linux/drivers/gpu/drm/i915/intel_ringbuffer.h
<<
>>
Prefs
   1#ifndef _INTEL_RINGBUFFER_H_
   2#define _INTEL_RINGBUFFER_H_
   3
   4#include <linux/hashtable.h>
   5#include "i915_gem_batch_pool.h"
   6#include "i915_gem_request.h"
   7#include "i915_gem_timeline.h"
   8#include "i915_selftest.h"
   9
  10#define I915_CMD_HASH_ORDER 9
  11
  12/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  13 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  14 * to give some inclination as to some of the magic values used in the various
  15 * workarounds!
  16 */
  17#define CACHELINE_BYTES 64
  18#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  19
  20struct intel_hw_status_page {
  21        struct i915_vma *vma;
  22        u32 *page_addr;
  23        u32 ggtt_offset;
  24};
  25
  26#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  27#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  28
  29#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  30#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  31
  32#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
  33#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  34
  35#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  36#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  37
  38#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  39#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  40
  41#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  42#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  43
  44/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  45 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  46 */
  47#define gen8_semaphore_seqno_size sizeof(uint64_t)
  48#define GEN8_SEMAPHORE_OFFSET(__from, __to)                          \
  49        (((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
  50#define GEN8_SIGNAL_OFFSET(__ring, to)                       \
  51        (dev_priv->semaphore->node.start + \
  52         GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  53#define GEN8_WAIT_OFFSET(__ring, from)                       \
  54        (dev_priv->semaphore->node.start + \
  55         GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  56
  57enum intel_engine_hangcheck_action {
  58        ENGINE_IDLE = 0,
  59        ENGINE_WAIT,
  60        ENGINE_ACTIVE_SEQNO,
  61        ENGINE_ACTIVE_HEAD,
  62        ENGINE_ACTIVE_SUBUNITS,
  63        ENGINE_WAIT_KICK,
  64        ENGINE_DEAD,
  65};
  66
  67static inline const char *
  68hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
  69{
  70        switch (a) {
  71        case ENGINE_IDLE:
  72                return "idle";
  73        case ENGINE_WAIT:
  74                return "wait";
  75        case ENGINE_ACTIVE_SEQNO:
  76                return "active seqno";
  77        case ENGINE_ACTIVE_HEAD:
  78                return "active head";
  79        case ENGINE_ACTIVE_SUBUNITS:
  80                return "active subunits";
  81        case ENGINE_WAIT_KICK:
  82                return "wait kick";
  83        case ENGINE_DEAD:
  84                return "dead";
  85        }
  86
  87        return "unknown";
  88}
  89
  90#define I915_MAX_SLICES 3
  91#define I915_MAX_SUBSLICES 3
  92
  93#define instdone_slice_mask(dev_priv__) \
  94        (INTEL_GEN(dev_priv__) == 7 ? \
  95         1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  96
  97#define instdone_subslice_mask(dev_priv__) \
  98        (INTEL_GEN(dev_priv__) == 7 ? \
  99         1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
 100
 101#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
 102        for ((slice__) = 0, (subslice__) = 0; \
 103             (slice__) < I915_MAX_SLICES; \
 104             (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
 105               (slice__) += ((subslice__) == 0)) \
 106                for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
 107                            (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
 108
 109struct intel_instdone {
 110        u32 instdone;
 111        /* The following exist only in the RCS engine */
 112        u32 slice_common;
 113        u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
 114        u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
 115};
 116
 117struct intel_engine_hangcheck {
 118        u64 acthd;
 119        u32 seqno;
 120        enum intel_engine_hangcheck_action action;
 121        unsigned long action_timestamp;
 122        int deadlock;
 123        struct intel_instdone instdone;
 124        bool stalled;
 125};
 126
 127struct intel_ring {
 128        struct i915_vma *vma;
 129        void *vaddr;
 130
 131        struct list_head request_list;
 132
 133        u32 head;
 134        u32 tail;
 135        u32 emit;
 136
 137        u32 space;
 138        u32 size;
 139        u32 effective_size;
 140};
 141
 142struct i915_gem_context;
 143struct drm_i915_reg_table;
 144
 145/*
 146 * we use a single page to load ctx workarounds so all of these
 147 * values are referred in terms of dwords
 148 *
 149 * struct i915_wa_ctx_bb:
 150 *  offset: specifies batch starting position, also helpful in case
 151 *    if we want to have multiple batches at different offsets based on
 152 *    some criteria. It is not a requirement at the moment but provides
 153 *    an option for future use.
