linux/drivers/iio/adc/stm32-adc.c
<<
>>
Prefs
   1/*
   2 * This file is part of STM32 ADC driver
   3 *
   4 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
   5 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
   6 *
   7 * License type: GPLv2
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License version 2 as published by
  11 * the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.
  16 * See the GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * this program. If not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include <linux/clk.h>
  23#include <linux/delay.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/dmaengine.h>
  26#include <linux/iio/iio.h>
  27#include <linux/iio/buffer.h>
  28#include <linux/iio/timer/stm32-timer-trigger.h>
  29#include <linux/iio/trigger.h>
  30#include <linux/iio/trigger_consumer.h>
  31#include <linux/iio/triggered_buffer.h>
  32#include <linux/interrupt.h>
  33#include <linux/io.h>
  34#include <linux/iopoll.h>
  35#include <linux/module.h>
  36#include <linux/platform_device.h>
  37#include <linux/of.h>
  38#include <linux/of_device.h>
  39
  40#include "stm32-adc-core.h"
  41
  42/* STM32F4 - Registers for each ADC instance */
  43#define STM32F4_ADC_SR                  0x00
  44#define STM32F4_ADC_CR1                 0x04
  45#define STM32F4_ADC_CR2                 0x08
  46#define STM32F4_ADC_SMPR1               0x0C
  47#define STM32F4_ADC_SMPR2               0x10
  48#define STM32F4_ADC_HTR                 0x24
  49#define STM32F4_ADC_LTR                 0x28
  50#define STM32F4_ADC_SQR1                0x2C
  51#define STM32F4_ADC_SQR2                0x30
  52#define STM32F4_ADC_SQR3                0x34
  53#define STM32F4_ADC_JSQR                0x38
  54#define STM32F4_ADC_JDR1                0x3C
  55#define STM32F4_ADC_JDR2                0x40
  56#define STM32F4_ADC_JDR3                0x44
  57#define STM32F4_ADC_JDR4                0x48
  58#define STM32F4_ADC_DR                  0x4C
  59
  60/* STM32F4_ADC_SR - bit fields */
  61#define STM32F4_STRT                    BIT(4)
  62#define STM32F4_EOC                     BIT(1)
  63
  64/* STM32F4_ADC_CR1 - bit fields */
  65#define STM32F4_RES_SHIFT               24
  66#define STM32F4_RES_MASK                GENMASK(25, 24)
  67#define STM32F4_SCAN                    BIT(8)
  68#define STM32F4_EOCIE                   BIT(5)
  69
  70/* STM32F4_ADC_CR2 - bit fields */
  71#define STM32F4_SWSTART                 BIT(30)
  72#define STM32F4_EXTEN_SHIFT             28
  73#define STM32F4_EXTEN_MASK              GENMASK(29, 28)
  74#define STM32F4_EXTSEL_SHIFT            24
  75#define STM32F4_EXTSEL_MASK             GENMASK(27, 24)
  76#define STM32F4_EOCS                    BIT(10)
  77#define STM32F4_DDS                     BIT(9)
  78#define STM32F4_DMA                     BIT(8)
  79#define STM32F4_ADON                    BIT(0)
  80
  81/* STM32H7 - Registers for each ADC instance */
  82#define STM32H7_ADC_ISR                 0x00
  83#define STM32H7_ADC_IER                 0x04
  84#define STM32H7_ADC_CR                  0x08
  85#define STM32H7_ADC_CFGR                0x0C
  86#define STM32H7_ADC_PCSEL               0x1C
  87#define STM32H7_ADC_SQR1                0x30
  88#define STM32H7_ADC_SQR2                0x34
  89#define STM32H7_ADC_SQR3                0x38
  90#define STM32H7_ADC_SQR4                0x3C
  91#define STM32H7_ADC_DR                  0x40
  92#define STM32H7_ADC_CALFACT             0xC4
  93#define STM32H7_ADC_CALFACT2            0xC8
  94
  95/* STM32H7_ADC_ISR - bit fields */
  96#define STM32H7_EOC                     BIT(2)
  97#define STM32H7_ADRDY                   BIT(0)
  98
  99/* STM32H7_ADC_IER - bit fields */
 100#define STM32H7_EOCIE                   STM32H7_EOC
 101
 102/* STM32H7_ADC_CR - bit fields */
 103#define STM32H7_ADCAL                   BIT(31)
 104#define STM32H7_ADCALDIF                BIT(30)
 105#define STM32H7_DEEPPWD                 BIT(29)
 106#define STM32H7_ADVREGEN                BIT(28)
 107#define STM32H7_LINCALRDYW6             BIT(27)
 108#define STM32H7_LINCALRDYW5             BIT(26)
 109#define STM32H7_LINCALRDYW4             BIT(25)
 110#define STM32H7_LINCALRDYW3             BIT(24)
 111#define STM32H7_LINCALRDYW2             BIT(23)
 112#define STM32H7_LINCALRDYW1             BIT(22)
 113#define STM32H7_ADCALLIN                BIT(16)
 114#define STM32H7_BOOST                   BIT(8)
 115#define STM32H7_ADSTP                   BIT(4)
 116#define STM32H7_ADSTART                 BIT(2)
 117#define STM32H7_ADDIS                   BIT(1)
 118#define STM32H7_ADEN                    BIT(0)
 119
 120/* STM32H7_ADC_CFGR bit fields */
 121#define STM32H7_EXTEN_SHIFT             10
 122#define STM32H7_EXTEN_MASK              GENMASK(11, 10)
 123#define STM32H7_EXTSEL_SHIFT            5
 124#define STM32H7_EXTSEL_MASK             GENMASK(9, 5)
 125#define STM32H7_RES_SHIFT               2
 126#define STM32H7_RES_MASK                GENMASK(4, 2)
 127#define STM32H7_DMNGT_SHIFT             0
 128#define STM32H7_DMNGT_MASK              GENMASK(1, 0)
 129
 130enum stm32h7_adc_dmngt {
 131        STM32H7_DMNGT_DR_ONLY,          /* Regular data in DR only */
 132        STM32H7_DMNGT_DMA_ONESHOT,      /* DMA one shot mode */
 133        STM32H7_DMNGT_DFSDM,            /* DFSDM mode */
 134        STM32H7_DMNGT_DMA_CIRC,         /* DMA circular mode */
 135};
 136
 137/* STM32H7_ADC_CALFACT - bit fields */
 138#define STM32H7_CALFACT_D_SHIFT         16
 139#define STM32H7_CALFACT_D_MASK          GENMASK(26, 16)
 140#define STM32H7_CALFACT_S_SHIFT         0
 141#define STM32H7_CALFACT_S_MASK          GENMASK(10, 0)
 142
 143/* STM32H7_ADC_CALFACT2 - bit fields */
 144#define STM32H7_LINCALFACT_SHIFT        0
 145#define STM32H7_LINCALFACT_MASK         GENMASK(29, 0)
 146
 147/* Number of linear calibration shadow registers / LINCALRDYW control bits */
 148#define STM32H7_LINCALFACT_NUM          6
 149
 150/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
 151#define STM32H7_BOOST_CLKRATE           20000000UL
 152
 153#define STM32_ADC_MAX_SQ                16      /* SQ1..SQ16 */
 154#define STM32_ADC_TIMEOUT_US            100000
 155#define STM32_ADC_TIMEOUT       (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
 156
 157#define STM32_DMA_BUFFER_SIZE           PAGE_SIZE
 158
 159/* External trigger enable */
 160enum stm32_adc_exten {
 161        STM32_EXTEN_SWTRIG,
 162        STM32_EXTEN_HWTRIG_RISING_EDGE,
 163        STM32_EXTEN_HWTRIG_FALLING_EDGE,
 164        STM32_EXTEN_HWTRIG_BOTH_EDGES,
 165};
 166
 167/* extsel - trigger mux selection value */
 168enum stm32_adc_extsel {
 169        STM32_EXT0,
 170        STM32_EXT1,
 171        STM32_EXT2,
 172        STM32_EXT3,
 173        STM32_EXT4,
 174        STM32_EXT5,
 175        STM32_EXT6,
 176        STM32_EXT7,
 177        STM32_EXT8,
 178        STM32_EXT9,
 179        STM32_EXT10,
 180        STM32_EXT11,
 181        STM32_EXT12,
 182        STM32_EXT13,
 183        STM32_EXT14,
 184        STM32_EXT15,
 185};
 186
 187/**
 188 * struct stm32_adc_trig_info - ADC trigger info
 189 * @name:               name of the trigger, corresponding to its source
 190 * @extsel:             trigger selection
 191 */
 192struct stm32_adc_trig_info {
 193        const char *name;
 194        enum stm32_adc_extsel extsel;
 195};
 196
 197/**
 198 * struct stm32_adc_calib - optional adc calibration data
 199 * @calfact_s: Calibration offset for single ended channels
 200 * @calfact_d: Calibration offset in differential
 201 * @lincalfact: Linearity calibration factor
 202 */
