linux/drivers/gpu/drm/ttm/ttm_page_alloc_dma.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 (c) Oracle Corp.
   3
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the
  12 * next paragraph) shall be included in all copies or substantial portions
  13 * of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  24 */
  25
  26/*
  27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
  28 * over the DMA pools:
  29 * - Pool collects resently freed pages for reuse (and hooks up to
  30 *   the shrinker).
  31 * - Tracks currently in use pages
  32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
  33 *   when freed).
  34 */
  35
  36#if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
  37#define pr_fmt(fmt) "[TTM] " fmt
  38
  39#include <linux/dma-mapping.h>
  40#include <linux/list.h>
  41#include <linux/seq_file.h> /* for seq_printf */
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/highmem.h>
  45#include <linux/mm_types.h>
  46#include <linux/module.h>
  47#include <linux/mm.h>
  48#include <linux/atomic.h>
  49#include <linux/device.h>
  50#include <linux/kthread.h>
  51#include <drm/ttm/ttm_bo_driver.h>
  52#include <drm/ttm/ttm_page_alloc.h>
  53#if IS_ENABLED(CONFIG_AGP)
  54#include <asm/agp.h>
  55#endif
  56#ifdef CONFIG_X86
  57#include <asm/set_memory.h>
  58#endif
  59
  60#define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
  61#define SMALL_ALLOCATION                4
  62#define FREE_ALL_PAGES                  (~0U)
  63/* times are in msecs */
  64#define IS_UNDEFINED                    (0)
  65#define IS_WC                           (1<<1)
  66#define IS_UC                           (1<<2)
  67#define IS_CACHED                       (1<<3)
  68#define IS_DMA32                        (1<<4)
  69
  70enum pool_type {
  71        POOL_IS_UNDEFINED,
  72        POOL_IS_WC = IS_WC,
  73        POOL_IS_UC = IS_UC,
  74        POOL_IS_CACHED = IS_CACHED,
  75        POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
  76        POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
  77        POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
  78};
  79/*
  80 * The pool structure. There are usually six pools:
  81 *  - generic (not restricted to DMA32):
  82 *      - write combined, uncached, cached.
  83 *  - dma32 (up to 2^32 - so up 4GB):
  84 *      - write combined, uncached, cached.
  85 * for each 'struct device'. The 'cached' is for pages that are actively used.
  86 * The other ones can be shrunk by the shrinker API if neccessary.
  87 * @pools: The 'struct device->dma_pools' link.
  88 * @type: Type of the pool
  89 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
  90 * used with irqsave/irqrestore variants because pool allocator maybe called
  91 * from delayed work.
  92 * @inuse_list: Pool of pages that are in use. The order is very important and
  93 *   it is in the order that the TTM pages that are put back are in.
  94 * @free_list: Pool of pages that are free to be used. No order requirements.
  95 * @dev: The device that is associated with these pools.
  96 * @size: Size used during DMA allocation.
  97 * @npages_free: Count of available pages for re-use.
  98 * @npages_in_use: Count of pages that are in use.
  99 * @nfrees: Stats when pool is shrinking.
 100 * @nrefills: Stats when the pool is grown.
 101 * @gfp_flags: Flags to pass for alloc_page.
 102 * @name: Name of the pool.
 103 * @dev_name: Name derieved from dev - similar to how dev_info works.
 104 *   Used during shutdown as the dev_info during release is unavailable.
 105 */
 106struct dma_pool {
 107        struct list_head pools; /* The 'struct device->dma_pools link */
 108        enum pool_type type;
 109        spinlock_t lock;
 110        struct list_head inuse_list;
 111        struct list_head free_list;
 112        struct device *dev;
 113        unsigned size;
 114        unsigned npages_free;
 115        unsigned npages_in_use;
 116        unsigned long nfrees; /* Stats when shrunk. */
 117        unsigned long nrefills; /* Stats when grown. */
 118        gfp_t gfp_flags;
 119        char name[13]; /* "cached dma32" */
 120        char dev_name[64]; /* Constructed from dev */
 121};
 122
 123/*
 124 * The accounting page keeping track of the allocated page along with
 125 * the DMA address.
 126 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
 127 * @vaddr: The virtual address of the page
 128 * @dma: The bus address of the page. If the page is not allocated
 129 *   via the DMA API, it will be -1.
 130 */
 131struct dma_page {
 132        struct list_head page_list;
 133        void *vaddr;
 134        struct page *p;
 135        dma_addr_t dma;
 136};
 137
 138/*
 139 * Limits for the pool. They are handled without locks because only place where
 140 * they may change is in sysfs store. They won't have immediate effect anyway
 141 * so forcing serialization to access them is pointless.
