_MASTER_ABT)
 224                printk(KERN_CONT "MASTER_ABT ");
 225        if (dmastat & DMASCR_CHAIN_COMPLETE)
 226                printk(KERN_CONT "CHAIN_COMPLETE ");
 227        if (dmastat & DMASCR_DMA_COMPLETE)
 228                printk(KERN_CONT "DMA_COMPLETE ");
 229        printk("\n");
 230}
 231
 232/*
 233 * Theory of request handling
 234 *
 235 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
 236 * We have two pages of mm_dma_desc, holding about 64 descriptors
 237 * each.  These are allocated at init time.
 238 * One page is "Ready" and is either full, or can have request added.
 239 * The other page might be "Active", which DMA is happening on it.
 240 *
 241 * Whenever IO on the active page completes, the Ready page is activated
 242 * and the ex-Active page is clean out and made Ready.
 243 * Otherwise the Ready page is only activated when it becomes full.
 244 *
 245 * If a request arrives while both pages a full, it is queued, and b_rdev is
 246 * overloaded to record whether it was a read or a write.
 247 *
 248 * The interrupt handler only polls the device to clear the interrupt.
 249 * The processing of the result is done in a tasklet.
 250 */
 251
 252static void mm_start_io(struct cardinfo *card)
 253{
 254        /* we have the lock, we know there is
 255         * no IO active, and we know that card->Active
 256         * is set
 257         */
 258        struct mm_dma_desc *desc;
 259        struct mm_page *page;
 260        int offset;
 261
 262        /* make the last descriptor end the chain */
 263        page = &card->mm_pages[card->Active];
 264        pr_debug("start_io: %d %d->%d\n",
 265                card->Active, page->headcnt, page->cnt - 1);
 266        desc = &page->desc[page->cnt-1];
 267
 268        desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
 269        desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
 270        desc->sem_control_bits = desc->control_bits;
 271
 272
 273        if (debug & DEBUG_LED_ON_TRANSFER)
 274                set_led(card, LED_REMOVE, LED_ON);
 275
 276        desc = &page->desc[page->headcnt];
 277        writel(0, card->csr_remap + DMA_PCI_ADDR);
 278        writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
 279
 280        writel(0, card->csr_remap + DMA_LOCAL_ADDR);
 281        writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
 282
 283        writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
 284        writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
 285
 286        writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
 287        writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
 288
 289        offset = ((char *)desc) - ((char *)page->desc);
 290        writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
 291               card->csr_remap + DMA_DESCRIPTOR_ADDR);
 292        /* Force the value to u64 before shifting otherwise >> 32 is undefined C
 293         * and on some ports will do nothing ! */
 294        writel(cpu_to_le32(((u64)page->page_dma)>>32),
 295               card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
 296
 297        /* Go, go, go */
 298        writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
 299               card->csr_remap + DMA_STATUS_CTRL);
 300}
 301
 302static int add_bio(struct cardinfo *card);
 303
 304static void activate(struct cardinfo *card)
 305{
 306        /* if No page is Active, and Ready is
 307         * not empty, then switch Ready page
 308         * to active and start IO.
 309         * Then add any bh's that are available to Ready
 310         */
 311
 312        do {
 313                while (add_bio(card))
 314                        ;
 315
 316                if (card->Active == -1 &&
 317                    card->mm_pages[card->Ready].cnt > 0) {
 318                        card->Active = card->Ready;
 319                        card->Ready = 1-card->Ready;
 320                        mm_start_io(card);
 321                }
 322
 323        } while (card->Active == -1 && add_bio(card));
 324}
 325
 326static inline void reset_page(struct mm_page *page)
 327{
 328        page->cnt = 0;
 329        page->headcnt = 0;
 330        page->bio = NULL;
 331        page->biotail = &page->bio;
 332}
 333
 334/*
 335 * If there is room on Ready page, take
 336 * one bh off list and add it.
 337 * return 1 if there was room, else 0.
