linux/drivers/clocksource/dw_apb_timer.c
<<
>>
Prefs
   1/*
   2 * (C) Copyright 2009 Intel Corporation
   3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
   4 *
   5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * Support for the Synopsys DesignWare APB Timers.
  12 */
  13#include <linux/dw_apb_timer.h>
  14#include <linux/delay.h>
  15#include <linux/kernel.h>
  16#include <linux/interrupt.h>
  17#include <linux/irq.h>
  18#include <linux/io.h>
  19#include <linux/slab.h>
  20
  21#define APBT_MIN_PERIOD                 4
  22#define APBT_MIN_DELTA_USEC             200
  23
  24#define APBTMR_N_LOAD_COUNT             0x00
  25#define APBTMR_N_CURRENT_VALUE          0x04
  26#define APBTMR_N_CONTROL                0x08
  27#define APBTMR_N_EOI                    0x0c
  28#define APBTMR_N_INT_STATUS             0x10
  29
  30#define APBTMRS_INT_STATUS              0xa0
  31#define APBTMRS_EOI                     0xa4
  32#define APBTMRS_RAW_INT_STATUS          0xa8
  33#define APBTMRS_COMP_VERSION            0xac
  34
  35#define APBTMR_CONTROL_ENABLE           (1 << 0)
  36/* 1: periodic, 0:free running. */
  37#define APBTMR_CONTROL_MODE_PERIODIC    (1 << 1)
  38#define APBTMR_CONTROL_INT              (1 << 2)
  39
  40static inline struct dw_apb_clock_event_device *
  41ced_to_dw_apb_ced(struct clock_event_device *evt)
  42{
  43        return container_of(evt, struct dw_apb_clock_event_device, ced);
  44}
  45
  46static inline struct dw_apb_clocksource *
  47clocksource_to_dw_apb_clocksource(struct clocksource *cs)
  48{
  49        return container_of(cs, struct dw_apb_clocksource, cs);
  50}
  51
  52static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
  53{
  54        return readl(timer->base + offs);
  55}
  56
  57static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
  58                        unsigned long offs)
  59{
  60        writel(val, timer->base + offs);
  61}
  62
  63static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
  64{
  65        return readl_relaxed(timer->base + offs);
  66}
  67
  68static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
  69                        unsigned long offs)
  70{
  71        writel_relaxed(val, timer->base + offs);
  72}
  73
  74static void apbt_disable_int(struct dw_apb_timer *timer)
  75{
  76        u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
  77
  78        ctrl |= APBTMR_CONTROL_INT;
  79        apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
  80}
  81
  82/**
  83 * dw_apb_clockevent_pause() - stop the clock_event_device from running
  84 *
  85 * @dw_ced:     The APB clock to stop generating events.
  86 */
  87void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
  88{
  89        disable_irq(dw_ced->timer.irq);
  90        apbt_disable_int(&dw_ced->timer);
  91}
  92
  93static void apbt_eoi(struct dw_apb_timer *timer)
  94{
  95        apbt_readl_relaxed(timer, APBTMR_N_EOI);
  96}
  97
  98static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
  99{
 100        struct clock_event_device *evt = data;
 101        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 102
 103        if (!evt->event_handler) {
 104                pr_info("Spurious APBT timer interrupt %d\n", irq);
 105                return IRQ_NONE;
 106        }
 107
 108        if (dw_ced->eoi)
 109                dw_ced->eoi(&dw_ced->timer);
 110
 111        evt->event_handler(evt);
 112        return IRQ_HANDLED;
 113}
 114
 115static void apbt_enable_int(struct dw_apb_timer *timer)
 116{
 117        u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
 118        /* clear pending intr */
 119        apbt_readl(timer, APBTMR_N_EOI);
 120        ctrl &= ~APBTMR_CONTROL_INT;
 121        apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
 122}
 123
 124static int apbt_shutdown(struct clock_event_device *evt)
 125{
 126        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 127        u32 ctrl;
 128
 129        pr_debug("%s CPU %d state=shutdown\n", __func__,
 130                 cpumask_first(evt->cpumask));
 131
 132        ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
 133        ctrl &= ~APBTMR_CONTROL_ENABLE;
 134        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 135        return 0;
 136}
 137
 138static int apbt_set_oneshot(struct clock_event_device *evt)
 139{
 140        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 141        u32 ctrl;
 142
 143        pr_debug("%s CPU %d state=oneshot\n", __func__,
 144                 cpumask_first(evt->cpumask));
 145
 146        ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
 147        /*
 148         * set free running mode, this mode will let timer reload max
 149         * timeout which will give time (3min on 25MHz clock) to rearm
 150         * the next event, therefore emulate the one-shot mode.
