linux/drivers/cpufreq/brcmstb-avs-cpufreq.c
<<
>>
Prefs
   1/*
   2 * CPU frequency scaling for Broadcom SoCs with AVS firmware that
   3 * supports DVS or DVFS
   4 *
   5 * Copyright (c) 2016 Broadcom
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as
   9 * published by the Free Software Foundation version 2.
  10 *
  11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  12 * kind, whether express or implied; without even the implied warranty
  13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17/*
  18 * "AVS" is the name of a firmware developed at Broadcom. It derives
  19 * its name from the technique called "Adaptive Voltage Scaling".
  20 * Adaptive voltage scaling was the original purpose of this firmware.
  21 * The AVS firmware still supports "AVS mode", where all it does is
  22 * adaptive voltage scaling. However, on some newer Broadcom SoCs, the
  23 * AVS Firmware, despite its unchanged name, also supports DFS mode and
  24 * DVFS mode.
  25 *
  26 * In the context of this document and the related driver, "AVS" by
  27 * itself always means the Broadcom firmware and never refers to the
  28 * technique called "Adaptive Voltage Scaling".
  29 *
  30 * The Broadcom STB AVS CPUfreq driver provides voltage and frequency
  31 * scaling on Broadcom SoCs using AVS firmware with support for DFS and
  32 * DVFS. The AVS firmware is running on its own co-processor. The
  33 * driver supports both uniprocessor (UP) and symmetric multiprocessor
  34 * (SMP) systems which share clock and voltage across all CPUs.
  35 *
  36 * Actual voltage and frequency scaling is done solely by the AVS
  37 * firmware. This driver does not change frequency or voltage itself.
  38 * It provides a standard CPUfreq interface to the rest of the kernel
  39 * and to userland. It interfaces with the AVS firmware to effect the
  40 * requested changes and to report back the current system status in a
  41 * way that is expected by existing tools.
  42 */
  43
  44#include <linux/cpufreq.h>
  45#include <linux/interrupt.h>
  46#include <linux/io.h>
  47#include <linux/module.h>
  48#include <linux/of_address.h>
  49#include <linux/platform_device.h>
  50#include <linux/semaphore.h>
  51
  52#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
  53#include <linux/ctype.h>
  54#include <linux/debugfs.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#endif
  58
  59/* Max number of arguments AVS calls take */
  60#define AVS_MAX_CMD_ARGS        4
  61/*
  62 * This macro is used to generate AVS parameter register offsets. For
  63 * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
  64 * access outside of the parameter range. (Offset 0 is the first parameter.)
  65 */
  66#define AVS_PARAM_MULT(x)       ((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
  67
  68/* AVS Mailbox Register offsets */
  69#define AVS_MBOX_COMMAND        0x00
  70#define AVS_MBOX_STATUS         0x04
  71#define AVS_MBOX_VOLTAGE0       0x08
  72#define AVS_MBOX_TEMP0          0x0c
  73#define AVS_MBOX_PV0            0x10
  74#define AVS_MBOX_MV0            0x14
  75#define AVS_MBOX_PARAM(x)       (0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
  76#define AVS_MBOX_REVISION       0x28
  77#define AVS_MBOX_PSTATE         0x2c
  78#define AVS_MBOX_HEARTBEAT      0x30
  79#define AVS_MBOX_MAGIC          0x34
  80#define AVS_MBOX_SIGMA_HVT      0x38
  81#define AVS_MBOX_SIGMA_SVT      0x3c
  82#define AVS_MBOX_VOLTAGE1       0x40
  83#define AVS_MBOX_TEMP1          0x44
  84#define AVS_MBOX_PV1            0x48
  85#define AVS_MBOX_MV1            0x4c
  86#define AVS_MBOX_FREQUENCY      0x50
  87
  88/* AVS Commands */
  89#define AVS_CMD_AVAILABLE       0x00
  90#define AVS_CMD_DISABLE         0x10
  91#define AVS_CMD_ENABLE          0x11
  92#define AVS_CMD_S2_ENTER        0x12
  93#define AVS_CMD_S2_EXIT         0x13
  94#define AVS_CMD_BBM_ENTER       0x14
  95#define AVS_CMD_BBM_EXIT        0x15
  96#define AVS_CMD_S3_ENTER        0x16
  97#define AVS_CMD_S3_EXIT         0x17
  98#define AVS_CMD_BALANCE         0x18
  99/* PMAP and P-STATE commands */
 100#define AVS_CMD_GET_PMAP        0x30
 101#define AVS_CMD_SET_PMAP        0x31
 102#define AVS_CMD_GET_PSTATE      0x40
