linux/drivers/gpu/drm/drm_mm.c
<<
>>
Prefs
   1/**************************************************************************
   2 *
   3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
   4 * Copyright 2016 Intel Corporation
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 *
  28 **************************************************************************/
  29
  30/*
  31 * Generic simple memory manager implementation. Intended to be used as a base
  32 * class implementation for more advanced memory managers.
  33 *
  34 * Note that the algorithm used is quite simple and there might be substantial
  35 * performance gains if a smarter free list is implemented. Currently it is
  36 * just an unordered stack of free regions. This could easily be improved if
  37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
  38 *
  39 * Aligned allocations can also see improvement.
  40 *
  41 * Authors:
  42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
  43 */
  44
  45#include <drm/drmP.h>
  46#include <drm/drm_mm.h>
  47#include <linux/slab.h>
  48#include <linux/seq_file.h>
  49#include <linux/export.h>
  50#include <linux/interval_tree_generic.h>
  51
  52/**
  53 * DOC: Overview
  54 *
  55 * drm_mm provides a simple range allocator. The drivers are free to use the
  56 * resource allocator from the linux core if it suits them, the upside of drm_mm
  57 * is that it's in the DRM core. Which means that it's easier to extend for
  58 * some of the crazier special purpose needs of gpus.
  59 *
  60 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
  61 * Drivers are free to embed either of them into their own suitable
  62 * datastructures. drm_mm itself will not do any memory allocations of its own,
  63 * so if drivers choose not to embed nodes they need to still allocate them
  64 * themselves.
  65 *
  66 * The range allocator also supports reservation of preallocated blocks. This is
  67 * useful for taking over initial mode setting configurations from the firmware,
  68 * where an object needs to be created which exactly matches the firmware's
  69 * scanout target. As long as the range is still free it can be inserted anytime
  70 * after the allocator is initialized, which helps with avoiding looped
  71 * dependencies in the driver load sequence.
  72 *
  73 * drm_mm maintains a stack of most recently freed holes, which of all
  74 * simplistic datastructures seems to be a fairly decent approach to clustering
  75 * allocations and avoiding too much fragmentation. This means free space
  76 * searches are O(num_holes). Given that all the fancy features drm_mm supports
  77 * something better would be fairly complex and since gfx thrashing is a fairly
  78 * steep cliff not a real concern. Removing a node again is O(1).
  79 *
  80 * drm_mm supports a few features: Alignment and range restrictions can be
  81 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
  82 * opaque unsigned long) which in conjunction with a driver callback can be used
  83 * to implement sophisticated placement restrictions. The i915 DRM driver uses
  84 * this to implement guard pages between incompatible caching domains in the
  85 * graphics TT.
  86 *
  87 * Two behaviors are supported for searching and allocating: bottom-up and
  88 * top-down. The default is bottom-up. Top-down allocation can be used if the
  89 * memory area has different restrictions, or just to reduce fragmentation.
  90 *
  91 * Finally iteration helpers to walk all nodes and all holes are provided as are
  92 * some basic allocator dumpers for debugging.
  93 *
  94 * Note that this range allocator is not thread-safe, drivers need to protect
  95 * modifications with their on locking. The idea behind this is that for a full
  96 * memory manager additional data needs to be protected anyway, hence internal
  97 * locking would be fully redundant.