 151         */
 152        ctrl &= ~APBTMR_CONTROL_ENABLE;
 153        ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
 154
 155        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 156        /* write again to set free running mode */
 157        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 158
 159        /*
 160         * DW APB p. 46, load counter with all 1s before starting free
 161         * running mode.
 162         */
 163        apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
 164        ctrl &= ~APBTMR_CONTROL_INT;
 165        ctrl |= APBTMR_CONTROL_ENABLE;
 166        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 167        return 0;
 168}
 169
 170static int apbt_set_periodic(struct clock_event_device *evt)
 171{
 172        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 173        unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
 174        u32 ctrl;
 175
 176        pr_debug("%s CPU %d state=periodic\n", __func__,
 177                 cpumask_first(evt->cpumask));
 178
 179        ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
 180        ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
 181        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 182        /*
 183         * DW APB p. 46, have to disable timer before load counter,
 184         * may cause sync problem.
 185         */
 186        ctrl &= ~APBTMR_CONTROL_ENABLE;
 187        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 188        udelay(1);
 189        pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
 190        apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
 191        ctrl |= APBTMR_CONTROL_ENABLE;
 192        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 193        return 0;
 194}
 195
 196static int apbt_resume(struct clock_event_device *evt)
 197{
 198        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 199
 200        pr_debug("%s CPU %d state=resume\n", __func__,
 201                 cpumask_first(evt->cpumask));
 202
 203        apbt_enable_int(&dw_ced->timer);
 204        return 0;
 205}
 206
 207static int apbt_next_event(unsigned long delta,
 208                           struct clock_event_device *evt)
 209{
 210        u32 ctrl;
 211        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 212
 213        /* Disable timer */
 214        ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
 215        ctrl &= ~APBTMR_CONTROL_ENABLE;
 216        apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 217        /* write new count */
 218        apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
 219        ctrl |= APBTMR_CONTROL_ENABLE;
 220        apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 221
 222        return 0;
 223}
 224
 225/**
 226 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
 227 *
 228 * @cpu:        The CPU the events will be targeted at.
 229 * @name:       The name used for the timer and the IRQ for it.
 230 * @rating:     The rating to give the timer.
 231 * @base:       I/O base for the timer registers.
 232 * @irq:        The interrupt number to use for the timer.
 233 * @freq:       The frequency that the timer counts at.
 234 *
 235 * This creates a clock_event_device for using with the generic clock layer
 236 * but does not start and register it.  This should be done with
 237 * dw_apb_clockevent_register() as the next step.  If this is the first time
 238 * it has been called for a timer then the IRQ will be requested, if not it
 239 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
 240 * releasing the IRQ.
 241 */
 242struct dw_apb_clock_event_device *
 243dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
 244                       void __iomem *base, int irq, unsigned long freq)
 245{
 246        struct dw_apb_clock_event_device *dw_ced =
 247                kzalloc(sizeof(*dw_ced), GFP_KERNEL);
 248        int err;
 249
 250        if (!dw_ced)
 251                return NULL;
 252
 253        dw_ced->timer.base = base;
 254        dw_ced->timer.irq = irq;
 255        dw_ced->timer.freq = freq;
 256
 257        clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
 258        dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
 259                                                       &dw_ced->ced);
 260        dw_ced->ced.max_delta_ticks = 0x7fffffff;
 261        dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
 262        dw_ced->ced.min_delta_ticks = 5000;
 263        dw_ced->ced.cpumask = cpumask_of(cpu);
 264        dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
 265                                CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
 266        dw_ced->ced.set_state_shutdown = apbt_shutdown;
 267        dw_ced->ced.set_state_periodic = apbt_set_periodic;
 268        dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
 269        dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
 270        dw_ced->ced.tick_resume = apbt_resume;
 271        dw_ced->ced.set_next_event = apbt_next_event;
 272        dw_ced->ced.irq = dw_ced->timer.irq;
 273        dw_ced->ced.rating = rating;
 274        dw_ced->ced.name = name;
 275
 276        dw_ced->irqaction.name          = dw_ced->ced.name;
 277        dw_ced->irqaction.handler       = dw_apb_clockevent_irq;
 278        dw_ced->irqaction.dev_id        = &dw_ced->ced;
 279        dw_ced->irqaction.irq           = irq;
 280        dw_ced->irqaction.flags         = IRQF_TIMER | IRQF_IRQPOLL |
 281                                          IRQF_NOBALANCING;
 282
 283        dw_ced->eoi = apbt_eoi;
 284        err = setup_irq(irq, &dw_ced->irqaction);
 285        if (err) {
 286                pr_err("failed to request timer irq\n");
 287                kfree(dw_ced);
 288                dw_ced = NULL;
 289        }
 290
 291        return dw_ced;
 292}
 293
 294/**
 295 * dw_apb_clockevent_resume() - resume a clock that has been paused.
