linux/drivers/gpu/drm/tegra/dc.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
  12#include <linux/iommu.h>
  13#include <linux/pm_runtime.h>
  14#include <linux/reset.h>
  15
  16#include <soc/tegra/pmc.h>
  17
  18#include "dc.h"
  19#include "drm.h"
  20#include "gem.h"
  21
  22#include <drm/drm_atomic.h>
  23#include <drm/drm_atomic_helper.h>
  24#include <drm/drm_plane_helper.h>
  25
  26struct tegra_dc_soc_info {
  27        bool supports_border_color;
  28        bool supports_interlacing;
  29        bool supports_cursor;
  30        bool supports_block_linear;
  31        unsigned int pitch_align;
  32        bool has_powergate;
  33        bool broken_reset;
  34};
  35
  36struct tegra_plane {
  37        struct drm_plane base;
  38        unsigned int index;
  39};
  40
  41static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  42{
  43        return container_of(plane, struct tegra_plane, base);
  44}
  45
  46struct tegra_dc_state {
  47        struct drm_crtc_state base;
  48
  49        struct clk *clk;
  50        unsigned long pclk;
  51        unsigned int div;
  52
  53        u32 planes;
  54};
  55
  56static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
  57{
  58        if (state)
  59                return container_of(state, struct tegra_dc_state, base);
  60
  61        return NULL;
  62}
  63
  64struct tegra_plane_state {
  65        struct drm_plane_state base;
  66
  67        struct tegra_bo_tiling tiling;
  68        u32 format;
  69        u32 swap;
  70};
  71
  72static inline struct tegra_plane_state *
  73to_tegra_plane_state(struct drm_plane_state *state)
  74{
  75        if (state)
  76                return container_of(state, struct tegra_plane_state, base);
  77
  78        return NULL;
  79}
  80
  81static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  82{
  83        stats->frames = 0;
  84        stats->vblank = 0;
  85        stats->underflow = 0;
  86        stats->overflow = 0;
  87}
  88
  89/*
  90 * Reads the active copy of a register. This takes the dc->lock spinlock to
  91 * prevent races with the VBLANK processing which also needs access to the
  92 * active copy of some registers.
  93 */
  94static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  95{
  96        unsigned long flags;
  97        u32 value;
  98
  99        spin_lock_irqsave(&dc->lock, flags);
 100
 101        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 102        value = tegra_dc_readl(dc, offset);
 103        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 104
 105        spin_unlock_irqrestore(&dc->lock, flags);
 106        return value;
 107}
 108
 109/*
 110 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 111 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 112 * Latching happens mmediately if the display controller is in STOP mode or
 113 * on the next frame boundary otherwise.
 114 *
 115 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 116 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 117 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 118 * into the ACTIVE copy, either immediately if the display controller is in
 119 * STOP mode, or at the next frame boundary otherwise.
 120 */
 121void tegra_dc_commit(struct tegra_dc *dc)
 122{
 123        tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 124        tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 125}
 126
 127static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
 128{
 129        /* assume no swapping of fetched data */
 130        if (swap)
 131                *swap = BYTE_SWAP_NOSWAP;
 132
 133        switch (fourcc) {
 134        case DRM_FORMAT_XBGR8888:
 135                *format = WIN_COLOR_DEPTH_R8G8B8A8;
 136                break;
 137
 138        case DRM_FORMAT_XRGB8888:
 139                *format = WIN_COLOR_DEPTH_B8G8R8A8;
 140                break;
 141
 142        case DRM_FORMAT_RGB565:
 143                *format = WIN_COLOR_DEPTH_B5G6R5;
 144                break;
 145
 146        case DRM_FORMAT_UYVY:
 147                *format = WIN_COLOR_DEPTH_YCbCr422;
 148                break;
 149
 150        case DRM_FORMAT_YUYV:
 151                if (swap)
 152                        *swap = BYTE_SWAP_SWAP2;
 153
 154                *format = WIN_COLOR_DEPTH_YCbCr422;
 155                break;
 156
 157        case DRM_FORMAT_YUV420:
 158                *format = WIN_COLOR_DEPTH_YCbCr420P;
 159                break;
 160
 161        case DRM_FORMAT_YUV422:
 162                *format = WIN_COLOR_DEPTH_YCbCr422P;
 163                break;
 164
 165        default:
 166                return -EINVAL;
 167        }
 168
 169        return 0;
 170}
 171
 172static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
 173{
 174        switch (format) {
 175        case WIN_COLOR_DEPTH_YCbCr422:
 176        case WIN_COLOR_DEPTH_YUV422:
 177                if (planar)
 178                        *planar = false;
 179
 180                return true;
 181
 182        case WIN_COLOR_DEPTH_YCbCr420P:
 183        case WIN_COLOR_DEPTH_YUV420P:
 184        case WIN_COLOR_DEPTH_YCbCr422P:
 185        case WIN_COLOR_DEPTH_YUV422P:
 186        case WIN_COLOR_DEPTH_YCbCr422R:
 187        case WIN_COLOR_DEPTH_YUV422R:
 188        case WIN_COLOR_DEPTH_YCbCr422RA:
 189        case WIN_COLOR_DEPTH_YUV422RA:
 190                if (planar)
 191                        *planar = true;
 192
 193                return true;
 194        }
 195
 196        if (planar)
 197                *planar = false;
 198
 199        return false;
 200}
 201
 202static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 203                                  unsigned int bpp)
 204{
 205        fixed20_12 outf = dfixed_init(out);
 206        fixed20_12 inf = dfixed_init(in);
 207        u32 dda_inc;
 208        int max;
 209
 210        if (v)
 211                max = 15;
 212        else {
 213                switch (bpp) {
 214                case 2:
 215                        max = 8;
 216                        break;
 217
 218                default:
 219                        WARN_ON_ONCE(1);
 220                        /* fallthrough */
 221                case 4:
 222                        max = 4;
 223                        break;
 224                }
 225        }
 226
 227        outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 228        inf.full -= dfixed_const(1);
 229
 230        dda_inc = dfixed_div(inf, outf);
 231        dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 232
 233        return dda_inc;
 234}
 235
 236static inline u32 compute_initial_dda(unsigned int in)
 237{
 238        fixed20_12 inf = dfixed_init(in);
 239        return dfixed_frac(inf);
 240}
 241
 242static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
 243                                  const struct tegra_dc_window *window)
 244{
 245        unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 246        unsigned long value, flags;
 247        bool yuv, planar;
 248
 249        /*
 250         * For YUV planar modes, the number of bytes per pixel takes into
 251         * account only the luma component and therefore is 1.
 252         */
 253        yuv = tegra_dc_format_is_yuv(window->format, &planar);
 254        if (!yuv)
 255                bpp = window->bits_per_pixel / 8;
 256        else
 257                bpp = planar ? 1 : 2;
 258
 259        spin_lock_irqsave(&dc->lock, flags);
 260
 261        value = WINDOW_A_SELECT << index;
 262        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 263
 264        tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
 265        tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
 266
 267        value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 268        tegra_dc_writel(dc, value, DC_WIN_POSITION);
 269
 270        value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 271        tegra_dc_writel(dc, value, DC_WIN_SIZE);
 272
 273        h_offset = window->src.x * bpp;
 274        v_offset = window->src.y;
 275        h_size = window->src.w * bpp;
 276        v_size = window->src.h;
 277
 278        value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 279        tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
 280
 281        /*
 282         * For DDA computations the number of bytes per pixel for YUV planar
 283         * modes needs to take into account all Y, U and V components.