  98 */
  99
 100#ifdef CONFIG_DRM_DEBUG_MM
 101#include <linux/stackdepot.h>
 102
 103#define STACKDEPTH 32
 104#define BUFSZ 4096
 105
 106static noinline void save_stack(struct drm_mm_node *node)
 107{
 108        unsigned long entries[STACKDEPTH];
 109        struct stack_trace trace = {
 110                .entries = entries,
 111                .max_entries = STACKDEPTH,
 112                .skip = 1
 113        };
 114
 115        save_stack_trace(&trace);
 116        if (trace.nr_entries != 0 &&
 117            trace.entries[trace.nr_entries-1] == ULONG_MAX)
 118                trace.nr_entries--;
 119
 120        /* May be called under spinlock, so avoid sleeping */
 121        node->stack = depot_save_stack(&trace, GFP_NOWAIT);
 122}
 123
 124static void show_leaks(struct drm_mm *mm)
 125{
 126        struct drm_mm_node *node;
 127        unsigned long entries[STACKDEPTH];
 128        char *buf;
 129
 130        buf = kmalloc(BUFSZ, GFP_KERNEL);
 131        if (!buf)
 132                return;
 133
 134        list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
 135                struct stack_trace trace = {
 136                        .entries = entries,
 137                        .max_entries = STACKDEPTH
 138                };
 139
 140                if (!node->stack) {
 141                        DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
 142                                  node->start, node->size);
 143                        continue;
 144                }
 145
 146                depot_fetch_stack(node->stack, &trace);
 147                snprint_stack_trace(buf, BUFSZ, &trace, 0);
 148                DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
 149                          node->start, node->size, buf);
 150        }
 151
 152        kfree(buf);
 153}
 154
 155#undef STACKDEPTH
 156#undef BUFSZ
 157#else
 158static void save_stack(struct drm_mm_node *node) { }
 159static void show_leaks(struct drm_mm *mm) { }
 160#endif
 161
 162#define START(node) ((node)->start)
 163#define LAST(node)  ((node)->start + (node)->size - 1)
 164
 165INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
 166                     u64, __subtree_last,
 167                     START, LAST, static inline, drm_mm_interval_tree)
 168
 169struct drm_mm_node *
 170__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
 171{
 172        return drm_mm_interval_tree_iter_first((struct rb_root *)&mm->interval_tree,
 173                                               start, last) ?: (struct drm_mm_node *)&mm->head_node;
 174}
 175EXPORT_SYMBOL(__drm_mm_interval_first);
 176
 177static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
 178                                          struct drm_mm_node *node)
 179{
 180        struct drm_mm *mm = hole_node->mm;
 181        struct rb_node **link, *rb;
 182        struct drm_mm_node *parent;
 183
 184        node->__subtree_last = LAST(node);
 185
 186        if (hole_node->allocated) {
 187                rb = &hole_node->rb;
 188                while (rb) {
 189                        parent = rb_entry(rb, struct drm_mm_node, rb);
 190                        if (parent->__subtree_last >= node->__subtree_last)
 191                                break;
 192
 193                        parent->__subtree_last = node->__subtree_last;
 194                        rb = rb_parent(rb);
 195                }
 196
 197                rb = &hole_node->rb;
 198                link = &hole_node->rb.rb_right;
 199        } else {
 200                rb = NULL;
 201                link = &mm->interval_tree.rb_node;
 202        }
 203
 204        while (*link) {
 205                rb = *link;
 206                parent = rb_entry(rb, struct drm_mm_node, rb);
 207                if (parent->__subtree_last < node->__subtree_last)
 208                        parent->__subtree_last = node->__subtree_last;
 209                if (node->start < parent->start)
 210                        link = &parent->rb.rb_left;
 211                else
 212                        link = &parent->rb.rb_right;
 213        }
 214
 215        rb_link_node(&node->rb, rb, link);
 216        rb_insert_augmented(&node->rb,
 217                            &mm->interval_tree,
 218                            &drm_mm_interval_tree_augment);
 219}
 220
 221#define RB_INSERT(root, member, expr) do { \
 222        struct rb_node **link = &root.rb_node, *rb = NULL; \
 223        u64 x = expr(node); \
 224        while (*link) { \
 225                rb = *link; \
 226                if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
 227                        link = &rb->rb_left; \
 228                else \
 229                        link = &rb->rb_right; \
 230        } \
 231        rb_link_node(&node->member, rb, link); \
 232        rb_insert_color(&node->member, &root); \
 233} while (0)
 234