 142 */
 143
 144struct ttm_pool_opts {
 145        unsigned        alloc_size;
 146        unsigned        max_size;
 147        unsigned        small;
 148};
 149
 150/*
 151 * Contains the list of all of the 'struct device' and their corresponding
 152 * DMA pools. Guarded by _mutex->lock.
 153 * @pools: The link to 'struct ttm_pool_manager->pools'
 154 * @dev: The 'struct device' associated with the 'pool'
 155 * @pool: The 'struct dma_pool' associated with the 'dev'
 156 */
 157struct device_pools {
 158        struct list_head pools;
 159        struct device *dev;
 160        struct dma_pool *pool;
 161};
 162
 163/*
 164 * struct ttm_pool_manager - Holds memory pools for fast allocation
 165 *
 166 * @lock: Lock used when adding/removing from pools
 167 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
 168 * @options: Limits for the pool.
 169 * @npools: Total amount of pools in existence.
 170 * @shrinker: The structure used by [un|]register_shrinker
 171 */
 172struct ttm_pool_manager {
 173        struct mutex            lock;
 174        struct list_head        pools;
 175        struct ttm_pool_opts    options;
 176        unsigned                npools;
 177        struct shrinker         mm_shrink;
 178        struct kobject          kobj;
 179};
 180
 181static struct ttm_pool_manager *_manager;
 182
 183static struct attribute ttm_page_pool_max = {
 184        .name = "pool_max_size",
 185        .mode = S_IRUGO | S_IWUSR
 186};
 187static struct attribute ttm_page_pool_small = {
 188        .name = "pool_small_allocation",
 189        .mode = S_IRUGO | S_IWUSR
 190};
 191static struct attribute ttm_page_pool_alloc_size = {
 192        .name = "pool_allocation_size",
 193        .mode = S_IRUGO | S_IWUSR
 194};
 195
 196static struct attribute *ttm_pool_attrs[] = {
 197        &ttm_page_pool_max,
 198        &ttm_page_pool_small,
 199        &ttm_page_pool_alloc_size,
 200        NULL
 201};
 202
 203static void ttm_pool_kobj_release(struct kobject *kobj)
 204{
 205        struct ttm_pool_manager *m =
 206                container_of(kobj, struct ttm_pool_manager, kobj);
 207        kfree(m);
 208}
 209
 210static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
 211                              const char *buffer, size_t size)
 212{
 213        struct ttm_pool_manager *m =
 214                container_of(kobj, struct ttm_pool_manager, kobj);
 215        int chars;
 216        unsigned val;
 217        chars = sscanf(buffer, "%u", &val);
 218        if (chars == 0)
 219                return size;
 220
 221        /* Convert kb to number of pages */
 222        val = val / (PAGE_SIZE >> 10);
 223
 224        if (attr == &ttm_page_pool_max)
 225                m->options.max_size = val;
 226        else if (attr == &ttm_page_pool_small)
 227                m->options.small = val;
 228        else if (attr == &ttm_page_pool_alloc_size) {
 229                if (val > NUM_PAGES_TO_ALLOC*8) {
 230                        pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
 231                               NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
 232                               NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 233                        return size;
 234                } else if (val > NUM_PAGES_TO_ALLOC) {
 235                        pr_warn("Setting allocation size to larger than %lu is not recommended\n",
 236                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 237                }
 238                m->options.alloc_size = val;
 239        }
 240
 241        return size;
 242}
 243
 244static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
 245                             char *buffer)
 246{
 247        struct ttm_pool_manager *m =
 248                container_of(kobj, struct ttm_pool_manager, kobj);
 249        unsigned val = 0;
 250
 251        if (attr == &ttm_page_pool_max)
 252                val = m->options.max_size;
 253        else if (attr == &ttm_page_pool_small)
 254                val = m->options.small;
 255        else if (attr == &ttm_page_pool_alloc_size)
 256                val = m->options.alloc_size;
 257
 258        val = val * (PAGE_SIZE >> 10);
 259
 260        return snprintf(buffer, PAGE_SIZE, "%u\n", val);
 261}
 262
 263static const struct sysfs_ops ttm_pool_sysfs_ops = {
 264        .show = &ttm_pool_show,
 265        .store = &ttm_pool_store,
 266};
 267
 268static struct kobj_type ttm_pool_kobj_type = {
 269        .release = &ttm_pool_kobj_release,
 270        .sysfs_ops = &ttm_pool_sysfs_ops,
 271        .default_attrs = ttm_pool_attrs,
 272};
 273