 284         */
 285        if (yuv && planar)
 286                bpp = 2;
 287
 288        h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 289        v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 290
 291        value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 292        tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
 293
 294        h_dda = compute_initial_dda(window->src.x);
 295        v_dda = compute_initial_dda(window->src.y);
 296
 297        tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
 298        tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
 299
 300        tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
 301        tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
 302
 303        tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
 304
 305        if (yuv && planar) {
 306                tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
 307                tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
 308                value = window->stride[1] << 16 | window->stride[0];
 309                tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
 310        } else {
 311                tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
 312        }
 313
 314        if (window->bottom_up)
 315                v_offset += window->src.h - 1;
 316
 317        tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 318        tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 319
 320        if (dc->soc->supports_block_linear) {
 321                unsigned long height = window->tiling.value;
 322
 323                switch (window->tiling.mode) {
 324                case TEGRA_BO_TILING_MODE_PITCH:
 325                        value = DC_WINBUF_SURFACE_KIND_PITCH;
 326                        break;
 327
 328                case TEGRA_BO_TILING_MODE_TILED:
 329                        value = DC_WINBUF_SURFACE_KIND_TILED;
 330                        break;
 331
 332                case TEGRA_BO_TILING_MODE_BLOCK:
 333                        value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 334                                DC_WINBUF_SURFACE_KIND_BLOCK;
 335                        break;
 336                }
 337
 338                tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
 339        } else {
 340                switch (window->tiling.mode) {
 341                case TEGRA_BO_TILING_MODE_PITCH:
 342                        value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 343                                DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 344                        break;
 345
 346                case TEGRA_BO_TILING_MODE_TILED:
 347                        value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 348                                DC_WIN_BUFFER_ADDR_MODE_TILE;
 349                        break;
 350
 351                case TEGRA_BO_TILING_MODE_BLOCK:
 352                        /*
 353                         * No need to handle this here because ->atomic_check
 354                         * will already have filtered it out.
 355                         */
 356                        break;
 357                }
 358
 359                tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
 360        }
 361
 362        value = WIN_ENABLE;
 363
 364        if (yuv) {
 365                /* setup default colorspace conversion coefficients */
 366                tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
 367                tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
 368                tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
 369                tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
 370                tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
 371                tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
 372                tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
 373                tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
 374
 375                value |= CSC_ENABLE;
 376        } else if (window->bits_per_pixel < 24) {
 377                value |= COLOR_EXPAND;
 378        }
 379
 380        if (window->bottom_up)
 381                value |= V_DIRECTION;
 382
 383        tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 384
 385        /*
 386         * Disable blending and assume Window A is the bottom-most window,
 387         * Window C is the top-most window and Window B is in the middle.
 388         */
 389        tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
 390        tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
 391
 392        switch (index) {
 393        case 0:
 394                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
 395                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 396                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 397                break;
 398
 399        case 1:
 400                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 401                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 402                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 403                break;
 404
 405        case 2:
 406                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 407                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
 408                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
 409                break;
 410        }
 411
 412        spin_unlock_irqrestore(&dc->lock, flags);
 413}
 414
 415static void tegra_plane_destroy(struct drm_plane *plane)
 416{
 417        struct tegra_plane *p = to_tegra_plane(plane);
 418
 419        drm_plane_cleanup(plane);
 420        kfree(p);
 421}
 422
 423static const u32 tegra_primary_plane_formats[] = {
 424        DRM_FORMAT_XBGR8888,
 425        DRM_FORMAT_XRGB8888,
 426        DRM_FORMAT_RGB565,
 427};
 428
 429static void tegra_primary_plane_destroy(struct drm_plane *plane)
 430{
 431        tegra_plane_destroy(plane);
 432}
 433
 434static void tegra_plane_reset(struct drm_plane *plane)
 435{
 436        struct tegra_plane_state *state;
 437
 438        if (plane->state)
 439                __drm_atomic_helper_plane_destroy_state(plane->state);
 440
 441        kfree(plane->state);
 442        plane->state = NULL;
 443
 444        state = kzalloc(sizeof(*state), GFP_KERNEL);
 445        if (state) {
 446                plane->state = &state->base;
 447                plane->state->plane = plane;
 448        }
 449}
 450
 451static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
 452{
 453        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 454        struct tegra_plane_state *copy;
 455
 456        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
 457        if (!copy)
 458                return NULL;
 459
 460        __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
 461        copy->tiling = state->tiling;
 462        copy->format = state->format;
 463        copy->swap = state->swap;
 464
 465        return &copy->base;
 466}
 467
 468static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
 469                                             struct drm_plane_state *state)
 470{
 471        __drm_atomic_helper_plane_destroy_state(state);
 472        kfree(state);
 473}
 474
 475static const struct drm_plane_funcs tegra_primary_plane_funcs = {
 476        .update_plane = drm_atomic_helper_update_plane,
 477        .disable_plane = drm_atomic_helper_disable_plane,
 478        .destroy = tegra_primary_plane_destroy,
 479        .reset = tegra_plane_reset,
 480        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 481        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 482};
 483
 484static int tegra_plane_state_add(struct tegra_plane *plane,
 485                                 struct drm_plane_state *state)
 486{
 487        struct drm_crtc_state *crtc_state;
 488        struct tegra_dc_state *tegra;
 489        struct drm_rect clip;
 490        int err;
 491
 492        /* Propagate errors from allocation or locking failures. */
 493        crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
 494        if (IS_ERR(crtc_state))
 495                return PTR_ERR(crtc_state);
 496
 497        clip.x1 = 0;
 498        clip.y1 = 0;
 499        clip.x2 = crtc_state->mode.hdisplay;
 500        clip.y2 = crtc_state->mode.vdisplay;
 501
 502        /* Check plane state for visibility and calculate clipping bounds */
 503        err = drm_plane_helper_check_state(state, &clip, 0, INT_MAX,
 504                                           true, true);
 505        if (err < 0)
 506                return err;
 507
 508        tegra = to_dc_state(crtc_state);
 509
 510        tegra->planes |= WIN_A_ACT_REQ << plane->index;
 511
 512        return 0;
 513}
 514
 515static int tegra_plane_atomic_check(struct drm_plane *plane,
 516                                    struct drm_plane_state *state)
 517{
 518        struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 519        struct tegra_bo_tiling *tiling = &plane_state->tiling;
 520        struct tegra_plane *tegra = to_tegra_plane(plane);
 521        struct tegra_dc *dc = to_tegra_dc(state->crtc);
 522        int err;
 523
 524        /* no need for further checks if the plane is being disabled */
 525        if (!state->crtc)
 526                return 0;
 527
 528        err = tegra_dc_format(state->fb->format->format, &plane_state->format,
 529                              &plane_state->swap);
 530        if (err < 0)
 531                return err;
 532
 533        err = tegra_fb_get_tiling(state->fb, tiling);
 534        if (err < 0)
 535                return err;
 536
 537        if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 538            !dc->soc->supports_block_linear) {
 539                DRM_ERROR("hardware doesn't support block linear mode\n");
 540                return -EINVAL;
 541        }
 542
 543        /*
 544         * Tegra doesn't support different strides for U and V planes so we
 545         * error out if the user tries to display a framebuffer with such a
 546         * configuration.
