linux/drivers/hwmon/hwmon-vid.c
<<
>>
Prefs
   1/*
   2 * hwmon-vid.c - VID/VRM/VRD voltage conversions
   3 *
   4 * Copyright (c) 2004 Rudolf Marek <r.marek@assembler.cz>
   5 *
   6 * Partly imported from i2c-vid.h of the lm_sensors project
   7 * Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
   8 * With assistance from Trent Piepho <xyzzy@speakeasy.org>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/module.h>
  28#include <linux/kernel.h>
  29#include <linux/hwmon-vid.h>
  30
  31/*
  32 * Common code for decoding VID pins.
  33 *
  34 * References:
  35 *
  36 * For VRM 8.4 to 9.1, "VRM x.y DC-DC Converter Design Guidelines",
  37 * available at http://developer.intel.com/.
  38 *
  39 * For VRD 10.0 and up, "VRD x.y Design Guide",
  40 * available at http://developer.intel.com/.
  41 *
  42 * AMD Athlon 64 and AMD Opteron Processors, AMD Publication 26094,
  43 * http://support.amd.com/us/Processor_TechDocs/26094.PDF
  44 * Table 74. VID Code Voltages
  45 * This corresponds to an arbitrary VRM code of 24 in the functions below.
  46 * These CPU models (K8 revision <= E) have 5 VID pins. See also:
  47 * Revision Guide for AMD Athlon 64 and AMD Opteron Processors, AMD Publication 25759,
  48 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25759.pdf
  49 *
  50 * AMD NPT Family 0Fh Processors, AMD Publication 32559,
  51 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf
  52 * Table 71. VID Code Voltages
  53 * This corresponds to an arbitrary VRM code of 25 in the functions below.
  54 * These CPU models (K8 revision >= F) have 6 VID pins. See also:
  55 * Revision Guide for AMD NPT Family 0Fh Processors, AMD Publication 33610,
  56 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
  57 *
  58 * The 17 specification is in fact Intel Mobile Voltage Positioning -
  59 * (IMVP-II). You can find more information in the datasheet of Max1718
  60 * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2452
  61 *
  62 * The 13 specification corresponds to the Intel Pentium M series. There
  63 * doesn't seem to be any named specification for these. The conversion
  64 * tables are detailed directly in the various Pentium M datasheets:
  65 * http://www.intel.com/design/intarch/pentiumm/docs_pentiumm.htm
  66 *
  67 * The 14 specification corresponds to Intel Core series. There
  68 * doesn't seem to be any named specification for these. The conversion
  69 * tables are detailed directly in the various Pentium Core datasheets:
  70 * http://www.intel.com/design/mobile/datashts/309221.htm
  71 *
  72 * The 110 (VRM 11) specification corresponds to Intel Conroe based series.
  73 * http://www.intel.com/design/processor/applnots/313214.htm
  74 */
  75
  76/*
  77 * vrm is the VRM/VRD document version multiplied by 10.
  78 * val is the 4-bit or more VID code.
  79 * Returned value is in mV to avoid floating point in the kernel.
  80 * Some VID have some bits in uV scale, this is rounded to mV.
  81 */
  82int vid_from_reg(int val, u8 vrm)
  83{
  84        int vid;
  85
  86        switch (vrm) {
  87
  88        case 100:               /* VRD 10.0 */
  89                /* compute in uV, round to mV */
  90                val &= 0x3f;
  91                if ((val & 0x1f) == 0x1f)
  92                        return 0;
  93                if ((val & 0x1f) <= 0x09 || val == 0x0a)
  94                        vid = 1087500 - (val & 0x1f) * 25000;
  95                else
  96                        vid = 1862500 - (val & 0x1f) * 25000;
  97                if (val & 0x20)
  98                        vid -= 12500;
  99                return (vid + 500) / 1000;
 100
 101        case 110:               /* Intel Conroe */
 102                                /* compute in uV, round to mV */
 103                val &= 0xff;
 104                if (val < 0x02 || val > 0xb2)
 105                        return 0;
 106                return (1600000 - (val - 2) * 6250 + 500) / 1000;
 107
 108        case 24:                /* Athlon64 & Opteron */
 109                val &= 0x1f;
 110                if (val == 0x1f)
 111                        return 0;
 112                                /* fall through */
 113        case 25:                /* AMD NPT 0Fh */
 114                val &= 0x3f;
 115                return (val < 32) ? 1550 - 25 * val
 116                        : 775 - (25 * (val - 31)) / 2;
 117
 118        case 26:                /* AMD family 10h to 15h, serial VID */