 203struct stm32_adc_calib {
 204        u32                     calfact_s;
 205        u32                     calfact_d;
 206        u32                     lincalfact[STM32H7_LINCALFACT_NUM];
 207};
 208
 209/**
 210 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
 211 * @reg:                register offset
 212 * @mask:               bitfield mask
 213 * @shift:              left shift
 214 */
 215struct stm32_adc_regs {
 216        int reg;
 217        int mask;
 218        int shift;
 219};
 220
 221/**
 222 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
 223 * @dr:                 data register offset
 224 * @ier_eoc:            interrupt enable register & eocie bitfield
 225 * @isr_eoc:            interrupt status register & eoc bitfield
 226 * @sqr:                reference to sequence registers array
 227 * @exten:              trigger control register & bitfield
 228 * @extsel:             trigger selection register & bitfield
 229 * @res:                resolution selection register & bitfield
 230 */
 231struct stm32_adc_regspec {
 232        const u32 dr;
 233        const struct stm32_adc_regs ier_eoc;
 234        const struct stm32_adc_regs isr_eoc;
 235        const struct stm32_adc_regs *sqr;
 236        const struct stm32_adc_regs exten;
 237        const struct stm32_adc_regs extsel;
 238        const struct stm32_adc_regs res;
 239};
 240
 241struct stm32_adc;
 242
 243/**
 244 * stm32_adc_cfg - stm32 compatible configuration data
 245 * @regs:               registers descriptions
 246 * @adc_info:           per instance input channels definitions
 247 * @trigs:              external trigger sources
 248 * @clk_required:       clock is required
 249 * @selfcalib:          optional routine for self-calibration
 250 * @prepare:            optional prepare routine (power-up, enable)
 251 * @start_conv:         routine to start conversions
 252 * @stop_conv:          routine to stop conversions
 253 * @unprepare:          optional unprepare routine (disable, power-down)
 254 */
 255struct stm32_adc_cfg {
 256        const struct stm32_adc_regspec  *regs;
 257        const struct stm32_adc_info     *adc_info;
 258        struct stm32_adc_trig_info      *trigs;
 259        bool clk_required;
 260        int (*selfcalib)(struct stm32_adc *);
 261        int (*prepare)(struct stm32_adc *);
 262        void (*start_conv)(struct stm32_adc *, bool dma);
 263        void (*stop_conv)(struct stm32_adc *);
 264        void (*unprepare)(struct stm32_adc *);
 265};
 266
 267/**
 268 * struct stm32_adc - private data of each ADC IIO instance
 269 * @common:             reference to ADC block common data
 270 * @offset:             ADC instance register offset in ADC block
 271 * @cfg:                compatible configuration data
 272 * @completion:         end of single conversion completion
 273 * @buffer:             data buffer
 274 * @clk:                clock for this adc instance
 275 * @irq:                interrupt for this adc instance
 276 * @lock:               spinlock
 277 * @bufi:               data buffer index
 278 * @num_conv:           expected number of scan conversions
 279 * @res:                data resolution (e.g. RES bitfield value)
 280 * @trigger_polarity:   external trigger polarity (e.g. exten)
 281 * @dma_chan:           dma channel
 282 * @rx_buf:             dma rx buffer cpu address
 283 * @rx_dma_buf:         dma rx buffer bus address
 284 * @rx_buf_sz:          dma rx buffer size
 285 * @pcsel               bitmask to preselect channels on some devices
 286 * @cal:                optional calibration data on some devices
 287 */
 288struct stm32_adc {
 289        struct stm32_adc_common *common;
 290        u32                     offset;
 291        const struct stm32_adc_cfg      *cfg;
 292        struct completion       completion;
 293        u16                     buffer[STM32_ADC_MAX_SQ];
 294        struct clk              *clk;
 295        int                     irq;
 296        spinlock_t              lock;           /* interrupt lock */
 297        unsigned int            bufi;
 298        unsigned int            num_conv;
 299        u32                     res;
 300        u32                     trigger_polarity;
 301        struct dma_chan         *dma_chan;
 302        u8                      *rx_buf;
 303        dma_addr_t              rx_dma_buf;
 304        unsigned int            rx_buf_sz;
 305        u32                     pcsel;
 306        struct stm32_adc_calib  cal;
 307};
 308
 309/**
 310 * struct stm32_adc_chan_spec - specification of stm32 adc channel
 311 * @type:       IIO channel type
 312 * @channel:    channel number (single ended)
 313 * @name:       channel name (single ended)
 314 */
 315struct stm32_adc_chan_spec {
 316        enum iio_chan_type      type;
 317        int                     channel;
 318        const char              *name;
 319};
 320
 321/**
 322 * struct stm32_adc_info - stm32 ADC, per instance config data
 323 * @channels:           Reference to stm32 channels spec
 324 * @max_channels:       Number of channels
 325 * @resolutions:        available resolutions
 326 * @num_res:            number of available resolutions
 327 */
 328struct stm32_adc_info {
 329        const struct stm32_adc_chan_spec *channels;
 330        int max_channels;
 331        const unsigned int *resolutions;
 332        const unsigned int num_res;
 333};
 334
 335/*
 336 * Input definitions common for all instances:
 337 * stm32f4 can have up to 16 channels
 338 * stm32h7 can have up to 20 channels
 339 */
 340static const struct stm32_adc_chan_spec stm32_adc_channels[] = {
 341        { IIO_VOLTAGE, 0, "in0" },
 342        { IIO_VOLTAGE, 1, "in1" },
 343        { IIO_VOLTAGE, 2, "in2" },
 344        { IIO_VOLTAGE, 3, "in3" },
 345        { IIO_VOLTAGE, 4, "in4" },
 346        { IIO_VOLTAGE, 5, "in5" },
 347        { IIO_VOLTAGE, 6, "in6" },
 348        { IIO_VOLTAGE, 7, "in7" },
 349        { IIO_VOLTAGE, 8, "in8" },
 350        { IIO_VOLTAGE, 9, "in9" },
 351        { IIO_VOLTAGE, 10, "in10" },
 352        { IIO_VOLTAGE, 11, "in11" },
 353        { IIO_VOLTAGE, 12, "in12" },
 354        { IIO_VOLTAGE, 13, "in13" },
 355        { IIO_VOLTAGE, 14, "in14" },
 356        { IIO_VOLTAGE, 15, "in15" },
 357        { IIO_VOLTAGE, 16, "in16" },
 358        { IIO_VOLTAGE, 17, "in17" },
 359        { IIO_VOLTAGE, 18, "in18" },
 360        { IIO_VOLTAGE, 19, "in19" },
 361};
 362
 363static const unsigned int stm32f4_adc_resolutions[] = {
 364        /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
 365        12, 10, 8, 6,
 366};
 367
 368static const struct stm32_adc_info stm32f4_adc_info = {
 369        .channels = stm32_adc_channels,
 370        .max_channels = 16,
 371        .resolutions = stm32f4_adc_resolutions,
 372        .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
 373};
 374
 375static const unsigned int stm32h7_adc_resolutions[] = {
 376        /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
 377        16, 14, 12, 10, 8,
 378};
 379
 380static const struct stm32_adc_info stm32h7_adc_info = {
 381        .channels = stm32_adc_channels,
 382        .max_channels = 20,
 383        .resolutions = stm32h7_adc_resolutions,
 384        .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
 385};
 386
 387/**
 388 * stm32f4_sq - describe regular sequence registers
 389 * - L: sequence len (register & bit field)
 390 * - SQ1..SQ16: sequence entries (register & bit field)
 391 */
 392static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
 393        /* L: len bit field description to be kept as first element */