 103#define AVS_CMD_SET_PSTATE      0x41
 104
 105/* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
 106#define AVS_MODE_AVS            0x0
 107#define AVS_MODE_DFS            0x1
 108#define AVS_MODE_DVS            0x2
 109#define AVS_MODE_DVFS           0x3
 110
 111/*
 112 * PMAP parameter p1
 113 * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
 114 */
 115#define NDIV_INT_SHIFT          0
 116#define NDIV_INT_MASK           0x3ff
 117#define PDIV_SHIFT              10
 118#define PDIV_MASK               0xf
 119#define MDIV_P0_SHIFT           16
 120#define MDIV_P0_MASK            0xff
 121/*
 122 * PMAP parameter p2
 123 * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
 124 */
 125#define MDIV_P1_SHIFT           0
 126#define MDIV_P1_MASK            0xff
 127#define MDIV_P2_SHIFT           8
 128#define MDIV_P2_MASK            0xff
 129#define MDIV_P3_SHIFT           16
 130#define MDIV_P3_MASK            0xff
 131#define MDIV_P4_SHIFT           24
 132#define MDIV_P4_MASK            0xff
 133
 134/* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
 135#define AVS_PSTATE_P0           0x0
 136#define AVS_PSTATE_P1           0x1
 137#define AVS_PSTATE_P2           0x2
 138#define AVS_PSTATE_P3           0x3
 139#define AVS_PSTATE_P4           0x4
 140#define AVS_PSTATE_MAX          AVS_PSTATE_P4
 141
 142/* CPU L2 Interrupt Controller Registers */
 143#define AVS_CPU_L2_SET0         0x04
 144#define AVS_CPU_L2_INT_MASK     BIT(31)
 145
 146/* AVS Command Status Values */
 147#define AVS_STATUS_CLEAR        0x00
 148/* Command/notification accepted */
 149#define AVS_STATUS_SUCCESS      0xf0
 150/* Command/notification rejected */
 151#define AVS_STATUS_FAILURE      0xff
 152/* Invalid command/notification (unknown) */
 153#define AVS_STATUS_INVALID      0xf1
 154/* Non-AVS modes are not supported */
 155#define AVS_STATUS_NO_SUPP      0xf2
 156/* Cannot set P-State until P-Map supplied */
 157#define AVS_STATUS_NO_MAP       0xf3
 158/* Cannot change P-Map after initial P-Map set */
 159#define AVS_STATUS_MAP_SET      0xf4
 160/* Max AVS status; higher numbers are used for debugging */
 161#define AVS_STATUS_MAX          0xff
 162
 163/* Other AVS related constants */
 164#define AVS_LOOP_LIMIT          10000
 165#define AVS_TIMEOUT             300 /* in ms; expected completion is < 10ms */
 166#define AVS_FIRMWARE_MAGIC      0xa11600d1
 167
 168#define BRCM_AVS_CPUFREQ_PREFIX "brcmstb-avs"
 169#define BRCM_AVS_CPUFREQ_NAME   BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
 170#define BRCM_AVS_CPU_DATA       "brcm,avs-cpu-data-mem"
 171#define BRCM_AVS_CPU_INTR       "brcm,avs-cpu-l2-intr"
 172#define BRCM_AVS_HOST_INTR      "sw_intr"
 173
 174struct pmap {
 175        unsigned int mode;
 176        unsigned int p1;
 177        unsigned int p2;
 178        unsigned int state;
 179};
 180
 181struct private_data {
 182        void __iomem *base;
 183        void __iomem *avs_intr_base;
 184        struct device *dev;
 185#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
 186        struct dentry *debugfs;
 187#endif
 188        struct completion done;
 189        struct semaphore sem;
 190        struct pmap pmap;
 191};
 192
 193#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
 194
 195enum debugfs_format {
 196        DEBUGFS_NORMAL,
 197        DEBUGFS_FLOAT,
 198        DEBUGFS_REV,
 199};
 200
 201struct debugfs_data {
 202        struct debugfs_entry *entry;
 203        struct private_data *priv;
 204};
 205
 206struct debugfs_entry {
 207        char *name;
 208        u32 offset;
 209        fmode_t mode;
 210        enum debugfs_format format;
 211};
 212
 213#define DEBUGFS_ENTRY(name, mode, format)       { \
 214        #name, AVS_MBOX_##name, mode, format \
 215}
 216
 217/*
 218 * These are used for debugfs only. Otherwise we use AVS_MBOX_PARAM() directly.
 219 */
 220#define AVS_MBOX_PARAM1         AVS_MBOX_PARAM(0)
 221#define AVS_MBOX_PARAM2         AVS_MBOX_PARAM(1)
 222#define AVS_MBOX_PARAM3         AVS_MBOX_PARAM(2)
 223#define AVS_MBOX_PARAM4         AVS_MBOX_PARAM(3)
 224
 225/*
 226 * This table stores the name, access permissions and offset for each hardware
 227 * register and is used to generate debugfs entries.