 119                val &= 0x7f;
 120                if (val >= 0x7c)
 121                        return 0;
 122                return DIV_ROUND_CLOSEST(15500 - 125 * val, 10);
 123
 124        case 91:                /* VRM 9.1 */
 125        case 90:                /* VRM 9.0 */
 126                val &= 0x1f;
 127                return val == 0x1f ? 0 :
 128                                     1850 - val * 25;
 129
 130        case 85:                /* VRM 8.5 */
 131                val &= 0x1f;
 132                return (val & 0x10  ? 25 : 0) +
 133                       ((val & 0x0f) > 0x04 ? 2050 : 1250) -
 134                       ((val & 0x0f) * 50);
 135
 136        case 84:                /* VRM 8.4 */
 137                val &= 0x0f;
 138                                /* fall through */
 139        case 82:                /* VRM 8.2 */
 140                val &= 0x1f;
 141                return val == 0x1f ? 0 :
 142                       val & 0x10  ? 5100 - (val) * 100 :
 143                                     2050 - (val) * 50;
 144        case 17:                /* Intel IMVP-II */
 145                val &= 0x1f;
 146                return val & 0x10 ? 975 - (val & 0xF) * 25 :
 147                                    1750 - val * 50;
 148        case 13:
 149        case 131:
 150                val &= 0x3f;
 151                /* Exception for Eden ULV 500 MHz */
 152                if (vrm == 131 && val == 0x3f)
 153                        val++;
 154                return 1708 - val * 16;
 155        case 14:                /* Intel Core */
 156                                /* compute in uV, round to mV */
 157                val &= 0x7f;
 158                return val > 0x77 ? 0 : (1500000 - (val * 12500) + 500) / 1000;
 159        default:                /* report 0 for unknown */
 160                if (vrm)
 161                        pr_warn("Requested unsupported VRM version (%u)\n",
 162                                (unsigned int)vrm);
 163                return 0;
 164        }
 165}
 166EXPORT_SYMBOL(vid_from_reg);
 167
 168/*
 169 * After this point is the code to automatically determine which
 170 * VRM/VRD specification should be used depending on the CPU.
 171 */
 172
 173struct vrm_model {
 174        u8 vendor;
 175        u8 family;
 176        u8 model_from;
 177        u8 model_to;
 178        u8 stepping_to;
 179        u8 vrm_type;
 180};
 181
 182#define ANY 0xFF
 183
 184#ifdef CONFIG_X86
 185
 186/*
 187 * The stepping_to parameter is highest acceptable stepping for current line.
 188 * The model match must be exact for 4-bit values. For model values 0x10
 189 * and above (extended model), all models below the parameter will match.
 190 */
 191
 192static struct vrm_model vrm_models[] = {
 193        {X86_VENDOR_AMD, 0x6, 0x0, ANY, ANY, 90},       /* Athlon Duron etc */
 194        {X86_VENDOR_AMD, 0xF, 0x0, 0x3F, ANY, 24},      /* Athlon 64, Opteron */
 195        /*
 196         * In theory, all NPT family 0Fh processors have 6 VID pins and should
 197         * thus use vrm 25, however in practice not all mainboards route the
 198         * 6th VID pin because it is never needed. So we use the 5 VID pin
 199         * variant (vrm 24) for the models which exist today.
 200         */
 201        {X86_VENDOR_AMD, 0xF, 0x40, 0x7F, ANY, 24},     /* NPT family 0Fh */
 202        {X86_VENDOR_AMD, 0xF, 0x80, ANY, ANY, 25},      /* future fam. 0Fh */
 203        {X86_VENDOR_AMD, 0x10, 0x0, ANY, ANY, 25},      /* NPT family 10h */
 204        {X86_VENDOR_AMD, 0x11, 0x0, ANY, ANY, 26},      /* family 11h */
 205        {X86_VENDOR_AMD, 0x12, 0x0, ANY, ANY, 26},      /* family 12h */
 206        {X86_VENDOR_AMD, 0x14, 0x0, ANY, ANY, 26},      /* family 14h */
 207        {X86_VENDOR_AMD, 0x15, 0x0, ANY, ANY, 26},      /* family 15h */
 208
 209        {X86_VENDOR_INTEL, 0x6, 0x0, 0x6, ANY, 82},     /* Pentium Pro,
 210                                                         * Pentium II, Xeon,
 211                                                         * Mobile Pentium,
 212                                                         * Celeron */
 213        {X86_VENDOR_INTEL, 0x6, 0x7, 0x7, ANY, 84},     /* Pentium III, Xeon */
 214        {X86_VENDOR_INTEL, 0x6, 0x8, 0x8, ANY, 82},     /* Pentium III, Xeon */
 215        {X86_VENDOR_INTEL, 0x6, 0x9, 0x9, ANY, 13},     /* Pentium M (130 nm) */