 547         */
 548        if (state->fb->format->num_planes > 2) {
 549                if (state->fb->pitches[2] != state->fb->pitches[1]) {
 550                        DRM_ERROR("unsupported UV-plane configuration\n");
 551                        return -EINVAL;
 552                }
 553        }
 554
 555        err = tegra_plane_state_add(tegra, state);
 556        if (err < 0)
 557                return err;
 558
 559        return 0;
 560}
 561
 562static void tegra_dc_disable_window(struct tegra_dc *dc, int index)
 563{
 564        unsigned long flags;
 565        u32 value;
 566
 567        spin_lock_irqsave(&dc->lock, flags);
 568
 569        value = WINDOW_A_SELECT << index;
 570        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 571
 572        value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
 573        value &= ~WIN_ENABLE;
 574        tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 575
 576        spin_unlock_irqrestore(&dc->lock, flags);
 577}
 578
 579static void tegra_plane_atomic_update(struct drm_plane *plane,
 580                                      struct drm_plane_state *old_state)
 581{
 582        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 583        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 584        struct drm_framebuffer *fb = plane->state->fb;
 585        struct tegra_plane *p = to_tegra_plane(plane);
 586        struct tegra_dc_window window;
 587        unsigned int i;
 588
 589        /* rien ne va plus */
 590        if (!plane->state->crtc || !plane->state->fb)
 591                return;
 592
 593        if (!plane->state->visible)
 594                return tegra_dc_disable_window(dc, p->index);
 595
 596        memset(&window, 0, sizeof(window));
 597        window.src.x = plane->state->src.x1 >> 16;
 598        window.src.y = plane->state->src.y1 >> 16;
 599        window.src.w = drm_rect_width(&plane->state->src) >> 16;
 600        window.src.h = drm_rect_height(&plane->state->src) >> 16;
 601        window.dst.x = plane->state->dst.x1;
 602        window.dst.y = plane->state->dst.y1;
 603        window.dst.w = drm_rect_width(&plane->state->dst);
 604        window.dst.h = drm_rect_height(&plane->state->dst);
 605        window.bits_per_pixel = fb->format->cpp[0] * 8;
 606        window.bottom_up = tegra_fb_is_bottom_up(fb);
 607
 608        /* copy from state */
 609        window.tiling = state->tiling;
 610        window.format = state->format;
 611        window.swap = state->swap;
 612
 613        for (i = 0; i < fb->format->num_planes; i++) {
 614                struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 615
 616                window.base[i] = bo->paddr + fb->offsets[i];
 617
 618                /*
 619                 * Tegra uses a shared stride for UV planes. Framebuffers are
 620                 * already checked for this in the tegra_plane_atomic_check()
 621                 * function, so it's safe to ignore the V-plane pitch here.
 622                 */
 623                if (i < 2)
 624                        window.stride[i] = fb->pitches[i];
 625        }
 626
 627        tegra_dc_setup_window(dc, p->index, &window);
 628}
 629
 630static void tegra_plane_atomic_disable(struct drm_plane *plane,
 631                                       struct drm_plane_state *old_state)
 632{
 633        struct tegra_plane *p = to_tegra_plane(plane);
 634        struct tegra_dc *dc;
 635
 636        /* rien ne va plus */
 637        if (!old_state || !old_state->crtc)
 638                return;
 639
 640        dc = to_tegra_dc(old_state->crtc);
 641
 642        tegra_dc_disable_window(dc, p->index);
 643}
 644
 645static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
 646        .atomic_check = tegra_plane_atomic_check,
 647        .atomic_update = tegra_plane_atomic_update,
 648        .atomic_disable = tegra_plane_atomic_disable,
 649};
 650
 651static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
 652                                                       struct tegra_dc *dc)
 653{
 654        /*
 655         * Ideally this would use drm_crtc_mask(), but that would require the
 656         * CRTC to already be in the mode_config's list of CRTCs. However, it
 657         * will only be added to that list in the drm_crtc_init_with_planes()
 658         * (in tegra_dc_init()), which in turn requires registration of these
 659         * planes. So we have ourselves a nice little chicken and egg problem
 660         * here.
 661         *
 662         * We work around this by manually creating the mask from the number
 663         * of CRTCs that have been registered, and should therefore always be
 664         * the same as drm_crtc_index() after registration.
 665         */
 666        unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
 667        struct tegra_plane *plane;
 668        unsigned int num_formats;
 669        const u32 *formats;
 670        int err;
 671
 672        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 673        if (!plane)
 674                return ERR_PTR(-ENOMEM);
 675
 676        num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
 677        formats = tegra_primary_plane_formats;
 678
 679        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 680                                       &tegra_primary_plane_funcs, formats,
 681                                       num_formats, DRM_PLANE_TYPE_PRIMARY,
 682                                       NULL);
 683        if (err < 0) {
 684                kfree(plane);
 685                return ERR_PTR(err);
 686        }
 687
 688        drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
 689
 690        return &plane->base;
 691}
 692
 693static const u32 tegra_cursor_plane_formats[] = {
 694        DRM_FORMAT_RGBA8888,
 695};
 696
 697static int tegra_cursor_atomic_check(struct drm_plane *plane,
 698                                     struct drm_plane_state *state)
 699{
 700        struct tegra_plane *tegra = to_tegra_plane(plane);
 701        int err;
 702
 703        /* no need for further checks if the plane is being disabled */
 704        if (!state->crtc)
 705                return 0;
 706
 707        /* scaling not supported for cursor */
 708        if ((state->src_w >> 16 != state->crtc_w) ||
 709            (state->src_h >> 16 != state->crtc_h))
 710                return -EINVAL;
 711
 712        /* only square cursors supported */
 713        if (state->src_w != state->src_h)
 714                return -EINVAL;
 715
 716        if (state->crtc_w != 32 && state->crtc_w != 64 &&
 717            state->crtc_w != 128 && state->crtc_w != 256)
 718                return -EINVAL;
 719
 720        err = tegra_plane_state_add(tegra, state);
 721        if (err < 0)
 722                return err;
 723
 724        return 0;
 725}
 726
 727static void tegra_cursor_atomic_update(struct drm_plane *plane,
 728                                       struct drm_plane_state *old_state)
 729{
 730        struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 731        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 732        struct drm_plane_state *state = plane->state;
 733        u32 value = CURSOR_CLIP_DISPLAY;
 734
 735        /* rien ne va plus */
 736        if (!plane->state->crtc || !plane->state->fb)
 737                return;
 738
 739        switch (state->crtc_w) {
 740        case 32:
 741                value |= CURSOR_SIZE_32x32;
 742                break;
 743
 744        case 64:
 745                value |= CURSOR_SIZE_64x64;
 746                break;
 747
 748        case 128:
 749                value |= CURSOR_SIZE_128x128;
 750                break;
 751
 752        case 256:
 753                value |= CURSOR_SIZE_256x256;
 754                break;
 755
 756        default:
 757                WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 758                     state->crtc_h);
 759                return;
 760        }
 761
 762        value |= (bo->paddr >> 10) & 0x3fffff;
 763        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 764
 765#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 766        value = (bo->paddr >> 32) & 0x3;
 767        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 768#endif
 769
 770        /* enable cursor and set blend mode */
 771        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 772        value |= CURSOR_ENABLE;
 773        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 774
 775        value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 776        value &= ~CURSOR_DST_BLEND_MASK;
 777        value &= ~CURSOR_SRC_BLEND_MASK;
 778        value |= CURSOR_MODE_NORMAL;
 779        value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 780        value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 781        value |= CURSOR_ALPHA;
 782        tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 783
 784        /* position the cursor */
 785        value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 786        tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 787}
 788
 789static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 790                                        struct drm_plane_state *old_state)
 791{
 792        struct tegra_dc *dc;
 793        u32 value;
 794
 795        /* rien ne va plus */
 796        if (!old_state || !old_state->crtc)
 797                return;
 798
 799        dc = to_tegra_dc(old_state->crtc);
 800
 801        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 802        value &= ~CURSOR_ENABLE;
 803        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 804}
 805
 806static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
 807        .update_plane = drm_atomic_helper_update_plane,
 808        .disable_plane = drm_atomic_helper_disable_plane,
 809        .destroy = tegra_plane_destroy,
 810        .reset = tegra_plane_reset,
 811        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 812        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 813};
 814
 815static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 816        .atomic_check = tegra_cursor_atomic_check,
 817        .atomic_update = tegra_cursor_atomic_update,
 818        .atomic_disable = tegra_cursor_atomic_disable,
 819};
 820
 821static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 822                                                      struct tegra_dc *dc)
 823{
 824        struct tegra_plane *plane;
 825        unsigned int num_formats;
 826        const u32 *formats;
 827        int err;
 828
 829        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 830        if (!plane)
 831                return ERR_PTR(-ENOMEM);
 832
 833        /*
 834         * This index is kind of fake. The cursor isn't a regular plane, but
 835         * its update and activation request bits in DC_CMD_STATE_CONTROL do
 836         * use the same programming. Setting this fake index here allows the
 837         * code in tegra_add_plane_state() to do the right thing without the
 838         * need to special-casing the cursor plane.
