linux/drivers/gpu/drm/i915/intel_lrc.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 134#include <linux/interrupt.h>
 135
 136#include <drm/drmP.h>
 137#include <drm/i915_drm.h>
 138#include "i915_drv.h"
 139#include "intel_mocs.h"
 140
 141#define RING_EXECLIST_QFULL             (1 << 0x2)
 142#define RING_EXECLIST1_VALID            (1 << 0x3)
 143#define RING_EXECLIST0_VALID            (1 << 0x4)
 144#define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
 145#define RING_EXECLIST1_ACTIVE           (1 << 0x11)
 146#define RING_EXECLIST0_ACTIVE           (1 << 0x12)
 147
 148#define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
 149#define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
 150#define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
 151#define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
 152#define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
 153#define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
 154
 155#define GEN8_CTX_STATUS_COMPLETED_MASK \
 156         (GEN8_CTX_STATUS_ACTIVE_IDLE | \
 157          GEN8_CTX_STATUS_PREEMPTED | \
 158          GEN8_CTX_STATUS_ELEMENT_SWITCH)
 159
 160#define CTX_LRI_HEADER_0                0x01
 161#define CTX_CONTEXT_CONTROL             0x02
 162#define CTX_RING_HEAD                   0x04
 163#define CTX_RING_TAIL                   0x06
 164#define CTX_RING_BUFFER_START           0x08
 165#define CTX_RING_BUFFER_CONTROL         0x0a
 166#define CTX_BB_HEAD_U                   0x0c
 167#define CTX_BB_HEAD_L                   0x0e
 168#define CTX_BB_STATE                    0x10
 169#define CTX_SECOND_BB_HEAD_U            0x12
 170#define CTX_SECOND_BB_HEAD_L            0x14
 171#define CTX_SECOND_BB_STATE             0x16
 172#define CTX_BB_PER_CTX_PTR              0x18
 173#define CTX_RCS_INDIRECT_CTX            0x1a
 174#define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
 175#define CTX_LRI_HEADER_1                0x21
 176#define CTX_CTX_TIMESTAMP               0x22
 177#define CTX_PDP3_UDW                    0x24
 178#define CTX_PDP3_LDW                    0x26
 179#define CTX_PDP2_UDW                    0x28
 180#define CTX_PDP2_LDW                    0x2a
 181#define CTX_PDP1_UDW                    0x2c
 182#define CTX_PDP1_LDW                    0x2e
 183#define CTX_PDP0_UDW                    0x30
 184#define CTX_PDP0_LDW                    0x32
 185#define CTX_LRI_HEADER_2                0x41
 186#define CTX_R_PWR_CLK_STATE             0x42
 187#define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
 188
 189#define CTX_REG(reg_state, pos, reg, val) do { \
 190        (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
 191        (reg_state)[(pos)+1] = (val); \
 192} while (0)
 193
 194#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
 195        const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
 196        reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
 197        reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
 198} while (0)
 199
 200#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
 201        reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
 202        reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
 203} while (0)
 204
 205#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
 206#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
 207#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT       0x19
 208
 209/* Typical size of the average request (2 pipecontrols and a MI_BB) */
 210#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
 211
 212#define WA_TAIL_DWORDS 2
 213
 214static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
 215                                            struct intel_engine_cs *engine);
 216static void execlists_init_reg_state(u32 *reg_state,
 217                                     struct i915_gem_context *ctx,
 218                                     struct intel_engine_cs *engine,
 219                                     struct intel_ring *ring);
 220
 221/**
 222 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 223 * @dev_priv: i915 device private
 224 * @enable_execlists: value of i915.enable_execlists module parameter.
 225 *
 226 * Only certain platforms support Execlists (the prerequisites being
 227 * support for Logical Ring Contexts and Aliasing PPGTT or better).
 228 *
 229 * Return: 1 if Execlists is supported and has to be enabled.
 230 */
 231int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
 232{
 233        /* On platforms with execlist available, vGPU will only
 234         * support execlist mode, no ring buffer mode.
 235         */
 236        if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
 237                return 1;
 238
 239        if (INTEL_GEN(dev_priv) >= 9)
 240                return 1;
 241
 242        if (enable_execlists == 0)
 243                return 0;
 244
 245        if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
 246            USES_PPGTT(dev_priv) &&
 247            i915.use_mmio_flip >= 0)
 248                return 1;
 249
 250        return 0;
 251}
 252
 253/**
 254 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 255 *                                        descriptor for a pinned context
 256 * @ctx: Context to work on
 257 * @engine: Engine the descriptor will be used with
 258 *
 259 * The context descriptor encodes various attributes of a context,
 260 * including its GTT address and some flags. Because it's fairly
 261 * expensive to calculate, we'll just do it once and cache the result,
 262 * which remains valid until the context is unpinned.
 263 *
 264 * This is what a descriptor looks like, from LSB to MSB::
 265 *
 266 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
 267 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 268 *      bits 32-52:    ctx ID, a globally unique tag
 269 *      bits 53-54:    mbz, reserved for use by hardware
 270 *      bits 55-63:    group ID, currently unused and set to 0
 271 */
 272static void
 273intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
 274                                   struct intel_engine_cs *engine)
 275{
 276        struct intel_context *ce = &ctx->engine[engine->id];
 277        u64 desc;
 278
 279        BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
 280
 281        desc = ctx->desc_template;                              /* bits  0-11 */
 282        desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
 283                                                                /* bits 12-31 */
 284        desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
 285
 286        ce->lrc_desc = desc;
 287}
 288
 289uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
 290                                     struct intel_engine_cs *engine)
 291{
 292        return ctx->engine[engine->id].lrc_desc;
 293}
 294
 295static inline void
 296execlists_context_status_change(struct drm_i915_gem_request *rq,
 297                                unsigned long status)
 298{
 299        /*
 300         * Only used when GVT-g is enabled now. When GVT-g is disabled,
 301         * The compiler should eliminate this function as dead-code.
 302         */
 303        if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
 304                return;
 305
 306        atomic_notifier_call_chain(&rq->engine->context_status_notifier,
 307                                   status, rq);
 308}
 309
 310static void
 311execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
 312{
 313        ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
 314        ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
 315        ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
 316        ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
 317}
 318
 319static u64 execlists_update_context(struct drm_i915_gem_request *rq)
 320{
 321        struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
 322        struct i915_hw_ppgtt *ppgtt =
 323                rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
 324        u32 *reg_state = ce->lrc_reg_state;
 325
 326        reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
 327
 328        /* True 32b PPGTT with dynamic page allocation: update PDP
 329         * registers and point the unallocated PDPs to scratch page.
 330         * PML4 is allocated during ppgtt init, so this is not needed
 331         * in 48-bit mode.