 338 */
 339static int add_bio(struct cardinfo *card)
 340{
 341        struct mm_page *p;
 342        struct mm_dma_desc *desc;
 343        dma_addr_t dma_handle;
 344        int offset;
 345        struct bio *bio;
 346        struct bio_vec vec;
 347
 348        bio = card->currentbio;
 349        if (!bio && card->bio) {
 350                card->currentbio = card->bio;
 351                card->current_iter = card->bio->bi_iter;
 352                card->bio = card->bio->bi_next;
 353                if (card->bio == NULL)
 354                        card->biotail = &card->bio;
 355                card->currentbio->bi_next = NULL;
 356                return 1;
 357        }
 358        if (!bio)
 359                return 0;
 360
 361        if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
 362                return 0;
 363
 364        vec = bio_iter_iovec(bio, card->current_iter);
 365
 366        dma_handle = pci_map_page(card->dev,
 367                                  vec.bv_page,
 368                                  vec.bv_offset,
 369                                  vec.bv_len,
 370                                  bio_op(bio) == REQ_OP_READ ?
 371                                  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
 372
 373        p = &card->mm_pages[card->Ready];
 374        desc = &p->desc[p->cnt];
 375        p->cnt++;
 376        if (p->bio == NULL)
 377                p->iter = card->current_iter;
 378        if ((p->biotail) != &bio->bi_next) {
 379                *(p->biotail) = bio;
 380                p->biotail = &(bio->bi_next);
 381                bio->bi_next = NULL;
 382        }
 383
 384        desc->data_dma_handle = dma_handle;
 385
 386        desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
 387        desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9);
 388        desc->transfer_size = cpu_to_le32(vec.bv_len);
 389        offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
 390        desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
 391        desc->zero1 = desc->zero2 = 0;
 392        offset = (((char *)(desc+1)) - ((char *)p->desc));
 393        desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
 394        desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
 395                                         DMASCR_PARITY_INT_EN|
 396                                         DMASCR_CHAIN_EN |
 397                                         DMASCR_SEM_EN |
 398                                         pci_cmds);
 399        if (bio_op(bio) == REQ_OP_WRITE)
 400                desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
 401        desc->sem_control_bits = desc->control_bits;
 402
 403
 404        bio_advance_iter(bio, &card->current_iter, vec.bv_len);
 405        if (!card->current_iter.bi_size)
 406                card->currentbio = NULL;
 407
 408        return 1;
 409}
 410
 411static void process_page(unsigned long data)
 412{
 413        /* check if any of the requests in the page are DMA_COMPLETE,
 414         * and deal with them appropriately.
 415         * If we find a descriptor without DMA_COMPLETE in the semaphore, then
 416         * dma must have hit an error on that descriptor, so use dma_status
 417         * instead and assume that all following descriptors must be re-tried.
 418         */
 419        struct mm_page *page;
 420        struct bio *return_bio = NULL;
 421        struct cardinfo *card = (struct cardinfo *)data;
 422        unsigned int dma_status = card->dma_status;
 423
 424        spin_lock_bh(&card->lock);
 425        if (card->Active < 0)
 426                goto out_unlock;
 427        page = &card->mm_pages[card->Active];
 428
 429        while (page->headcnt < page->cnt) {
 430                struct bio *bio = page->bio;
 431                struct mm_dma_desc *desc = &page->desc[page->headcnt];
 432                int control = le32_to_cpu(desc->sem_control_bits);
 433                int last = 0;
 434                struct bio_vec vec;
 435
 436                if (!(control & DMASCR_DMA_COMPLETE)) {
 437                        control = dma_status;
 438                        last = 1;
 439                }
 440
 441                page->headcnt++;
 442                vec = bio_iter_iovec(bio, page->iter);
 443                bio_advance_iter(bio, &page->iter, vec.bv_len);
 444
 445                if (!page->iter.bi_size) {
 446                        page->bio = bio->bi_next;
 447                        if (page->bio)
 448                                page->iter = page->bio->bi_iter;
 449                }
 450
 451                pci_unmap_page(card->dev, desc->data_dma_handle,
 452                               vec.bv_len,
 453                                 (control & DMASCR_TRANSFER_READ) ?