 839         */
 840        plane->index = 6;
 841
 842        num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 843        formats = tegra_cursor_plane_formats;
 844
 845        err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 846                                       &tegra_cursor_plane_funcs, formats,
 847                                       num_formats, DRM_PLANE_TYPE_CURSOR,
 848                                       NULL);
 849        if (err < 0) {
 850                kfree(plane);
 851                return ERR_PTR(err);
 852        }
 853
 854        drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 855
 856        return &plane->base;
 857}
 858
 859static void tegra_overlay_plane_destroy(struct drm_plane *plane)
 860{
 861        tegra_plane_destroy(plane);
 862}
 863
 864static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
 865        .update_plane = drm_atomic_helper_update_plane,
 866        .disable_plane = drm_atomic_helper_disable_plane,
 867        .destroy = tegra_overlay_plane_destroy,
 868        .reset = tegra_plane_reset,
 869        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 870        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 871};
 872
 873static const uint32_t tegra_overlay_plane_formats[] = {
 874        DRM_FORMAT_XBGR8888,
 875        DRM_FORMAT_XRGB8888,
 876        DRM_FORMAT_RGB565,
 877        DRM_FORMAT_UYVY,
 878        DRM_FORMAT_YUYV,
 879        DRM_FORMAT_YUV420,
 880        DRM_FORMAT_YUV422,
 881};
 882
 883static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
 884        .atomic_check = tegra_plane_atomic_check,
 885        .atomic_update = tegra_plane_atomic_update,
 886        .atomic_disable = tegra_plane_atomic_disable,
 887};
 888
 889static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 890                                                       struct tegra_dc *dc,
 891                                                       unsigned int index)
 892{
 893        struct tegra_plane *plane;
 894        unsigned int num_formats;
 895        const u32 *formats;
 896        int err;
 897
 898        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 899        if (!plane)
 900                return ERR_PTR(-ENOMEM);
 901
 902        plane->index = index;
 903
 904        num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
 905        formats = tegra_overlay_plane_formats;
 906
 907        err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 908                                       &tegra_overlay_plane_funcs, formats,
 909                                       num_formats, DRM_PLANE_TYPE_OVERLAY,
 910                                       NULL);
 911        if (err < 0) {
 912                kfree(plane);
 913                return ERR_PTR(err);
 914        }
 915
 916        drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
 917
 918        return &plane->base;
 919}
 920
 921static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
 922{
 923        struct drm_plane *plane;
 924        unsigned int i;
 925
 926        for (i = 0; i < 2; i++) {
 927                plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
 928                if (IS_ERR(plane))
 929                        return PTR_ERR(plane);
 930        }
 931
 932        return 0;
 933}
 934
 935static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
 936{
 937        struct tegra_dc *dc = to_tegra_dc(crtc);
 938
 939        if (dc->syncpt)
 940                return host1x_syncpt_read(dc->syncpt);
 941
 942        /* fallback to software emulated VBLANK counter */
 943        return drm_crtc_vblank_count(&dc->base);
 944}
 945
 946static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
 947{
 948        struct tegra_dc *dc = to_tegra_dc(crtc);
 949        unsigned long value, flags;
 950
 951        spin_lock_irqsave(&dc->lock, flags);
 952
 953        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 954        value |= VBLANK_INT;
 955        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 956
 957        spin_unlock_irqrestore(&dc->lock, flags);
 958
 959        return 0;
 960}
 961
 962static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
 963{
 964        struct tegra_dc *dc = to_tegra_dc(crtc);
 965        unsigned long value, flags;
 966
 967        spin_lock_irqsave(&dc->lock, flags);
 968
 969        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 970        value &= ~VBLANK_INT;
 971        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 972
 973        spin_unlock_irqrestore(&dc->lock, flags);
 974}
 975
 976static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
 977{
 978        struct drm_device *drm = dc->base.dev;
 979        struct drm_crtc *crtc = &dc->base;
 980        unsigned long flags, base;
 981        struct tegra_bo *bo;
 982
 983        spin_lock_irqsave(&drm->event_lock, flags);
 984
 985        if (!dc->event) {
 986                spin_unlock_irqrestore(&drm->event_lock, flags);
 987                return;
 988        }
 989
 990        bo = tegra_fb_get_plane(crtc->primary->fb, 0);
 991
 992        spin_lock(&dc->lock);
 993
 994        /* check if new start address has been latched */
 995        tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
 996        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 997        base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
 998        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 999
1000        spin_unlock(&dc->lock);
1001
1002        if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
1003                drm_crtc_send_vblank_event(crtc, dc->event);
1004                drm_crtc_vblank_put(crtc);
1005                dc->event = NULL;
1006        }
1007
1008        spin_unlock_irqrestore(&drm->event_lock, flags);
1009}
1010
1011static void tegra_dc_destroy(struct drm_crtc *crtc)
1012{
1013        drm_crtc_cleanup(crtc);
1014}
1015
1016static void tegra_crtc_reset(struct drm_crtc *crtc)
1017{
1018        struct tegra_dc_state *state;
1019
1020        if (crtc->state)
1021                __drm_atomic_helper_crtc_destroy_state(crtc->state);
1022
1023        kfree(crtc->state);
1024        crtc->state = NULL;
1025
1026        state = kzalloc(sizeof(*state), GFP_KERNEL);
1027        if (state) {
1028                crtc->state = &state->base;
1029                crtc->state->crtc = crtc;
1030        }
1031
1032        drm_crtc_vblank_reset(crtc);
1033}
1034
1035static struct drm_crtc_state *
1036tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1037{
1038        struct tegra_dc_state *state = to_dc_state(crtc->state);
1039        struct tegra_dc_state *copy;
1040
1041        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1042        if (!copy)
1043                return NULL;
1044
1045        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1046        copy->clk = state->clk;
1047        copy->pclk = state->pclk;
1048        copy->div = state->div;
1049        copy->planes = state->planes;
1050
1051        return &copy->base;
1052}
1053
1054static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1055                                            struct drm_crtc_state *state)
1056{
1057        __drm_atomic_helper_crtc_destroy_state(state);
1058        kfree(state);
1059}
1060
1061static const struct drm_crtc_funcs tegra_crtc_funcs = {
1062        .page_flip = drm_atomic_helper_page_flip,
1063        .set_config = drm_atomic_helper_set_config,
1064        .destroy = tegra_dc_destroy,
1065        .reset = tegra_crtc_reset,
1066        .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1067        .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1068        .get_vblank_counter = tegra_dc_get_vblank_counter,
1069        .enable_vblank = tegra_dc_enable_vblank,
1070        .disable_vblank = tegra_dc_disable_vblank,
1071};
1072
1073static int tegra_dc_set_timings(struct tegra_dc *dc,
1074                                struct drm_display_mode *mode)
1075{
1076        unsigned int h_ref_to_sync = 1;
1077        unsigned int v_ref_to_sync = 1;
1078        unsigned long value;
1079
1080        tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1081
1082        value = (v_ref_to_sync << 16) | h_ref_to_sync;
1083        tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1084
1085        value = ((mode->vsync_end - mode->vsync_start) << 16) |
1086                ((mode->hsync_end - mode->hsync_start) <<  0);
1087        tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1088
1089        value = ((mode->vtotal - mode->vsync_end) << 16) |
1090                ((mode->htotal - mode->hsync_end) <<  0);
1091        tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1092
1093        value = ((mode->vsync_start - mode->vdisplay) << 16) |
1094                ((mode->hsync_start - mode->hdisplay) <<  0);
1095        tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1096
1097        value = (mode->vdisplay << 16) | mode->hdisplay;
1098        tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1099
1100        return 0;
1101}
1102
1103/**
1104 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1105 *     state
1106 * @dc: display controller
1107 * @crtc_state: CRTC atomic state
1108 * @clk: parent clock for display controller
1109 * @pclk: pixel clock
1110 * @div: shift clock divider
1111 *
1112 * Returns:
1113 * 0 on success or a negative error-code on failure.