 154 *  size: size of the batch in DWORDS
 155 */
 156struct i915_ctx_workarounds {
 157        struct i915_wa_ctx_bb {
 158                u32 offset;
 159                u32 size;
 160        } indirect_ctx, per_ctx;
 161        struct i915_vma *vma;
 162};
 163
 164struct drm_i915_gem_request;
 165struct intel_render_state;
 166
 167/*
 168 * Engine IDs definitions.
 169 * Keep instances of the same type engine together.
 170 */
 171enum intel_engine_id {
 172        RCS = 0,
 173        BCS,
 174        VCS,
 175        VCS2,
 176#define _VCS(n) (VCS + (n))
 177        VECS
 178};
 179
 180struct i915_priolist {
 181        struct rb_node node;
 182        struct list_head requests;
 183        int priority;
 184};
 185
 186#define INTEL_ENGINE_CS_MAX_NAME 8
 187
 188struct intel_engine_cs {
 189        struct drm_i915_private *i915;
 190        char name[INTEL_ENGINE_CS_MAX_NAME];
 191        enum intel_engine_id id;
 192        unsigned int uabi_id;
 193        unsigned int hw_id;
 194        unsigned int guc_id;
 195
 196        u8 class;
 197        u8 instance;
 198        u32 context_size;
 199        u32 mmio_base;
 200        unsigned int irq_shift;
 201
 202        struct intel_ring *buffer;
 203        struct intel_timeline *timeline;
 204
 205        struct intel_render_state *render_state;
 206
 207        atomic_t irq_count;
 208        unsigned long irq_posted;
 209#define ENGINE_IRQ_BREADCRUMB 0
 210#define ENGINE_IRQ_EXECLIST 1
 211
 212        /* Rather than have every client wait upon all user interrupts,
 213         * with the herd waking after every interrupt and each doing the
 214         * heavyweight seqno dance, we delegate the task (of being the
 215         * bottom-half of the user interrupt) to the first client. After
 216         * every interrupt, we wake up one client, who does the heavyweight
 217         * coherent seqno read and either goes back to sleep (if incomplete),
 218         * or wakes up all the completed clients in parallel, before then
 219         * transferring the bottom-half status to the next client in the queue.
 220         *
 221         * Compared to walking the entire list of waiters in a single dedicated
 222         * bottom-half, we reduce the latency of the first waiter by avoiding
 223         * a context switch, but incur additional coherent seqno reads when
 224         * following the chain of request breadcrumbs. Since it is most likely
 225         * that we have a single client waiting on each seqno, then reducing
 226         * the overhead of waking that client is much preferred.
 227         */
 228        struct intel_breadcrumbs {
 229                spinlock_t irq_lock; /* protects irq_*; irqsafe */
 230                struct intel_wait *irq_wait; /* oldest waiter by retirement */
 231
 232                spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
 233                struct rb_root waiters; /* sorted by retirement, priority */
 234                struct rb_root signals; /* sorted by retirement */
 235                struct task_struct *signaler; /* used for fence signalling */
 236                struct drm_i915_gem_request __rcu *first_signal;
 237                struct timer_list fake_irq; /* used after a missed interrupt */
 238                struct timer_list hangcheck; /* detect missed interrupts */
 239
 240                unsigned int hangcheck_interrupts;
 241
 242                bool irq_armed : 1;
 243                bool irq_enabled : 1;
 244                I915_SELFTEST_DECLARE(bool mock : 1);
 245        } breadcrumbs;
 246
 247        /*
 248         * A pool of objects to use as shadow copies of client batch buffers
 249         * when the command parser is enabled. Prevents the client from
 250         * modifying the batch contents after software parsing.