 274#ifndef CONFIG_X86
 275static int set_pages_array_wb(struct page **pages, int addrinarray)
 276{
 277#if IS_ENABLED(CONFIG_AGP)
 278        int i;
 279
 280        for (i = 0; i < addrinarray; i++)
 281                unmap_page_from_agp(pages[i]);
 282#endif
 283        return 0;
 284}
 285
 286static int set_pages_array_wc(struct page **pages, int addrinarray)
 287{
 288#if IS_ENABLED(CONFIG_AGP)
 289        int i;
 290
 291        for (i = 0; i < addrinarray; i++)
 292                map_page_into_agp(pages[i]);
 293#endif
 294        return 0;
 295}
 296
 297static int set_pages_array_uc(struct page **pages, int addrinarray)
 298{
 299#if IS_ENABLED(CONFIG_AGP)
 300        int i;
 301
 302        for (i = 0; i < addrinarray; i++)
 303                map_page_into_agp(pages[i]);
 304#endif
 305        return 0;
 306}
 307#endif /* for !CONFIG_X86 */
 308
 309static int ttm_set_pages_caching(struct dma_pool *pool,
 310                                 struct page **pages, unsigned cpages)
 311{
 312        int r = 0;
 313        /* Set page caching */
 314        if (pool->type & IS_UC) {
 315                r = set_pages_array_uc(pages, cpages);
 316                if (r)
 317                        pr_err("%s: Failed to set %d pages to uc!\n",
 318                               pool->dev_name, cpages);
 319        }
 320        if (pool->type & IS_WC) {
 321                r = set_pages_array_wc(pages, cpages);
 322                if (r)
 323                        pr_err("%s: Failed to set %d pages to wc!\n",
 324                               pool->dev_name, cpages);
 325        }
 326        return r;
 327}
 328
 329static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
 330{
 331        dma_addr_t dma = d_page->dma;
 332        dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
 333
 334        kfree(d_page);
 335        d_page = NULL;
 336}
 337static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
 338{
 339        struct dma_page *d_page;
 340
 341        d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
 342        if (!d_page)
 343                return NULL;
 344
 345        d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
 346                                           &d_page->dma,
 347                                           pool->gfp_flags);
 348        if (d_page->vaddr) {
 349                if (is_vmalloc_addr(d_page->vaddr))
 350                        d_page->p = vmalloc_to_page(d_page->vaddr);
 351                else
 352                        d_page->p = virt_to_page(d_page->vaddr);
 353        } else {
 354                kfree(d_page);
 355                d_page = NULL;
 356        }
 357        return d_page;
 358}
 359static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
 360{
 361        enum pool_type type = IS_UNDEFINED;
 362
 363        if (flags & TTM_PAGE_FLAG_DMA32)
 364                type |= IS_DMA32;
 365        if (cstate == tt_cached)
 366                type |= IS_CACHED;
 367        else if (cstate == tt_uncached)
 368                type |= IS_UC;
 369        else
 370                type |= IS_WC;
 371
 372        return type;
 373}
 374
 375static void ttm_pool_update_free_locked(struct dma_pool *pool,
 376                                        unsigned freed_pages)
 377{
 378        pool->npages_free -= freed_pages;
 379        pool->nfrees += freed_pages;
 380
 381}
 382
 383/* set memory back to wb and free the pages. */
 384static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
 385                              struct page *pages[], unsigned npages)
 386{
 387        struct dma_page *d_page, *tmp;
 388
 389        /* Don't set WB on WB page pool. */
 390        if (npages && !(pool->type & IS_CACHED) &&
 391            set_pages_array_wb(pages, npages))
 392                pr_err("%s: Failed to set %d pages to wb!\n",
 393                       pool->dev_name, npages);
 394
 395        list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 396                list_del(&d_page->page_list);
 397                __ttm_dma_free_page(pool, d_page);
 398        }
 399}
 400
 401static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
 402{
 403        /* Don't set WB on WB page pool. */
 404        if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
 405                pr_err("%s: Failed to set %d pages to wb!\n",
 406                       pool->dev_name, 1);
 407
 408        list_del(&d_page->page_list);
 409        __ttm_dma_free_page(pool, d_page);
 410}
 411
 412/*
 413 * Free pages from pool.
 414 *
 415 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
 416 * number of pages in one go.