 235#define HOLE_SIZE(NODE) ((NODE)->hole_size)
 236#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
 237
 238static void add_hole(struct drm_mm_node *node)
 239{
 240        struct drm_mm *mm = node->mm;
 241
 242        node->hole_size =
 243                __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
 244        DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
 245
 246        RB_INSERT(mm->holes_size, rb_hole_size, HOLE_SIZE);
 247        RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
 248
 249        list_add(&node->hole_stack, &mm->hole_stack);
 250}
 251
 252static void rm_hole(struct drm_mm_node *node)
 253{
 254        DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
 255
 256        list_del(&node->hole_stack);
 257        rb_erase(&node->rb_hole_size, &node->mm->holes_size);
 258        rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
 259        node->hole_size = 0;
 260
 261        DRM_MM_BUG_ON(drm_mm_hole_follows(node));
 262}
 263
 264static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
 265{
 266        return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
 267}
 268
 269static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
 270{
 271        return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
 272}
 273
 274static inline u64 rb_hole_size(struct rb_node *rb)
 275{
 276        return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
 277}
 278
 279static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
 280{
 281        struct rb_node *best = NULL;
 282        struct rb_node **link = &mm->holes_size.rb_node;
 283
 284        while (*link) {
 285                struct rb_node *rb = *link;
 286
 287                if (size <= rb_hole_size(rb)) {
 288                        link = &rb->rb_left;
 289                        best = rb;
 290                } else {
 291                        link = &rb->rb_right;
 292                }
 293        }
 294
 295        return rb_hole_size_to_node(best);
 296}
 297
 298static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
 299{
 300        struct drm_mm_node *node = NULL;
 301        struct rb_node **link = &mm->holes_addr.rb_node;
 302
 303        while (*link) {
 304                u64 hole_start;
 305
 306                node = rb_hole_addr_to_node(*link);
 307                hole_start = __drm_mm_hole_node_start(node);
 308
 309                if (addr < hole_start)
 310                        link = &node->rb_hole_addr.rb_left;
 311                else if (addr > hole_start + node->hole_size)
 312                        link = &node->rb_hole_addr.rb_right;
 313                else
 314                        break;
 315        }
 316
 317        return node;
 318}
 319
 320static struct drm_mm_node *
 321first_hole(struct drm_mm *mm,
 322           u64 start, u64 end, u64 size,
 323           enum drm_mm_insert_mode mode)
 324{
 325        if (RB_EMPTY_ROOT(&mm->holes_size))
 326                return NULL;
 327
 328        switch (mode) {
 329        default:
 330        case DRM_MM_INSERT_BEST:
 331                return best_hole(mm, size);
 332
 333        case DRM_MM_INSERT_LOW:
 334                return find_hole(mm, start);
 335
 336        case DRM_MM_INSERT_HIGH:
 337                return find_hole(mm, end);
 338
 339        case DRM_MM_INSERT_EVICT:
 340                return list_first_entry_or_null(&mm->hole_stack,
 341                                                struct drm_mm_node,
 342                                                hole_stack);
 343        }
 344}
 345
 346static struct drm_mm_node *
 347next_hole(struct drm_mm *mm,
 348          struct drm_mm_node *node,
 349          enum drm_mm_insert_mode mode)
 350{
 351        switch (mode) {
 352        default:
 353        case DRM_MM_INSERT_BEST:
 354                return rb_hole_size_to_node(rb_next(&node->rb_hole_size));
 355
 356        case DRM_MM_INSERT_LOW:
 357                return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
 358
 359        case DRM_MM_INSERT_HIGH:
 360                return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
 361
 362        case DRM_MM_INSERT_EVICT:
 363                node = list_next_entry(node, hole_stack);
 364                return &node->hole_stack == &mm->hole_stack ? NULL : node;
 365        }
 366}
 367
 368/**
 369 * drm_mm_reserve_node - insert an pre-initialized node
 370 * @mm: drm_mm allocator to insert @node into
 371 * @node: drm_mm_node to insert
 372 *
 373 * This functions inserts an already set-up &drm_mm_node into the allocator,
 374 * meaning that start, size and color must be set by the caller. All other
 375 * fields must be cleared to 0. This is useful to initialize the allocator with
 376 * preallocated objects which must be set-up before the range allocator can be
 377 * set-up, e.g. when taking over a firmware framebuffer.