 251         */
 252        struct i915_gem_batch_pool batch_pool;
 253
 254        struct intel_hw_status_page status_page;
 255        struct i915_ctx_workarounds wa_ctx;
 256        struct i915_vma *scratch;
 257
 258        u32             irq_keep_mask; /* always keep these interrupts */
 259        u32             irq_enable_mask; /* bitmask to enable ring interrupt */
 260        void            (*irq_enable)(struct intel_engine_cs *engine);
 261        void            (*irq_disable)(struct intel_engine_cs *engine);
 262
 263        int             (*init_hw)(struct intel_engine_cs *engine);
 264        void            (*reset_hw)(struct intel_engine_cs *engine,
 265                                    struct drm_i915_gem_request *req);
 266
 267        void            (*set_default_submission)(struct intel_engine_cs *engine);
 268
 269        struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
 270                                          struct i915_gem_context *ctx);
 271        void            (*context_unpin)(struct intel_engine_cs *engine,
 272                                         struct i915_gem_context *ctx);
 273        int             (*request_alloc)(struct drm_i915_gem_request *req);
 274        int             (*init_context)(struct drm_i915_gem_request *req);
 275
 276        int             (*emit_flush)(struct drm_i915_gem_request *request,
 277                                      u32 mode);
 278#define EMIT_INVALIDATE BIT(0)
 279#define EMIT_FLUSH      BIT(1)
 280#define EMIT_BARRIER    (EMIT_INVALIDATE | EMIT_FLUSH)
 281        int             (*emit_bb_start)(struct drm_i915_gem_request *req,
 282                                         u64 offset, u32 length,
 283                                         unsigned int dispatch_flags);
 284#define I915_DISPATCH_SECURE BIT(0)
 285#define I915_DISPATCH_PINNED BIT(1)
 286#define I915_DISPATCH_RS     BIT(2)
 287        void            (*emit_breadcrumb)(struct drm_i915_gem_request *req,
 288                                           u32 *cs);
 289        int             emit_breadcrumb_sz;
 290
 291        /* Pass the request to the hardware queue (e.g. directly into
 292         * the legacy ringbuffer or to the end of an execlist).
 293         *
 294         * This is called from an atomic context with irqs disabled; must
 295         * be irq safe.
 296         */
 297        void            (*submit_request)(struct drm_i915_gem_request *req);
 298
 299        /* Call when the priority on a request has changed and it and its
 300         * dependencies may need rescheduling. Note the request itself may
 301         * not be ready to run!
 302         *
 303         * Called under the struct_mutex.
 304         */
 305        void            (*schedule)(struct drm_i915_gem_request *request,
 306                                    int priority);
 307
 308        /* Some chipsets are not quite as coherent as advertised and need
 309         * an expensive kick to force a true read of the up-to-date seqno.
 310         * However, the up-to-date seqno is not always required and the last
 311         * seen value is good enough. Note that the seqno will always be
 312         * monotonic, even if not coherent.
 313         */
 314        void            (*irq_seqno_barrier)(struct intel_engine_cs *engine);
 315        void            (*cleanup)(struct intel_engine_cs *engine);
 316
 317        /* GEN8 signal/wait table - never trust comments!
