linux/drivers/cpuidle/cpuidle-big_little.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2013 ARM/Linaro
   3 *
   4 * Authors: Daniel Lezcano <daniel.lezcano@linaro.org>
   5 *          Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
   6 *          Nicolas Pitre <nicolas.pitre@linaro.org>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 *
  12 * Maintainer: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
  13 * Maintainer: Daniel Lezcano <daniel.lezcano@linaro.org>
  14 */
  15#include <linux/cpuidle.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19
  20#include <asm/cpu.h>
  21#include <asm/cputype.h>
  22#include <asm/cpuidle.h>
  23#include <asm/mcpm.h>
  24#include <asm/smp_plat.h>
  25#include <asm/suspend.h>
  26
  27#include "dt_idle_states.h"
  28
  29static int bl_enter_powerdown(struct cpuidle_device *dev,
  30                              struct cpuidle_driver *drv, int idx);
  31
  32/*
  33 * NB: Owing to current menu governor behaviour big and LITTLE
  34 * index 1 states have to define exit_latency and target_residency for
  35 * cluster state since, when all CPUs in a cluster hit it, the cluster
  36 * can be shutdown. This means that when a single CPU enters this state
  37 * the exit_latency and target_residency values are somewhat overkill.
  38 * There is no notion of cluster states in the menu governor, so CPUs
  39 * have to define CPU states where possibly the cluster will be shutdown
  40 * depending on the state of other CPUs. idle states entry and exit happen
  41 * at random times; however the cluster state provides target_residency
  42 * values as if all CPUs in a cluster enter the state at once; this is
  43 * somewhat optimistic and behaviour should be fixed either in the governor
  44 * or in the MCPM back-ends.
  45 * To make this driver 100% generic the number of states and the exit_latency
  46 * target_residency values must be obtained from device tree bindings.
  47 *
  48 * exit_latency: refers to the TC2 vexpress test chip and depends on the
  49 * current cluster operating point. It is the time it takes to get the CPU
  50 * up and running when the CPU is powered up on cluster wake-up from shutdown.
  51 * Current values for big and LITTLE clusters are provided for clusters
  52 * running at default operating points.
  53 *
  54 * target_residency: it is the minimum amount of time the cluster has
  55 * to be down to break even in terms of power consumption. cluster
  56 * shutdown has inherent dynamic power costs (L2 writebacks to DRAM
  57 * being the main factor) that depend on the current operating points.
  58 * The current values for both clusters are provided for a CPU whose half
  59 * of L2 lines are dirty and require cleaning to DRAM, and takes into
  60 * account leakage static power values related to the vexpress TC2 testchip.
  61 */
  62static struct cpuidle_driver bl_idle_little_driver = {
  63        .name = "little_idle",
  64        .owner = THIS_MODULE,
  65        .states[0] = ARM_CPUIDLE_WFI_STATE,
  66        .states[1] = {
  67                .enter                  = bl_enter_powerdown,
  68                .exit_latency           = 700,
  69                .target_residency       = 2500,
  70                .flags                  = CPUIDLE_FLAG_TIMER_STOP,
  71                .name                   = "C1",
  72                .desc                   = "ARM little-cluster power down",
  73        },
  74        .state_count = 2,
  75};
  76
  77static const struct of_device_id bl_idle_state_match[] __initconst = {
  78        { .compatible = "arm,idle-state",
  79          .data = bl_enter_powerdown },
  80        { },
  81};
  82
  83static struct cpuidle_driver bl_idle_big_driver = {
  84        .name = "big_idle",
  85        .owner = THIS_MODULE,
  86        .states[0] = ARM_CPUIDLE_WFI_STATE,
  87        .states[1] = {
  88                .enter                  = bl_enter_powerdown,
  89                .exit_latency           = 500,
  90                .target_residency       = 2000,
  91                .flags                  = CPUIDLE_FLAG_TIMER_STOP,
  92                .name                   = "C1",
  93                .desc                   = "ARM big-cluster power down",
  94        },
  95        .state_count = 2,
  96};
  97
  98/*
  99 * notrace prevents trace shims from getting inserted where they
 100 * should not. Global jumps and ldrex/strex must not be inserted
 101 * in power down sequences where caches and MMU may be turned off.