 296 *
 297 * @dw_ced:     The APB clock to resume.
 298 */
 299void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
 300{
 301        enable_irq(dw_ced->timer.irq);
 302}
 303
 304/**
 305 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
 306 *
 307 * @dw_ced:     The APB clock to stop generating the events.
 308 */
 309void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
 310{
 311        free_irq(dw_ced->timer.irq, &dw_ced->ced);
 312}
 313
 314/**
 315 * dw_apb_clockevent_register() - register the clock with the generic layer
 316 *
 317 * @dw_ced:     The APB clock to register as a clock_event_device.
 318 */
 319void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
 320{
 321        apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
 322        clockevents_register_device(&dw_ced->ced);
 323        apbt_enable_int(&dw_ced->timer);
 324}
 325
 326/**
 327 * dw_apb_clocksource_start() - start the clocksource counting.
 328 *
 329 * @dw_cs:      The clocksource to start.
 330 *
 331 * This is used to start the clocksource before registration and can be used
 332 * to enable calibration of timers.
 333 */
 334void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
 335{
 336        /*
 337         * start count down from 0xffff_ffff. this is done by toggling the
 338         * enable bit then load initial load count to ~0.
 339         */
 340        u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
 341
 342        ctrl &= ~APBTMR_CONTROL_ENABLE;
 343        apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
 344        apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
 345        /* enable, mask interrupt */
 346        ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
 347        ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
 348        apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
 349        /* read it once to get cached counter value initialized */
 350        dw_apb_clocksource_read(dw_cs);
 351}
 352
 353static u64 __apbt_read_clocksource(struct clocksource *cs)
 354{
 355        u32 current_count;
 356        struct dw_apb_clocksource *dw_cs =
 357                clocksource_to_dw_apb_clocksource(cs);
 358
 359        current_count = apbt_readl_relaxed(&dw_cs->timer,
 360                                        APBTMR_N_CURRENT_VALUE);
 361
 362        return (u64)~current_count;
 363}
 364
 365static void apbt_restart_clocksource(struct clocksource *cs)
 366{
 367        struct dw_apb_clocksource *dw_cs =
 368                clocksource_to_dw_apb_clocksource(cs);
 369
 370        dw_apb_clocksource_start(dw_cs);
 371}
 372
 373/**
 374 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
 375 *
 376 * @rating:     The rating to give the clocksource.
 377 * @name:       The name for the clocksource.
 378 * @base:       The I/O base for the timer registers.
 379 * @freq:       The frequency that the timer counts at.
 380 *
 381 * This creates a clocksource using an APB timer but does not yet register it
 382 * with the clocksource system.  This should be done with
 383 * dw_apb_clocksource_register() as the next step.
 384 */
 385struct dw_apb_clocksource *
 386dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
 387                        unsigned long freq)
 388{
 389        struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
 390
 391        if (!dw_cs)
 392                return NULL;
 393
 394        dw_cs->timer.base = base;
 395        dw_cs->timer.freq = freq;
 396        dw_cs->cs.name = name;
 397        dw_cs->cs.rating = rating;
 398        dw_cs->cs.read = __apbt_read_clocksource;
 399        dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
 400        dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
 401        dw_cs->cs.resume = apbt_restart_clocksource;
 402
 403        return dw_cs;
 404}
 405
 406/**
 407 * dw_apb_clocksource_register() - register the APB clocksource.
 408 *
 409 * @dw_cs:      The clocksource to register.
 410 */
 411void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
 412{
 413        clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
 414}
 415
 416/**
 417 * dw_apb_clocksource_read() - read the current value of a clocksource.
 418 *
 419 * @dw_cs:      The clocksource to read.
 420 */
 421u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
 422{
 423        return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
 424}
 425