 318         *        signal to     signal to    signal to   signal to      signal to
 319         *          RCS            VCS          BCS        VECS          VCS2
 320         *      --------------------------------------------------------------------
 321         *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
 322         *      |-------------------------------------------------------------------
 323         *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
 324         *      |-------------------------------------------------------------------
 325         *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
 326         *      |-------------------------------------------------------------------
 327         * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
 328         *      |-------------------------------------------------------------------
 329         * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
 330         *      |-------------------------------------------------------------------
 331         *
 332         * Generalization:
 333         *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
 334         *  ie. transpose of g(x, y)
 335         *
 336         *       sync from      sync from    sync from    sync from     sync from
 337         *          RCS            VCS          BCS        VECS          VCS2
 338         *      --------------------------------------------------------------------
 339         *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
 340         *      |-------------------------------------------------------------------
 341         *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
 342         *      |-------------------------------------------------------------------
 343         *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
 344         *      |-------------------------------------------------------------------
 345         * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
 346         *      |-------------------------------------------------------------------
 347         * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
 348         *      |-------------------------------------------------------------------
 349         *
 350         * Generalization:
 351         *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
 352         *  ie. transpose of f(x, y)
 353         */
 354        struct {
 355                union {
 356#define GEN6_SEMAPHORE_LAST     VECS_HW
 357#define GEN6_NUM_SEMAPHORES     (GEN6_SEMAPHORE_LAST + 1)
 358#define GEN6_SEMAPHORES_MASK    GENMASK(GEN6_SEMAPHORE_LAST, 0)
 359                        struct {
 360                                /* our mbox written by others */
 361                                u32             wait[GEN6_NUM_SEMAPHORES];
 362                                /* mboxes this ring signals to */
 363                                i915_reg_t      signal[GEN6_NUM_SEMAPHORES];
 364                        } mbox;
 365                        u64             signal_ggtt[I915_NUM_ENGINES];
 366                };
 367
 368                /* AKA wait() */
 369                int     (*sync_to)(struct drm_i915_gem_request *req,
 370                                   struct drm_i915_gem_request *signal);
 371                u32     *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
 372        } semaphore;
 373
 374        /* Execlists */
 375        struct tasklet_struct irq_tasklet;
 376        struct i915_priolist default_priolist;
 377        bool no_priolist;
 378        struct execlist_port {
 379                struct drm_i915_gem_request *request_count;
 380#define EXECLIST_COUNT_BITS 2
 381#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
 382#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
 383#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
 384#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
 385#define port_set(p, packed) ((p)->request_count = (packed))
 386#define port_isset(p) ((p)->request_count)
 387#define port_index(p, e) ((p) - (e)->execlist_port)
 388                GEM_DEBUG_DECL(u32 context_id);
 389        } execlist_port[2];
 390        struct rb_root execlist_queue;
 391        struct rb_node *execlist_first;
 392        unsigned int fw_domains;
 393
 394        /* Contexts are pinned whilst they are active on the GPU. The last
 395         * context executed remains active whilst the GPU is idle - the
 396         * switch away and write to the context object only occurs on the
 397         * next execution.  Contexts are only unpinned on retirement of the
 398         * following request ensuring that we can always write to the object
 399         * on the context switch even after idling. Across suspend, we switch
 400         * to the kernel context and trash it as the save may not happen
 401         * before the hardware is powered down.
 402         */
 403        struct i915_gem_context *last_retired_context;
 404
 405        /* We track the current MI_SET_CONTEXT in order to eliminate
 406         * redudant context switches. This presumes that requests are not
 407         * reordered! Or when they are the tracking is updated along with
 408         * the emission of individual requests into the legacy command
 409         * stream (ring).
 410         */
 411        struct i915_gem_context *legacy_active_context;
 412
 413        /* status_notifier: list of callbacks for context-switch changes */
 414        struct atomic_notifier_head context_status_notifier;
 415
 416        struct intel_engine_hangcheck hangcheck;
 417
 418        bool needs_cmd_parser;
 419
 420        /*
 421         * Table of commands the command parser needs to know about
 422         * for this engine.
 423         */
 424        DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
 425
 426        /*
 427         * Table of registers allowed in commands that read/write registers.
 428         */
 429        const struct drm_i915_reg_table *reg_tables;
 430        int reg_table_count;
 431
 432        /*
 433         * Returns the bitmask for the length field of the specified command.
 434         * Return 0 for an unrecognized/invalid command.
 435         *
 436         * If the command parser finds an entry for a command in the engine's
 437         * cmd_tables, it gets the command's length based on the table entry.
 438         * If not, it calls this function to determine the per-engine length
 439         * field encoding for the command (i.e. different opcode ranges use
 440         * certain bits to encode the command length in the header).
 441         */
 442        u32 (*get_cmd_length_mask)(u32 cmd_header);
 443};
 444
 445static inline unsigned int
 446intel_engine_flag(const struct intel_engine_cs *engine)
 447{
 448        return BIT(engine->id);
 449}
 450
 451static inline u32
 452intel_read_status_page(struct intel_engine_cs *engine, int reg)
 453{
 454        /* Ensure that the compiler doesn't optimize away the load. */
 455        return READ_ONCE(engine->status_page.page_addr[reg]);
 456}
 457
 458static inline void
 459intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
 460{
 461        /* Writing into the status page should be done sparingly. Since
 462         * we do when we are uncertain of the device state, we take a bit
 463         * of extra paranoia to try and ensure that the HWS takes the value
 464         * we give and that it doesn't end up trapped inside the CPU!