 417 *
 418 * @pool: to free the pages from
 419 * @nr_free: If set to true will free all pages in pool
 420 * @use_static: Safe to use static buffer
 421 **/
 422static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
 423                                       bool use_static)
 424{
 425        static struct page *static_buf[NUM_PAGES_TO_ALLOC];
 426        unsigned long irq_flags;
 427        struct dma_page *dma_p, *tmp;
 428        struct page **pages_to_free;
 429        struct list_head d_pages;
 430        unsigned freed_pages = 0,
 431                 npages_to_free = nr_free;
 432
 433        if (NUM_PAGES_TO_ALLOC < nr_free)
 434                npages_to_free = NUM_PAGES_TO_ALLOC;
 435#if 0
 436        if (nr_free > 1) {
 437                pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
 438                         pool->dev_name, pool->name, current->pid,
 439                         npages_to_free, nr_free);
 440        }
 441#endif
 442        if (use_static)
 443                pages_to_free = static_buf;
 444        else
 445                pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
 446                                        GFP_KERNEL);
 447
 448        if (!pages_to_free) {
 449                pr_err("%s: Failed to allocate memory for pool free operation\n",
 450                       pool->dev_name);
 451                return 0;
 452        }
 453        INIT_LIST_HEAD(&d_pages);
 454restart:
 455        spin_lock_irqsave(&pool->lock, irq_flags);
 456
 457        /* We picking the oldest ones off the list */
 458        list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
 459                                         page_list) {
 460                if (freed_pages >= npages_to_free)
 461                        break;
 462
 463                /* Move the dma_page from one list to another. */
 464                list_move(&dma_p->page_list, &d_pages);
 465
 466                pages_to_free[freed_pages++] = dma_p->p;
 467                /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
 468                if (freed_pages >= NUM_PAGES_TO_ALLOC) {
 469
 470                        ttm_pool_update_free_locked(pool, freed_pages);
 471                        /**
 472                         * Because changing page caching is costly
 473                         * we unlock the pool to prevent stalling.
 474                         */
 475                        spin_unlock_irqrestore(&pool->lock, irq_flags);
 476
 477                        ttm_dma_pages_put(pool, &d_pages, pages_to_free,
 478                                          freed_pages);
 479
 480                        INIT_LIST_HEAD(&d_pages);
 481
 482                        if (likely(nr_free != FREE_ALL_PAGES))
 483                                nr_free -= freed_pages;
 484
 485                        if (NUM_PAGES_TO_ALLOC >= nr_free)
 486                                npages_to_free = nr_free;
 487                        else
 488                                npages_to_free = NUM_PAGES_TO_ALLOC;
 489
 490                        freed_pages = 0;
 491
 492                        /* free all so restart the processing */
 493                        if (nr_free)
 494                                goto restart;
 495
 496                        /* Not allowed to fall through or break because
 497                         * following context is inside spinlock while we are
 498                         * outside here.
 499                         */
 500                        goto out;
 501
 502                }
 503        }
 504
 505        /* remove range of pages from the pool */
 506        if (freed_pages) {
 507                ttm_pool_update_free_locked(pool, freed_pages);
 508                nr_free -= freed_pages;
 509        }
 510
 511        spin_unlock_irqrestore(&pool->lock, irq_flags);
 512
 513        if (freed_pages)
 514                ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
 515out:
 516        if (pages_to_free != static_buf)
 517                kfree(pages_to_free);
 518        return nr_free;
 519}
 520
 521static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
 522{
 523        struct device_pools *p;
 524        struct dma_pool *pool;
 525
 526        if (!dev)
 527                return;
 528
 529        mutex_lock(&_manager->lock);
 530        list_for_each_entry_reverse(p, &_manager->pools, pools) {
 531                if (p->dev != dev)
 532                        continue;
 533                pool = p->pool;
 534                if (pool->type != type)
 535                        continue;
 536
 537                list_del(&p->pools);
 538                kfree(p);
 539                _manager->npools--;
 540                break;
 541        }
 542        list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
 543                if (pool->type != type)
 544                        continue;
 545                /* Takes a spinlock.. */
 546                /* OK to use static buffer since global mutex is held. */
 547                ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
 548                WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
 549                /* This code path is called after _all_ references to the
 550                 * struct device has been dropped - so nobody should be
 551                 * touching it. In case somebody is trying to _add_ we are
 552                 * guarded by the mutex. */
 553                list_del(&pool->pools);
 554                kfree(pool);
 555                break;
 556        }
 557        mutex_unlock(&_manager->lock);
 558}
 559
 560/*
 561 * On free-ing of the 'struct device' this deconstructor is run.
 562 * Albeit the pool might have already been freed earlier.