 332         */
 333        if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
 334                execlists_update_context_pdps(ppgtt, reg_state);
 335
 336        return ce->lrc_desc;
 337}
 338
 339static void execlists_submit_ports(struct intel_engine_cs *engine)
 340{
 341        struct execlist_port *port = engine->execlist_port;
 342        u32 __iomem *elsp =
 343                engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
 344        unsigned int n;
 345
 346        for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
 347                struct drm_i915_gem_request *rq;
 348                unsigned int count;
 349                u64 desc;
 350
 351                rq = port_unpack(&port[n], &count);
 352                if (rq) {
 353                        GEM_BUG_ON(count > !n);
 354                        if (!count++)
 355                                execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
 356                        port_set(&port[n], port_pack(rq, count));
 357                        desc = execlists_update_context(rq);
 358                        GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
 359                } else {
 360                        GEM_BUG_ON(!n);
 361                        desc = 0;
 362                }
 363
 364                writel(upper_32_bits(desc), elsp);
 365                writel(lower_32_bits(desc), elsp);
 366        }
 367}
 368
 369static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
 370{
 371        return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
 372                i915_gem_context_force_single_submission(ctx));
 373}
 374
 375static bool can_merge_ctx(const struct i915_gem_context *prev,
 376                          const struct i915_gem_context *next)
 377{
 378        if (prev != next)
 379                return false;
 380
 381        if (ctx_single_port_submission(prev))
 382                return false;
 383
 384        return true;
 385}
 386
 387static void port_assign(struct execlist_port *port,
 388                        struct drm_i915_gem_request *rq)
 389{
 390        GEM_BUG_ON(rq == port_request(port));
 391
 392        if (port_isset(port))
 393                i915_gem_request_put(port_request(port));
 394
 395        port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
 396}
 397
 398static void execlists_dequeue(struct intel_engine_cs *engine)
 399{
 400        struct drm_i915_gem_request *last;
 401        struct execlist_port *port = engine->execlist_port;
 402        struct rb_node *rb;
 403        bool submit = false;
 404
 405        last = port_request(port);
 406        if (last)
 407                /* WaIdleLiteRestore:bdw,skl
 408                 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
 409                 * as we resubmit the request. See gen8_emit_breadcrumb()
 410                 * for where we prepare the padding after the end of the
 411                 * request.
 412                 */
 413                last->tail = last->wa_tail;
 414
 415        GEM_BUG_ON(port_isset(&port[1]));
 416
 417        /* Hardware submission is through 2 ports. Conceptually each port
 418         * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
 419         * static for a context, and unique to each, so we only execute
 420         * requests belonging to a single context from each ring. RING_HEAD
 421         * is maintained by the CS in the context image, it marks the place
 422         * where it got up to last time, and through RING_TAIL we tell the CS
 423         * where we want to execute up to this time.
 424         *
 425         * In this list the requests are in order of execution. Consecutive
 426         * requests from the same context are adjacent in the ringbuffer. We
 427         * can combine these requests into a single RING_TAIL update:
 428         *
 429         *              RING_HEAD...req1...req2
 430         *                                    ^- RING_TAIL
 431         * since to execute req2 the CS must first execute req1.
 432         *
 433         * Our goal then is to point each port to the end of a consecutive
 434         * sequence of requests as being the most optimal (fewest wake ups
 435         * and context switches) submission.
 436         */
 437
 438        spin_lock_irq(&engine->timeline->lock);
 439        rb = engine->execlist_first;
 440        GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
 441        while (rb) {
 442                struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
 443                struct drm_i915_gem_request *rq, *rn;
 444
 445                list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
 446                        /*
 447                         * Can we combine this request with the current port?
 448                         * It has to be the same context/ringbuffer and not
 449                         * have any exceptions (e.g. GVT saying never to
 450                         * combine contexts).
 451                         *
 452                         * If we can combine the requests, we can execute both
 453                         * by updating the RING_TAIL to point to the end of the
 454                         * second request, and so we never need to tell the
 455                         * hardware about the first.
 456                         */
 457                        if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
 458                                /*
 459                                 * If we are on the second port and cannot
 460                                 * combine this request with the last, then we
 461                                 * are done.
 462                                 */
 463                                if (port != engine->execlist_port) {
 464                                        __list_del_many(&p->requests,
 465                                                        &rq->priotree.link);
 466                                        goto done;
 467                                }
 468
 469                                /*
 470                                 * If GVT overrides us we only ever submit
 471                                 * port[0], leaving port[1] empty. Note that we
 472                                 * also have to be careful that we don't queue
 473                                 * the same context (even though a different
 474                                 * request) to the second port.
 475                                 */
 476                                if (ctx_single_port_submission(last->ctx) ||
 477                                    ctx_single_port_submission(rq->ctx)) {
 478                                        __list_del_many(&p->requests,
 479                                                        &rq->priotree.link);
 480                                        goto done;
 481                                }
 482
 483                                GEM_BUG_ON(last->ctx == rq->ctx);
 484
 485                                if (submit)
 486                                        port_assign(port, last);
 487                                port++;
 488                        }
 489
 490                        INIT_LIST_HEAD(&rq->priotree.link);
 491                        rq->priotree.priority = INT_MAX;
 492
 493                        __i915_gem_request_submit(rq);
 494                        trace_i915_gem_request_in(rq, port_index(port, engine));
 495                        last = rq;
 496                        submit = true;
 497                }
 498
 499                rb = rb_next(rb);
 500                rb_erase(&p->node, &engine->execlist_queue);
 501                INIT_LIST_HEAD(&p->requests);
 502                if (p->priority != I915_PRIORITY_NORMAL)
 503                        kmem_cache_free(engine->i915->priorities, p);
 504        }
 505done:
 506        engine->execlist_first = rb;
 507        if (submit)
 508                port_assign(port, last);
 509        spin_unlock_irq(&engine->timeline->lock);
 510
 511        if (submit)
 512                execlists_submit_ports(engine);
 513}
 514
 515static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
 516{
 517        const struct execlist_port *port = engine->execlist_port;
 518
 519        return port_count(&port[0]) + port_count(&port[1]) < 2;
 520}
 521
 522/*
 523 * Check the unread Context Status Buffers and manage the submission of new
 524 * contexts to the ELSP accordingly.
 525 */
 526static void intel_lrc_irq_handler(unsigned long data)
 527{
 528        struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
 529        struct execlist_port *port = engine->execlist_port;
 530        struct drm_i915_private *dev_priv = engine->i915;
 531
 532        /* We can skip acquiring intel_runtime_pm_get() here as it was taken
 533         * on our behalf by the request (see i915_gem_mark_busy()) and it will
 534         * not be relinquished until the device is idle (see
 535         * i915_gem_idle_work_handler()). As a precaution, we make sure
 536         * that all ELSP are drained i.e. we have processed the CSB,
 537         * before allowing ourselves to idle and calling intel_runtime_pm_put().
 538         */
 539        GEM_BUG_ON(!dev_priv->gt.awake);
 540
 541        intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
 542
 543        /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
 544         * imposing the cost of a locked atomic transaction when submitting a
 545         * new request (outside of the context-switch interrupt).
 546         */
 547        while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
 548                u32 __iomem *csb_mmio =
 549                        dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
 550                u32 __iomem *buf =
 551                        dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
 552                unsigned int head, tail;
 553
 554                /* The write will be ordered by the uncached read (itself
 555                 * a memory barrier), so we do not need another in the form
 556                 * of a locked instruction. The race between the interrupt
 557                 * handler and the split test/clear is harmless as we order
 558                 * our clear before the CSB read. If the interrupt arrived
 559                 * first between the test and the clear, we read the updated
 560                 * CSB and clear the bit. If the interrupt arrives as we read
 561                 * the CSB or later (i.e. after we had cleared the bit) the bit
 562                 * is set and we do a new loop.
 563                 */
 564                __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
 565                head = readl(csb_mmio);
 566                tail = GEN8_CSB_WRITE_PTR(head);
 567                head = GEN8_CSB_READ_PTR(head);
 568                while (head != tail) {
 569                        struct drm_i915_gem_request *rq;
 570                        unsigned int status;
 571                        unsigned int count;
 572
 573                        if (++head == GEN8_CSB_ENTRIES)
 574                                head = 0;
 575
 576                        /* We are flying near dragons again.
 577                         *
 578                         * We hold a reference to the request in execlist_port[]
 579                         * but no more than that. We are operating in softirq
 580                         * context and so cannot hold any mutex or sleep. That
 581                         * prevents us stopping the requests we are processing
 582                         * in port[] from being retired simultaneously (the
 583                         * breadcrumb will be complete before we see the
 584                         * context-switch). As we only hold the reference to the
 585                         * request, any pointer chasing underneath the request
 586                         * is subject to a potential use-after-free. Thus we
 587                         * store all of the bookkeeping within port[] as
 588                         * required, and avoid using unguarded pointers beneath
 589                         * request itself. The same applies to the atomic
 590                         * status notifier.