 378 *
 379 * Returns:
 380 * 0 on success, -ENOSPC if there's no hole where @node is.
 381 */
 382int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
 383{
 384        u64 end = node->start + node->size;
 385        struct drm_mm_node *hole;
 386        u64 hole_start, hole_end;
 387        u64 adj_start, adj_end;
 388
 389        end = node->start + node->size;
 390        if (unlikely(end <= node->start))
 391                return -ENOSPC;
 392
 393        /* Find the relevant hole to add our node to */
 394        hole = find_hole(mm, node->start);
 395        if (!hole)
 396                return -ENOSPC;
 397
 398        adj_start = hole_start = __drm_mm_hole_node_start(hole);
 399        adj_end = hole_end = hole_start + hole->hole_size;
 400
 401        if (mm->color_adjust)
 402                mm->color_adjust(hole, node->color, &adj_start, &adj_end);
 403
 404        if (adj_start > node->start || adj_end < end)
 405                return -ENOSPC;
 406
 407        node->mm = mm;
 408
 409        list_add(&node->node_list, &hole->node_list);
 410        drm_mm_interval_tree_add_node(hole, node);
 411        node->allocated = true;
 412        node->hole_size = 0;
 413
 414        rm_hole(hole);
 415        if (node->start > hole_start)
 416                add_hole(hole);
 417        if (end < hole_end)
 418                add_hole(node);
 419
 420        save_stack(node);
 421        return 0;
 422}
 423EXPORT_SYMBOL(drm_mm_reserve_node);
 424
 425/**
 426 * drm_mm_insert_node_in_range - ranged search for space and insert @node
 427 * @mm: drm_mm to allocate from
 428 * @node: preallocate node to insert
 429 * @size: size of the allocation
 430 * @alignment: alignment of the allocation
 431 * @color: opaque tag value to use for this node
 432 * @range_start: start of the allowed range for this node
 433 * @range_end: end of the allowed range for this node
 434 * @mode: fine-tune the allocation search and placement
 435 *
 436 * The preallocated @node must be cleared to 0.
 437 *
 438 * Returns:
 439 * 0 on success, -ENOSPC if there's no suitable hole.
 440 */
 441int drm_mm_insert_node_in_range(struct drm_mm * const mm,
 442                                struct drm_mm_node * const node,
 443                                u64 size, u64 alignment,
 444                                unsigned long color,
 445                                u64 range_start, u64 range_end,
 446                                enum drm_mm_insert_mode mode)
 447{
 448        struct drm_mm_node *hole;
 449        u64 remainder_mask;
 450
 451        DRM_MM_BUG_ON(range_start >= range_end);
 452
 453        if (unlikely(size == 0 || range_end - range_start < size))
 454                return -ENOSPC;
 455
 456        if (alignment <= 1)
 457                alignment = 0;
 458
 459        remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
 460        for (hole = first_hole(mm, range_start, range_end, size, mode); hole;
 461             hole = next_hole(mm, hole, mode)) {
 462                u64 hole_start = __drm_mm_hole_node_start(hole);
 463                u64 hole_end = hole_start + hole->hole_size;
 464                u64 adj_start, adj_end;
 465                u64 col_start, col_end;
 466
 467                if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
 468                        break;
 469
 470                if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
 471                        break;
 472
 473                col_start = hole_start;
 474                col_end = hole_end;
 475                if (mm->color_adjust)
 476                        mm->color_adjust(hole, color, &col_start, &col_end);
 477
 478                adj_start = max(col_start, range_start);
 479                adj_end = min(col_end, range_end);
 480
 481                if (adj_end <= adj_start || adj_end - adj_start < size)
 482                        continue;
 483
 484                if (mode == DRM_MM_INSERT_HIGH)
 485                        adj_start = adj_end - size;
 486
 487                if (alignment) {
 488                        u64 rem;
 489
 490                        if (likely(remainder_mask))
 491                                rem = adj_start & remainder_mask;
 492                        else
 493                                div64_u64_rem(adj_start, alignment, &rem);
 494                        if (rem) {