 454                                PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
 455                if (control & DMASCR_HARD_ERROR) {
 456                        /* error */
 457                        bio->bi_status = BLK_STS_IOERR;
 458                        dev_printk(KERN_WARNING, &card->dev->dev,
 459                                "I/O error on sector %d/%d\n",
 460                                le32_to_cpu(desc->local_addr)>>9,
 461                                le32_to_cpu(desc->transfer_size));
 462                        dump_dmastat(card, control);
 463                } else if (op_is_write(bio_op(bio)) &&
 464                           le32_to_cpu(desc->local_addr) >> 9 ==
 465                                card->init_size) {
 466                        card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
 467                        if (card->init_size >> 1 >= card->mm_size) {
 468                                dev_printk(KERN_INFO, &card->dev->dev,
 469                                        "memory now initialised\n");
 470                                set_userbit(card, MEMORY_INITIALIZED, 1);
 471                        }
 472                }
 473                if (bio != page->bio) {
 474                        bio->bi_next = return_bio;
 475                        return_bio = bio;
 476                }
 477
 478                if (last)
 479                        break;
 480        }
 481
 482        if (debug & DEBUG_LED_ON_TRANSFER)
 483                set_led(card, LED_REMOVE, LED_OFF);
 484
 485        if (card->check_batteries) {
 486                card->check_batteries = 0;
 487                check_batteries(card);
 488        }
 489        if (page->headcnt >= page->cnt) {
 490                reset_page(page);
 491                card->Active = -1;
 492                activate(card);
 493        } else {
 494                /* haven't finished with this one yet */
 495                pr_debug("do some more\n");
 496                mm_start_io(card);
 497        }
 498 out_unlock:
 499        spin_unlock_bh(&card->lock);
 500
 501        while (return_bio) {
 502                struct bio *bio = return_bio;
 503
 504                return_bio = bio->bi_next;
 505                bio->bi_next = NULL;
 506                bio_endio(bio);
 507        }
 508}
 509
 510static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
 511{
 512        struct cardinfo *card = cb->data;
 513
 514        spin_lock_irq(&card->lock);
 515        activate(card);
 516        spin_unlock_irq(&card->lock);
 517        kfree(cb);
 518}
 519
 520static int mm_check_plugged(struct cardinfo *card)
 521{
 522        return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
 523}
 524
 525static blk_qc_t mm_make_request(struct request_queue *q, struct bio *bio)
 526{
 527        struct cardinfo *card = q->queuedata;
 528        pr_debug("mm_make_request %llu %u\n",
 529                 (unsigned long long)bio->bi_iter.bi_sector,
 530                 bio->bi_iter.bi_size);
 531
 532        blk_queue_split(q, &bio);
 533
 534        spin_lock_irq(&card->lock);
 535        *card->biotail = bio;
 536        bio->bi_next = NULL;
 537        card->biotail = &bio->bi_next;
 538        if (op_is_sync(bio->bi_opf) || !mm_check_plugged(card))
 539                activate(card);
 540        spin_unlock_irq(&card->lock);
 541
 542        return BLK_QC_T_NONE;
 543}
 544
 545static irqreturn_t mm_interrupt(int irq, void *__card)
 546{
 547        struct cardinfo *card = (struct cardinfo *) __card;
 548        unsigned int dma_status;
 549        unsigned short cfg_status;
 550
 551HW_TRACE(0x30);
 552
 553        dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
 554
 555        if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
 556                /* interrupt wasn't for me ... */
 557                return IRQ_NONE;
 558        }
 559
 560        /* clear COMPLETION interrupts */
 561        if (card->flags & UM_FLAG_NO_BYTE_STATUS)
 562                writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
 563                       card->csr_remap + DMA_STATUS_CTRL);
 564        else
 565                writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
 566                       card->csr_remap + DMA_STATUS_CTRL + 2);
 567
 568        /* log errors and clear interrupt status */
 569        if (dma_status & DMASCR_ANY_ERR) {
 570                unsigned int    data_log1, data_log2;
 571                unsigned int    addr_log1, addr_log2;
 572                unsigned char   stat, count, syndrome, check;
 573
 574                stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
 575
 576                data_log1 = le32_to_cpu(readl(card->csr_remap +
 577                                                ERROR_DATA_LOG));
 578                data_log2 = le32_to_cpu(readl(card->csr_remap +
 579                                                ERROR_DATA_LOG + 4));
 580                addr_log1 = le32_to_cpu(readl(card->csr_remap +
 581                                                ERROR_ADDR_LOG));
 582                addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
 583
 584                count = readb(card->csr_remap + ERROR_COUNT);
 585                syndrome = readb(card->csr_remap + ERROR_SYNDROME);
 586                check = readb(card->csr_remap + ERROR_CHECK);
 587
 588                dump_dmastat(card, dma_status);
 589
 590                if (stat & 0x01)
 591                        dev_printk(KERN_ERR, &card->dev->dev,
 592                                "Memory access error detected (err count %d)\n",
 593                                count);
 594                if (stat & 0x02)
 595                        dev_printk(KERN_ERR, &card->dev->dev,
 596                                "Multi-bit EDC error\n");
 597
 598                dev_printk(KERN_ERR, &card->dev->dev,
 599                        "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
 600                        addr_log2, addr_log1, data_log2, data_log1);
 601                dev_printk(KERN_ERR, &card->dev->dev,
 602                        "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