 591                         */
 592
 593                        status = readl(buf + 2 * head);
 594                        if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
 595                                continue;
 596
 597                        /* Check the context/desc id for this event matches */
 598                        GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
 599                                         port->context_id);
 600
 601                        rq = port_unpack(port, &count);
 602                        GEM_BUG_ON(count == 0);
 603                        if (--count == 0) {
 604                                GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
 605                                GEM_BUG_ON(!i915_gem_request_completed(rq));
 606                                execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
 607
 608                                trace_i915_gem_request_out(rq);
 609                                i915_gem_request_put(rq);
 610
 611                                port[0] = port[1];
 612                                memset(&port[1], 0, sizeof(port[1]));
 613                        } else {
 614                                port_set(port, port_pack(rq, count));
 615                        }
 616
 617                        /* After the final element, the hw should be idle */
 618                        GEM_BUG_ON(port_count(port) == 0 &&
 619                                   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
 620                }
 621
 622                writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
 623                       csb_mmio);
 624        }
 625
 626        if (execlists_elsp_ready(engine))
 627                execlists_dequeue(engine);
 628
 629        intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
 630}
 631
 632static bool
 633insert_request(struct intel_engine_cs *engine,
 634               struct i915_priotree *pt,
 635               int prio)
 636{
 637        struct i915_priolist *p;
 638        struct rb_node **parent, *rb;
 639        bool first = true;
 640
 641        if (unlikely(engine->no_priolist))
 642                prio = I915_PRIORITY_NORMAL;
 643
 644find_priolist:
 645        /* most positive priority is scheduled first, equal priorities fifo */
 646        rb = NULL;
 647        parent = &engine->execlist_queue.rb_node;
 648        while (*parent) {
 649                rb = *parent;
 650                p = rb_entry(rb, typeof(*p), node);
 651                if (prio > p->priority) {
 652                        parent = &rb->rb_left;
 653                } else if (prio < p->priority) {
 654                        parent = &rb->rb_right;
 655                        first = false;
 656                } else {
 657                        list_add_tail(&pt->link, &p->requests);
 658                        return false;
 659                }
 660        }
 661
 662        if (prio == I915_PRIORITY_NORMAL) {
 663                p = &engine->default_priolist;
 664        } else {
 665                p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
 666                /* Convert an allocation failure to a priority bump */
 667                if (unlikely(!p)) {
 668                        prio = I915_PRIORITY_NORMAL; /* recurses just once */
 669
 670                        /* To maintain ordering with all rendering, after an
 671                         * allocation failure we have to disable all scheduling.
 672                         * Requests will then be executed in fifo, and schedule
 673                         * will ensure that dependencies are emitted in fifo.
 674                         * There will be still some reordering with existing
 675                         * requests, so if userspace lied about their
 676                         * dependencies that reordering may be visible.
 677                         */
 678                        engine->no_priolist = true;
 679                        goto find_priolist;
 680                }
 681        }
 682
 683        p->priority = prio;
 684        rb_link_node(&p->node, rb, parent);
 685        rb_insert_color(&p->node, &engine->execlist_queue);
 686
 687        INIT_LIST_HEAD(&p->requests);
 688        list_add_tail(&pt->link, &p->requests);
 689
 690        if (first)
 691                engine->execlist_first = &p->node;
 692
 693        return first;
 694}
 695
 696static void execlists_submit_request(struct drm_i915_gem_request *request)
 697{
 698        struct intel_engine_cs *engine = request->engine;
 699        unsigned long flags;
 700
 701        /* Will be called from irq-context when using foreign fences. */
 702        spin_lock_irqsave(&engine->timeline->lock, flags);
 703
 704        if (insert_request(engine,
 705                           &request->priotree,
 706                           request->priotree.priority)) {
 707                if (execlists_elsp_ready(engine))
 708                        tasklet_hi_schedule(&engine->irq_tasklet);
 709        }
 710
 711        GEM_BUG_ON(!engine->execlist_first);
 712        GEM_BUG_ON(list_empty(&request->priotree.link));
 713
 714        spin_unlock_irqrestore(&engine->timeline->lock, flags);
 715}
 716
 717static struct intel_engine_cs *
 718pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
 719{
 720        struct intel_engine_cs *engine =
 721                container_of(pt, struct drm_i915_gem_request, priotree)->engine;
 722
 723        GEM_BUG_ON(!locked);
 724
 725        if (engine != locked) {
 726                spin_unlock(&locked->timeline->lock);
 727                spin_lock(&engine->timeline->lock);
 728        }
 729
 730        return engine;
 731}
 732
 733static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
 734{
 735        struct intel_engine_cs *engine;
 736        struct i915_dependency *dep, *p;
 737        struct i915_dependency stack;
 738        LIST_HEAD(dfs);
 739
 740        if (prio <= READ_ONCE(request->priotree.priority))
 741                return;
 742
 743        /* Need BKL in order to use the temporary link inside i915_dependency */
 744        lockdep_assert_held(&request->i915->drm.struct_mutex);
 745
 746        stack.signaler = &request->priotree;
 747        list_add(&stack.dfs_link, &dfs);
 748
 749        /* Recursively bump all dependent priorities to match the new request.
 750         *
 751         * A naive approach would be to use recursion:
 752         * static void update_priorities(struct i915_priotree *pt, prio) {
 753         *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
 754         *              update_priorities(dep->signal, prio)
 755         *      insert_request(pt);
 756         * }
 757         * but that may have unlimited recursion depth and so runs a very
 758         * real risk of overunning the kernel stack. Instead, we build
 759         * a flat list of all dependencies starting with the current request.
 760         * As we walk the list of dependencies, we add all of its dependencies
 761         * to the end of the list (this may include an already visited
 762         * request) and continue to walk onwards onto the new dependencies. The
 763         * end result is a topological list of requests in reverse order, the
 764         * last element in the list is the request we must execute first.
 765         */
 766        list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
 767                struct i915_priotree *pt = dep->signaler;
 768
 769                /* Within an engine, there can be no cycle, but we may
 770                 * refer to the same dependency chain multiple times
 771                 * (redundant dependencies are not eliminated) and across
 772                 * engines.
 773                 */
 774                list_for_each_entry(p, &pt->signalers_list, signal_link) {
 775                        GEM_BUG_ON(p->signaler->priority < pt->priority);
 776                        if (prio > READ_ONCE(p->signaler->priority))
 777                                list_move_tail(&p->dfs_link, &dfs);
 778                }
 779
 780                list_safe_reset_next(dep, p, dfs_link);
 781        }
 782
 783        /* If we didn't need to bump any existing priorities, and we haven't
 784         * yet submitted this request (i.e. there is no potential race with
 785         * execlists_submit_request()), we can set our own priority and skip
 786         * acquiring the engine locks.