 216        {X86_VENDOR_INTEL, 0x6, 0xA, 0xA, ANY, 82},     /* Pentium III Xeon */
 217        {X86_VENDOR_INTEL, 0x6, 0xB, 0xB, ANY, 85},     /* Tualatin */
 218        {X86_VENDOR_INTEL, 0x6, 0xD, 0xD, ANY, 13},     /* Pentium M (90 nm) */
 219        {X86_VENDOR_INTEL, 0x6, 0xE, 0xE, ANY, 14},     /* Intel Core (65 nm) */
 220        {X86_VENDOR_INTEL, 0x6, 0xF, ANY, ANY, 110},    /* Intel Conroe and
 221                                                         * later */
 222        {X86_VENDOR_INTEL, 0xF, 0x0, 0x0, ANY, 90},     /* P4 */
 223        {X86_VENDOR_INTEL, 0xF, 0x1, 0x1, ANY, 90},     /* P4 Willamette */
 224        {X86_VENDOR_INTEL, 0xF, 0x2, 0x2, ANY, 90},     /* P4 Northwood */
 225        {X86_VENDOR_INTEL, 0xF, 0x3, ANY, ANY, 100},    /* Prescott and above
 226                                                         * assume VRD 10 */
 227
 228        {X86_VENDOR_CENTAUR, 0x6, 0x7, 0x7, ANY, 85},   /* Eden ESP/Ezra */
 229        {X86_VENDOR_CENTAUR, 0x6, 0x8, 0x8, 0x7, 85},   /* Ezra T */
 230        {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, 0x7, 85},   /* Nehemiah */
 231        {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, ANY, 17},   /* C3-M, Eden-N */
 232        {X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, 0x7, 0},    /* No information */
 233        {X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, ANY, 13},   /* C7-M, C7,
 234                                                         * Eden (Esther) */
 235        {X86_VENDOR_CENTAUR, 0x6, 0xD, 0xD, ANY, 134},  /* C7-D, C7-M, C7,
 236                                                         * Eden (Esther) */
 237};
 238
 239/*
 240 * Special case for VIA model D: there are two different possible
 241 * VID tables, so we have to figure out first, which one must be
 242 * used. This resolves temporary drm value 134 to 14 (Intel Core
 243 * 7-bit VID), 13 (Pentium M 6-bit VID) or 131 (Pentium M 6-bit VID
 244 * + quirk for Eden ULV 500 MHz).
 245 * Note: something similar might be needed for model A, I'm not sure.
 246 */
 247static u8 get_via_model_d_vrm(void)
 248{
 249        unsigned int vid, brand, __maybe_unused dummy;
 250        static const char *brands[4] = {
 251                "C7-M", "C7", "Eden", "C7-D"
 252        };
 253
 254        rdmsr(0x198, dummy, vid);
 255        vid &= 0xff;
 256
 257        rdmsr(0x1154, brand, dummy);
 258        brand = ((brand >> 4) ^ (brand >> 2)) & 0x03;
 259
 260        if (vid > 0x3f) {
 261                pr_info("Using %d-bit VID table for VIA %s CPU\n",
 262                        7, brands[brand]);
 263                return 14;
 264        } else {
 265                pr_info("Using %d-bit VID table for VIA %s CPU\n",
 266                        6, brands[brand]);
 267                /* Enable quirk for Eden */
 268                return brand == 2 ? 131 : 13;
 269        }
 270}
 271
 272static u8 find_vrm(u8 family, u8 model, u8 stepping, u8 vendor)
 273{
 274        int i;
 275
 276        for (i = 0; i < ARRAY_SIZE(vrm_models); i++) {
 277                if (vendor == vrm_models[i].vendor &&
 278                    family == vrm_models[i].family &&
 279                    model >= vrm_models[i].model_from &&
 280                    model <= vrm_models[i].model_to &&
 281                    stepping <= vrm_models[i].stepping_to)
 282                        return vrm_models[i].vrm_type;
 283        }
 284
 285        return 0;
 286}
 287
 288u8 vid_which_vrm(void)
 289{
 290        struct cpuinfo_x86 *c = &cpu_data(0);
 291        u8 vrm_ret;
 292
 293        if (c->x86 < 6)         /* Any CPU with family lower than 6 */
 294                return 0;       /* doesn't have VID */
 295
 296        vrm_ret = find_vrm(c->x86, c->x86_model, c->x86_mask, c->x86_vendor);
 297        if (vrm_ret == 134)
 298                vrm_ret = get_via_model_d_vrm();
 299        if (vrm_ret == 0)
 300                pr_info("Unknown VRM version of your x86 CPU\n");
 301        return vrm_ret;
 302}
 303
 304/* and now for something completely different for the non-x86 world */
 305#else
 306u8 vid_which_vrm(void)
 307{
 308        pr_info("Unknown VRM version of your CPU\n");
 309        return 0;
 310}
 311#endif
 312EXPORT_SYMBOL(vid_which_vrm);
 313
 314MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>");
 315
 316MODULE_DESCRIPTION("hwmon-vid driver");
 317MODULE_LICENSE("GPL");
 318