 228 */
 229static struct debugfs_entry debugfs_entries[] = {
 230        DEBUGFS_ENTRY(COMMAND, S_IWUSR, DEBUGFS_NORMAL),
 231        DEBUGFS_ENTRY(STATUS, S_IWUSR, DEBUGFS_NORMAL),
 232        DEBUGFS_ENTRY(VOLTAGE0, 0, DEBUGFS_FLOAT),
 233        DEBUGFS_ENTRY(TEMP0, 0, DEBUGFS_FLOAT),
 234        DEBUGFS_ENTRY(PV0, 0, DEBUGFS_FLOAT),
 235        DEBUGFS_ENTRY(MV0, 0, DEBUGFS_FLOAT),
 236        DEBUGFS_ENTRY(PARAM1, S_IWUSR, DEBUGFS_NORMAL),
 237        DEBUGFS_ENTRY(PARAM2, S_IWUSR, DEBUGFS_NORMAL),
 238        DEBUGFS_ENTRY(PARAM3, S_IWUSR, DEBUGFS_NORMAL),
 239        DEBUGFS_ENTRY(PARAM4, S_IWUSR, DEBUGFS_NORMAL),
 240        DEBUGFS_ENTRY(REVISION, 0, DEBUGFS_REV),
 241        DEBUGFS_ENTRY(PSTATE, 0, DEBUGFS_NORMAL),
 242        DEBUGFS_ENTRY(HEARTBEAT, 0, DEBUGFS_NORMAL),
 243        DEBUGFS_ENTRY(MAGIC, S_IWUSR, DEBUGFS_NORMAL),
 244        DEBUGFS_ENTRY(SIGMA_HVT, 0, DEBUGFS_NORMAL),
 245        DEBUGFS_ENTRY(SIGMA_SVT, 0, DEBUGFS_NORMAL),
 246        DEBUGFS_ENTRY(VOLTAGE1, 0, DEBUGFS_FLOAT),
 247        DEBUGFS_ENTRY(TEMP1, 0, DEBUGFS_FLOAT),
 248        DEBUGFS_ENTRY(PV1, 0, DEBUGFS_FLOAT),
 249        DEBUGFS_ENTRY(MV1, 0, DEBUGFS_FLOAT),
 250        DEBUGFS_ENTRY(FREQUENCY, 0, DEBUGFS_NORMAL),
 251};
 252
 253static int brcm_avs_target_index(struct cpufreq_policy *, unsigned int);
 254
 255static char *__strtolower(char *s)
 256{
 257        char *p;
 258
 259        for (p = s; *p; p++)
 260                *p = tolower(*p);
 261
 262        return s;
 263}
 264
 265#endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */
 266
 267static void __iomem *__map_region(const char *name)
 268{
 269        struct device_node *np;
 270        void __iomem *ptr;
 271
 272        np = of_find_compatible_node(NULL, NULL, name);
 273        if (!np)
 274                return NULL;
 275
 276        ptr = of_iomap(np, 0);
 277        of_node_put(np);
 278
 279        return ptr;
 280}
 281
 282static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send,
 283                               u32 args[])
 284{
 285        unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT);
 286        void __iomem *base = priv->base;
 287        unsigned int i;
 288        int ret;
 289        u32 val;
 290
 291        ret = down_interruptible(&priv->sem);
 292        if (ret)
 293                return ret;
 294
 295        /*
 296         * Make sure no other command is currently running: cmd is 0 if AVS
 297         * co-processor is idle. Due to the guard above, we should almost never
 298         * have to wait here.
 299         */
 300        for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
 301                val = readl(base + AVS_MBOX_COMMAND);
 302
 303        /* Give the caller a chance to retry if AVS is busy. */
 304        if (i == AVS_LOOP_LIMIT) {
 305                ret = -EAGAIN;
 306                goto out;
 307        }
 308
 309        /* Clear status before we begin. */
 310        writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
 311
 312        /* We need to send arguments for this command. */
 313        if (args && is_send) {
 314                for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
 315                        writel(args[i], base + AVS_MBOX_PARAM(i));
 316        }
 317
 318        /* Protect from spurious interrupts. */
 319        reinit_completion(&priv->done);
 320
 321        /* Now issue the command & tell firmware to wake up to process it. */
 322        writel(cmd, base + AVS_MBOX_COMMAND);
 323        writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
 324
 325        /* Wait for AVS co-processor to finish processing the command. */
 326        time_left = wait_for_completion_timeout(&priv->done, time_left);
 327
 328        /*
 329         * If the AVS status is not in the expected range, it means AVS didn't
 330         * complete our command in time, and we return an error. Also, if there
 331         * is no "time left", we timed out waiting for the interrupt.