 563 */
 564static void ttm_dma_pool_release(struct device *dev, void *res)
 565{
 566        struct dma_pool *pool = *(struct dma_pool **)res;
 567
 568        if (pool)
 569                ttm_dma_free_pool(dev, pool->type);
 570}
 571
 572static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
 573{
 574        return *(struct dma_pool **)res == match_data;
 575}
 576
 577static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
 578                                          enum pool_type type)
 579{
 580        char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
 581        enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
 582        struct device_pools *sec_pool = NULL;
 583        struct dma_pool *pool = NULL, **ptr;
 584        unsigned i;
 585        int ret = -ENODEV;
 586        char *p;
 587
 588        if (!dev)
 589                return NULL;
 590
 591        ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
 592        if (!ptr)
 593                return NULL;
 594
 595        ret = -ENOMEM;
 596
 597        pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
 598                            dev_to_node(dev));
 599        if (!pool)
 600                goto err_mem;
 601
 602        sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
 603                                dev_to_node(dev));
 604        if (!sec_pool)
 605                goto err_mem;
 606
 607        INIT_LIST_HEAD(&sec_pool->pools);
 608        sec_pool->dev = dev;
 609        sec_pool->pool =  pool;
 610
 611        INIT_LIST_HEAD(&pool->free_list);
 612        INIT_LIST_HEAD(&pool->inuse_list);
 613        INIT_LIST_HEAD(&pool->pools);
 614        spin_lock_init(&pool->lock);
 615        pool->dev = dev;
 616        pool->npages_free = pool->npages_in_use = 0;
 617        pool->nfrees = 0;
 618        pool->gfp_flags = flags;
 619        pool->size = PAGE_SIZE;
 620        pool->type = type;
 621        pool->nrefills = 0;
 622        p = pool->name;
 623        for (i = 0; i < 5; i++) {
 624                if (type & t[i]) {
 625                        p += snprintf(p, sizeof(pool->name) - (p - pool->name),
 626                                      "%s", n[i]);
 627                }
 628        }
 629        *p = 0;
 630        /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
 631         * - the kobj->name has already been deallocated.*/
 632        snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
 633                 dev_driver_string(dev), dev_name(dev));
 634        mutex_lock(&_manager->lock);
 635        /* You can get the dma_pool from either the global: */
 636        list_add(&sec_pool->pools, &_manager->pools);
 637        _manager->npools++;
 638        /* or from 'struct device': */
 639        list_add(&pool->pools, &dev->dma_pools);
 640        mutex_unlock(&_manager->lock);
 641
 642        *ptr = pool;
 643        devres_add(dev, ptr);
 644
 645        return pool;
 646err_mem:
 647        devres_free(ptr);
 648        kfree(sec_pool);
 649        kfree(pool);
 650        return ERR_PTR(ret);
 651}
 652
 653static struct dma_pool *ttm_dma_find_pool(struct device *dev,
 654                                          enum pool_type type)
 655{
 656        struct dma_pool *pool, *tmp, *found = NULL;
 657
 658        if (type == IS_UNDEFINED)
 659                return found;
 660
 661        /* NB: We iterate on the 'struct dev' which has no spinlock, but
 662         * it does have a kref which we have taken. The kref is taken during
 663         * graphic driver loading - in the drm_pci_init it calls either
 664         * pci_dev_get or pci_register_driver which both end up taking a kref
 665         * on 'struct device'.
 666         *
 667         * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
 668         * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
 669         * thing is at that point of time there are no pages associated with the
 670         * driver so this function will not be called.
 671         */
 672        list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
 673                if (pool->type != type)
 674                        continue;
 675                found = pool;
 676                break;
 677        }
 678        return found;
 679}
 680
 681/*
 682 * Free pages the pages that failed to change the caching state. If there
 683 * are pages that have changed their caching state already put them to the
 684 * pool.
 685 */
 686static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
 687                                                 struct list_head *d_pages,
 688                                                 struct page **failed_pages,
 689                                                 unsigned cpages)
 690{
 691        struct dma_page *d_page, *tmp;
 692        struct page *p;
 693        unsigned i = 0;
 694
 695        p = failed_pages[0];
 696        if (!p)
 697                return;
 698        /* Find the failed page. */
 699        list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 700                if (d_page->p != p)
 701                        continue;
 702                /* .. and then progress over the full list. */
 703                list_del(&d_page->page_list);
 704                __ttm_dma_free_page(pool, d_page);
 705                if (++i < cpages)
 706                        p = failed_pages[i];
 707                else
 708                        break;
 709        }
 710
 711}
 712
 713/*
 714 * Allocate 'count' pages, and put 'need' number of them on the
 715 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
 716 * The full list of pages should also be on 'd_pages'.
 717 * We return zero for success, and negative numbers as errors.