 394        { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
 395        /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 396        { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
 397        { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
 398        { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
 399        { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
 400        { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
 401        { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
 402        { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
 403        { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
 404        { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
 405        { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
 406        { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
 407        { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
 408        { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
 409        { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
 410        { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
 411        { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
 412};
 413
 414/* STM32F4 external trigger sources for all instances */
 415static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
 416        { TIM1_CH1, STM32_EXT0 },
 417        { TIM1_CH2, STM32_EXT1 },
 418        { TIM1_CH3, STM32_EXT2 },
 419        { TIM2_CH2, STM32_EXT3 },
 420        { TIM2_CH3, STM32_EXT4 },
 421        { TIM2_CH4, STM32_EXT5 },
 422        { TIM2_TRGO, STM32_EXT6 },
 423        { TIM3_CH1, STM32_EXT7 },
 424        { TIM3_TRGO, STM32_EXT8 },
 425        { TIM4_CH4, STM32_EXT9 },
 426        { TIM5_CH1, STM32_EXT10 },
 427        { TIM5_CH2, STM32_EXT11 },
 428        { TIM5_CH3, STM32_EXT12 },
 429        { TIM8_CH1, STM32_EXT13 },
 430        { TIM8_TRGO, STM32_EXT14 },
 431        {}, /* sentinel */
 432};
 433
 434static const struct stm32_adc_regspec stm32f4_adc_regspec = {
 435        .dr = STM32F4_ADC_DR,
 436        .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
 437        .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
 438        .sqr = stm32f4_sq,
 439        .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
 440        .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
 441                    STM32F4_EXTSEL_SHIFT },
 442        .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
 443};
 444
 445static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
 446        /* L: len bit field description to be kept as first element */
 447        { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
 448        /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 449        { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
 450        { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
 451        { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
 452        { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
 453        { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
 454        { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
 455        { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
 456        { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
 457        { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
 458        { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
 459        { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
 460        { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
 461        { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
 462        { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
 463        { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
 464        { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
 465};
 466
 467/* STM32H7 external trigger sources for all instances */
 468static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
 469        { TIM1_CH1, STM32_EXT0 },
 470        { TIM1_CH2, STM32_EXT1 },
 471        { TIM1_CH3, STM32_EXT2 },
 472        { TIM2_CH2, STM32_EXT3 },
 473        { TIM3_TRGO, STM32_EXT4 },
 474        { TIM4_CH4, STM32_EXT5 },
 475        { TIM8_TRGO, STM32_EXT7 },
 476        { TIM8_TRGO2, STM32_EXT8 },
 477        { TIM1_TRGO, STM32_EXT9 },
 478        { TIM1_TRGO2, STM32_EXT10 },
 479        { TIM2_TRGO, STM32_EXT11 },
 480        { TIM4_TRGO, STM32_EXT12 },
 481        { TIM6_TRGO, STM32_EXT13 },
 482        { TIM3_CH4, STM32_EXT15 },
 483        {},
 484};
 485
 486static const struct stm32_adc_regspec stm32h7_adc_regspec = {
 487        .dr = STM32H7_ADC_DR,
 488        .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
 489        .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
 490        .sqr = stm32h7_sq,
 491        .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
 492        .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
 493                    STM32H7_EXTSEL_SHIFT },
 494        .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
 495};
 496
 497/**
 498 * STM32 ADC registers access routines
 499 * @adc: stm32 adc instance
 500 * @reg: reg offset in adc instance
 501 *
 502 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
 503 * for adc1, adc2 and adc3.
 504 */
 505static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
 506{
 507        return readl_relaxed(adc->common->base + adc->offset + reg);
 508}
 509
 510#define stm32_adc_readl_addr(addr)      stm32_adc_readl(adc, addr)
 511
 512#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
 513        readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
 514                           cond, sleep_us, timeout_us)
 515
 516static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
 517{
 518        return readw_relaxed(adc->common->base + adc->offset + reg);
 519}
 520
 521static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
 522{
 523        writel_relaxed(val, adc->common->base + adc->offset + reg);
 524}
 525
 526static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 527{
 528        unsigned long flags;
 529
 530        spin_lock_irqsave(&adc->lock, flags);
 531        stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
 532        spin_unlock_irqrestore(&adc->lock, flags);
 533}
 534
 535static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 536{
 537        unsigned long flags;
 538
 539        spin_lock_irqsave(&adc->lock, flags);
 540        stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
 541        spin_unlock_irqrestore(&adc->lock, flags);
 542}
 543
 544/**
 545 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
 546 * @adc: stm32 adc instance
 547 */
 548static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
 549{
 550        stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
 551                           adc->cfg->regs->ier_eoc.mask);
 552};
 553
 554/**
 555 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
 556 * @adc: stm32 adc instance
 557 */
 558static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
 559{
 560        stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
 561                           adc->cfg->regs->ier_eoc.mask);
 562}
 563
 564static void stm32_adc_set_res(struct stm32_adc *adc)
 565{
 566        const struct stm32_adc_regs *res = &adc->cfg->regs->res;
 567        u32 val;
 568
 569        val = stm32_adc_readl(adc, res->reg);
 570        val = (val & ~res->mask) | (adc->res << res->shift);
 571        stm32_adc_writel(adc, res->reg, val);
 572}
 573
 574/**
 575 * stm32f4_adc_start_conv() - Start conversions for regular channels.