 332         */
 333        val = readl(base + AVS_MBOX_STATUS);
 334        if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
 335                dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
 336                        cmd);
 337                dev_err(priv->dev, "    Time left: %u ms, AVS status: %#x\n",
 338                        jiffies_to_msecs(time_left), val);
 339                ret = -ETIMEDOUT;
 340                goto out;
 341        }
 342
 343        /* This command returned arguments, so we read them back. */
 344        if (args && !is_send) {
 345                for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
 346                        args[i] = readl(base + AVS_MBOX_PARAM(i));
 347        }
 348
 349        /* Clear status to tell AVS co-processor we are done. */
 350        writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
 351
 352        /* Convert firmware errors to errno's as much as possible. */
 353        switch (val) {
 354        case AVS_STATUS_INVALID:
 355                ret = -EINVAL;
 356                break;
 357        case AVS_STATUS_NO_SUPP:
 358                ret = -ENOTSUPP;
 359                break;
 360        case AVS_STATUS_NO_MAP:
 361                ret = -ENOENT;
 362                break;
 363        case AVS_STATUS_MAP_SET:
 364                ret = -EEXIST;
 365                break;
 366        case AVS_STATUS_FAILURE:
 367                ret = -EIO;
 368                break;
 369        }
 370
 371out:
 372        up(&priv->sem);
 373
 374        return ret;
 375}
 376
 377static irqreturn_t irq_handler(int irq, void *data)
 378{
 379        struct private_data *priv = data;
 380
 381        /* AVS command completed execution. Wake up __issue_avs_command(). */
 382        complete(&priv->done);
 383
 384        return IRQ_HANDLED;
 385}
 386
 387static char *brcm_avs_mode_to_string(unsigned int mode)
 388{
 389        switch (mode) {
 390        case AVS_MODE_AVS:
 391                return "AVS";
 392        case AVS_MODE_DFS:
 393                return "DFS";
 394        case AVS_MODE_DVS:
 395                return "DVS";
 396        case AVS_MODE_DVFS:
 397                return "DVFS";
 398        }
 399        return NULL;
 400}
 401
 402static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
 403                              unsigned int *ndiv)
 404{
 405        *mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
 406        *pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
 407        *ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
 408}
 409
 410static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
 411                              unsigned int *mdiv_p2, unsigned int *mdiv_p3,
 412                              unsigned int *mdiv_p4)
 413{
 414        *mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
 415        *mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
 416        *mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
 417        *mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
 418}
 419
 420static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
 421{
 422        u32 args[AVS_MAX_CMD_ARGS];
 423        int ret;
 424
 425        ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args);
 426        if (ret || !pmap)
 427                return ret;
 428
 429        pmap->mode = args[0];
 430        pmap->p1 = args[1];
 431        pmap->p2 = args[2];
 432        pmap->state = args[3];
 433
 434        return 0;
 435}
 436
 437static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
 438{
 439        u32 args[AVS_MAX_CMD_ARGS];
 440
 441        args[0] = pmap->mode;
 442        args[1] = pmap->p1;
 443        args[2] = pmap->p2;
 444        args[3] = pmap->state;
 445
 446        return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args);
 447}
 448
 449static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
 450{
 451        u32 args[AVS_MAX_CMD_ARGS];
 452        int ret;
 453
 454        ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args);
 455        if (ret)
 456                return ret;
 457        *pstate = args[0];
 458
 459        return 0;
 460}
 461
 462static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
 463{
 464        u32 args[AVS_MAX_CMD_ARGS];
 465
 466        args[0] = pstate;
 467
 468        return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args);
 469}
 470
 471static unsigned long brcm_avs_get_voltage(void __iomem *base)
 472{
 473        return readl(base + AVS_MBOX_VOLTAGE1);
 474}
 475
 476static unsigned long brcm_avs_get_frequency(void __iomem *base)
 477{
 478        return readl(base + AVS_MBOX_FREQUENCY) * 1000; /* in kHz */
 479}
 480
 481/*
 482 * We determine which frequencies are supported by cycling through all P-states
 483 * and reading back what frequency we are running at for each P-state.