1114 */
1115int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1116                               struct drm_crtc_state *crtc_state,
1117                               struct clk *clk, unsigned long pclk,
1118                               unsigned int div)
1119{
1120        struct tegra_dc_state *state = to_dc_state(crtc_state);
1121
1122        if (!clk_has_parent(dc->clk, clk))
1123                return -EINVAL;
1124
1125        state->clk = clk;
1126        state->pclk = pclk;
1127        state->div = div;
1128
1129        return 0;
1130}
1131
1132static void tegra_dc_commit_state(struct tegra_dc *dc,
1133                                  struct tegra_dc_state *state)
1134{
1135        u32 value;
1136        int err;
1137
1138        err = clk_set_parent(dc->clk, state->clk);
1139        if (err < 0)
1140                dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1141
1142        /*
1143         * Outputs may not want to change the parent clock rate. This is only
1144         * relevant to Tegra20 where only a single display PLL is available.
1145         * Since that PLL would typically be used for HDMI, an internal LVDS
1146         * panel would need to be driven by some other clock such as PLL_P
1147         * which is shared with other peripherals. Changing the clock rate
1148         * should therefore be avoided.
1149         */
1150        if (state->pclk > 0) {
1151                err = clk_set_rate(state->clk, state->pclk);
1152                if (err < 0)
1153                        dev_err(dc->dev,
1154                                "failed to set clock rate to %lu Hz\n",
1155                                state->pclk);
1156        }
1157
1158        DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1159                      state->div);
1160        DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1161
1162        value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1163        tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1164}
1165
1166static void tegra_dc_stop(struct tegra_dc *dc)
1167{
1168        u32 value;
1169
1170        /* stop the display controller */
1171        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1172        value &= ~DISP_CTRL_MODE_MASK;
1173        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1174
1175        tegra_dc_commit(dc);
1176}
1177
1178static bool tegra_dc_idle(struct tegra_dc *dc)
1179{
1180        u32 value;
1181
1182        value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1183
1184        return (value & DISP_CTRL_MODE_MASK) == 0;
1185}
1186
1187static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1188{
1189        timeout = jiffies + msecs_to_jiffies(timeout);
1190
1191        while (time_before(jiffies, timeout)) {
1192                if (tegra_dc_idle(dc))
1193                        return 0;
1194
1195                usleep_range(1000, 2000);
1196        }
1197
1198        dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1199        return -ETIMEDOUT;
1200}
1201
1202static void tegra_crtc_disable(struct drm_crtc *crtc)
1203{
1204        struct tegra_dc *dc = to_tegra_dc(crtc);
1205        u32 value;
1206
1207        if (!tegra_dc_idle(dc)) {
1208                tegra_dc_stop(dc);
1209
1210                /*
1211                 * Ignore the return value, there isn't anything useful to do
1212                 * in case this fails.
1213                 */
1214                tegra_dc_wait_idle(dc, 100);
1215        }
1216
1217        /*
1218         * This should really be part of the RGB encoder driver, but clearing
1219         * these bits has the side-effect of stopping the display controller.
1220         * When that happens no VBLANK interrupts will be raised. At the same
1221         * time the encoder is disabled before the display controller, so the
1222         * above code is always going to timeout waiting for the controller
1223         * to go idle.
1224         *
1225         * Given the close coupling between the RGB encoder and the display
1226         * controller doing it here is still kind of okay. None of the other
1227         * encoder drivers require these bits to be cleared.
1228         *
1229         * XXX: Perhaps given that the display controller is switched off at
1230         * this point anyway maybe clearing these bits isn't even useful for
1231         * the RGB encoder?
1232         */
1233        if (dc->rgb) {
1234                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1235                value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1236                           PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1237                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1238        }
1239
1240        tegra_dc_stats_reset(&dc->stats);
1241        drm_crtc_vblank_off(crtc);
1242
1243        pm_runtime_put_sync(dc->dev);
1244}
1245
1246static void tegra_crtc_enable(struct drm_crtc *crtc)
1247{
1248        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1249        struct tegra_dc_state *state = to_dc_state(crtc->state);
1250        struct tegra_dc *dc = to_tegra_dc(crtc);
1251        u32 value;
1252
1253        pm_runtime_get_sync(dc->dev);
1254
1255        /* initialize display controller */
1256        if (dc->syncpt) {
1257                u32 syncpt = host1x_syncpt_id(dc->syncpt);
1258
1259                value = SYNCPT_CNTRL_NO_STALL;
1260                tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1261
1262                value = SYNCPT_VSYNC_ENABLE | syncpt;
1263                tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1264        }
1265
1266        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1267                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1268        tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1269
1270        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1271                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1272        tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1273
1274        /* initialize timer */
1275        value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1276                WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1277        tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1278
1279        value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1280                WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1281        tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1282
1283        value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1284                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1285        tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1286
1287        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1288                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1289        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1290
1291        if (dc->soc->supports_border_color)
1292                tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1293
1294        /* apply PLL and pixel clock changes */
1295        tegra_dc_commit_state(dc, state);
1296
1297        /* program display mode */
1298        tegra_dc_set_timings(dc, mode);
1299
1300        /* interlacing isn't supported yet, so disable it */
1301        if (dc->soc->supports_interlacing) {
1302                value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1303                value &= ~INTERLACE_ENABLE;
1304                tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1305        }
1306
1307        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1308        value &= ~DISP_CTRL_MODE_MASK;
1309        value |= DISP_CTRL_MODE_C_DISPLAY;
1310        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1311
1312        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1313        value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1314                 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1315        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1316
1317        tegra_dc_commit(dc);
1318
1319        drm_crtc_vblank_on(crtc);
1320}
1321
1322static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1323                                   struct drm_crtc_state *state)
1324{
1325        return 0;
1326}
1327
1328static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1329                                    struct drm_crtc_state *old_crtc_state)
1330{
1331        struct tegra_dc *dc = to_tegra_dc(crtc);
1332
1333        if (crtc->state->event) {
1334                crtc->state->event->pipe = drm_crtc_index(crtc);
1335
1336                WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1337
1338                dc->event = crtc->state->event;
1339                crtc->state->event = NULL;
1340        }
1341}
1342
1343static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1344                                    struct drm_crtc_state *old_crtc_state)
1345{
1346        struct tegra_dc_state *state = to_dc_state(crtc->state);
1347        struct tegra_dc *dc = to_tegra_dc(crtc);
1348
1349        tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1350        tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1351}
1352
1353static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1354        .disable = tegra_crtc_disable,
1355        .enable = tegra_crtc_enable,
1356        .atomic_check = tegra_crtc_atomic_check,
1357        .atomic_begin = tegra_crtc_atomic_begin,
1358        .atomic_flush = tegra_crtc_atomic_flush,
1359};
1360
1361static irqreturn_t tegra_dc_irq(int irq, void *data)
1362{
1363        struct tegra_dc *dc = data;
1364        unsigned long status;
1365
1366        status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1367        tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1368
1369        if (status & FRAME_END_INT) {
1370                /*
1371                dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1372                */
1373                dc->stats.frames++;
1374        }
1375
1376        if (status & VBLANK_INT) {
1377                /*
1378                dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1379                */
1380                drm_crtc_handle_vblank(&dc->base);
1381                tegra_dc_finish_page_flip(dc);
1382                dc->stats.vblank++;
1383        }
1384
1385        if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1386                /*
1387                dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1388                */
1389                dc->stats.underflow++;
1390        }
1391
1392        if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1393                /*
1394                dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1395                */
1396                dc->stats.overflow++;
1397        }
1398
1399        return IRQ_HANDLED;
1400}
1401
1402static int tegra_dc_show_regs(struct seq_file *s, void *data)
1403{
1404        struct drm_info_node *node = s->private;
1405        struct tegra_dc *dc = node->info_ent->data;
1406        int err = 0;
1407
1408        drm_modeset_lock(&dc->base.mutex, NULL);
1409
1410        if (!dc->base.state->active) {
1411                err = -EBUSY;
1412                goto unlock;
1413        }
1414
1415#define DUMP_REG(name)                                          \
1416        seq_printf(s, "%-40s %#05x %08x\n", #name, name,        \
1417                   tegra_dc_readl(dc, name))
1418