 495                                adj_start -= rem;
 496                                if (mode != DRM_MM_INSERT_HIGH)
 497                                        adj_start += alignment;
 498
 499                                if (adj_start < max(col_start, range_start) ||
 500                                    min(col_end, range_end) - adj_start < size)
 501                                        continue;
 502
 503                                if (adj_end <= adj_start ||
 504                                    adj_end - adj_start < size)
 505                                        continue;
 506                        }
 507                }
 508
 509                node->mm = mm;
 510                node->size = size;
 511                node->start = adj_start;
 512                node->color = color;
 513                node->hole_size = 0;
 514
 515                list_add(&node->node_list, &hole->node_list);
 516                drm_mm_interval_tree_add_node(hole, node);
 517                node->allocated = true;
 518
 519                rm_hole(hole);
 520                if (adj_start > hole_start)
 521                        add_hole(hole);
 522                if (adj_start + size < hole_end)
 523                        add_hole(node);
 524
 525                save_stack(node);
 526                return 0;
 527        }
 528
 529        return -ENOSPC;
 530}
 531EXPORT_SYMBOL(drm_mm_insert_node_in_range);
 532
 533/**
 534 * drm_mm_remove_node - Remove a memory node from the allocator.
 535 * @node: drm_mm_node to remove
 536 *
 537 * This just removes a node from its drm_mm allocator. The node does not need to
 538 * be cleared again before it can be re-inserted into this or any other drm_mm
 539 * allocator. It is a bug to call this function on a unallocated node.
 540 */
 541void drm_mm_remove_node(struct drm_mm_node *node)
 542{
 543        struct drm_mm *mm = node->mm;
 544        struct drm_mm_node *prev_node;
 545
 546        DRM_MM_BUG_ON(!node->allocated);
 547        DRM_MM_BUG_ON(node->scanned_block);
 548
 549        prev_node = list_prev_entry(node, node_list);
 550
 551        if (drm_mm_hole_follows(node))
 552                rm_hole(node);
 553
 554        drm_mm_interval_tree_remove(node, &mm->interval_tree);
 555        list_del(&node->node_list);
 556        node->allocated = false;
 557
 558        if (drm_mm_hole_follows(prev_node))
 559                rm_hole(prev_node);
 560        add_hole(prev_node);
 561}
 562EXPORT_SYMBOL(drm_mm_remove_node);
 563
 564/**
 565 * drm_mm_replace_node - move an allocation from @old to @new
 566 * @old: drm_mm_node to remove from the allocator
 567 * @new: drm_mm_node which should inherit @old's allocation
 568 *
 569 * This is useful for when drivers embed the drm_mm_node structure and hence
 570 * can't move allocations by reassigning pointers. It's a combination of remove
 571 * and insert with the guarantee that the allocation start will match.
 572 */
 573void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
 574{
 575        DRM_MM_BUG_ON(!old->allocated);
 576
 577        *new = *old;
 578
 579        list_replace(&old->node_list, &new->node_list);
 580        rb_replace_node(&old->rb, &new->rb, &old->mm->interval_tree);
 581
 582        if (drm_mm_hole_follows(old)) {
 583                list_replace(&old->hole_stack, &new->hole_stack);
 584                rb_replace_node(&old->rb_hole_size,
 585                                &new->rb_hole_size,
 586                                &old->mm->holes_size);
 587                rb_replace_node(&old->rb_hole_addr,
 588                                &new->rb_hole_addr,
 589                                &old->mm->holes_addr);
 590        }
 591
 592        old->allocated = false;
 593        new->allocated = true;
 594}
 595EXPORT_SYMBOL(drm_mm_replace_node);
 596
 597/**
 598 * DOC: lru scan roster
 599 *
 600 * Very often GPUs need to have continuous allocations for a given object. When
 601 * evicting objects to make space for a new one it is therefore not most
 602 * efficient when we simply start to select all objects from the tail of an LRU
 603 * until there's a suitable hole: Especially for big objects or nodes that
 604 * otherwise have special allocation constraints there's a good chance we evict
 605 * lots of (smaller) objects unnecessarily.