 484 */
 485static struct cpufreq_frequency_table *
 486brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
 487{
 488        struct cpufreq_frequency_table *table;
 489        unsigned int pstate;
 490        int i, ret;
 491
 492        /* Remember P-state for later */
 493        ret = brcm_avs_get_pstate(priv, &pstate);
 494        if (ret)
 495                return ERR_PTR(ret);
 496
 497        table = devm_kzalloc(dev, (AVS_PSTATE_MAX + 1) * sizeof(*table),
 498                             GFP_KERNEL);
 499        if (!table)
 500                return ERR_PTR(-ENOMEM);
 501
 502        for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
 503                ret = brcm_avs_set_pstate(priv, i);
 504                if (ret)
 505                        return ERR_PTR(ret);
 506                table[i].frequency = brcm_avs_get_frequency(priv->base);
 507                table[i].driver_data = i;
 508        }
 509        table[i].frequency = CPUFREQ_TABLE_END;
 510
 511        /* Restore P-state */
 512        ret = brcm_avs_set_pstate(priv, pstate);
 513        if (ret)
 514                return ERR_PTR(ret);
 515
 516        return table;
 517}
 518
 519#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
 520
 521#define MANT(x) (unsigned int)(abs((x)) / 1000)
 522#define FRAC(x) (unsigned int)(abs((x)) - abs((x)) / 1000 * 1000)
 523
 524static int brcm_avs_debug_show(struct seq_file *s, void *data)
 525{
 526        struct debugfs_data *dbgfs = s->private;
 527        void __iomem *base;
 528        u32 val, offset;
 529
 530        if (!dbgfs) {
 531                seq_puts(s, "No device pointer\n");
 532                return 0;
 533        }
 534
 535        base = dbgfs->priv->base;
 536        offset = dbgfs->entry->offset;
 537        val = readl(base + offset);
 538        switch (dbgfs->entry->format) {
 539        case DEBUGFS_NORMAL:
 540                seq_printf(s, "%u\n", val);
 541                break;
 542        case DEBUGFS_FLOAT:
 543                seq_printf(s, "%d.%03d\n", MANT(val), FRAC(val));
 544                break;
 545        case DEBUGFS_REV:
 546                seq_printf(s, "%c.%c.%c.%c\n", (val >> 24 & 0xff),
 547                           (val >> 16 & 0xff), (val >> 8 & 0xff),
 548                           val & 0xff);
 549                break;
 550        }
 551        seq_printf(s, "0x%08x\n", val);
 552
 553        return 0;
 554}
 555
 556#undef MANT
 557#undef FRAC
 558
 559static ssize_t brcm_avs_seq_write(struct file *file, const char __user *buf,
 560                                  size_t size, loff_t *ppos)
 561{
 562        struct seq_file *s = file->private_data;
 563        struct debugfs_data *dbgfs = s->private;
 564        struct private_data *priv = dbgfs->priv;
 565        void __iomem *base, *avs_intr_base;
 566        bool use_issue_command = false;
 567        unsigned long val, offset;
 568        char str[128];
 569        int ret;
 570        char *str_ptr = str;
 571
 572        if (size >= sizeof(str))
 573                return -E2BIG;
 574
 575        memset(str, 0, sizeof(str));
 576        ret = copy_from_user(str, buf, size);
 577        if (ret)
 578                return ret;
 579
 580        base = priv->base;
 581        avs_intr_base = priv->avs_intr_base;
 582        offset = dbgfs->entry->offset;
 583        /*
 584         * Special case writing to "command" entry only: if the string starts
 585         * with a 'c', we use the driver's __issue_avs_command() function.
 586         * Otherwise, we perform a raw write. This should allow testing of raw
 587         * access as well as using the higher level function. (Raw access
 588         * doesn't clear the firmware return status after issuing the command.)
 589         */
 590        if (str_ptr[0] == 'c' && offset == AVS_MBOX_COMMAND) {
 591                use_issue_command = true;
 592                str_ptr++;
 593        }
 594        if (kstrtoul(str_ptr, 0, &val) != 0)
 595                return -EINVAL;
 596
 597        /*
 598         * Setting the P-state is a special case. We need to update the CPU
 599         * frequency we report.
 600         */
 601        if (val == AVS_CMD_SET_PSTATE) {
 602                struct cpufreq_policy *policy;
 603                unsigned int pstate;
 604
 605                policy = cpufreq_cpu_get(smp_processor_id());
 606                /* Read back the P-state we are about to set */
 607                pstate = readl(base + AVS_MBOX_PARAM(0));
 608                if (use_issue_command) {
 609                        ret = brcm_avs_target_index(policy, pstate);
 610                        return ret ? ret : size;
 611                }
 612                policy->cur = policy->freq_table[pstate].frequency;
 613        }
 614
 615        if (use_issue_command) {
 616                ret = __issue_avs_command(priv, val, false, NULL);
 617        } else {
 618                /* Locking here is not perfect, but is only for debug. */
 619                ret = down_interruptible(&priv->sem);
 620                if (ret)
 621                        return ret;
 622
 623                writel(val, base + offset);
 624                /* We have to wake up the firmware to process a command. */
 625                if (offset == AVS_MBOX_COMMAND)
 626                        writel(AVS_CPU_L2_INT_MASK,
 627                               avs_intr_base + AVS_CPU_L2_SET0);
 628                up(&priv->sem);
 629        }
 630
 631        return ret ? ret : size;
 632}
 633
 634static struct debugfs_entry *__find_debugfs_entry(const char *name)
 635{
 636        int i;
 637
 638        for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++)
 639                if (strcasecmp(debugfs_entries[i].name, name) == 0)
 640                        return &debugfs_entries[i];
 641
 642        return NULL;
 643}
 644
 645static int brcm_avs_debug_open(struct inode *inode, struct file *file)
 646{
 647        struct debugfs_data *data;
 648        fmode_t fmode;
 649        int ret;
 650
 651        /*
 652         * seq_open(), which is called by single_open(), clears "write" access.