 718 */
 719static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
 720                                        struct list_head *d_pages,
 721                                        unsigned count)
 722{
 723        struct page **caching_array;
 724        struct dma_page *dma_p;
 725        struct page *p;
 726        int r = 0;
 727        unsigned i, cpages;
 728        unsigned max_cpages = min(count,
 729                        (unsigned)(PAGE_SIZE/sizeof(struct page *)));
 730
 731        /* allocate array for page caching change */
 732        caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
 733
 734        if (!caching_array) {
 735                pr_err("%s: Unable to allocate table for new pages\n",
 736                       pool->dev_name);
 737                return -ENOMEM;
 738        }
 739
 740        if (count > 1) {
 741                pr_debug("%s: (%s:%d) Getting %d pages\n",
 742                         pool->dev_name, pool->name, current->pid, count);
 743        }
 744
 745        for (i = 0, cpages = 0; i < count; ++i) {
 746                dma_p = __ttm_dma_alloc_page(pool);
 747                if (!dma_p) {
 748                        pr_err("%s: Unable to get page %u\n",
 749                               pool->dev_name, i);
 750
 751                        /* store already allocated pages in the pool after
 752                         * setting the caching state */
 753                        if (cpages) {
 754                                r = ttm_set_pages_caching(pool, caching_array,
 755                                                          cpages);
 756                                if (r)
 757                                        ttm_dma_handle_caching_state_failure(
 758                                                pool, d_pages, caching_array,
 759                                                cpages);
 760                        }
 761                        r = -ENOMEM;
 762                        goto out;
 763                }
 764                p = dma_p->p;
 765#ifdef CONFIG_HIGHMEM
 766                /* gfp flags of highmem page should never be dma32 so we
 767                 * we should be fine in such case
 768                 */
 769                if (!PageHighMem(p))
 770#endif
 771                {
 772                        caching_array[cpages++] = p;
 773                        if (cpages == max_cpages) {
 774                                /* Note: Cannot hold the spinlock */
 775                                r = ttm_set_pages_caching(pool, caching_array,
 776                                                 cpages);
 777                                if (r) {
 778                                        ttm_dma_handle_caching_state_failure(
 779                                                pool, d_pages, caching_array,
 780                                                cpages);
 781                                        goto out;
 782                                }
 783                                cpages = 0;
 784                        }
 785                }
 786                list_add(&dma_p->page_list, d_pages);
 787        }
 788
 789        if (cpages) {
 790                r = ttm_set_pages_caching(pool, caching_array, cpages);
 791                if (r)
 792                        ttm_dma_handle_caching_state_failure(pool, d_pages,
 793                                        caching_array, cpages);
 794        }
 795out:
 796        kfree(caching_array);
 797        return r;
 798}
 799
 800/*
 801 * @return count of pages still required to fulfill the request.
 802 */
 803static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
 804                                         unsigned long *irq_flags)
 805{
 806        unsigned count = _manager->options.small;
 807        int r = pool->npages_free;
 808
 809        if (count > pool->npages_free) {
 810                struct list_head d_pages;
 811
 812                INIT_LIST_HEAD(&d_pages);
 813
 814                spin_unlock_irqrestore(&pool->lock, *irq_flags);
 815
 816                /* Returns how many more are neccessary to fulfill the
 817                 * request. */
 818                r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
 819
 820                spin_lock_irqsave(&pool->lock, *irq_flags);
 821                if (!r) {
 822                        /* Add the fresh to the end.. */
 823                        list_splice(&d_pages, &pool->free_list);
 824                        ++pool->nrefills;
 825                        pool->npages_free += count;
 826                        r = count;
 827                } else {
 828                        struct dma_page *d_page;
 829                        unsigned cpages = 0;
 830
 831                        pr_err("%s: Failed to fill %s pool (r:%d)!\n",
 832                               pool->dev_name, pool->name, r);
 833
 834                        list_for_each_entry(d_page, &d_pages, page_list) {
 835                                cpages++;
 836                        }
 837                        list_splice_tail(&d_pages, &pool->free_list);
 838                        pool->npages_free += cpages;
 839                        r = cpages;
 840                }
 841        }
 842        return r;
 843}
 844
 845/*
 846 * @return count of pages still required to fulfill the request.
 847 * The populate list is actually a stack (not that is matters as TTM
 848 * allocates one page at a time.