 787         */
 788        if (request->priotree.priority == INT_MIN) {
 789                GEM_BUG_ON(!list_empty(&request->priotree.link));
 790                request->priotree.priority = prio;
 791                if (stack.dfs_link.next == stack.dfs_link.prev)
 792                        return;
 793                __list_del_entry(&stack.dfs_link);
 794        }
 795
 796        engine = request->engine;
 797        spin_lock_irq(&engine->timeline->lock);
 798
 799        /* Fifo and depth-first replacement ensure our deps execute before us */
 800        list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
 801                struct i915_priotree *pt = dep->signaler;
 802
 803                INIT_LIST_HEAD(&dep->dfs_link);
 804
 805                engine = pt_lock_engine(pt, engine);
 806
 807                if (prio <= pt->priority)
 808                        continue;
 809
 810                pt->priority = prio;
 811                if (!list_empty(&pt->link)) {
 812                        __list_del_entry(&pt->link);
 813                        insert_request(engine, pt, prio);
 814                }
 815        }
 816
 817        spin_unlock_irq(&engine->timeline->lock);
 818
 819        /* XXX Do we need to preempt to make room for us and our deps? */
 820}
 821
 822static struct intel_ring *
 823execlists_context_pin(struct intel_engine_cs *engine,
 824                      struct i915_gem_context *ctx)
 825{
 826        struct intel_context *ce = &ctx->engine[engine->id];
 827        unsigned int flags;
 828        void *vaddr;
 829        int ret;
 830
 831        lockdep_assert_held(&ctx->i915->drm.struct_mutex);
 832
 833        if (likely(ce->pin_count++))
 834                goto out;
 835        GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
 836
 837        if (!ce->state) {
 838                ret = execlists_context_deferred_alloc(ctx, engine);
 839                if (ret)
 840                        goto err;
 841        }
 842        GEM_BUG_ON(!ce->state);
 843
 844        flags = PIN_GLOBAL | PIN_HIGH;
 845        if (ctx->ggtt_offset_bias)
 846                flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
 847
 848        ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
 849        if (ret)
 850                goto err;
 851
 852        vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
 853        if (IS_ERR(vaddr)) {
 854                ret = PTR_ERR(vaddr);
 855                goto unpin_vma;
 856        }
 857
 858        ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
 859        if (ret)
 860                goto unpin_map;
 861
 862        intel_lr_context_descriptor_update(ctx, engine);
 863
 864        ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
 865        ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
 866                i915_ggtt_offset(ce->ring->vma);
 867
 868        ce->state->obj->mm.dirty = true;
 869
 870        i915_gem_context_get(ctx);
 871out:
 872        return ce->ring;
 873
 874unpin_map:
 875        i915_gem_object_unpin_map(ce->state->obj);
 876unpin_vma:
 877        __i915_vma_unpin(ce->state);
 878err:
 879        ce->pin_count = 0;
 880        return ERR_PTR(ret);
 881}
 882
 883static void execlists_context_unpin(struct intel_engine_cs *engine,
 884                                    struct i915_gem_context *ctx)
 885{
 886        struct intel_context *ce = &ctx->engine[engine->id];
 887
 888        lockdep_assert_held(&ctx->i915->drm.struct_mutex);
 889        GEM_BUG_ON(ce->pin_count == 0);
 890
 891        if (--ce->pin_count)
 892                return;
 893
 894        intel_ring_unpin(ce->ring);
 895
 896        i915_gem_object_unpin_map(ce->state->obj);
 897        i915_vma_unpin(ce->state);
 898
 899        i915_gem_context_put(ctx);
 900}
 901
 902static int execlists_request_alloc(struct drm_i915_gem_request *request)
 903{
 904        struct intel_engine_cs *engine = request->engine;
 905        struct intel_context *ce = &request->ctx->engine[engine->id];
 906        u32 *cs;
 907        int ret;
 908
 909        GEM_BUG_ON(!ce->pin_count);
 910
 911        /* Flush enough space to reduce the likelihood of waiting after
 912         * we start building the request - in which case we will just
 913         * have to repeat work.
 914         */
 915        request->reserved_space += EXECLISTS_REQUEST_SIZE;
 916
 917        if (i915.enable_guc_submission) {
 918                /*
 919                 * Check that the GuC has space for the request before
 920                 * going any further, as the i915_add_request() call
 921                 * later on mustn't fail ...
 922                 */
 923                ret = i915_guc_wq_reserve(request);
 924                if (ret)
 925                        goto err;
 926        }
 927
 928        cs = intel_ring_begin(request, 0);
 929        if (IS_ERR(cs)) {
 930                ret = PTR_ERR(cs);
 931                goto err_unreserve;
 932        }
 933
 934        if (!ce->initialised) {
 935                ret = engine->init_context(request);
 936                if (ret)
 937                        goto err_unreserve;
 938
 939                ce->initialised = true;
 940        }
 941
 942        /* Note that after this point, we have committed to using
 943         * this request as it is being used to both track the
 944         * state of engine initialisation and liveness of the
 945         * golden renderstate above. Think twice before you try
 946         * to cancel/unwind this request now.
 947         */
 948
 949        request->reserved_space -= EXECLISTS_REQUEST_SIZE;
 950        return 0;
 951
 952err_unreserve:
 953        if (i915.enable_guc_submission)
 954                i915_guc_wq_unreserve(request);
 955err:
 956        return ret;
 957}
 958
 959/*
 960 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 961 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 962 * but there is a slight complication as this is applied in WA batch where the
 963 * values are only initialized once so we cannot take register value at the
 964 * beginning and reuse it further; hence we save its value to memory, upload a
 965 * constant value with bit21 set and then we restore it back with the saved value.
 966 * To simplify the WA, a constant value is formed by using the default value
 967 * of this register. This shouldn't be a problem because we are only modifying
 968 * it for a short period and this batch in non-premptible. We can ofcourse
 969 * use additional instructions that read the actual value of the register
 970 * at that time and set our bit of interest but it makes the WA complicated.
 971 *
 972 * This WA is also required for Gen9 so extracting as a function avoids
 973 * code duplication.
 974 */
 975static u32 *
 976gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
 977{
 978        *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
 979        *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
 980        *batch++ = i915_ggtt_offset(engine->scratch) + 256;
 981        *batch++ = 0;
 982
 983        *batch++ = MI_LOAD_REGISTER_IMM(1);
 984        *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
 985        *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
 986
 987        batch = gen8_emit_pipe_control(batch,
 988                                       PIPE_CONTROL_CS_STALL |
 989                                       PIPE_CONTROL_DC_FLUSH_ENABLE,
 990                                       0);
 991
 992        *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
 993        *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
 994        *batch++ = i915_ggtt_offset(engine->scratch) + 256;
 995        *batch++ = 0;
 996
 997        return batch;
 998}
 999
1000/*
1001 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1002 * initialized at the beginning and shared across all contexts but this field
1003 * helps us to have multiple batches at different offsets and select them based
1004 * on a criteria. At the moment this batch always start at the beginning of the page
1005 * and at this point we don't have multiple wa_ctx batch buffers.
1006 *
1007 * The number of WA applied are not known at the beginning; we use this field
1008 * to return the no of DWORDS written.
1009 *
1010 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1011 * so it adds NOOPs as padding to make it cacheline aligned.
1012 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1013 * makes a complete batch buffer.
1014 */
1015static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1016{
1017        /* WaDisableCtxRestoreArbitration:bdw,chv */
1018        *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1019
1020        /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1021        if (IS_BROADWELL(engine->i915))
1022                batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1023
1024        /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1025        /* Actual scratch location is at 128 bytes offset */
1026        batch = gen8_emit_pipe_control(batch,
1027                                       PIPE_CONTROL_FLUSH_L3 |
1028                                       PIPE_CONTROL_GLOBAL_GTT_IVB |
1029                                       PIPE_CONTROL_CS_STALL |
1030                                       PIPE_CONTROL_QW_WRITE,
1031                                       i915_ggtt_offset(engine->scratch) +
1032                                       2 * CACHELINE_BYTES);
1033
1034        /* Pad to end of cacheline */
1035        while ((unsigned long)batch % CACHELINE_BYTES)
1036                *batch++ = MI_NOOP;
1037
1038        /*
1039         * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1040         * execution depends on the length specified in terms of cache lines
1041         * in the register CTX_RCS_INDIRECT_CTX
1042         */
1043
1044        return batch;
1045}
1046
1047/*
1048 *  This batch is started immediately after indirect_ctx batch. Since we ensure
1049 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1050 *
1051 *  The number of DWORDS written are returned using this field.