 653         * We need write access to some files, so we preserve our access mode
 654         * and restore it.
 655         */
 656        fmode = file->f_mode;
 657        /*
 658         * Check access permissions even for root. We don't want to be writing
 659         * to read-only registers. Access for regular users has already been
 660         * checked by the VFS layer.
 661         */
 662        if ((fmode & FMODE_WRITER) && !(inode->i_mode & S_IWUSR))
 663                return -EACCES;
 664
 665        data = kmalloc(sizeof(*data), GFP_KERNEL);
 666        if (!data)
 667                return -ENOMEM;
 668        /*
 669         * We use the same file system operations for all our debug files. To
 670         * produce specific output, we look up the file name upon opening a
 671         * debugfs entry and map it to a memory offset. This offset is then used
 672         * in the generic "show" function to read a specific register.
 673         */
 674        data->entry = __find_debugfs_entry(file->f_path.dentry->d_iname);
 675        data->priv = inode->i_private;
 676
 677        ret = single_open(file, brcm_avs_debug_show, data);
 678        if (ret)
 679                kfree(data);
 680        file->f_mode = fmode;
 681
 682        return ret;
 683}
 684
 685static int brcm_avs_debug_release(struct inode *inode, struct file *file)
 686{
 687        struct seq_file *seq_priv = file->private_data;
 688        struct debugfs_data *data = seq_priv->private;
 689
 690        kfree(data);
 691        return single_release(inode, file);
 692}
 693
 694static const struct file_operations brcm_avs_debug_ops = {
 695        .open           = brcm_avs_debug_open,
 696        .read           = seq_read,
 697        .write          = brcm_avs_seq_write,
 698        .llseek         = seq_lseek,
 699        .release        = brcm_avs_debug_release,
 700};
 701
 702static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev)
 703{
 704        struct private_data *priv = platform_get_drvdata(pdev);
 705        struct dentry *dir;
 706        int i;
 707
 708        if (!priv)
 709                return;
 710
 711        dir = debugfs_create_dir(BRCM_AVS_CPUFREQ_NAME, NULL);
 712        if (IS_ERR_OR_NULL(dir))
 713                return;
 714        priv->debugfs = dir;
 715
 716        for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++) {
 717                /*
 718                 * The DEBUGFS_ENTRY macro generates uppercase strings. We
 719                 * convert them to lowercase before creating the debugfs
 720                 * entries.
 721                 */
 722                char *entry = __strtolower(debugfs_entries[i].name);
 723                fmode_t mode = debugfs_entries[i].mode;
 724
 725                if (!debugfs_create_file(entry, S_IFREG | S_IRUGO | mode,
 726                                         dir, priv, &brcm_avs_debug_ops)) {
 727                        priv->debugfs = NULL;
 728                        debugfs_remove_recursive(dir);
 729                        break;
 730                }
 731        }
 732}
 733
 734static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev)
 735{
 736        struct private_data *priv = platform_get_drvdata(pdev);
 737
 738        if (priv && priv->debugfs) {
 739                debugfs_remove_recursive(priv->debugfs);
 740                priv->debugfs = NULL;
 741        }
 742}
 743
 744#else
 745
 746static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev) {}
 747static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev) {}
 748
 749#endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */
 750
 751/*
 752 * To ensure the right firmware is running we need to
 753 *    - check the MAGIC matches what we expect
 754 *    - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
 755 * We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
 756 */
 757static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
 758{
 759        u32 magic;
 760        int rc;
 761
 762        rc = brcm_avs_get_pmap(priv, NULL);
 763        magic = readl(priv->base + AVS_MBOX_MAGIC);
 764
 765        return (magic == AVS_FIRMWARE_MAGIC) && (rc != -ENOTSUPP) &&
 766                (rc != -EINVAL);
 767}
 768
 769static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
 770{
 771        struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 772        struct private_data *priv = policy->driver_data;
 773
 774        return brcm_avs_get_frequency(priv->base);
 775}
 776
 777static int brcm_avs_target_index(struct cpufreq_policy *policy,
 778                                 unsigned int index)
 779{
 780        return brcm_avs_set_pstate(policy->driver_data,
 781                                  policy->freq_table[index].driver_data);
 782}
 783
 784static int brcm_avs_suspend(struct cpufreq_policy *policy)
 785{
 786        struct private_data *priv = policy->driver_data;
 787        int ret;
 788
 789        ret = brcm_avs_get_pmap(priv, &priv->pmap);
 790        if (ret)
 791                return ret;
 792
 793        /*
 794         * We can't use the P-state returned by brcm_avs_get_pmap(), since
 795         * that's the initial P-state from when the P-map was downloaded to the
 796         * AVS co-processor, not necessarily the P-state we are running at now.