 849 */
 850static int ttm_dma_pool_get_pages(struct dma_pool *pool,
 851                                  struct ttm_dma_tt *ttm_dma,
 852                                  unsigned index)
 853{
 854        struct dma_page *d_page;
 855        struct ttm_tt *ttm = &ttm_dma->ttm;
 856        unsigned long irq_flags;
 857        int count, r = -ENOMEM;
 858
 859        spin_lock_irqsave(&pool->lock, irq_flags);
 860        count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
 861        if (count) {
 862                d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
 863                ttm->pages[index] = d_page->p;
 864                ttm_dma->dma_address[index] = d_page->dma;
 865                list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
 866                r = 0;
 867                pool->npages_in_use += 1;
 868                pool->npages_free -= 1;
 869        }
 870        spin_unlock_irqrestore(&pool->lock, irq_flags);
 871        return r;
 872}
 873
 874/*
 875 * On success pages list will hold count number of correctly
 876 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
 877 */
 878int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 879{
 880        struct ttm_tt *ttm = &ttm_dma->ttm;
 881        struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
 882        struct dma_pool *pool;
 883        enum pool_type type;
 884        unsigned i;
 885        gfp_t gfp_flags;
 886        int ret;
 887
 888        if (ttm->state != tt_unpopulated)
 889                return 0;
 890
 891        type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 892        if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 893                gfp_flags = GFP_USER | GFP_DMA32;
 894        else
 895                gfp_flags = GFP_HIGHUSER;
 896        if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
 897                gfp_flags |= __GFP_ZERO;
 898
 899        pool = ttm_dma_find_pool(dev, type);
 900        if (!pool) {
 901                pool = ttm_dma_pool_init(dev, gfp_flags, type);
 902                if (IS_ERR_OR_NULL(pool)) {
 903                        return -ENOMEM;
 904                }
 905        }
 906
 907        INIT_LIST_HEAD(&ttm_dma->pages_list);
 908        for (i = 0; i < ttm->num_pages; ++i) {
 909                ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
 910                if (ret != 0) {
 911                        ttm_dma_unpopulate(ttm_dma, dev);
 912                        return -ENOMEM;
 913                }
 914
 915                ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
 916                                                false, false);
 917                if (unlikely(ret != 0)) {
 918                        ttm_dma_unpopulate(ttm_dma, dev);
 919                        return -ENOMEM;
 920                }
 921        }
 922
 923        if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
 924                ret = ttm_tt_swapin(ttm);
 925                if (unlikely(ret != 0)) {
 926                        ttm_dma_unpopulate(ttm_dma, dev);
 927                        return ret;
 928                }
 929        }
 930
 931        ttm->state = tt_unbound;
 932        return 0;
 933}
 934EXPORT_SYMBOL_GPL(ttm_dma_populate);
 935
 936/* Put all pages in pages list to correct pool to wait for reuse */
 937void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 938{
 939        struct ttm_tt *ttm = &ttm_dma->ttm;
 940        struct dma_pool *pool;
 941        struct dma_page *d_page, *next;
 942        enum pool_type type;
 943        bool is_cached = false;
 944        unsigned count = 0, i, npages = 0;
 945        unsigned long irq_flags;
 946
 947        type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 948        pool = ttm_dma_find_pool(dev, type);
 949        if (!pool)
 950                return;
 951
 952        is_cached = (ttm_dma_find_pool(pool->dev,
 953                     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
 954
 955        /* make sure pages array match list and count number of pages */
 956        list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
 957                ttm->pages[count] = d_page->p;
 958                count++;
 959        }
 960
 961        spin_lock_irqsave(&pool->lock, irq_flags);
 962        pool->npages_in_use -= count;
 963        if (is_cached) {
 964                pool->nfrees += count;
 965        } else {
 966                pool->npages_free += count;
 967                list_splice(&ttm_dma->pages_list, &pool->free_list);
 968                /*
 969                 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
 970                 * to free in order to minimize calls to set_memory_wb().
 971                 */
 972                if (pool->npages_free >= (_manager->options.max_size +
 973                                          NUM_PAGES_TO_ALLOC))
 974                        npages = pool->npages_free - _manager->options.max_size;
 975        }
 976        spin_unlock_irqrestore(&pool->lock, irq_flags);
 977
 978        if (is_cached) {
 979                list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
 980                        ttm_mem_global_free_page(ttm->glob->mem_glob,
 981                                                 d_page->p);
 982                        ttm_dma_page_put(pool, d_page);
 983                }
 984        } else {
 985                for (i = 0; i < count; i++) {
 986                        ttm_mem_global_free_page(ttm->glob->mem_glob,
 987                                                 ttm->pages[i]);
 988                }
 989        }
 990
 991        INIT_LIST_HEAD(&ttm_dma->pages_list);
 992        for (i = 0; i < ttm->num_pages; i++) {
 993                ttm->pages[i] = NULL;
 994                ttm_dma->dma_address[i] = 0;
 995        }
 996
 997        /* shrink pool if necessary (only on !is_cached pools)*/
 998        if (npages)
 999                ttm_dma_page_pool_free(pool, npages, false);
1000        ttm->state = tt_unpopulated;
1001}
1002EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1003
1004/**
1005 * Callback for mm to request pool to reduce number of page held.