1052 *
1053 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1054 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1055 */
1056static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1057{
1058        /* WaDisableCtxRestoreArbitration:bdw,chv */
1059        *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1060        *batch++ = MI_BATCH_BUFFER_END;
1061
1062        return batch;
1063}
1064
1065static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1066{
1067        /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1068        batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1069
1070        /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1071        *batch++ = MI_LOAD_REGISTER_IMM(1);
1072        *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1073        *batch++ = _MASKED_BIT_DISABLE(
1074                        GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1075        *batch++ = MI_NOOP;
1076
1077        /* WaClearSlmSpaceAtContextSwitch:kbl */
1078        /* Actual scratch location is at 128 bytes offset */
1079        if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1080                batch = gen8_emit_pipe_control(batch,
1081                                               PIPE_CONTROL_FLUSH_L3 |
1082                                               PIPE_CONTROL_GLOBAL_GTT_IVB |
1083                                               PIPE_CONTROL_CS_STALL |
1084                                               PIPE_CONTROL_QW_WRITE,
1085                                               i915_ggtt_offset(engine->scratch)
1086                                               + 2 * CACHELINE_BYTES);
1087        }
1088
1089        /* WaMediaPoolStateCmdInWABB:bxt,glk */
1090        if (HAS_POOLED_EU(engine->i915)) {
1091                /*
1092                 * EU pool configuration is setup along with golden context
1093                 * during context initialization. This value depends on
1094                 * device type (2x6 or 3x6) and needs to be updated based
1095                 * on which subslice is disabled especially for 2x6
1096                 * devices, however it is safe to load default
1097                 * configuration of 3x6 device instead of masking off
1098                 * corresponding bits because HW ignores bits of a disabled
1099                 * subslice and drops down to appropriate config. Please
1100                 * see render_state_setup() in i915_gem_render_state.c for
1101                 * possible configurations, to avoid duplication they are
1102                 * not shown here again.
1103                 */
1104                *batch++ = GEN9_MEDIA_POOL_STATE;
1105                *batch++ = GEN9_MEDIA_POOL_ENABLE;
1106                *batch++ = 0x00777000;
1107                *batch++ = 0;
1108                *batch++ = 0;
1109                *batch++ = 0;
1110        }
1111
1112        /* Pad to end of cacheline */
1113        while ((unsigned long)batch % CACHELINE_BYTES)
1114                *batch++ = MI_NOOP;
1115
1116        return batch;
1117}
1118
1119static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1120{
1121        *batch++ = MI_BATCH_BUFFER_END;
1122
1123        return batch;
1124}
1125
1126#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1127
1128static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1129{
1130        struct drm_i915_gem_object *obj;
1131        struct i915_vma *vma;
1132        int err;
1133
1134        obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1135        if (IS_ERR(obj))
1136                return PTR_ERR(obj);
1137
1138        vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1139        if (IS_ERR(vma)) {
1140                err = PTR_ERR(vma);
1141                goto err;
1142        }
1143
1144        err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1145        if (err)
1146                goto err;
1147
1148        engine->wa_ctx.vma = vma;
1149        return 0;
1150
1151err:
1152        i915_gem_object_put(obj);
1153        return err;
1154}
1155
1156static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1157{
1158        i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1159}
1160
1161typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1162
1163static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1164{
1165        struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1166        struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1167                                            &wa_ctx->per_ctx };
1168        wa_bb_func_t wa_bb_fn[2];
1169        struct page *page;
1170        void *batch, *batch_ptr;
1171        unsigned int i;
1172        int ret;
1173
1174        if (WARN_ON(engine->id != RCS || !engine->scratch))
1175                return -EINVAL;
1176
1177        switch (INTEL_GEN(engine->i915)) {
1178        case 9:
1179                wa_bb_fn[0] = gen9_init_indirectctx_bb;
1180                wa_bb_fn[1] = gen9_init_perctx_bb;
1181                break;
1182        case 8:
1183                wa_bb_fn[0] = gen8_init_indirectctx_bb;
1184                wa_bb_fn[1] = gen8_init_perctx_bb;
1185                break;
1186        default:
1187                MISSING_CASE(INTEL_GEN(engine->i915));
1188                return 0;
1189        }
1190
1191        ret = lrc_setup_wa_ctx(engine);
1192        if (ret) {
1193                DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1194                return ret;
1195        }
1196
1197        page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1198        batch = batch_ptr = kmap_atomic(page);
1199
1200        /*
1201         * Emit the two workaround batch buffers, recording the offset from the
1202         * start of the workaround batch buffer object for each and their
1203         * respective sizes.
1204         */
1205        for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1206                wa_bb[i]->offset = batch_ptr - batch;
1207                if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1208                        ret = -EINVAL;
1209                        break;
1210                }
1211                batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1212                wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1213        }
1214
1215        BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1216
1217        kunmap_atomic(batch);
1218        if (ret)
1219                lrc_destroy_wa_ctx(engine);
1220
1221        return ret;
1222}
1223
1224static u8 gtiir[] = {
1225        [RCS] = 0,
1226        [BCS] = 0,
1227        [VCS] = 1,
1228        [VCS2] = 1,
1229        [VECS] = 3,
1230};
1231
1232static int gen8_init_common_ring(struct intel_engine_cs *engine)
1233{
1234        struct drm_i915_private *dev_priv = engine->i915;
1235        struct execlist_port *port = engine->execlist_port;
1236        unsigned int n;
1237        bool submit;
1238        int ret;
1239
1240        ret = intel_mocs_init_engine(engine);
1241        if (ret)
1242                return ret;
1243
1244        intel_engine_reset_breadcrumbs(engine);
1245        intel_engine_init_hangcheck(engine);
1246
1247        I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1248        I915_WRITE(RING_MODE_GEN7(engine),
1249                   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1250        I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1251                   engine->status_page.ggtt_offset);
1252        POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1253
1254        DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1255
1256        GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1257
1258        /*
1259         * Clear any pending interrupt state.
1260         *
1261         * We do it twice out of paranoia that some of the IIR are double
1262         * buffered, and if we only reset it once there may still be
1263         * an interrupt pending.
1264         */
1265        I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1266                   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1267        I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1268                   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1269        clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1270
1271        /* After a GPU reset, we may have requests to replay */
1272        submit = false;
1273        for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
1274                if (!port_isset(&port[n]))
1275                        break;
1276
1277                DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
1278                                 engine->name, n,
1279                                 port_request(&port[n])->global_seqno);
1280
1281                /* Discard the current inflight count */
1282                port_set(&port[n], port_request(&port[n]));
1283                submit = true;
1284        }
1285
1286        if (submit && !i915.enable_guc_submission)
1287                execlists_submit_ports(engine);
1288
1289        return 0;
1290}
1291
1292static int gen8_init_render_ring(struct intel_engine_cs *engine)
1293{
1294        struct drm_i915_private *dev_priv = engine->i915;
1295        int ret;
1296
1297        ret = gen8_init_common_ring(engine);
1298        if (ret)
1299                return ret;
1300
1301        /* We need to disable the AsyncFlip performance optimisations in order
1302         * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1303         * programmed to '1' on all products.