 603                        check, syndrome);
 604
 605                writeb(0, card->csr_remap + ERROR_COUNT);
 606        }
 607
 608        if (dma_status & DMASCR_PARITY_ERR_REP) {
 609                dev_printk(KERN_ERR, &card->dev->dev,
 610                        "PARITY ERROR REPORTED\n");
 611                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 612                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 613        }
 614
 615        if (dma_status & DMASCR_PARITY_ERR_DET) {
 616                dev_printk(KERN_ERR, &card->dev->dev,
 617                        "PARITY ERROR DETECTED\n");
 618                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 619                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 620        }
 621
 622        if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
 623                dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
 624                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 625                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 626        }
 627
 628        if (dma_status & DMASCR_TARGET_ABT) {
 629                dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
 630                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 631                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 632        }
 633
 634        if (dma_status & DMASCR_MASTER_ABT) {
 635                dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
 636                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 637                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 638        }
 639
 640        /* and process the DMA descriptors */
 641        card->dma_status = dma_status;
 642        tasklet_schedule(&card->tasklet);
 643
 644HW_TRACE(0x36);
 645
 646        return IRQ_HANDLED;
 647}
 648
 649/*
 650 * If both batteries are good, no LED
 651 * If either battery has been warned, solid LED
 652 * If both batteries are bad, flash the LED quickly
 653 * If either battery is bad, flash the LED semi quickly
 654 */
 655static void set_fault_to_battery_status(struct cardinfo *card)
 656{
 657        if (card->battery[0].good && card->battery[1].good)
 658                set_led(card, LED_FAULT, LED_OFF);
 659        else if (card->battery[0].warned || card->battery[1].warned)
 660                set_led(card, LED_FAULT, LED_ON);
 661        else if (!card->battery[0].good && !card->battery[1].good)
 662                set_led(card, LED_FAULT, LED_FLASH_7_0);
 663        else
 664                set_led(card, LED_FAULT, LED_FLASH_3_5);
 665}
 666
 667static void init_battery_timer(void);
 668
 669static int check_battery(struct cardinfo *card, int battery, int status)
 670{
 671        if (status != card->battery[battery].good) {
 672                card->battery[battery].good = !card->battery[battery].good;
 673                card->battery[battery].last_change = jiffies;
 674
 675                if (card->battery[battery].good) {
 676                        dev_printk(KERN_ERR, &card->dev->dev,
 677                                "Battery %d now good\n", battery + 1);
 678                        card->battery[battery].warned = 0;
 679                } else
 680                        dev_printk(KERN_ERR, &card->dev->dev,
 681                                "Battery %d now FAILED\n", battery + 1);
 682
 683                return 1;
 684        } else if (!card->battery[battery].good &&
 685                   !card->battery[battery].warned &&
 686                   time_after_eq(jiffies, card->battery[battery].last_change +
 687                                 (HZ * 60 * 60 * 5))) {
 688                dev_printk(KERN_ERR, &card->dev->dev,
 689                        "Battery %d still FAILED after 5 hours\n", battery + 1);
 690                card->battery[battery].warned = 1;
 691
 692                return 1;
 693        }
 694
 695        return 0;
 696}
 697
 698static void check_batteries(struct cardinfo *card)
 699{
 700        /* NOTE: this must *never* be called while the card
 701         * is doing (bus-to-card) DMA, or you will need the
 702         * reset switch
 703         */
 704        unsigned char status;
 705        int ret1, ret2;
 706
 707        status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 708        if (debug & DEBUG_BATTERY_POLLING)
 709                dev_printk(KERN_DEBUG, &card->dev->dev,
 710                        "checking battery status, 1 = %s, 2 = %s\n",
 711                       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
 712                       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
 713
 714        ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
 715        ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
 716
 717        if (ret1 || ret2)
 718                set_fault_to_battery_status(card);
 719}
 720
 721static void check_all_batteries(unsigned long ptr)
 722{
 723        int i;
 724
 725        for (i = 0; i < num_cards; i++)
 726                if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
 727                        struct cardinfo *card = &cards[i];
 728                        spin_lock_bh(&card->lock);
 729                        if (card->Active >= 0)
 730                                card->check_batteries = 1;
 731                        else
 732                                check_batteries(card);
 733                        spin_unlock_bh(&card->lock);
 734                }
 735
 736        init_battery_timer();
 737}
 738
 739static void init_battery_timer(void)
 740{
 741        init_timer(&battery_timer);
 742        battery_timer.function = check_all_batteries;
 743        battery_timer.expires = jiffies + (HZ * 60);
 744        add_timer(&battery_timer);
 745}
 746
 747static void del_battery_timer(void)
 748{
 749        del_timer(&battery_timer);
 750}
 751
 752/*
 753 * Note no locks taken out here.  In a worst case scenario, we could drop
 754 * a chunk of system memory.  But that should never happen, since validation
 755 * happens at open or mount time, when locks are held.