 576 * @adc: stm32 adc instance
 577 * @dma: use dma to transfer conversion result
 578 *
 579 * Start conversions for regular channels.
 580 * Also take care of normal or DMA mode. Circular DMA may be used for regular
 581 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
 582 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
 583 */
 584static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
 585{
 586        stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 587
 588        if (dma)
 589                stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
 590                                   STM32F4_DMA | STM32F4_DDS);
 591
 592        stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
 593
 594        /* Wait for Power-up time (tSTAB from datasheet) */
 595        usleep_range(2, 3);
 596
 597        /* Software start ? (e.g. trigger detection disabled ?) */
 598        if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
 599                stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
 600}
 601
 602static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
 603{
 604        stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
 605        stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
 606
 607        stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 608        stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
 609                           STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
 610}
 611
 612static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
 613{
 614        enum stm32h7_adc_dmngt dmngt;
 615        unsigned long flags;
 616        u32 val;
 617
 618        if (dma)
 619                dmngt = STM32H7_DMNGT_DMA_CIRC;
 620        else
 621                dmngt = STM32H7_DMNGT_DR_ONLY;
 622
 623        spin_lock_irqsave(&adc->lock, flags);
 624        val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
 625        val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
 626        stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
 627        spin_unlock_irqrestore(&adc->lock, flags);
 628
 629        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
 630}
 631
 632static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
 633{
 634        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 635        int ret;
 636        u32 val;
 637
 638        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
 639
 640        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 641                                           !(val & (STM32H7_ADSTART)),
 642                                           100, STM32_ADC_TIMEOUT_US);
 643        if (ret)
 644                dev_warn(&indio_dev->dev, "stop failed\n");
 645
 646        stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
 647}
 648
 649static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
 650{
 651        /* Exit deep power down, then enable ADC voltage regulator */
 652        stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 653        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
 654
 655        if (adc->common->rate > STM32H7_BOOST_CLKRATE)
 656                stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 657
 658        /* Wait for startup time */
 659        usleep_range(10, 20);
 660}
 661
 662static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
 663{
 664        stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 665
 666        /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
 667        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 668}
 669
 670static int stm32h7_adc_enable(struct stm32_adc *adc)
 671{
 672        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 673        int ret;
 674        u32 val;
 675
 676        /* Clear ADRDY by writing one, then enable ADC */
 677        stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
 678        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
 679
 680        /* Poll for ADRDY to be set (after adc startup time) */
 681        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 682                                           val & STM32H7_ADRDY,
 683                                           100, STM32_ADC_TIMEOUT_US);
 684        if (ret) {
 685                stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
 686                dev_err(&indio_dev->dev, "Failed to enable ADC\n");
 687        }
 688
 689        return ret;
 690}
 691
 692static void stm32h7_adc_disable(struct stm32_adc *adc)
 693{
 694        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 695        int ret;
 696        u32 val;
 697
 698        /* Disable ADC and wait until it's effectively disabled */
 699        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 700        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 701                                           !(val & STM32H7_ADEN), 100,
 702                                           STM32_ADC_TIMEOUT_US);
 703        if (ret)
 704                dev_warn(&indio_dev->dev, "Failed to disable\n");
 705}
 706
 707/**
 708 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
 709 * @adc: stm32 adc instance
 710 */
 711static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
 712{
 713        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 714        int i, ret;
 715        u32 lincalrdyw_mask, val;
 716
 717        /* Enable adc so LINCALRDYW1..6 bits are writable */
 718        ret = stm32h7_adc_enable(adc);
 719        if (ret)
 720                return ret;
 721
 722        /* Read linearity calibration */
 723        lincalrdyw_mask = STM32H7_LINCALRDYW6;
 724        for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 725                /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
 726                stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 727
 728                /* Poll: wait calib data to be ready in CALFACT2 register */
 729                ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 730                                                   !(val & lincalrdyw_mask),
 731                                                   100, STM32_ADC_TIMEOUT_US);
 732                if (ret) {
 733                        dev_err(&indio_dev->dev, "Failed to read calfact\n");
 734                        goto disable;
 735                }
 736
 737                val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
 738                adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
 739                adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
 740
 741                lincalrdyw_mask >>= 1;
 742        }
 743
 744        /* Read offset calibration */
 745        val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
 746        adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
 747        adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
 748        adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
 749        adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
 750
 751disable:
 752        stm32h7_adc_disable(adc);
 753
 754        return ret;
 755}
 756
 757/**
 758 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
 759 * @adc: stm32 adc instance
 760 * Note: ADC must be enabled, with no on-going conversions.
 761 */
 762static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
 763{
 764        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 765        int i, ret;
 766        u32 lincalrdyw_mask, val;
 767
 768        val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
 769                (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
 770        stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
 771
 772        lincalrdyw_mask = STM32H7_LINCALRDYW6;
 773        for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 774                /*
 775                 * Write saved calibration data to shadow registers:
 776                 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
 777                 * data write. Then poll to wait for complete transfer.
 778                 */
 779                val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
 780                stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
 781                stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 782                ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 783                                                   val & lincalrdyw_mask,
 784                                                   100, STM32_ADC_TIMEOUT_US);
 785                if (ret) {
 786                        dev_err(&indio_dev->dev, "Failed to write calfact\n");
 787                        return ret;
 788                }
 789
 790                /*
 791                 * Read back calibration data, has two effects:
 792                 * - It ensures bits LINCALRDYW[6..1] are kept cleared
 793                 *   for next time calibration needs to be restored.
 794                 * - BTW, bit clear triggers a read, then check data has been
 795                 *   correctly written.
 796                 */
 797                stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 798                ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 799                                                   !(val & lincalrdyw_mask),
 800                                                   100, STM32_ADC_TIMEOUT_US);
 801                if (ret) {
 802                        dev_err(&indio_dev->dev, "Failed to read calfact\n");
 803                        return ret;
 804                }
 805                val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
 806                if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
 807                        dev_err(&indio_dev->dev, "calfact not consistent\n");
 808                        return -EIO;
 809                }
 810
 811                lincalrdyw_mask >>= 1;
 812        }
 813
 814        return 0;
 815}
 816
 817/**
 818 * Fixed timeout value for ADC calibration.
 819 * worst cases:
 820 * - low clock frequency
 821 * - maximum prescalers
 822 * Calibration requires:
 823 * - 131,072 ADC clock cycle for the linear calibration
 824 * - 20 ADC clock cycle for the offset calibration
 825 *
 826 * Set to 100ms for now
 827 */
 828#define STM32H7_ADC_CALIB_TIMEOUT_US            100000
 829
 830/**
 831 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
 832 * @adc: stm32 adc instance
 833 * Exit from power down, calibrate ADC, then return to power down.