 465         */
 466        if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
 467                mb();
 468                clflush(&engine->status_page.page_addr[reg]);
 469                engine->status_page.page_addr[reg] = value;
 470                clflush(&engine->status_page.page_addr[reg]);
 471                mb();
 472        } else {
 473                WRITE_ONCE(engine->status_page.page_addr[reg], value);
 474        }
 475}
 476
 477/*
 478 * Reads a dword out of the status page, which is written to from the command
 479 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 480 * MI_STORE_DATA_IMM.
 481 *
 482 * The following dwords have a reserved meaning:
 483 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 484 * 0x04: ring 0 head pointer
 485 * 0x05: ring 1 head pointer (915-class)
 486 * 0x06: ring 2 head pointer (915-class)
 487 * 0x10-0x1b: Context status DWords (GM45)
 488 * 0x1f: Last written status offset. (GM45)
 489 * 0x20-0x2f: Reserved (Gen6+)
 490 *
 491 * The area from dword 0x30 to 0x3ff is available for driver usage.
 492 */
 493#define I915_GEM_HWS_INDEX              0x30
 494#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 495#define I915_GEM_HWS_SCRATCH_INDEX      0x40
 496#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 497
 498struct intel_ring *
 499intel_engine_create_ring(struct intel_engine_cs *engine, int size);
 500int intel_ring_pin(struct intel_ring *ring,
 501                   struct drm_i915_private *i915,
 502                   unsigned int offset_bias);
 503void intel_ring_reset(struct intel_ring *ring, u32 tail);
 504unsigned int intel_ring_update_space(struct intel_ring *ring);
 505void intel_ring_unpin(struct intel_ring *ring);
 506void intel_ring_free(struct intel_ring *ring);
 507
 508void intel_engine_stop(struct intel_engine_cs *engine);
 509void intel_engine_cleanup(struct intel_engine_cs *engine);
 510
 511void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
 512
 513int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
 514
 515u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
 516                                   unsigned int n);
 517
 518static inline void
 519intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
 520{
 521        /* Dummy function.
 522         *
 523         * This serves as a placeholder in the code so that the reader
 524         * can compare against the preceding intel_ring_begin() and
 525         * check that the number of dwords emitted matches the space
 526         * reserved for the command packet (i.e. the value passed to
 527         * intel_ring_begin()).
 528         */
 529        GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
 530}
 531
 532static inline u32
 533intel_ring_wrap(const struct intel_ring *ring, u32 pos)
 534{
 535        return pos & (ring->size - 1);
 536}
 537
 538static inline u32
 539intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
 540{
 541        /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
 542        u32 offset = addr - req->ring->vaddr;
 543        GEM_BUG_ON(offset > req->ring->size);
 544        return intel_ring_wrap(req->ring, offset);
 545}
 546
 547static inline void
 548assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
 549{
 550        /* We could combine these into a single tail operation, but keeping
 551         * them as seperate tests will help identify the cause should one
 552         * ever fire.
 553         */
 554        GEM_BUG_ON(!IS_ALIGNED(tail, 8));
 555        GEM_BUG_ON(tail >= ring->size);
 556
 557        /*
 558         * "Ring Buffer Use"
 559         *      Gen2 BSpec "1. Programming Environment" / 1.4.4.6
 560         *      Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
 561         *      Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
 562         * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
 563         * same cacheline, the Head Pointer must not be greater than the Tail
 564         * Pointer."
 565         *
 566         * We use ring->head as the last known location of the actual RING_HEAD,
 567         * it may have advanced but in the worst case it is equally the same
 568         * as ring->head and so we should never program RING_TAIL to advance
 569         * into the same cacheline as ring->head.
 570         */
 571#define cacheline(a) round_down(a, CACHELINE_BYTES)
 572        GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
 573                   tail < ring->head);
 574#undef cacheline
 575}
 576
 577static inline unsigned int
 578intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
 579{
 580        /* Whilst writes to the tail are strictly order, there is no
 581         * serialisation between readers and the writers. The tail may be
 582         * read by i915_gem_request_retire() just as it is being updated
 583         * by execlists, as although the breadcrumb is complete, the context
 584         * switch hasn't been seen.