 606 *
 607 * The DRM range allocator supports this use-case through the scanning
 608 * interfaces. First a scan operation needs to be initialized with
 609 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
 610 * objects to the roster, probably by walking an LRU list, but this can be
 611 * freely implemented. Eviction candiates are added using
 612 * drm_mm_scan_add_block() until a suitable hole is found or there are no
 613 * further evictable objects. Eviction roster metadata is tracked in &struct
 614 * drm_mm_scan.
 615 *
 616 * The driver must walk through all objects again in exactly the reverse
 617 * order to restore the allocator state. Note that while the allocator is used
 618 * in the scan mode no other operation is allowed.
 619 *
 620 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
 621 * reported true) in the scan, and any overlapping nodes after color adjustment
 622 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
 623 * since freeing a node is also O(1) the overall complexity is
 624 * O(scanned_objects). So like the free stack which needs to be walked before a
 625 * scan operation even begins this is linear in the number of objects. It
 626 * doesn't seem to hurt too badly.
 627 */
 628
 629/**
 630 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
 631 * @scan: scan state
 632 * @mm: drm_mm to scan
 633 * @size: size of the allocation
 634 * @alignment: alignment of the allocation
 635 * @color: opaque tag value to use for the allocation
 636 * @start: start of the allowed range for the allocation
 637 * @end: end of the allowed range for the allocation
 638 * @mode: fine-tune the allocation search and placement
 639 *
 640 * This simply sets up the scanning routines with the parameters for the desired
 641 * hole.
 642 *
 643 * Warning:
 644 * As long as the scan list is non-empty, no other operations than
 645 * adding/removing nodes to/from the scan list are allowed.
 646 */
 647void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
 648                                 struct drm_mm *mm,
 649                                 u64 size,
 650                                 u64 alignment,
 651                                 unsigned long color,
 652                                 u64 start,
 653                                 u64 end,
 654                                 enum drm_mm_insert_mode mode)
 655{
 656        DRM_MM_BUG_ON(start >= end);
 657        DRM_MM_BUG_ON(!size || size > end - start);
 658        DRM_MM_BUG_ON(mm->scan_active);
 659
 660        scan->mm = mm;
 661
 662        if (alignment <= 1)
 663                alignment = 0;
 664
 665        scan->color = color;
 666        scan->alignment = alignment;
 667        scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
 668        scan->size = size;
 669        scan->mode = mode;
 670
 671        DRM_MM_BUG_ON(end <= start);
 672        scan->range_start = start;
 673        scan->range_end = end;
 674
 675        scan->hit_start = U64_MAX;
 676        scan->hit_end = 0;
 677}
 678EXPORT_SYMBOL(drm_mm_scan_init_with_range);
 679
 680/**
 681 * drm_mm_scan_add_block - add a node to the scan list
 682 * @scan: the active drm_mm scanner
 683 * @node: drm_mm_node to add
 684 *
 685 * Add a node to the scan list that might be freed to make space for the desired
 686 * hole.
 687 *
 688 * Returns:
 689 * True if a hole has been found, false otherwise.
 690 */
 691bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
 692                           struct drm_mm_node *node)
 693{
 694        struct drm_mm *mm = scan->mm;
 695        struct drm_mm_node *hole;
 696        u64 hole_start, hole_end;
 697        u64 col_start, col_end;
 698        u64 adj_start, adj_end;
 699
 700        DRM_MM_BUG_ON(node->mm != mm);
 701        DRM_MM_BUG_ON(!node->allocated);
 702        DRM_MM_BUG_ON(node->scanned_block);
 703        node->scanned_block = true;
 704        mm->scan_active++;
 705
 706        /* Remove this block from the node_list so that we enlarge the hole
 707         * (distance between the end of our previous node and the start of
 708         * or next), without poisoning the link so that we can restore it
 709         * later in drm_mm_scan_remove_block().