 102 */
 103static int notrace bl_powerdown_finisher(unsigned long arg)
 104{
 105        /* MCPM works with HW CPU identifiers */
 106        unsigned int mpidr = read_cpuid_mpidr();
 107        unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 108        unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 109
 110        mcpm_set_entry_vector(cpu, cluster, cpu_resume);
 111        mcpm_cpu_suspend();
 112
 113        /* return value != 0 means failure */
 114        return 1;
 115}
 116
 117/**
 118 * bl_enter_powerdown - Programs CPU to enter the specified state
 119 * @dev: cpuidle device
 120 * @drv: The target state to be programmed
 121 * @idx: state index
 122 *
 123 * Called from the CPUidle framework to program the device to the
 124 * specified target state selected by the governor.
 125 */
 126static int bl_enter_powerdown(struct cpuidle_device *dev,
 127                                struct cpuidle_driver *drv, int idx)
 128{
 129        cpu_pm_enter();
 130
 131        cpu_suspend(0, bl_powerdown_finisher);
 132
 133        /* signals the MCPM core that CPU is out of low power state */
 134        mcpm_cpu_powered_up();
 135
 136        cpu_pm_exit();
 137
 138        return idx;
 139}
 140
 141static int __init bl_idle_driver_init(struct cpuidle_driver *drv, int part_id)
 142{
 143        struct cpumask *cpumask;
 144        int cpu;
 145
 146        cpumask = kzalloc(cpumask_size(), GFP_KERNEL);
 147        if (!cpumask)
 148                return -ENOMEM;
 149
 150        for_each_possible_cpu(cpu)
 151                if (smp_cpuid_part(cpu) == part_id)
 152                        cpumask_set_cpu(cpu, cpumask);
 153
 154        drv->cpumask = cpumask;
 155
 156        return 0;
 157}
 158
 159static const struct of_device_id compatible_machine_match[] = {
 160        { .compatible = "arm,vexpress,v2p-ca15_a7" },
 161        { .compatible = "samsung,exynos5420" },
 162        { .compatible = "samsung,exynos5800" },
 163        {},
 164};
 165
 166static int __init bl_idle_init(void)
 167{
 168        int ret;
 169        struct device_node *root = of_find_node_by_path("/");
 170
 171        if (!root)
 172                return -ENODEV;
 173
 174        /*
 175         * Initialize the driver just for a compliant set of machines
 176         */
 177        if (!of_match_node(compatible_machine_match, root))
 178                return -ENODEV;
 179
 180        if (!mcpm_is_available())
 181                return -EUNATCH;
 182
 183        /*
 184         * For now the differentiation between little and big cores
 185         * is based on the part number. A7 cores are considered little
 186         * cores, A15 are considered big cores. This distinction may
 187         * evolve in the future with a more generic matching approach.
 188         */
 189        ret = bl_idle_driver_init(&bl_idle_little_driver,
 190                                  ARM_CPU_PART_CORTEX_A7);
 191        if (ret)
 192                return ret;
 193
 194        ret = bl_idle_driver_init(&bl_idle_big_driver, ARM_CPU_PART_CORTEX_A15);
 195        if (ret)
 196                goto out_uninit_little;
 197
 198        /* Start at index 1, index 0 standard WFI */
 199        ret = dt_init_idle_driver(&bl_idle_big_driver, bl_idle_state_match, 1);
 200        if (ret < 0)
 201                goto out_uninit_big;
 202
 203        /* Start at index 1, index 0 standard WFI */
 204        ret = dt_init_idle_driver(&bl_idle_little_driver,
 205                                  bl_idle_state_match, 1);
 206        if (ret < 0)
 207                goto out_uninit_big;
 208
 209        ret = cpuidle_register(&bl_idle_little_driver, NULL);
 210        if (ret)
 211                goto out_uninit_big;
 212
 213        ret = cpuidle_register(&bl_idle_big_driver, NULL);
 214        if (ret)
 215                goto out_unregister_little;
 216
 217        return 0;
 218
 219out_unregister_little:
 220        cpuidle_unregister(&bl_idle_little_driver);
 221out_uninit_big:
 222        kfree(bl_idle_big_driver.cpumask);
 223out_uninit_little:
 224        kfree(bl_idle_little_driver.cpumask);
 225
 226        return ret;
 227}
 228device_initcall(bl_idle_init);
 229