1419        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1420        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1421        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1422        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1423        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1424        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1425        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1426        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1427        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1428        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1429        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1430        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1431        DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1432        DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1433        DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1434        DUMP_REG(DC_CMD_SIGNAL_RAISE);
1435        DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1436        DUMP_REG(DC_CMD_INT_STATUS);
1437        DUMP_REG(DC_CMD_INT_MASK);
1438        DUMP_REG(DC_CMD_INT_ENABLE);
1439        DUMP_REG(DC_CMD_INT_TYPE);
1440        DUMP_REG(DC_CMD_INT_POLARITY);
1441        DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1442        DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1443        DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1444        DUMP_REG(DC_CMD_STATE_ACCESS);
1445        DUMP_REG(DC_CMD_STATE_CONTROL);
1446        DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1447        DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1448        DUMP_REG(DC_COM_CRC_CONTROL);
1449        DUMP_REG(DC_COM_CRC_CHECKSUM);
1450        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1451        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1452        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1453        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1454        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1455        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1456        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1457        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1458        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1459        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1460        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1461        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1462        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1463        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1464        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1465        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1466        DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1467        DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1468        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1469        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1470        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1471        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1472        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1473        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1474        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1475        DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1476        DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1477        DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1478        DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1479        DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1480        DUMP_REG(DC_COM_SPI_CONTROL);
1481        DUMP_REG(DC_COM_SPI_START_BYTE);
1482        DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1483        DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1484        DUMP_REG(DC_COM_HSPI_CS_DC);
1485        DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1486        DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1487        DUMP_REG(DC_COM_GPIO_CTRL);
1488        DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1489        DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1490        DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1491        DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1492        DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1493        DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1494        DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1495        DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1496        DUMP_REG(DC_DISP_REF_TO_SYNC);
1497        DUMP_REG(DC_DISP_SYNC_WIDTH);
1498        DUMP_REG(DC_DISP_BACK_PORCH);
1499        DUMP_REG(DC_DISP_ACTIVE);
1500        DUMP_REG(DC_DISP_FRONT_PORCH);
1501        DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1502        DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1503        DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1504        DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1505        DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1506        DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1507        DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1508        DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1509        DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1510        DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1511        DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1512        DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1513        DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1514        DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1515        DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1516        DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1517        DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1518        DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1519        DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1520        DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1521        DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1522        DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1523        DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1524        DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1525        DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1526        DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1527        DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1528        DUMP_REG(DC_DISP_M0_CONTROL);
1529        DUMP_REG(DC_DISP_M1_CONTROL);
1530        DUMP_REG(DC_DISP_DI_CONTROL);
1531        DUMP_REG(DC_DISP_PP_CONTROL);
1532        DUMP_REG(DC_DISP_PP_SELECT_A);
1533        DUMP_REG(DC_DISP_PP_SELECT_B);
1534        DUMP_REG(DC_DISP_PP_SELECT_C);
1535        DUMP_REG(DC_DISP_PP_SELECT_D);
1536        DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1537        DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1538        DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1539        DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1540        DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1541        DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1542        DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1543        DUMP_REG(DC_DISP_BORDER_COLOR);
1544        DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1545        DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1546        DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1547        DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1548        DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1549        DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1550        DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1551        DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1552        DUMP_REG(DC_DISP_CURSOR_POSITION);
1553        DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1554        DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1555        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1556        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1557        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1558        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1559        DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1560        DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1561        DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1562        DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1563        DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1564        DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1565        DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1566        DUMP_REG(DC_DISP_SD_CONTROL);
1567        DUMP_REG(DC_DISP_SD_CSC_COEFF);
1568        DUMP_REG(DC_DISP_SD_LUT(0));
1569        DUMP_REG(DC_DISP_SD_LUT(1));
1570        DUMP_REG(DC_DISP_SD_LUT(2));
1571        DUMP_REG(DC_DISP_SD_LUT(3));
1572        DUMP_REG(DC_DISP_SD_LUT(4));
1573        DUMP_REG(DC_DISP_SD_LUT(5));
1574        DUMP_REG(DC_DISP_SD_LUT(6));
1575        DUMP_REG(DC_DISP_SD_LUT(7));
1576        DUMP_REG(DC_DISP_SD_LUT(8));
1577        DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1578        DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1579        DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1580        DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1581        DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1582        DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1583        DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1584        DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1585        DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1586        DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1587        DUMP_REG(DC_DISP_SD_BL_TF(0));
1588        DUMP_REG(DC_DISP_SD_BL_TF(1));
1589        DUMP_REG(DC_DISP_SD_BL_TF(2));
1590        DUMP_REG(DC_DISP_SD_BL_TF(3));
1591        DUMP_REG(DC_DISP_SD_BL_CONTROL);
1592        DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1593        DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1594        DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1595        DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1596        DUMP_REG(DC_WIN_WIN_OPTIONS);
1597        DUMP_REG(DC_WIN_BYTE_SWAP);
1598        DUMP_REG(DC_WIN_BUFFER_CONTROL);
1599        DUMP_REG(DC_WIN_COLOR_DEPTH);
1600        DUMP_REG(DC_WIN_POSITION);
1601        DUMP_REG(DC_WIN_SIZE);
1602        DUMP_REG(DC_WIN_PRESCALED_SIZE);
1603        DUMP_REG(DC_WIN_H_INITIAL_DDA);
1604        DUMP_REG(DC_WIN_V_INITIAL_DDA);
1605        DUMP_REG(DC_WIN_DDA_INC);
1606        DUMP_REG(DC_WIN_LINE_STRIDE);
1607        DUMP_REG(DC_WIN_BUF_STRIDE);
1608        DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1609        DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1610        DUMP_REG(DC_WIN_DV_CONTROL);
1611        DUMP_REG(DC_WIN_BLEND_NOKEY);
1612        DUMP_REG(DC_WIN_BLEND_1WIN);
1613        DUMP_REG(DC_WIN_BLEND_2WIN_X);
1614        DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1615        DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1616        DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1617        DUMP_REG(DC_WINBUF_START_ADDR);
1618        DUMP_REG(DC_WINBUF_START_ADDR_NS);
1619        DUMP_REG(DC_WINBUF_START_ADDR_U);
1620        DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1621        DUMP_REG(DC_WINBUF_START_ADDR_V);