 834 */
 835static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
 836{
 837        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 838        int ret;
 839        u32 val;
 840
 841        stm32h7_adc_exit_pwr_down(adc);
 842
 843        /*
 844         * Select calibration mode:
 845         * - Offset calibration for single ended inputs
 846         * - No linearity calibration (do it later, before reading it)
 847         */
 848        stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
 849        stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
 850
 851        /* Start calibration, then wait for completion */
 852        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
 853        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 854                                           !(val & STM32H7_ADCAL), 100,
 855                                           STM32H7_ADC_CALIB_TIMEOUT_US);
 856        if (ret) {
 857                dev_err(&indio_dev->dev, "calibration failed\n");
 858                goto pwr_dwn;
 859        }
 860
 861        /*
 862         * Select calibration mode, then start calibration:
 863         * - Offset calibration for differential input
 864         * - Linearity calibration (needs to be done only once for single/diff)
 865         *   will run simultaneously with offset calibration.
 866         */
 867        stm32_adc_set_bits(adc, STM32H7_ADC_CR,
 868                           STM32H7_ADCALDIF | STM32H7_ADCALLIN);
 869        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
 870        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 871                                           !(val & STM32H7_ADCAL), 100,
 872                                           STM32H7_ADC_CALIB_TIMEOUT_US);
 873        if (ret) {
 874                dev_err(&indio_dev->dev, "calibration failed\n");
 875                goto pwr_dwn;
 876        }
 877
 878        stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
 879                           STM32H7_ADCALDIF | STM32H7_ADCALLIN);
 880
 881        /* Read calibration result for future reference */
 882        ret = stm32h7_adc_read_selfcalib(adc);
 883
 884pwr_dwn:
 885        stm32h7_adc_enter_pwr_down(adc);
 886
 887        return ret;
 888}
 889
 890/**
 891 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
 892 * @adc: stm32 adc instance
 893 * Leave power down mode.
 894 * Enable ADC.
 895 * Restore calibration data.
 896 * Pre-select channels that may be used in PCSEL (required by input MUX / IO).
 897 */
 898static int stm32h7_adc_prepare(struct stm32_adc *adc)
 899{
 900        int ret;
 901
 902        stm32h7_adc_exit_pwr_down(adc);
 903
 904        ret = stm32h7_adc_enable(adc);
 905        if (ret)
 906                goto pwr_dwn;
 907
 908        ret = stm32h7_adc_restore_selfcalib(adc);
 909        if (ret)
 910                goto disable;
 911
 912        stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
 913
 914        return 0;
 915
 916disable:
 917        stm32h7_adc_disable(adc);
 918pwr_dwn:
 919        stm32h7_adc_enter_pwr_down(adc);
 920
 921        return ret;
 922}
 923
 924static void stm32h7_adc_unprepare(struct stm32_adc *adc)
 925{
 926        stm32h7_adc_disable(adc);
 927        stm32h7_adc_enter_pwr_down(adc);
 928}
 929
 930/**
 931 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
 932 * @indio_dev: IIO device
 933 * @scan_mask: channels to be converted
 934 *
 935 * Conversion sequence :
 936 * Configure ADC scan sequence based on selected channels in scan_mask.
 937 * Add channels to SQR registers, from scan_mask LSB to MSB, then
 938 * program sequence len.
 939 */
 940static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
 941                                   const unsigned long *scan_mask)
 942{
 943        struct stm32_adc *adc = iio_priv(indio_dev);
 944        const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
 945        const struct iio_chan_spec *chan;
 946        u32 val, bit;
 947        int i = 0;
 948
 949        for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
 950                chan = indio_dev->channels + bit;
 951                /*
 952                 * Assign one channel per SQ entry in regular
 953                 * sequence, starting with SQ1.
 954                 */
 955                i++;
 956                if (i > STM32_ADC_MAX_SQ)
 957                        return -EINVAL;
 958
 959                dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
 960                        __func__, chan->channel, i);
 961
 962                val = stm32_adc_readl(adc, sqr[i].reg);
 963                val &= ~sqr[i].mask;
 964                val |= chan->channel << sqr[i].shift;
 965                stm32_adc_writel(adc, sqr[i].reg, val);
 966        }
 967
 968        if (!i)
 969                return -EINVAL;
 970
 971        /* Sequence len */
 972        val = stm32_adc_readl(adc, sqr[0].reg);
 973        val &= ~sqr[0].mask;
 974        val |= ((i - 1) << sqr[0].shift);
 975        stm32_adc_writel(adc, sqr[0].reg, val);
 976
 977        return 0;
 978}
 979
 980/**
 981 * stm32_adc_get_trig_extsel() - Get external trigger selection
 982 * @trig: trigger
 983 *
 984 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
 985 */
 986static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
 987                                     struct iio_trigger *trig)
 988{
 989        struct stm32_adc *adc = iio_priv(indio_dev);
 990        int i;
 991
 992        /* lookup triggers registered by stm32 timer trigger driver */
 993        for (i = 0; adc->cfg->trigs[i].name; i++) {
 994                /**
 995                 * Checking both stm32 timer trigger type and trig name
 996                 * should be safe against arbitrary trigger names.
 997                 */
 998                if (is_stm32_timer_trigger(trig) &&
 999                    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1000                        return adc->cfg->trigs[i].extsel;
1001                }
1002        }
1003
1004        return -EINVAL;
1005}
1006
1007/**
1008 * stm32_adc_set_trig() - Set a regular trigger
1009 * @indio_dev: IIO device
1010 * @trig: IIO trigger
1011 *
1012 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1013 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1014 * - if HW trigger enabled, set source & polarity
1015 */
1016static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1017                              struct iio_trigger *trig)
1018{
1019        struct stm32_adc *adc = iio_priv(indio_dev);
1020        u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1021        unsigned long flags;
1022        int ret;
1023
1024        if (trig) {
1025                ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1026                if (ret < 0)
1027                        return ret;
1028
1029                /* set trigger source and polarity (default to rising edge) */
1030                extsel = ret;
1031                exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1032        }
1033
1034        spin_lock_irqsave(&adc->lock, flags);
1035        val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1036        val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1037        val |= exten << adc->cfg->regs->exten.shift;
1038        val |= extsel << adc->cfg->regs->extsel.shift;
1039        stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1040        spin_unlock_irqrestore(&adc->lock, flags);
1041
1042        return 0;
1043}
1044
1045static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1046                                  const struct iio_chan_spec *chan,
1047                                  unsigned int type)
1048{
1049        struct stm32_adc *adc = iio_priv(indio_dev);
1050
1051        adc->trigger_polarity = type;
1052
1053        return 0;
1054}
1055
1056static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1057                                  const struct iio_chan_spec *chan)
1058{
1059        struct stm32_adc *adc = iio_priv(indio_dev);
1060
1061        return adc->trigger_polarity;
1062}
1063
1064static const char * const stm32_trig_pol_items[] = {
1065        "rising-edge", "falling-edge", "both-edges",
1066};
1067
1068static const struct iio_enum stm32_adc_trig_pol = {
1069        .items = stm32_trig_pol_items,
1070        .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1071        .get = stm32_adc_get_trig_pol,
1072        .set = stm32_adc_set_trig_pol,
1073};
1074
1075/**
1076 * stm32_adc_single_conv() - Performs a single conversion
1077 * @indio_dev: IIO device
1078 * @chan: IIO channel
1079 * @res: conversion result
1080 *
1081 * The function performs a single conversion on a given channel:
1082 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1083 * - Use SW trigger
1084 * - Start conversion, then wait for interrupt completion.