1304         *
1305         * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1306         */
1307        I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1308
1309        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1310
1311        return init_workarounds_ring(engine);
1312}
1313
1314static int gen9_init_render_ring(struct intel_engine_cs *engine)
1315{
1316        int ret;
1317
1318        ret = gen8_init_common_ring(engine);
1319        if (ret)
1320                return ret;
1321
1322        return init_workarounds_ring(engine);
1323}
1324
1325static void reset_common_ring(struct intel_engine_cs *engine,
1326                              struct drm_i915_gem_request *request)
1327{
1328        struct execlist_port *port = engine->execlist_port;
1329        struct intel_context *ce;
1330
1331        /* If the request was innocent, we leave the request in the ELSP
1332         * and will try to replay it on restarting. The context image may
1333         * have been corrupted by the reset, in which case we may have
1334         * to service a new GPU hang, but more likely we can continue on
1335         * without impact.
1336         *
1337         * If the request was guilty, we presume the context is corrupt
1338         * and have to at least restore the RING register in the context
1339         * image back to the expected values to skip over the guilty request.
1340         */
1341        if (!request || request->fence.error != -EIO)
1342                return;
1343
1344        /* We want a simple context + ring to execute the breadcrumb update.
1345         * We cannot rely on the context being intact across the GPU hang,
1346         * so clear it and rebuild just what we need for the breadcrumb.
1347         * All pending requests for this context will be zapped, and any
1348         * future request will be after userspace has had the opportunity
1349         * to recreate its own state.
1350         */
1351        ce = &request->ctx->engine[engine->id];
1352        execlists_init_reg_state(ce->lrc_reg_state,
1353                                 request->ctx, engine, ce->ring);
1354
1355        /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1356        ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1357                i915_ggtt_offset(ce->ring->vma);
1358        ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1359
1360        request->ring->head = request->postfix;
1361        intel_ring_update_space(request->ring);
1362
1363        /* Catch up with any missed context-switch interrupts */
1364        if (request->ctx != port_request(port)->ctx) {
1365                i915_gem_request_put(port_request(port));
1366                port[0] = port[1];
1367                memset(&port[1], 0, sizeof(port[1]));
1368        }
1369
1370        GEM_BUG_ON(request->ctx != port_request(port)->ctx);
1371
1372        /* Reset WaIdleLiteRestore:bdw,skl as well */
1373        request->tail =
1374                intel_ring_wrap(request->ring,
1375                                request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1376        assert_ring_tail_valid(request->ring, request->tail);
1377}
1378
1379static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1380{
1381        struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1382        struct intel_engine_cs *engine = req->engine;
1383        const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1384        u32 *cs;
1385        int i;
1386
1387        cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1388        if (IS_ERR(cs))
1389                return PTR_ERR(cs);
1390
1391        *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1392        for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1393                const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1394
1395                *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1396                *cs++ = upper_32_bits(pd_daddr);
1397                *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1398                *cs++ = lower_32_bits(pd_daddr);
1399        }
1400
1401        *cs++ = MI_NOOP;
1402        intel_ring_advance(req, cs);
1403
1404        return 0;
1405}
1406
1407static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1408                              u64 offset, u32 len,
1409                              const unsigned int flags)
1410{
1411        u32 *cs;
1412        int ret;
1413
1414        /* Don't rely in hw updating PDPs, specially in lite-restore.
1415         * Ideally, we should set Force PD Restore in ctx descriptor,
1416         * but we can't. Force Restore would be a second option, but
1417         * it is unsafe in case of lite-restore (because the ctx is
1418         * not idle). PML4 is allocated during ppgtt init so this is
1419         * not needed in 48-bit.*/
1420        if (req->ctx->ppgtt &&
1421            (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1422            !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1423            !intel_vgpu_active(req->i915)) {
1424                ret = intel_logical_ring_emit_pdps(req);
1425                if (ret)
1426                        return ret;
1427
1428                req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1429        }
1430
1431        cs = intel_ring_begin(req, 4);
1432        if (IS_ERR(cs))
1433                return PTR_ERR(cs);
1434
1435        /* FIXME(BDW): Address space and security selectors. */
1436        *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1437                (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1438                (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1439        *cs++ = lower_32_bits(offset);
1440        *cs++ = upper_32_bits(offset);
1441        *cs++ = MI_NOOP;
1442        intel_ring_advance(req, cs);
1443
1444        return 0;
1445}
1446
1447static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1448{
1449        struct drm_i915_private *dev_priv = engine->i915;
1450        I915_WRITE_IMR(engine,
1451                       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1452        POSTING_READ_FW(RING_IMR(engine->mmio_base));
1453}
1454
1455static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1456{
1457        struct drm_i915_private *dev_priv = engine->i915;
1458        I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1459}
1460
1461static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1462{
1463        u32 cmd, *cs;
1464
1465        cs = intel_ring_begin(request, 4);
1466        if (IS_ERR(cs))
1467                return PTR_ERR(cs);
1468
1469        cmd = MI_FLUSH_DW + 1;
1470
1471        /* We always require a command barrier so that subsequent
1472         * commands, such as breadcrumb interrupts, are strictly ordered
1473         * wrt the contents of the write cache being flushed to memory
1474         * (and thus being coherent from the CPU).
1475         */
1476        cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1477
1478        if (mode & EMIT_INVALIDATE) {
1479                cmd |= MI_INVALIDATE_TLB;
1480                if (request->engine->id == VCS)
1481                        cmd |= MI_INVALIDATE_BSD;
1482        }
1483
1484        *cs++ = cmd;
1485        *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1486        *cs++ = 0; /* upper addr */
1487        *cs++ = 0; /* value */
1488        intel_ring_advance(request, cs);
1489
1490        return 0;
1491}
1492
1493static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1494                                  u32 mode)
1495{
1496        struct intel_engine_cs *engine = request->engine;
1497        u32 scratch_addr =
1498                i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1499        bool vf_flush_wa = false, dc_flush_wa = false;
1500        u32 *cs, flags = 0;
1501        int len;
1502
1503        flags |= PIPE_CONTROL_CS_STALL;
1504
1505        if (mode & EMIT_FLUSH) {
1506                flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1507                flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1508                flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1509                flags |= PIPE_CONTROL_FLUSH_ENABLE;
1510        }
1511
1512        if (mode & EMIT_INVALIDATE) {
1513                flags |= PIPE_CONTROL_TLB_INVALIDATE;
1514                flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1515                flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1516                flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1517                flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1518                flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1519                flags |= PIPE_CONTROL_QW_WRITE;
1520                flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1521
1522                /*
1523                 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1524                 * pipe control.
1525                 */
1526                if (IS_GEN9(request->i915))
1527                        vf_flush_wa = true;
1528
1529                /* WaForGAMHang:kbl */
1530                if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1531                        dc_flush_wa = true;
1532        }
1533
1534        len = 6;
1535
1536        if (vf_flush_wa)
1537                len += 6;
1538
1539        if (dc_flush_wa)
1540                len += 12;
1541
1542        cs = intel_ring_begin(request, len);
1543        if (IS_ERR(cs))
1544                return PTR_ERR(cs);
1545
1546        if (vf_flush_wa)
1547                cs = gen8_emit_pipe_control(cs, 0, 0);
1548
1549        if (dc_flush_wa)
1550                cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1551                                            0);
1552
1553        cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1554
1555        if (dc_flush_wa)
1556                cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1557
1558        intel_ring_advance(request, cs);
1559
1560        return 0;
1561}
1562
1563/*
1564 * Reserve space for 2 NOOPs at the end of each request to be
1565 * used as a workaround for not being allowed to do lite
1566 * restore with HEAD==TAIL (WaIdleLiteRestore).