1006 *
1007 * XXX: (dchinner) Deadlock warning!
1008 *
1009 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1010 * shrinkers
1011 */
1012static unsigned long
1013ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1014{
1015        static unsigned start_pool;
1016        unsigned idx = 0;
1017        unsigned pool_offset;
1018        unsigned shrink_pages = sc->nr_to_scan;
1019        struct device_pools *p;
1020        unsigned long freed = 0;
1021
1022        if (list_empty(&_manager->pools))
1023                return SHRINK_STOP;
1024
1025        if (!mutex_trylock(&_manager->lock))
1026                return SHRINK_STOP;
1027        if (!_manager->npools)
1028                goto out;
1029        pool_offset = ++start_pool % _manager->npools;
1030        list_for_each_entry(p, &_manager->pools, pools) {
1031                unsigned nr_free;
1032
1033                if (!p->dev)
1034                        continue;
1035                if (shrink_pages == 0)
1036                        break;
1037                /* Do it in round-robin fashion. */
1038                if (++idx < pool_offset)
1039                        continue;
1040                nr_free = shrink_pages;
1041                /* OK to use static buffer since global mutex is held. */
1042                shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1043                freed += nr_free - shrink_pages;
1044
1045                pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1046                         p->pool->dev_name, p->pool->name, current->pid,
1047                         nr_free, shrink_pages);
1048        }
1049out:
1050        mutex_unlock(&_manager->lock);
1051        return freed;
1052}
1053
1054static unsigned long
1055ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1056{
1057        struct device_pools *p;
1058        unsigned long count = 0;
1059
1060        if (!mutex_trylock(&_manager->lock))
1061                return 0;
1062        list_for_each_entry(p, &_manager->pools, pools)
1063                count += p->pool->npages_free;
1064        mutex_unlock(&_manager->lock);
1065        return count;
1066}
1067
1068static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1069{
1070        manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1071        manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1072        manager->mm_shrink.seeks = 1;
1073        register_shrinker(&manager->mm_shrink);
1074}
1075
1076static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1077{
1078        unregister_shrinker(&manager->mm_shrink);
1079}
1080
1081int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1082{
1083        int ret = -ENOMEM;
1084
1085        WARN_ON(_manager);
1086
1087        pr_info("Initializing DMA pool allocator\n");
1088
1089        _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1090        if (!_manager)
1091                goto err;
1092
1093        mutex_init(&_manager->lock);
1094        INIT_LIST_HEAD(&_manager->pools);
1095
1096        _manager->options.max_size = max_pages;
1097        _manager->options.small = SMALL_ALLOCATION;
1098        _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1099
1100        /* This takes care of auto-freeing the _manager */
1101        ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1102                                   &glob->kobj, "dma_pool");
1103        if (unlikely(ret != 0)) {
1104                kobject_put(&_manager->kobj);
1105                goto err;
1106        }
1107        ttm_dma_pool_mm_shrink_init(_manager);
1108        return 0;
1109err:
1110        return ret;
1111}
1112
1113void ttm_dma_page_alloc_fini(void)
1114{
1115        struct device_pools *p, *t;
1116
1117        pr_info("Finalizing DMA pool allocator\n");
1118        ttm_dma_pool_mm_shrink_fini(_manager);
1119
1120        list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1121                dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1122                        current->pid);
1123                WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1124                        ttm_dma_pool_match, p->pool));
1125                ttm_dma_free_pool(p->dev, p->pool->type);
1126        }
1127        kobject_put(&_manager->kobj);
1128        _manager = NULL;
1129}
1130
1131int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1132{
1133        struct device_pools *p;
1134        struct dma_pool *pool = NULL;
1135        char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1136                     "name", "virt", "busaddr"};
1137
1138        if (!_manager) {
1139                seq_printf(m, "No pool allocator running.\n");
1140                return 0;
1141        }
1142        seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1143                   h[0], h[1], h[2], h[3], h[4], h[5]);
1144        mutex_lock(&_manager->lock);
1145        list_for_each_entry(p, &_manager->pools, pools) {
1146                struct device *dev = p->dev;
1147                if (!dev)
1148                        continue;
1149                pool = p->pool;
1150                seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1151                                pool->name, pool->nrefills,
1152                                pool->nfrees, pool->npages_in_use,
1153                                pool->npages_free,
1154                                pool->dev_name);
1155        }
1156        mutex_unlock(&_manager->lock);
1157        return 0;
1158}
1159EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1160
1161#endif
1162