 585         */
 586        assert_ring_tail_valid(ring, tail);
 587        ring->tail = tail;
 588        return tail;
 589}
 590
 591void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
 592
 593void intel_engine_setup_common(struct intel_engine_cs *engine);
 594int intel_engine_init_common(struct intel_engine_cs *engine);
 595int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
 596void intel_engine_cleanup_common(struct intel_engine_cs *engine);
 597
 598int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
 599int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
 600int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
 601int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
 602
 603u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
 604u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
 605
 606static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
 607{
 608        return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
 609}
 610
 611static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
 612{
 613        /* We are only peeking at the tail of the submit queue (and not the
 614         * queue itself) in order to gain a hint as to the current active
 615         * state of the engine. Callers are not expected to be taking
 616         * engine->timeline->lock, nor are they expected to be concerned
 617         * wtih serialising this hint with anything, so document it as
 618         * a hint and nothing more.
 619         */
 620        return READ_ONCE(engine->timeline->seqno);
 621}
 622
 623int init_workarounds_ring(struct intel_engine_cs *engine);
 624int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
 625
 626void intel_engine_get_instdone(struct intel_engine_cs *engine,
 627                               struct intel_instdone *instdone);
 628
 629/*
 630 * Arbitrary size for largest possible 'add request' sequence. The code paths
 631 * are complex and variable. Empirical measurement shows that the worst case
 632 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 633 * we need to allocate double the largest single packet within that emission
 634 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
 635 */
 636#define MIN_SPACE_FOR_ADD_REQUEST 336
 637
 638static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
 639{
 640        return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
 641}
 642
 643/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
 644int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
 645
 646static inline void intel_wait_init(struct intel_wait *wait,
 647                                   struct drm_i915_gem_request *rq)
 648{
 649        wait->tsk = current;
 650        wait->request = rq;
 651}
 652
 653static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
 654{
 655        wait->tsk = current;
 656        wait->seqno = seqno;
 657}
 658
 659static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
 660{
 661        return wait->seqno;
 662}
 663
 664static inline bool
 665intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
 666{
 667        wait->seqno = seqno;
 668        return intel_wait_has_seqno(wait);
 669}
 670
 671static inline bool
 672intel_wait_update_request(struct intel_wait *wait,
 673                          const struct drm_i915_gem_request *rq)
 674{
 675        return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
 676}
 677
 678static inline bool
 679intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
 680{
 681        return wait->seqno == seqno;
 682}
 683
 684static inline bool
 685intel_wait_check_request(const struct intel_wait *wait,
 686                         const struct drm_i915_gem_request *rq)
 687{
 688        return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
 689}
 690
 691static inline bool intel_wait_complete(const struct intel_wait *wait)
 692{
 693        return RB_EMPTY_NODE(&wait->node);
 694}
 695
 696bool intel_engine_add_wait(struct intel_engine_cs *engine,
 697                           struct intel_wait *wait);
 698void intel_engine_remove_wait(struct intel_engine_cs *engine,
 699                              struct intel_wait *wait);
 700void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
 701                                   bool wakeup);
 702void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
 703
 704static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
 705{
 706        return READ_ONCE(engine->breadcrumbs.irq_wait);
 707}
 708
 709unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
 710#define ENGINE_WAKEUP_WAITER BIT(0)
 711#define ENGINE_WAKEUP_ASLEEP BIT(1)
 712
 713void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
 714void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
 715
 716void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
 717void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
 718bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
 719
 720static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
 721{
 722        memset(batch, 0, 6 * sizeof(u32));
 723
 724        batch[0] = GFX_OP_PIPE_CONTROL(6);
 725        batch[1] = flags;
 726        batch[2] = offset;
 727
 728        return batch + 6;
 729}
 730
 731bool intel_engine_is_idle(struct intel_engine_cs *engine);
 732bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
 733
 734void intel_engines_mark_idle(struct drm_i915_private *i915);
 735void intel_engines_reset_default_submission(struct drm_i915_private *i915);
 736
 737#endif /* _INTEL_RINGBUFFER_H_ */
 738