 710         */
 711        hole = list_prev_entry(node, node_list);
 712        DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
 713        __list_del_entry(&node->node_list);
 714
 715        hole_start = __drm_mm_hole_node_start(hole);
 716        hole_end = __drm_mm_hole_node_end(hole);
 717
 718        col_start = hole_start;
 719        col_end = hole_end;
 720        if (mm->color_adjust)
 721                mm->color_adjust(hole, scan->color, &col_start, &col_end);
 722
 723        adj_start = max(col_start, scan->range_start);
 724        adj_end = min(col_end, scan->range_end);
 725        if (adj_end <= adj_start || adj_end - adj_start < scan->size)
 726                return false;
 727
 728        if (scan->mode == DRM_MM_INSERT_HIGH)
 729                adj_start = adj_end - scan->size;
 730
 731        if (scan->alignment) {
 732                u64 rem;
 733
 734                if (likely(scan->remainder_mask))
 735                        rem = adj_start & scan->remainder_mask;
 736                else
 737                        div64_u64_rem(adj_start, scan->alignment, &rem);
 738                if (rem) {
 739                        adj_start -= rem;
 740                        if (scan->mode != DRM_MM_INSERT_HIGH)
 741                                adj_start += scan->alignment;
 742                        if (adj_start < max(col_start, scan->range_start) ||
 743                            min(col_end, scan->range_end) - adj_start < scan->size)
 744                                return false;
 745
 746                        if (adj_end <= adj_start ||
 747                            adj_end - adj_start < scan->size)
 748                                return false;
 749                }
 750        }
 751
 752        scan->hit_start = adj_start;
 753        scan->hit_end = adj_start + scan->size;
 754
 755        DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
 756        DRM_MM_BUG_ON(scan->hit_start < hole_start);
 757        DRM_MM_BUG_ON(scan->hit_end > hole_end);
 758
 759        return true;
 760}
 761EXPORT_SYMBOL(drm_mm_scan_add_block);
 762
 763/**
 764 * drm_mm_scan_remove_block - remove a node from the scan list
 765 * @scan: the active drm_mm scanner
 766 * @node: drm_mm_node to remove
 767 *
 768 * Nodes **must** be removed in exactly the reverse order from the scan list as
 769 * they have been added (e.g. using list_add() as they are added and then
 770 * list_for_each() over that eviction list to remove), otherwise the internal
 771 * state of the memory manager will be corrupted.
 772 *
 773 * When the scan list is empty, the selected memory nodes can be freed. An
 774 * immediately following drm_mm_insert_node_in_range_generic() or one of the
 775 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
 776 * the just freed block (because its at the top of the free_stack list).
 777 *
 778 * Returns:
 779 * True if this block should be evicted, false otherwise. Will always
 780 * return false when no hole has been found.
 781 */
 782bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
 783                              struct drm_mm_node *node)
 784{
 785        struct drm_mm_node *prev_node;
 786
 787        DRM_MM_BUG_ON(node->mm != scan->mm);
 788        DRM_MM_BUG_ON(!node->scanned_block);
 789        node->scanned_block = false;
 790
 791        DRM_MM_BUG_ON(!node->mm->scan_active);
 792        node->mm->scan_active--;
 793
 794        /* During drm_mm_scan_add_block() we decoupled this node leaving
 795         * its pointers intact. Now that the caller is walking back along
 796         * the eviction list we can restore this block into its rightful
 797         * place on the full node_list. To confirm that the caller is walking
 798         * backwards correctly we check that prev_node->next == node->next,
 799         * i.e. both believe the same node should be on the other side of the
 800         * hole.
 801         */
 802        prev_node = list_prev_entry(node, node_list);
 803        DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
 804                      list_next_entry(node, node_list));
 805        list_add(&node->node_list, &prev_node->node_list);
 806
 807        return (node->start + node->size > scan->hit_start &&
 808                node->start < scan->hit_end);
 809}
 810EXPORT_SYMBOL(drm_mm_scan_remove_block);
 811
 812/**
 813 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
 814 * @scan: drm_mm scan with target hole
 815 *
 816 * After completing an eviction scan and removing the selected nodes, we may
 817 * need to remove a few more nodes from either side of the target hole if
 818 * mm.color_adjust is being used.