1622        DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1623        DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1624        DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1625        DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1626        DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1627        DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1628        DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1629        DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1630        DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1631
1632#undef DUMP_REG
1633
1634unlock:
1635        drm_modeset_unlock(&dc->base.mutex);
1636        return err;
1637}
1638
1639static int tegra_dc_show_crc(struct seq_file *s, void *data)
1640{
1641        struct drm_info_node *node = s->private;
1642        struct tegra_dc *dc = node->info_ent->data;
1643        int err = 0;
1644        u32 value;
1645
1646        drm_modeset_lock(&dc->base.mutex, NULL);
1647
1648        if (!dc->base.state->active) {
1649                err = -EBUSY;
1650                goto unlock;
1651        }
1652
1653        value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1654        tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1655        tegra_dc_commit(dc);
1656
1657        drm_crtc_wait_one_vblank(&dc->base);
1658        drm_crtc_wait_one_vblank(&dc->base);
1659
1660        value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1661        seq_printf(s, "%08x\n", value);
1662
1663        tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1664
1665unlock:
1666        drm_modeset_unlock(&dc->base.mutex);
1667        return err;
1668}
1669
1670static int tegra_dc_show_stats(struct seq_file *s, void *data)
1671{
1672        struct drm_info_node *node = s->private;
1673        struct tegra_dc *dc = node->info_ent->data;
1674
1675        seq_printf(s, "frames: %lu\n", dc->stats.frames);
1676        seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1677        seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1678        seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1679
1680        return 0;
1681}
1682
1683static struct drm_info_list debugfs_files[] = {
1684        { "regs", tegra_dc_show_regs, 0, NULL },
1685        { "crc", tegra_dc_show_crc, 0, NULL },
1686        { "stats", tegra_dc_show_stats, 0, NULL },
1687};
1688
1689static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1690{
1691        unsigned int i;
1692        char *name;
1693        int err;
1694
1695        name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1696        dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1697        kfree(name);
1698
1699        if (!dc->debugfs)
1700                return -ENOMEM;
1701
1702        dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1703                                    GFP_KERNEL);
1704        if (!dc->debugfs_files) {
1705                err = -ENOMEM;
1706                goto remove;
1707        }
1708
1709        for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1710                dc->debugfs_files[i].data = dc;
1711
1712        err = drm_debugfs_create_files(dc->debugfs_files,
1713                                       ARRAY_SIZE(debugfs_files),
1714                                       dc->debugfs, minor);
1715        if (err < 0)
1716                goto free;
1717
1718        dc->minor = minor;
1719
1720        return 0;
1721
1722free:
1723        kfree(dc->debugfs_files);
1724        dc->debugfs_files = NULL;
1725remove:
1726        debugfs_remove(dc->debugfs);
1727        dc->debugfs = NULL;
1728
1729        return err;
1730}
1731
1732static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1733{
1734        drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1735                                 dc->minor);
1736        dc->minor = NULL;
1737
1738        kfree(dc->debugfs_files);
1739        dc->debugfs_files = NULL;
1740
1741        debugfs_remove(dc->debugfs);
1742        dc->debugfs = NULL;
1743
1744        return 0;
1745}
1746
1747static int tegra_dc_init(struct host1x_client *client)
1748{
1749        struct drm_device *drm = dev_get_drvdata(client->parent);
1750        unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1751        struct tegra_dc *dc = host1x_client_to_dc(client);
1752        struct tegra_drm *tegra = drm->dev_private;
1753        struct drm_plane *primary = NULL;
1754        struct drm_plane *cursor = NULL;
1755        int err;
1756
1757        dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1758        if (!dc->syncpt)
1759                dev_warn(dc->dev, "failed to allocate syncpoint\n");
1760
1761        if (tegra->domain) {
1762                err = iommu_attach_device(tegra->domain, dc->dev);
1763                if (err < 0) {
1764                        dev_err(dc->dev, "failed to attach to domain: %d\n",
1765                                err);
1766                        return err;
1767                }
1768
1769                dc->domain = tegra->domain;
1770        }
1771
1772        primary = tegra_dc_primary_plane_create(drm, dc);
1773        if (IS_ERR(primary)) {
1774                err = PTR_ERR(primary);
1775                goto cleanup;
1776        }
1777
1778        if (dc->soc->supports_cursor) {
1779                cursor = tegra_dc_cursor_plane_create(drm, dc);
1780                if (IS_ERR(cursor)) {
1781                        err = PTR_ERR(cursor);
1782                        goto cleanup;
1783                }
1784        }
1785
1786        err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1787                                        &tegra_crtc_funcs, NULL);
1788        if (err < 0)
1789                goto cleanup;
1790
1791        drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1792
1793        /*
1794         * Keep track of the minimum pitch alignment across all display
1795         * controllers.
1796         */
1797        if (dc->soc->pitch_align > tegra->pitch_align)
1798                tegra->pitch_align = dc->soc->pitch_align;
1799
1800        err = tegra_dc_rgb_init(drm, dc);
1801        if (err < 0 && err != -ENODEV) {
1802                dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1803                goto cleanup;
1804        }
1805
1806        err = tegra_dc_add_planes(drm, dc);
1807        if (err < 0)
1808                goto cleanup;
1809
1810        if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1811                err = tegra_dc_debugfs_init(dc, drm->primary);
1812                if (err < 0)
1813                        dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1814        }
1815
1816        err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1817                               dev_name(dc->dev), dc);
1818        if (err < 0) {
1819                dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1820                        err);
1821                goto cleanup;
1822        }
1823
1824        return 0;
1825
1826cleanup:
1827        if (cursor)
1828                drm_plane_cleanup(cursor);
1829
1830        if (primary)
1831                drm_plane_cleanup(primary);
1832
1833        if (tegra->domain) {
1834                iommu_detach_device(tegra->domain, dc->dev);
1835                dc->domain = NULL;
1836        }
1837
1838        return err;
1839}
1840
1841static int tegra_dc_exit(struct host1x_client *client)
1842{
1843        struct tegra_dc *dc = host1x_client_to_dc(client);
1844        int err;
1845
1846        devm_free_irq(dc->dev, dc->irq, dc);
1847
1848        if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1849                err = tegra_dc_debugfs_exit(dc);
1850                if (err < 0)
1851                        dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1852        }
1853
1854        err = tegra_dc_rgb_exit(dc);
1855        if (err) {
1856                dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1857                return err;
1858        }
1859
1860        if (dc->domain) {
1861                iommu_detach_device(dc->domain, dc->dev);
1862                dc->domain = NULL;
1863        }
1864
1865        host1x_syncpt_free(dc->syncpt);
1866
1867        return 0;
1868}
1869
1870static const struct host1x_client_ops dc_client_ops = {
1871        .init = tegra_dc_init,
1872        .exit = tegra_dc_exit,
1873};
1874
1875static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1876        .supports_border_color = true,
1877        .supports_interlacing = false,
1878        .supports_cursor = false,
1879        .supports_block_linear = false,
1880        .pitch_align = 8,
1881        .has_powergate = false,
1882        .broken_reset = true,
1883};
1884
1885static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1886        .supports_border_color = true,
1887        .supports_interlacing = false,
1888        .supports_cursor = false,
1889        .supports_block_linear = false,
1890        .pitch_align = 8,
1891        .has_powergate = false,
1892        .broken_reset = false,
1893};
1894
1895static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1896        .supports_border_color = true,
1897        .supports_interlacing = false,
1898        .supports_cursor = false,
1899        .supports_block_linear = false,
1900        .pitch_align = 64,
1901        .has_powergate = true,
1902        .broken_reset = false,
1903};
1904
1905static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1906        .supports_border_color = false,
1907        .supports_interlacing = true,
1908        .supports_cursor = true,
1909        .supports_block_linear = true,
1910        .pitch_align = 64,
1911        .has_powergate = true,
1912        .broken_reset = false,
1913};
1914
1915static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1916        .supports_border_color = false,
1917        .supports_interlacing = true,
1918        .supports_cursor = true,
1919        .supports_block_linear = true,
1920        .pitch_align = 64,
1921        .has_powergate = true,
1922        .broken_reset = false,
1923};
1924
1925static const struct of_device_id tegra_dc_of_match[] = {
1926        {
1927                .compatible = "nvidia,tegra210-dc",
1928                .data = &tegra210_dc_soc_info,
1929        }, {
1930                .compatible = "nvidia,tegra124-dc",
1931                .data = &tegra124_dc_soc_info,
1932        }, {
1933                .compatible = "nvidia,tegra114-dc",
1934                .data = &tegra114_dc_soc_info,
1935        }, {
1936                .compatible = "nvidia,tegra30-dc",
1937                .data = &tegra30_dc_soc_info,
1938        }, {
1939                .compatible = "nvidia,tegra20-dc",
1940                .data = &tegra20_dc_soc_info,
1941        }, {
1942                /* sentinel */
1943        }
1944};
1945MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1946
1947static int tegra_dc_parse_dt(struct tegra_dc *dc)
1948{
1949        struct device_node *np;
1950        u32 value = 0;
1951        int err;
1952
1953        err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1954        if (err < 0) {
1955                dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1956
1957                /*
1958                 * If the nvidia,head property isn't present, try to find the
1959                 * correct head number by looking up the position of this
1960                 * display controller's node within the device tree. Assuming
1961                 * that the nodes are ordered properly in the DTS file and
1962                 * that the translation into a flattened device tree blob
1963                 * preserves that ordering this will actually yield the right
1964                 * head number.