 756 *
 757 *      That's crap, since doing that while some partitions are opened
 758 * or mounted will give you really nasty results.
 759 */
 760static int mm_revalidate(struct gendisk *disk)
 761{
 762        struct cardinfo *card = disk->private_data;
 763        set_capacity(disk, card->mm_size << 1);
 764        return 0;
 765}
 766
 767static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 768{
 769        struct cardinfo *card = bdev->bd_disk->private_data;
 770        int size = card->mm_size * (1024 / MM_HARDSECT);
 771
 772        /*
 773         * get geometry: we have to fake one...  trim the size to a
 774         * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
 775         * whatever cylinders.
 776         */
 777        geo->heads     = 64;
 778        geo->sectors   = 32;
 779        geo->cylinders = size / (geo->heads * geo->sectors);
 780        return 0;
 781}
 782
 783static const struct block_device_operations mm_fops = {
 784        .owner          = THIS_MODULE,
 785        .getgeo         = mm_getgeo,
 786        .revalidate_disk = mm_revalidate,
 787};
 788
 789static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 790{
 791        int ret = -ENODEV;
 792        struct cardinfo *card = &cards[num_cards];
 793        unsigned char   mem_present;
 794        unsigned char   batt_status;
 795        unsigned int    saved_bar, data;
 796        unsigned long   csr_base;
 797        unsigned long   csr_len;
 798        int             magic_number;
 799        static int      printed_version;
 800
 801        if (!printed_version++)
 802                printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
 803
 804        ret = pci_enable_device(dev);
 805        if (ret)
 806                return ret;
 807
 808        pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
 809        pci_set_master(dev);
 810
 811        card->dev         = dev;
 812
 813        csr_base = pci_resource_start(dev, 0);
 814        csr_len  = pci_resource_len(dev, 0);
 815        if (!csr_base || !csr_len)
 816                return -ENODEV;
 817
 818        dev_printk(KERN_INFO, &dev->dev,
 819          "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
 820
 821        if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
 822            pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
 823                dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
 824                return  -ENOMEM;
 825        }
 826
 827        ret = pci_request_regions(dev, DRIVER_NAME);
 828        if (ret) {
 829                dev_printk(KERN_ERR, &card->dev->dev,
 830                        "Unable to request memory region\n");
 831                goto failed_req_csr;
 832        }
 833
 834        card->csr_remap = ioremap_nocache(csr_base, csr_len);
 835        if (!card->csr_remap) {
 836                dev_printk(KERN_ERR, &card->dev->dev,
 837                        "Unable to remap memory region\n");
 838                ret = -ENOMEM;
 839
 840                goto failed_remap_csr;
 841        }
 842
 843        dev_printk(KERN_INFO, &card->dev->dev,
 844                "CSR 0x%08lx -> 0x%p (0x%lx)\n",
 845               csr_base, card->csr_remap, csr_len);
 846
 847        switch (card->dev->device) {
 848        case 0x5415:
 849                card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
 850                magic_number = 0x59;
 851                break;
 852
 853        case 0x5425:
 854                card->flags |= UM_FLAG_NO_BYTE_STATUS;
 855                magic_number = 0x5C;
 856                break;
 857
 858        case 0x6155:
 859                card->flags |= UM_FLAG_NO_BYTE_STATUS |
 860                                UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
 861                magic_number = 0x99;
 862                break;
 863
 864        default:
 865                magic_number = 0x100;
 866                break;
 867        }
 868
 869        if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
 870                dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
 871                ret = -ENOMEM;
 872                goto failed_magic;
 873        }
 874
 875        card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
 876                                                PAGE_SIZE * 2,
 877                                                &card->mm_pages[0].page_dma);
 878        card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
 879                                                PAGE_SIZE * 2,
 880                                                &card->mm_pages[1].page_dma);
 881        if (card->mm_pages[0].desc == NULL ||