1567 */
1568static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1569{
1570        *cs++ = MI_NOOP;
1571        *cs++ = MI_NOOP;
1572        request->wa_tail = intel_ring_offset(request, cs);
1573}
1574
1575static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1576{
1577        /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1578        BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1579
1580        *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1581        *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1582        *cs++ = 0;
1583        *cs++ = request->global_seqno;
1584        *cs++ = MI_USER_INTERRUPT;
1585        *cs++ = MI_NOOP;
1586        request->tail = intel_ring_offset(request, cs);
1587        assert_ring_tail_valid(request->ring, request->tail);
1588
1589        gen8_emit_wa_tail(request, cs);
1590}
1591
1592static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1593
1594static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1595                                        u32 *cs)
1596{
1597        /* We're using qword write, seqno should be aligned to 8 bytes. */
1598        BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1599
1600        /* w/a for post sync ops following a GPGPU operation we
1601         * need a prior CS_STALL, which is emitted by the flush
1602         * following the batch.
1603         */
1604        *cs++ = GFX_OP_PIPE_CONTROL(6);
1605        *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1606                PIPE_CONTROL_QW_WRITE;
1607        *cs++ = intel_hws_seqno_address(request->engine);
1608        *cs++ = 0;
1609        *cs++ = request->global_seqno;
1610        /* We're thrashing one dword of HWS. */
1611        *cs++ = 0;
1612        *cs++ = MI_USER_INTERRUPT;
1613        *cs++ = MI_NOOP;
1614        request->tail = intel_ring_offset(request, cs);
1615        assert_ring_tail_valid(request->ring, request->tail);
1616
1617        gen8_emit_wa_tail(request, cs);
1618}
1619
1620static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1621
1622static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1623{
1624        int ret;
1625
1626        ret = intel_ring_workarounds_emit(req);
1627        if (ret)
1628                return ret;
1629
1630        ret = intel_rcs_context_init_mocs(req);
1631        /*
1632         * Failing to program the MOCS is non-fatal.The system will not
1633         * run at peak performance. So generate an error and carry on.
1634         */
1635        if (ret)
1636                DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1637
1638        return i915_gem_render_state_emit(req);
1639}
1640
1641/**
1642 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1643 * @engine: Engine Command Streamer.
1644 */
1645void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1646{
1647        struct drm_i915_private *dev_priv;
1648
1649        /*
1650         * Tasklet cannot be active at this point due intel_mark_active/idle
1651         * so this is just for documentation.
1652         */
1653        if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1654                tasklet_kill(&engine->irq_tasklet);
1655
1656        dev_priv = engine->i915;
1657
1658        if (engine->buffer) {
1659                WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1660        }
1661
1662        if (engine->cleanup)
1663                engine->cleanup(engine);
1664
1665        if (engine->status_page.vma) {
1666                i915_gem_object_unpin_map(engine->status_page.vma->obj);
1667                engine->status_page.vma = NULL;
1668        }
1669
1670        intel_engine_cleanup_common(engine);
1671
1672        lrc_destroy_wa_ctx(engine);
1673        engine->i915 = NULL;
1674        dev_priv->engine[engine->id] = NULL;
1675        kfree(engine);
1676}
1677
1678static void execlists_set_default_submission(struct intel_engine_cs *engine)
1679{
1680        engine->submit_request = execlists_submit_request;
1681        engine->schedule = execlists_schedule;
1682        engine->irq_tasklet.func = intel_lrc_irq_handler;
1683}
1684
1685static void
1686logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1687{
1688        /* Default vfuncs which can be overriden by each engine. */
1689        engine->init_hw = gen8_init_common_ring;
1690        engine->reset_hw = reset_common_ring;
1691
1692        engine->context_pin = execlists_context_pin;
1693        engine->context_unpin = execlists_context_unpin;
1694
1695        engine->request_alloc = execlists_request_alloc;
1696
1697        engine->emit_flush = gen8_emit_flush;
1698        engine->emit_breadcrumb = gen8_emit_breadcrumb;
1699        engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1700
1701        engine->set_default_submission = execlists_set_default_submission;
1702
1703        engine->irq_enable = gen8_logical_ring_enable_irq;
1704        engine->irq_disable = gen8_logical_ring_disable_irq;
1705        engine->emit_bb_start = gen8_emit_bb_start;
1706}
1707
1708static inline void
1709logical_ring_default_irqs(struct intel_engine_cs *engine)
1710{
1711        unsigned shift = engine->irq_shift;
1712        engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1713        engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1714}
1715
1716static int
1717lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1718{
1719        const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1720        void *hws;
1721
1722        /* The HWSP is part of the default context object in LRC mode. */
1723        hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1724        if (IS_ERR(hws))
1725                return PTR_ERR(hws);
1726
1727        engine->status_page.page_addr = hws + hws_offset;
1728        engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1729        engine->status_page.vma = vma;
1730
1731        return 0;
1732}
1733
1734static void
1735logical_ring_setup(struct intel_engine_cs *engine)
1736{
1737        struct drm_i915_private *dev_priv = engine->i915;
1738        enum forcewake_domains fw_domains;
1739
1740        intel_engine_setup_common(engine);
1741
1742        /* Intentionally left blank. */
1743        engine->buffer = NULL;
1744
1745        fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1746                                                    RING_ELSP(engine),
1747                                                    FW_REG_WRITE);
1748
1749        fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1750                                                     RING_CONTEXT_STATUS_PTR(engine),
1751                                                     FW_REG_READ | FW_REG_WRITE);
1752
1753        fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1754                                                     RING_CONTEXT_STATUS_BUF_BASE(engine),
1755                                                     FW_REG_READ);
1756
1757        engine->fw_domains = fw_domains;
1758
1759        tasklet_init(&engine->irq_tasklet,
1760                     intel_lrc_irq_handler, (unsigned long)engine);
1761
1762        logical_ring_default_vfuncs(engine);
1763        logical_ring_default_irqs(engine);
1764}
1765
1766static int
1767logical_ring_init(struct intel_engine_cs *engine)
1768{
1769        struct i915_gem_context *dctx = engine->i915->kernel_context;
1770        int ret;
1771
1772        ret = intel_engine_init_common(engine);
1773        if (ret)
1774                goto error;
1775
1776        /* And setup the hardware status page. */
1777        ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1778        if (ret) {
1779                DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1780                goto error;
1781        }
1782
1783        return 0;
1784
1785error:
1786        intel_logical_ring_cleanup(engine);
1787        return ret;
1788}
1789
1790int logical_render_ring_init(struct intel_engine_cs *engine)
1791{
1792        struct drm_i915_private *dev_priv = engine->i915;
1793        int ret;
1794
1795        logical_ring_setup(engine);
1796
1797        if (HAS_L3_DPF(dev_priv))
1798                engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1799
1800        /* Override some for render ring. */
1801        if (INTEL_GEN(dev_priv) >= 9)
1802                engine->init_hw = gen9_init_render_ring;
1803        else
1804                engine->init_hw = gen8_init_render_ring;
1805        engine->init_context = gen8_init_rcs_context;
1806        engine->emit_flush = gen8_emit_flush_render;
1807        engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1808        engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1809
1810        ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1811        if (ret)
1812                return ret;
1813
1814        ret = intel_init_workaround_bb(engine);
1815        if (ret) {
1816                /*
1817                 * We continue even if we fail to initialize WA batch
1818                 * because we only expect rare glitches but nothing
1819                 * critical to prevent us from using GPU
1820                 */
1821                DRM_ERROR("WA batch buffer initialization failed: %d\n",
1822                          ret);
1823        }
1824
1825        return logical_ring_init(engine);
1826}
1827
1828int logical_xcs_ring_init(struct intel_engine_cs *engine)
1829{
1830        logical_ring_setup(engine);
1831
1832        return logical_ring_init(engine);
1833}
1834
1835static u32
1836make_rpcs(struct drm_i915_private *dev_priv)
1837{
1838        u32 rpcs = 0;
1839
1840        /*
1841         * No explicit RPCS request is needed to ensure full
1842         * slice/subslice/EU enablement prior to Gen9.