1085 */
1086static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1087                                 const struct iio_chan_spec *chan,
1088                                 int *res)
1089{
1090        struct stm32_adc *adc = iio_priv(indio_dev);
1091        const struct stm32_adc_regspec *regs = adc->cfg->regs;
1092        long timeout;
1093        u32 val;
1094        int ret;
1095
1096        reinit_completion(&adc->completion);
1097
1098        adc->bufi = 0;
1099
1100        if (adc->cfg->prepare) {
1101                ret = adc->cfg->prepare(adc);
1102                if (ret)
1103                        return ret;
1104        }
1105
1106        /* Program chan number in regular sequence (SQ1) */
1107        val = stm32_adc_readl(adc, regs->sqr[1].reg);
1108        val &= ~regs->sqr[1].mask;
1109        val |= chan->channel << regs->sqr[1].shift;
1110        stm32_adc_writel(adc, regs->sqr[1].reg, val);
1111
1112        /* Set regular sequence len (0 for 1 conversion) */
1113        stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1114
1115        /* Trigger detection disabled (conversion can be launched in SW) */
1116        stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1117
1118        stm32_adc_conv_irq_enable(adc);
1119
1120        adc->cfg->start_conv(adc, false);
1121
1122        timeout = wait_for_completion_interruptible_timeout(
1123                                        &adc->completion, STM32_ADC_TIMEOUT);
1124        if (timeout == 0) {
1125                ret = -ETIMEDOUT;
1126        } else if (timeout < 0) {
1127                ret = timeout;
1128        } else {
1129                *res = adc->buffer[0];
1130                ret = IIO_VAL_INT;
1131        }
1132
1133        adc->cfg->stop_conv(adc);
1134
1135        stm32_adc_conv_irq_disable(adc);
1136
1137        if (adc->cfg->unprepare)
1138                adc->cfg->unprepare(adc);
1139
1140        return ret;
1141}
1142
1143static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1144                              struct iio_chan_spec const *chan,
1145                              int *val, int *val2, long mask)
1146{
1147        struct stm32_adc *adc = iio_priv(indio_dev);
1148        int ret;
1149
1150        switch (mask) {
1151        case IIO_CHAN_INFO_RAW:
1152                ret = iio_device_claim_direct_mode(indio_dev);
1153                if (ret)
1154                        return ret;
1155                if (chan->type == IIO_VOLTAGE)
1156                        ret = stm32_adc_single_conv(indio_dev, chan, val);
1157                else
1158                        ret = -EINVAL;
1159                iio_device_release_direct_mode(indio_dev);
1160                return ret;
1161
1162        case IIO_CHAN_INFO_SCALE:
1163                *val = adc->common->vref_mv;
1164                *val2 = chan->scan_type.realbits;
1165                return IIO_VAL_FRACTIONAL_LOG2;
1166
1167        default:
1168                return -EINVAL;
1169        }
1170}
1171
1172static irqreturn_t stm32_adc_isr(int irq, void *data)
1173{
1174        struct stm32_adc *adc = data;
1175        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1176        const struct stm32_adc_regspec *regs = adc->cfg->regs;
1177        u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1178
1179        if (status & regs->isr_eoc.mask) {
1180                /* Reading DR also clears EOC status flag */
1181                adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1182                if (iio_buffer_enabled(indio_dev)) {
1183                        adc->bufi++;
1184                        if (adc->bufi >= adc->num_conv) {
1185                                stm32_adc_conv_irq_disable(adc);
1186                                iio_trigger_poll(indio_dev->trig);
1187                        }
1188                } else {
1189                        complete(&adc->completion);
1190                }
1191                return IRQ_HANDLED;
1192        }
1193
1194        return IRQ_NONE;
1195}
1196
1197/**
1198 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1199 * @indio_dev: IIO device
1200 * @trig: new trigger
1201 *
1202 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1203 * driver, -EINVAL otherwise.
1204 */
1205static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1206                                      struct iio_trigger *trig)
1207{
1208        return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1209}
1210
1211static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1212{
1213        struct stm32_adc *adc = iio_priv(indio_dev);
1214        unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1215
1216        /*
1217         * dma cyclic transfers are used, buffer is split into two periods.
1218         * There should be :
1219         * - always one buffer (period) dma is working on
1220         * - one buffer (period) driver can push with iio_trigger_poll().
1221         */
1222        watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1223        adc->rx_buf_sz = watermark * 2;
1224
1225        return 0;
1226}
1227
1228static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1229                                      const unsigned long *scan_mask)
1230{
1231        struct stm32_adc *adc = iio_priv(indio_dev);
1232        int ret;
1233
1234        adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1235
1236        ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1237        if (ret)
1238                return ret;
1239
1240        return 0;
1241}
1242
1243static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1244                              const struct of_phandle_args *iiospec)
1245{
1246        int i;
1247
1248        for (i = 0; i < indio_dev->num_channels; i++)
1249                if (indio_dev->channels[i].channel == iiospec->args[0])
1250                        return i;
1251
1252        return -EINVAL;
1253}
1254
1255/**
1256 * stm32_adc_debugfs_reg_access - read or write register value
1257 *
1258 * To read a value from an ADC register:
1259 *   echo [ADC reg offset] > direct_reg_access
1260 *   cat direct_reg_access
1261 *
1262 * To write a value in a ADC register:
1263 *   echo [ADC_reg_offset] [value] > direct_reg_access
1264 */
1265static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1266                                        unsigned reg, unsigned writeval,
1267                                        unsigned *readval)
1268{
1269        struct stm32_adc *adc = iio_priv(indio_dev);
1270
1271        if (!readval)
1272                stm32_adc_writel(adc, reg, writeval);
1273        else
1274                *readval = stm32_adc_readl(adc, reg);
1275
1276        return 0;
1277}
1278
1279static const struct iio_info stm32_adc_iio_info = {
1280        .read_raw = stm32_adc_read_raw,
1281        .validate_trigger = stm32_adc_validate_trigger,
1282        .hwfifo_set_watermark = stm32_adc_set_watermark,
1283        .update_scan_mode = stm32_adc_update_scan_mode,
1284        .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1285        .of_xlate = stm32_adc_of_xlate,
1286        .driver_module = THIS_MODULE,
1287};
1288
1289static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1290{
1291        struct dma_tx_state state;
1292        enum dma_status status;
1293
1294        status = dmaengine_tx_status(adc->dma_chan,
1295                                     adc->dma_chan->cookie,
1296                                     &state);
1297        if (status == DMA_IN_PROGRESS) {
1298                /* Residue is size in bytes from end of buffer */
1299                unsigned int i = adc->rx_buf_sz - state.residue;
1300                unsigned int size;
1301
1302                /* Return available bytes */
1303                if (i >= adc->bufi)
1304                        size = i - adc->bufi;
1305                else
1306                        size = adc->rx_buf_sz + i - adc->bufi;
1307
1308                return size;