 882            card->mm_pages[1].desc == NULL) {
 883                dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
 884                goto failed_alloc;
 885        }
 886        reset_page(&card->mm_pages[0]);
 887        reset_page(&card->mm_pages[1]);
 888        card->Ready = 0;        /* page 0 is ready */
 889        card->Active = -1;      /* no page is active */
 890        card->bio = NULL;
 891        card->biotail = &card->bio;
 892
 893        card->queue = blk_alloc_queue(GFP_KERNEL);
 894        if (!card->queue)
 895                goto failed_alloc;
 896
 897        blk_queue_make_request(card->queue, mm_make_request);
 898        card->queue->queue_lock = &card->lock;
 899        card->queue->queuedata = card;
 900
 901        tasklet_init(&card->tasklet, process_page, (unsigned long)card);
 902
 903        card->check_batteries = 0;
 904
 905        mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
 906        switch (mem_present) {
 907        case MEM_128_MB:
 908                card->mm_size = 1024 * 128;
 909                break;
 910        case MEM_256_MB:
 911                card->mm_size = 1024 * 256;
 912                break;
 913        case MEM_512_MB:
 914                card->mm_size = 1024 * 512;
 915                break;
 916        case MEM_1_GB:
 917                card->mm_size = 1024 * 1024;
 918                break;
 919        case MEM_2_GB:
 920                card->mm_size = 1024 * 2048;
 921                break;
 922        default:
 923                card->mm_size = 0;
 924                break;
 925        }
 926
 927        /* Clear the LED's we control */
 928        set_led(card, LED_REMOVE, LED_OFF);
 929        set_led(card, LED_FAULT, LED_OFF);
 930
 931        batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 932
 933        card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
 934        card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
 935        card->battery[0].last_change = card->battery[1].last_change = jiffies;
 936
 937        if (card->flags & UM_FLAG_NO_BATT)
 938                dev_printk(KERN_INFO, &card->dev->dev,
 939                        "Size %d KB\n", card->mm_size);
 940        else {
 941                dev_printk(KERN_INFO, &card->dev->dev,
 942                        "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
 943                       card->mm_size,
 944                       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
 945                       card->battery[0].good ? "OK" : "FAILURE",
 946                       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
 947                       card->battery[1].good ? "OK" : "FAILURE");
 948
 949                set_fault_to_battery_status(card);
 950        }
 951
 952        pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
 953        data = 0xffffffff;
 954        pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
 955        pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
 956        pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
 957        data &= 0xfffffff0;
 958        data = ~data;
 959        data += 1;
 960
 961        if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
 962                        card)) {
 963                dev_printk(KERN_ERR, &card->dev->dev,
 964                        "Unable to allocate IRQ\n");
 965                ret = -ENODEV;
 966                goto failed_req_irq;
 967        }
 968
 969        dev_printk(KERN_INFO, &card->dev->dev,
 970                "Window size %d bytes, IRQ %d\n", data, dev->irq);
 971
 972        spin_lock_init(&card->lock);
 973
 974        pci_set_drvdata(dev, card);
 975
 976        if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
 977                pci_write_cmd = 0x07;   /* then Memory Write command */
 978
 979        if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
 980                unsigned short cfg_command;
 981                pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
 982                cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
 983                pci_write_config_word(dev, PCI_COMMAND, cfg_command);
 984        }
 985        pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
 986
 987        num_cards++;
 988
 989        if (!get_userbit(card, MEMORY_INITIALIZED)) {
 990                dev_printk(KERN_INFO, &card->dev->dev,
 991                  "memory NOT initialized. Consider over-writing whole device.\n");
 992                card->init_size = 0;
 993        } else {
 994                dev_printk(KERN_INFO, &card->dev->dev,
 995                        "memory already initialized\n");