1843        */
1844        if (INTEL_GEN(dev_priv) < 9)
1845                return 0;
1846
1847        /*
1848         * Starting in Gen9, render power gating can leave
1849         * slice/subslice/EU in a partially enabled state. We
1850         * must make an explicit request through RPCS for full
1851         * enablement.
1852        */
1853        if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1854                rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1855                rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1856                        GEN8_RPCS_S_CNT_SHIFT;
1857                rpcs |= GEN8_RPCS_ENABLE;
1858        }
1859
1860        if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1861                rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1862                rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1863                        GEN8_RPCS_SS_CNT_SHIFT;
1864                rpcs |= GEN8_RPCS_ENABLE;
1865        }
1866
1867        if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1868                rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1869                        GEN8_RPCS_EU_MIN_SHIFT;
1870                rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1871                        GEN8_RPCS_EU_MAX_SHIFT;
1872                rpcs |= GEN8_RPCS_ENABLE;
1873        }
1874
1875        return rpcs;
1876}
1877
1878static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1879{
1880        u32 indirect_ctx_offset;
1881
1882        switch (INTEL_GEN(engine->i915)) {
1883        default:
1884                MISSING_CASE(INTEL_GEN(engine->i915));
1885                /* fall through */
1886        case 10:
1887                indirect_ctx_offset =
1888                        GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1889                break;
1890        case 9:
1891                indirect_ctx_offset =
1892                        GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1893                break;
1894        case 8:
1895                indirect_ctx_offset =
1896                        GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1897                break;
1898        }
1899
1900        return indirect_ctx_offset;
1901}
1902
1903static void execlists_init_reg_state(u32 *regs,
1904                                     struct i915_gem_context *ctx,
1905                                     struct intel_engine_cs *engine,
1906                                     struct intel_ring *ring)
1907{
1908        struct drm_i915_private *dev_priv = engine->i915;
1909        struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1910        u32 base = engine->mmio_base;
1911        bool rcs = engine->id == RCS;
1912
1913        /* A context is actually a big batch buffer with several
1914         * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1915         * values we are setting here are only for the first context restore:
1916         * on a subsequent save, the GPU will recreate this batchbuffer with new
1917         * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1918         * we are not initializing here).
1919         */
1920        regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1921                                 MI_LRI_FORCE_POSTED;
1922
1923        CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1924                _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1925                                   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1926                                   (HAS_RESOURCE_STREAMER(dev_priv) ?
1927                                   CTX_CTRL_RS_CTX_ENABLE : 0)));
1928        CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1929        CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1930        CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1931        CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1932                RING_CTL_SIZE(ring->size) | RING_VALID);
1933        CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1934        CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1935        CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1936        CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1937        CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1938        CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1939        if (rcs) {
1940                CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1941                CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1942                CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1943                        RING_INDIRECT_CTX_OFFSET(base), 0);
1944
1945                if (engine->wa_ctx.vma) {
1946                        struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1947                        u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1948
1949                        regs[CTX_RCS_INDIRECT_CTX + 1] =
1950                                (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1951                                (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1952
1953                        regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1954                                intel_lr_indirect_ctx_offset(engine) << 6;
1955
1956                        regs[CTX_BB_PER_CTX_PTR + 1] =
1957                                (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1958                }
1959        }
1960
1961        regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1962
1963        CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1964        /* PDP values well be assigned later if needed */
1965        CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1966        CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1967        CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1968        CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1969        CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1970        CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1971        CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1972        CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1973
1974        if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1975                /* 64b PPGTT (48bit canonical)
1976                 * PDP0_DESCRIPTOR contains the base address to PML4 and
1977                 * other PDP Descriptors are ignored.
1978                 */
1979                ASSIGN_CTX_PML4(ppgtt, regs);
1980        }
1981
1982        if (rcs) {
1983                regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1984                CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1985                        make_rpcs(dev_priv));
1986
1987                i915_oa_init_reg_state(engine, ctx, regs);
1988        }
1989}
1990
1991static int
1992populate_lr_context(struct i915_gem_context *ctx,
1993                    struct drm_i915_gem_object *ctx_obj,
1994                    struct intel_engine_cs *engine,
1995                    struct intel_ring *ring)
1996{
1997        void *vaddr;
1998        int ret;
1999
2000        ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2001        if (ret) {
2002                DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2003                return ret;
2004        }
2005
2006        vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2007        if (IS_ERR(vaddr)) {
2008                ret = PTR_ERR(vaddr);
2009                DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2010                return ret;
2011        }
2012        ctx_obj->mm.dirty = true;
2013
2014        /* The second page of the context object contains some fields which must
2015         * be set up prior to the first execution. */
2016
2017        execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2018                                 ctx, engine, ring);
2019
2020        i915_gem_object_unpin_map(ctx_obj);
2021
2022        return 0;
2023}
2024
2025static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2026                                            struct intel_engine_cs *engine)
2027{
2028        struct drm_i915_gem_object *ctx_obj;
2029        struct intel_context *ce = &ctx->engine[engine->id];
2030        struct i915_vma *vma;
2031        uint32_t context_size;
2032        struct intel_ring *ring;
2033        int ret;
2034
2035        WARN_ON(ce->state);
2036
2037        context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2038
2039        /* One extra page as the sharing data between driver and GuC */
2040        context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2041
2042        ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2043        if (IS_ERR(ctx_obj)) {
2044                DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2045                return PTR_ERR(ctx_obj);
2046        }
2047
2048        vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2049        if (IS_ERR(vma)) {
2050                ret = PTR_ERR(vma);
2051                goto error_deref_obj;
2052        }
2053
2054        ring = intel_engine_create_ring(engine, ctx->ring_size);
2055        if (IS_ERR(ring)) {
2056                ret = PTR_ERR(ring);
2057                goto error_deref_obj;
2058        }
2059
2060        ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2061        if (ret) {
2062                DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2063                goto error_ring_free;
2064        }
2065
2066        ce->ring = ring;
2067        ce->state = vma;
2068        ce->initialised |= engine->init_context == NULL;
2069
2070        return 0;
2071
2072error_ring_free:
2073        intel_ring_free(ring);
2074error_deref_obj:
2075        i915_gem_object_put(ctx_obj);
2076        return ret;
2077}
2078
2079void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2080{
2081        struct intel_engine_cs *engine;
2082        struct i915_gem_context *ctx;
2083        enum intel_engine_id id;
2084
2085        /* Because we emit WA_TAIL_DWORDS there may be a disparity
2086         * between our bookkeeping in ce->ring->head and ce->ring->tail and
2087         * that stored in context. As we only write new commands from
2088         * ce->ring->tail onwards, everything before that is junk. If the GPU
2089         * starts reading from its RING_HEAD from the context, it may try to
2090         * execute that junk and die.
2091         *
2092         * So to avoid that we reset the context images upon resume. For
2093         * simplicity, we just zero everything out.
2094         */
2095        list_for_each_entry(ctx, &dev_priv->context_list, link) {
2096                for_each_engine(engine, dev_priv, id) {
2097                        struct intel_context *ce = &ctx->engine[engine->id];
2098                        u32 *reg;
2099
2100                        if (!ce->state)
2101                                continue;
2102
2103                        reg = i915_gem_object_pin_map(ce->state->obj,
2104                                                      I915_MAP_WB);
2105                        if (WARN_ON(IS_ERR(reg)))
2106                                continue;
2107
2108                        reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2109                        reg[CTX_RING_HEAD+1] = 0;
2110                        reg[CTX_RING_TAIL+1] = 0;
2111
2112                        ce->state->obj->mm.dirty = true;
2113                        i915_gem_object_unpin_map(ce->state->obj);
2114
2115                        intel_ring_reset(ce->ring, 0);
2116                }
2117        }
2118}
2119