1309        }
1310
1311        return 0;
1312}
1313
1314static void stm32_adc_dma_buffer_done(void *data)
1315{
1316        struct iio_dev *indio_dev = data;
1317
1318        iio_trigger_poll_chained(indio_dev->trig);
1319}
1320
1321static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1322{
1323        struct stm32_adc *adc = iio_priv(indio_dev);
1324        struct dma_async_tx_descriptor *desc;
1325        dma_cookie_t cookie;
1326        int ret;
1327
1328        if (!adc->dma_chan)
1329                return 0;
1330
1331        dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1332                adc->rx_buf_sz, adc->rx_buf_sz / 2);
1333
1334        /* Prepare a DMA cyclic transaction */
1335        desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1336                                         adc->rx_dma_buf,
1337                                         adc->rx_buf_sz, adc->rx_buf_sz / 2,
1338                                         DMA_DEV_TO_MEM,
1339                                         DMA_PREP_INTERRUPT);
1340        if (!desc)
1341                return -EBUSY;
1342
1343        desc->callback = stm32_adc_dma_buffer_done;
1344        desc->callback_param = indio_dev;
1345
1346        cookie = dmaengine_submit(desc);
1347        ret = dma_submit_error(cookie);
1348        if (ret) {
1349                dmaengine_terminate_all(adc->dma_chan);
1350                return ret;
1351        }
1352
1353        /* Issue pending DMA requests */
1354        dma_async_issue_pending(adc->dma_chan);
1355
1356        return 0;
1357}
1358
1359static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1360{
1361        struct stm32_adc *adc = iio_priv(indio_dev);
1362        int ret;
1363
1364        if (adc->cfg->prepare) {
1365                ret = adc->cfg->prepare(adc);
1366                if (ret)
1367                        return ret;
1368        }
1369
1370        ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1371        if (ret) {
1372                dev_err(&indio_dev->dev, "Can't set trigger\n");
1373                goto err_unprepare;
1374        }
1375
1376        ret = stm32_adc_dma_start(indio_dev);
1377        if (ret) {
1378                dev_err(&indio_dev->dev, "Can't start dma\n");
1379                goto err_clr_trig;
1380        }
1381
1382        ret = iio_triggered_buffer_postenable(indio_dev);
1383        if (ret < 0)
1384                goto err_stop_dma;
1385
1386        /* Reset adc buffer index */
1387        adc->bufi = 0;
1388
1389        if (!adc->dma_chan)
1390                stm32_adc_conv_irq_enable(adc);
1391
1392        adc->cfg->start_conv(adc, !!adc->dma_chan);
1393
1394        return 0;
1395
1396err_stop_dma:
1397        if (adc->dma_chan)
1398                dmaengine_terminate_all(adc->dma_chan);
1399err_clr_trig:
1400        stm32_adc_set_trig(indio_dev, NULL);
1401err_unprepare:
1402        if (adc->cfg->unprepare)
1403                adc->cfg->unprepare(adc);
1404
1405        return ret;
1406}
1407
1408static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1409{
1410        struct stm32_adc *adc = iio_priv(indio_dev);
1411        int ret;
1412
1413        adc->cfg->stop_conv(adc);
1414        if (!adc->dma_chan)
1415                stm32_adc_conv_irq_disable(adc);
1416
1417        ret = iio_triggered_buffer_predisable(indio_dev);
1418        if (ret < 0)
1419                dev_err(&indio_dev->dev, "predisable failed\n");
1420
1421        if (adc->dma_chan)
1422                dmaengine_terminate_all(adc->dma_chan);
1423
1424        if (stm32_adc_set_trig(indio_dev, NULL))
1425                dev_err(&indio_dev->dev, "Can't clear trigger\n");
1426
1427        if (adc->cfg->unprepare)
1428                adc->cfg->unprepare(adc);
1429
1430        return ret;
1431}
1432
1433static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1434        .postenable = &stm32_adc_buffer_postenable,
1435        .predisable = &stm32_adc_buffer_predisable,
1436};
1437
1438static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1439{
1440        struct iio_poll_func *pf = p;
1441        struct iio_dev *indio_dev = pf->indio_dev;
1442        struct stm32_adc *adc = iio_priv(indio_dev);
1443
1444        dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1445
1446        if (!adc->dma_chan) {
1447                /* reset buffer index */
1448                adc->bufi = 0;
1449                iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1450                                                   pf->timestamp);
1451        } else {
1452                int residue = stm32_adc_dma_residue(adc);
1453
1454                while (residue >= indio_dev->scan_bytes) {
1455                        u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1456
1457                        iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1458                                                           pf->timestamp);
1459                        residue -= indio_dev->scan_bytes;
1460                        adc->bufi += indio_dev->scan_bytes;
1461                        if (adc->bufi >= adc->rx_buf_sz)
1462                                adc->bufi = 0;
1463                }
1464        }
1465
1466        iio_trigger_notify_done(indio_dev->trig);
1467
1468        /* re-enable eoc irq */
1469        if (!adc->dma_chan)
1470                stm32_adc_conv_irq_enable(adc);
1471
1472        return IRQ_HANDLED;
1473}
1474
1475static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1476        IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1477        {
1478                .name = "trigger_polarity_available",
1479                .shared = IIO_SHARED_BY_ALL,
1480                .read = iio_enum_available_read,
1481                .private = (uintptr_t)&stm32_adc_trig_pol,
1482        },
1483        {},
1484};
1485
1486static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1487{
1488        struct device_node *node = indio_dev->dev.of_node;
1489        struct stm32_adc *adc = iio_priv(indio_dev);
1490        unsigned int i;
1491        u32 res;
1492
1493        if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1494                res = adc->cfg->adc_info->resolutions[0];
1495
1496        for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1497                if (res == adc->cfg->adc_info->resolutions[i])
1498                        break;
1499        if (i >= adc->cfg->adc_info->num_res) {
1500                dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1501                return -EINVAL;
1502        }
1503
1504        dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1505        adc->res = i;
1506
1507        return 0;
1508}
1509
1510static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1511                                    struct iio_chan_spec *chan,
1512                                    const struct stm32_adc_chan_spec *channel,
1513                                    int scan_index)
1514{
1515        struct stm32_adc *adc = iio_priv(indio_dev);
1516
1517        chan->type = channel->type;
1518        chan->channel = channel->channel;
1519        chan->datasheet_name = channel->name;
1520        chan->scan_index = scan_index;
1521        chan->indexed = 1;
1522        chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1523        chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
1524        chan->scan_type.sign = 'u';
1525        chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1526        chan->scan_type.storagebits = 16;
1527        chan->ext_info = stm32_adc_ext_info;
1528
1529        /* pre-build selected channels mask */
1530        adc->pcsel |= BIT(chan->channel);
1531}
1532
1533static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1534{
1535        struct device_node *node = indio_dev->dev.of_node;
1536        struct stm32_adc *adc = iio_priv(indio_dev);
1537        const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1538        struct property *prop;