1965                 *
1966                 * If those assumptions don't hold, this will still work for
1967                 * cases where only a single display controller is used.
1968                 */
1969                for_each_matching_node(np, tegra_dc_of_match) {
1970                        if (np == dc->dev->of_node) {
1971                                of_node_put(np);
1972                                break;
1973                        }
1974
1975                        value++;
1976                }
1977        }
1978
1979        dc->pipe = value;
1980
1981        return 0;
1982}
1983
1984static int tegra_dc_probe(struct platform_device *pdev)
1985{
1986        const struct of_device_id *id;
1987        struct resource *regs;
1988        struct tegra_dc *dc;
1989        int err;
1990
1991        dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1992        if (!dc)
1993                return -ENOMEM;
1994
1995        id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1996        if (!id)
1997                return -ENODEV;
1998
1999        spin_lock_init(&dc->lock);
2000        INIT_LIST_HEAD(&dc->list);
2001        dc->dev = &pdev->dev;
2002        dc->soc = id->data;
2003
2004        err = tegra_dc_parse_dt(dc);
2005        if (err < 0)
2006                return err;
2007
2008        dc->clk = devm_clk_get(&pdev->dev, NULL);
2009        if (IS_ERR(dc->clk)) {
2010                dev_err(&pdev->dev, "failed to get clock\n");
2011                return PTR_ERR(dc->clk);
2012        }
2013
2014        dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2015        if (IS_ERR(dc->rst)) {
2016                dev_err(&pdev->dev, "failed to get reset\n");
2017                return PTR_ERR(dc->rst);
2018        }
2019
2020        if (!dc->soc->broken_reset)
2021                reset_control_assert(dc->rst);
2022
2023        if (dc->soc->has_powergate) {
2024                if (dc->pipe == 0)
2025                        dc->powergate = TEGRA_POWERGATE_DIS;
2026                else
2027                        dc->powergate = TEGRA_POWERGATE_DISB;
2028
2029                tegra_powergate_power_off(dc->powergate);
2030        }
2031
2032        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2033        dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2034        if (IS_ERR(dc->regs))
2035                return PTR_ERR(dc->regs);
2036
2037        dc->irq = platform_get_irq(pdev, 0);
2038        if (dc->irq < 0) {
2039                dev_err(&pdev->dev, "failed to get IRQ\n");
2040                return -ENXIO;
2041        }
2042
2043        err = tegra_dc_rgb_probe(dc);
2044        if (err < 0 && err != -ENODEV) {
2045                dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2046                return err;
2047        }
2048
2049        platform_set_drvdata(pdev, dc);
2050        pm_runtime_enable(&pdev->dev);
2051
2052        INIT_LIST_HEAD(&dc->client.list);
2053        dc->client.ops = &dc_client_ops;
2054        dc->client.dev = &pdev->dev;
2055
2056        err = host1x_client_register(&dc->client);
2057        if (err < 0) {
2058                dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2059                        err);
2060                return err;
2061        }
2062
2063        return 0;
2064}
2065
2066static int tegra_dc_remove(struct platform_device *pdev)
2067{
2068        struct tegra_dc *dc = platform_get_drvdata(pdev);
2069        int err;
2070
2071        err = host1x_client_unregister(&dc->client);
2072        if (err < 0) {
2073                dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2074                        err);
2075                return err;
2076        }
2077
2078        err = tegra_dc_rgb_remove(dc);
2079        if (err < 0) {
2080                dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2081                return err;
2082        }
2083
2084        pm_runtime_disable(&pdev->dev);
2085
2086        return 0;
2087}
2088
2089#ifdef CONFIG_PM
2090static int tegra_dc_suspend(struct device *dev)
2091{
2092        struct tegra_dc *dc = dev_get_drvdata(dev);
2093        int err;
2094
2095        if (!dc->soc->broken_reset) {
2096                err = reset_control_assert(dc->rst);
2097                if (err < 0) {
2098                        dev_err(dev, "failed to assert reset: %d\n", err);
2099                        return err;
2100                }
2101        }
2102
2103        if (dc->soc->has_powergate)
2104                tegra_powergate_power_off(dc->powergate);
2105
2106        clk_disable_unprepare(dc->clk);
2107
2108        return 0;
2109}
2110
2111static int tegra_dc_resume(struct device *dev)
2112{
2113        struct tegra_dc *dc = dev_get_drvdata(dev);
2114        int err;
2115
2116        if (dc->soc->has_powergate) {
2117                err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2118                                                        dc->rst);
2119                if (err < 0) {
2120                        dev_err(dev, "failed to power partition: %d\n", err);
2121                        return err;
2122                }
2123        } else {
2124                err = clk_prepare_enable(dc->clk);
2125                if (err < 0) {
2126                        dev_err(dev, "failed to enable clock: %d\n", err);
2127                        return err;
2128                }
2129
2130                if (!dc->soc->broken_reset) {
2131                        err = reset_control_deassert(dc->rst);
2132                        if (err < 0) {
2133                                dev_err(dev,
2134                                        "failed to deassert reset: %d\n", err);
2135                                return err;
2136                        }
2137                }
2138        }
2139
2140        return 0;
2141}
2142#endif
2143
2144static const struct dev_pm_ops tegra_dc_pm_ops = {
2145        SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2146};
2147
2148struct platform_driver tegra_dc_driver = {
2149        .driver = {
2150                .name = "tegra-dc",
2151                .of_match_table = tegra_dc_of_match,
2152                .pm = &tegra_dc_pm_ops,
2153        },
2154        .probe = tegra_dc_probe,
2155        .remove = tegra_dc_remove,
2156};
2157