 819 *
 820 * Returns:
 821 * A node to evict, or NULL if there are no overlapping nodes.
 822 */
 823struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
 824{
 825        struct drm_mm *mm = scan->mm;
 826        struct drm_mm_node *hole;
 827        u64 hole_start, hole_end;
 828
 829        DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
 830
 831        if (!mm->color_adjust)
 832                return NULL;
 833
 834        hole = list_first_entry(&mm->hole_stack, typeof(*hole), hole_stack);
 835        hole_start = __drm_mm_hole_node_start(hole);
 836        hole_end = hole_start + hole->hole_size;
 837
 838        DRM_MM_BUG_ON(hole_start > scan->hit_start);
 839        DRM_MM_BUG_ON(hole_end < scan->hit_end);
 840
 841        mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
 842        if (hole_start > scan->hit_start)
 843                return hole;
 844        if (hole_end < scan->hit_end)
 845                return list_next_entry(hole, node_list);
 846
 847        return NULL;
 848}
 849EXPORT_SYMBOL(drm_mm_scan_color_evict);
 850
 851/**
 852 * drm_mm_init - initialize a drm-mm allocator
 853 * @mm: the drm_mm structure to initialize
 854 * @start: start of the range managed by @mm
 855 * @size: end of the range managed by @mm
 856 *
 857 * Note that @mm must be cleared to 0 before calling this function.
 858 */
 859void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
 860{
 861        DRM_MM_BUG_ON(start + size <= start);
 862
 863        mm->color_adjust = NULL;
 864
 865        INIT_LIST_HEAD(&mm->hole_stack);
 866        mm->interval_tree = RB_ROOT;
 867        mm->holes_size = RB_ROOT;
 868        mm->holes_addr = RB_ROOT;
 869
 870        /* Clever trick to avoid a special case in the free hole tracking. */
 871        INIT_LIST_HEAD(&mm->head_node.node_list);
 872        mm->head_node.allocated = false;
 873        mm->head_node.mm = mm;
 874        mm->head_node.start = start + size;
 875        mm->head_node.size = -size;
 876        add_hole(&mm->head_node);
 877
 878        mm->scan_active = 0;
 879}
 880EXPORT_SYMBOL(drm_mm_init);
 881
 882/**
 883 * drm_mm_takedown - clean up a drm_mm allocator
 884 * @mm: drm_mm allocator to clean up
 885 *
 886 * Note that it is a bug to call this function on an allocator which is not
 887 * clean.
 888 */
 889void drm_mm_takedown(struct drm_mm *mm)
 890{
 891        if (WARN(!drm_mm_clean(mm),
 892                 "Memory manager not clean during takedown.\n"))
 893                show_leaks(mm);
 894}
 895EXPORT_SYMBOL(drm_mm_takedown);
 896
 897static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
 898{
 899        u64 start, size;
 900
 901        size = entry->hole_size;
 902        if (size) {
 903                start = drm_mm_hole_node_start(entry);
 904                drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
 905                           start, start + size, size);
 906        }
 907
 908        return size;
 909}
 910/**
 911 * drm_mm_print - print allocator state
 912 * @mm: drm_mm allocator to print
 913 * @p: DRM printer to use
 914 */
 915void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
 916{
 917        const struct drm_mm_node *entry;
 918        u64 total_used = 0, total_free = 0, total = 0;
 919
 920        total_free += drm_mm_dump_hole(p, &mm->head_node);
 921
 922        drm_mm_for_each_node(entry, mm) {
 923                drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
 924                           entry->start + entry->size, entry->size);
 925                total_used += entry->size;
 926                total_free += drm_mm_dump_hole(p, entry);
 927        }
 928        total = total_free + total_used;
 929
 930        drm_printf(p, "total: %llu, used %llu free %llu\n", total,
 931                   total_used, total_free);
 932}
 933EXPORT_SYMBOL(drm_mm_print);
 934