 797         * So, we get the current P-state explicitly.
 798         */
 799        return brcm_avs_get_pstate(priv, &priv->pmap.state);
 800}
 801
 802static int brcm_avs_resume(struct cpufreq_policy *policy)
 803{
 804        struct private_data *priv = policy->driver_data;
 805        int ret;
 806
 807        ret = brcm_avs_set_pmap(priv, &priv->pmap);
 808        if (ret == -EEXIST) {
 809                struct platform_device *pdev  = cpufreq_get_driver_data();
 810                struct device *dev = &pdev->dev;
 811
 812                dev_warn(dev, "PMAP was already set\n");
 813                ret = 0;
 814        }
 815
 816        return ret;
 817}
 818
 819/*
 820 * All initialization code that we only want to execute once goes here. Setup
 821 * code that can be re-tried on every core (if it failed before) can go into
 822 * brcm_avs_cpufreq_init().
 823 */
 824static int brcm_avs_prepare_init(struct platform_device *pdev)
 825{
 826        struct private_data *priv;
 827        struct device *dev;
 828        int host_irq, ret;
 829
 830        dev = &pdev->dev;
 831        priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
 832        if (!priv)
 833                return -ENOMEM;
 834
 835        priv->dev = dev;
 836        sema_init(&priv->sem, 1);
 837        init_completion(&priv->done);
 838        platform_set_drvdata(pdev, priv);
 839
 840        priv->base = __map_region(BRCM_AVS_CPU_DATA);
 841        if (!priv->base) {
 842                dev_err(dev, "Couldn't find property %s in device tree.\n",
 843                        BRCM_AVS_CPU_DATA);
 844                return -ENOENT;
 845        }
 846
 847        priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
 848        if (!priv->avs_intr_base) {
 849                dev_err(dev, "Couldn't find property %s in device tree.\n",
 850                        BRCM_AVS_CPU_INTR);
 851                ret = -ENOENT;
 852                goto unmap_base;
 853        }
 854
 855        host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
 856        if (host_irq < 0) {
 857                dev_err(dev, "Couldn't find interrupt %s -- %d\n",
 858                        BRCM_AVS_HOST_INTR, host_irq);
 859                ret = host_irq;
 860                goto unmap_intr_base;
 861        }
 862
 863        ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING,
 864                               BRCM_AVS_HOST_INTR, priv);
 865        if (ret) {
 866                dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
 867                        BRCM_AVS_HOST_INTR, host_irq, ret);
 868                goto unmap_intr_base;
 869        }
 870
 871        if (brcm_avs_is_firmware_loaded(priv))
 872                return 0;
 873
 874        dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
 875        ret = -ENODEV;
 876
 877unmap_intr_base:
 878        iounmap(priv->avs_intr_base);
 879unmap_base:
 880        iounmap(priv->base);
 881
 882        return ret;
 883}
 884
 885static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
 886{
 887        struct cpufreq_frequency_table *freq_table;
 888        struct platform_device *pdev;
 889        struct private_data *priv;
 890        struct device *dev;
 891        int ret;
 892
 893        pdev = cpufreq_get_driver_data();
 894        priv = platform_get_drvdata(pdev);
 895        policy->driver_data = priv;
 896        dev = &pdev->dev;
 897
 898        freq_table = brcm_avs_get_freq_table(dev, priv);
 899        if (IS_ERR(freq_table)) {
 900                ret = PTR_ERR(freq_table);
 901                dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
 902                return ret;
 903        }
 904
 905        ret = cpufreq_table_validate_and_show(policy, freq_table);
 906        if (ret) {
 907                dev_err(dev, "invalid frequency table: %d\n", ret);
 908                return ret;
 909        }
 910
 911        /* All cores share the same clock and thus the same policy. */
 912        cpumask_setall(policy->cpus);
 913
 914        ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL);
 915        if (!ret) {
 916                unsigned int pstate;
 917
 918                ret = brcm_avs_get_pstate(priv, &pstate);
 919                if (!ret) {
 920                        policy->cur = freq_table[pstate].frequency;
 921                        dev_info(dev, "registered\n");
 922                        return 0;
 923                }
 924        }
 925
 926        dev_err(dev, "couldn't initialize driver (%d)\n", ret);
 927
 928        return ret;
 929}
 930
 931static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