 996                card->init_size = card->mm_size;
 997        }
 998
 999        /* Enable ECC */
1000        writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1001
1002        return 0;
1003
1004 failed_req_irq:
1005 failed_alloc:
1006        if (card->mm_pages[0].desc)
1007                pci_free_consistent(card->dev, PAGE_SIZE*2,
1008                                    card->mm_pages[0].desc,
1009                                    card->mm_pages[0].page_dma);
1010        if (card->mm_pages[1].desc)
1011                pci_free_consistent(card->dev, PAGE_SIZE*2,
1012                                    card->mm_pages[1].desc,
1013                                    card->mm_pages[1].page_dma);
1014 failed_magic:
1015        iounmap(card->csr_remap);
1016 failed_remap_csr:
1017        pci_release_regions(dev);
1018 failed_req_csr:
1019
1020        return ret;
1021}
1022
1023static void mm_pci_remove(struct pci_dev *dev)
1024{
1025        struct cardinfo *card = pci_get_drvdata(dev);
1026
1027        tasklet_kill(&card->tasklet);
1028        free_irq(dev->irq, card);
1029        iounmap(card->csr_remap);
1030
1031        if (card->mm_pages[0].desc)
1032                pci_free_consistent(card->dev, PAGE_SIZE*2,
1033                                    card->mm_pages[0].desc,
1034                                    card->mm_pages[0].page_dma);
1035        if (card->mm_pages[1].desc)
1036                pci_free_consistent(card->dev, PAGE_SIZE*2,
1037                                    card->mm_pages[1].desc,
1038                                    card->mm_pages[1].page_dma);
1039        blk_cleanup_queue(card->queue);
1040
1041        pci_release_regions(dev);
1042        pci_disable_device(dev);
1043}
1044
1045static const struct pci_device_id mm_pci_ids[] = {
1046    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1047    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1048    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1049    {
1050        .vendor =       0x8086,
1051        .device =       0xB555,
1052        .subvendor =    0x1332,
1053        .subdevice =    0x5460,
1054        .class =        0x050000,
1055        .class_mask =   0,
1056    }, { /* end: all zeroes */ }
1057};
1058
1059MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1060
1061static struct pci_driver mm_pci_driver = {
1062        .name           = DRIVER_NAME,
1063        .id_table       = mm_pci_ids,
1064        .probe          = mm_pci_probe,
1065        .remove         = mm_pci_remove,
1066};
1067
1068static int __init mm_init(void)
1069{
1070        int retval, i;
1071        int err;
1072
1073        retval = pci_register_driver(&mm_pci_driver);
1074        if (retval)
1075                return -ENOMEM;
1076
1077        err = major_nr = register_blkdev(0, DRIVER_NAME);
1078        if (err < 0) {
1079                pci_unregister_driver(&mm_pci_driver);
1080                return -EIO;
1081        }
1082
1083        for (i = 0; i < num_cards; i++) {
1084                mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1085                if (!mm_gendisk[i])
1086                        goto out;
1087        }
1088
1089        for (i = 0; i < num_cards; i++) {
1090                struct gendisk *disk = mm_gendisk[i];
1091                sprintf(disk->disk_name, "umem%c", 'a'+i);
1092                spin_lock_init(&cards[i].lock);
1093                disk->major = major_nr;
1094                disk->first_minor  = i << MM_SHIFT;
1095                disk->fops = &mm_fops;
1096                disk->private_data = &cards[i];
1097                disk->queue = cards[i].queue;
1098                set_capacity(disk, cards[i].mm_size << 1);
1099                add_disk(disk);
1100        }
1101
1102        init_battery_timer();
1103        printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1104/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1105        return 0;
1106
1107out:
1108        pci_unregister_driver(&mm_pci_driver);
1109        unregister_blkdev(major_nr, DRIVER_NAME);
1110        while (i--)
1111                put_disk(mm_gendisk[i]);
1112        return -ENOMEM;
1113}
1114
1115static void __exit mm_cleanup(void)
1116{
1117        int i;
1118
1119        del_battery_timer();
1120
1121        for (i = 0; i < num_cards ; i++) {
1122                del_gendisk(mm_gendisk[i]);
1123                put_disk(mm_gendisk[i]);
1124        }
1125
1126        pci_unregister_driver(&mm_pci_driver);
1127
1128        unregister_blkdev(major_nr, DRIVER_NAME);
1129}
1130
1131module_init(mm_init);
1132module_exit(mm_cleanup);
1133
1134MODULE_AUTHOR(DRIVER_AUTHOR);
1135MODULE_DESCRIPTION(DRIVER_DESC);
1136MODULE_LICENSE("GPL");
1137