 932{
 933        struct private_data *priv = policy->driver_data;
 934        unsigned int pstate;
 935
 936        if (brcm_avs_get_pstate(priv, &pstate))
 937                return sprintf(buf, "<unknown>\n");
 938
 939        return sprintf(buf, "%u\n", pstate);
 940}
 941
 942static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
 943{
 944        struct private_data *priv = policy->driver_data;
 945        struct pmap pmap;
 946
 947        if (brcm_avs_get_pmap(priv, &pmap))
 948                return sprintf(buf, "<unknown>\n");
 949
 950        return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
 951                pmap.mode);
 952}
 953
 954static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
 955{
 956        unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
 957        struct private_data *priv = policy->driver_data;
 958        unsigned int ndiv, pdiv;
 959        struct pmap pmap;
 960
 961        if (brcm_avs_get_pmap(priv, &pmap))
 962                return sprintf(buf, "<unknown>\n");
 963
 964        brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
 965        brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
 966
 967        return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
 968                pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
 969                mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
 970}
 971
 972static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
 973{
 974        struct private_data *priv = policy->driver_data;
 975
 976        return sprintf(buf, "0x%08lx\n", brcm_avs_get_voltage(priv->base));
 977}
 978
 979static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
 980{
 981        struct private_data *priv = policy->driver_data;
 982
 983        return sprintf(buf, "0x%08lx\n", brcm_avs_get_frequency(priv->base));
 984}
 985
 986cpufreq_freq_attr_ro(brcm_avs_pstate);
 987cpufreq_freq_attr_ro(brcm_avs_mode);
 988cpufreq_freq_attr_ro(brcm_avs_pmap);
 989cpufreq_freq_attr_ro(brcm_avs_voltage);
 990cpufreq_freq_attr_ro(brcm_avs_frequency);
 991
 992static struct freq_attr *brcm_avs_cpufreq_attr[] = {
 993        &cpufreq_freq_attr_scaling_available_freqs,
 994        &brcm_avs_pstate,
 995        &brcm_avs_mode,
 996        &brcm_avs_pmap,
 997        &brcm_avs_voltage,
 998        &brcm_avs_frequency,
 999        NULL
1000};
1001
1002static struct cpufreq_driver brcm_avs_driver = {
1003        .flags          = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
1004        .verify         = cpufreq_generic_frequency_table_verify,
1005        .target_index   = brcm_avs_target_index,
1006        .get            = brcm_avs_cpufreq_get,
1007        .suspend        = brcm_avs_suspend,
1008        .resume         = brcm_avs_resume,
1009        .init           = brcm_avs_cpufreq_init,
1010        .attr           = brcm_avs_cpufreq_attr,
1011        .name           = BRCM_AVS_CPUFREQ_PREFIX,
1012};
1013
1014static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
1015{
1016        int ret;
1017
1018        ret = brcm_avs_prepare_init(pdev);
1019        if (ret)
1020                return ret;
1021
1022        brcm_avs_driver.driver_data = pdev;
1023        ret = cpufreq_register_driver(&brcm_avs_driver);
1024        if (!ret)
1025                brcm_avs_cpufreq_debug_init(pdev);
1026
1027        return ret;
1028}
1029
1030static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
1031{
1032        struct private_data *priv;
1033        int ret;
1034
1035        ret = cpufreq_unregister_driver(&brcm_avs_driver);
1036        if (ret)
1037                return ret;
1038
1039        brcm_avs_cpufreq_debug_exit(pdev);
1040
1041        priv = platform_get_drvdata(pdev);
1042        iounmap(priv->base);
1043        iounmap(priv->avs_intr_base);
1044
1045        return 0;
1046}
1047
1048static const struct of_device_id brcm_avs_cpufreq_match[] = {
1049        { .compatible = BRCM_AVS_CPU_DATA },
1050        { }
1051};
1052MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
1053
1054static struct platform_driver brcm_avs_cpufreq_platdrv = {
1055        .driver = {
1056                .name   = BRCM_AVS_CPUFREQ_NAME,
1057                .of_match_table = brcm_avs_cpufreq_match,
1058        },
1059        .probe          = brcm_avs_cpufreq_probe,
1060        .remove         = brcm_avs_cpufreq_remove,
1061};
1062module_platform_driver(brcm_avs_cpufreq_platdrv);
1063
1064MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
1065MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
1066MODULE_LICENSE("GPL");
1067