1539        const __be32 *cur;
1540        struct iio_chan_spec *channels;
1541        int scan_index = 0, num_channels;
1542        u32 val;
1543
1544        num_channels = of_property_count_u32_elems(node, "st,adc-channels");
1545        if (num_channels < 0 ||
1546            num_channels >= adc_info->max_channels) {
1547                dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1548                return num_channels < 0 ? num_channels : -EINVAL;
1549        }
1550
1551        channels = devm_kcalloc(&indio_dev->dev, num_channels,
1552                                sizeof(struct iio_chan_spec), GFP_KERNEL);
1553        if (!channels)
1554                return -ENOMEM;
1555
1556        of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1557                if (val >= adc_info->max_channels) {
1558                        dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1559                        return -EINVAL;
1560                }
1561                stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1562                                        &adc_info->channels[val],
1563                                        scan_index);
1564                scan_index++;
1565        }
1566
1567        indio_dev->num_channels = scan_index;
1568        indio_dev->channels = channels;
1569
1570        return 0;
1571}
1572
1573static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1574{
1575        struct stm32_adc *adc = iio_priv(indio_dev);
1576        struct dma_slave_config config;
1577        int ret;
1578
1579        adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1580        if (!adc->dma_chan)
1581                return 0;
1582
1583        adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1584                                         STM32_DMA_BUFFER_SIZE,
1585                                         &adc->rx_dma_buf, GFP_KERNEL);
1586        if (!adc->rx_buf) {
1587                ret = -ENOMEM;
1588                goto err_release;
1589        }
1590
1591        /* Configure DMA channel to read data register */
1592        memset(&config, 0, sizeof(config));
1593        config.src_addr = (dma_addr_t)adc->common->phys_base;
1594        config.src_addr += adc->offset + adc->cfg->regs->dr;
1595        config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1596
1597        ret = dmaengine_slave_config(adc->dma_chan, &config);
1598        if (ret)
1599                goto err_free;
1600
1601        return 0;
1602
1603err_free:
1604        dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1605                          adc->rx_buf, adc->rx_dma_buf);
1606err_release:
1607        dma_release_channel(adc->dma_chan);
1608
1609        return ret;
1610}
1611
1612static int stm32_adc_probe(struct platform_device *pdev)
1613{
1614        struct iio_dev *indio_dev;
1615        struct device *dev = &pdev->dev;
1616        struct stm32_adc *adc;
1617        int ret;
1618
1619        if (!pdev->dev.of_node)
1620                return -ENODEV;
1621
1622        indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1623        if (!indio_dev)
1624                return -ENOMEM;
1625
1626        adc = iio_priv(indio_dev);
1627        adc->common = dev_get_drvdata(pdev->dev.parent);
1628        spin_lock_init(&adc->lock);
1629        init_completion(&adc->completion);
1630        adc->cfg = (const struct stm32_adc_cfg *)
1631                of_match_device(dev->driver->of_match_table, dev)->data;
1632
1633        indio_dev->name = dev_name(&pdev->dev);
1634        indio_dev->dev.parent = &pdev->dev;
1635        indio_dev->dev.of_node = pdev->dev.of_node;
1636        indio_dev->info = &stm32_adc_iio_info;
1637        indio_dev->modes = INDIO_DIRECT_MODE;
1638
1639        platform_set_drvdata(pdev, adc);
1640
1641        ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1642        if (ret != 0) {
1643                dev_err(&pdev->dev, "missing reg property\n");
1644                return -EINVAL;
1645        }
1646
1647        adc->irq = platform_get_irq(pdev, 0);
1648        if (adc->irq < 0) {
1649                dev_err(&pdev->dev, "failed to get irq\n");
1650                return adc->irq;
1651        }
1652
1653        ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1654                               0, pdev->name, adc);
1655        if (ret) {
1656                dev_err(&pdev->dev, "failed to request IRQ\n");
1657                return ret;
1658        }
1659
1660        adc->clk = devm_clk_get(&pdev->dev, NULL);
1661        if (IS_ERR(adc->clk)) {
1662                ret = PTR_ERR(adc->clk);
1663                if (ret == -ENOENT && !adc->cfg->clk_required) {
1664                        adc->clk = NULL;
1665                } else {
1666                        dev_err(&pdev->dev, "Can't get clock\n");
1667                        return ret;
1668                }
1669        }
1670
1671        if (adc->clk) {
1672                ret = clk_prepare_enable(adc->clk);
1673                if (ret < 0) {
1674                        dev_err(&pdev->dev, "clk enable failed\n");
1675                        return ret;
1676                }
1677        }
1678
1679        ret = stm32_adc_of_get_resolution(indio_dev);
1680        if (ret < 0)
1681                goto err_clk_disable;
1682        stm32_adc_set_res(adc);
1683
1684        if (adc->cfg->selfcalib) {
1685                ret = adc->cfg->selfcalib(adc);
1686                if (ret)
1687                        goto err_clk_disable;
1688        }
1689
1690        ret = stm32_adc_chan_of_init(indio_dev);
1691        if (ret < 0)
1692                goto err_clk_disable;
1693
1694        ret = stm32_adc_dma_request(indio_dev);
1695        if (ret < 0)
1696                goto err_clk_disable;
1697
1698        ret = iio_triggered_buffer_setup(indio_dev,
1699                                         &iio_pollfunc_store_time,
1700                                         &stm32_adc_trigger_handler,
1701                                         &stm32_adc_buffer_setup_ops);
1702        if (ret) {
1703                dev_err(&pdev->dev, "buffer setup failed\n");
1704                goto err_dma_disable;
1705        }
1706
1707        ret = iio_device_register(indio_dev);
1708        if (ret) {
1709                dev_err(&pdev->dev, "iio dev register failed\n");
1710                goto err_buffer_cleanup;
1711        }
1712
1713        return 0;
1714
1715err_buffer_cleanup:
1716        iio_triggered_buffer_cleanup(indio_dev);
1717
1718err_dma_disable:
1719        if (adc->dma_chan) {
1720                dma_free_coherent(adc->dma_chan->device->dev,
1721                                  STM32_DMA_BUFFER_SIZE,
1722                                  adc->rx_buf, adc->rx_dma_buf);
1723                dma_release_channel(adc->dma_chan);
1724        }
1725err_clk_disable:
1726        if (adc->clk)
1727                clk_disable_unprepare(adc->clk);
1728
1729        return ret;
1730}
1731
1732static int stm32_adc_remove(struct platform_device *pdev)
1733{
1734        struct stm32_adc *adc = platform_get_drvdata(pdev);
1735        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1736
1737        iio_device_unregister(indio_dev);
1738        iio_triggered_buffer_cleanup(indio_dev);
1739        if (adc->dma_chan) {
1740                dma_free_coherent(adc->dma_chan->device->dev,
1741                                  STM32_DMA_BUFFER_SIZE,
1742                                  adc->rx_buf, adc->rx_dma_buf);
1743                dma_release_channel(adc->dma_chan);
1744        }
1745        if (adc->clk)
1746                clk_disable_unprepare(adc->clk);
1747
1748        return 0;
1749}
1750
1751static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1752        .regs = &stm32f4_adc_regspec,
1753        .adc_info = &stm32f4_adc_info,
1754        .trigs = stm32f4_adc_trigs,
1755        .clk_required = true,
1756        .start_conv = stm32f4_adc_start_conv,
1757        .stop_conv = stm32f4_adc_stop_conv,
1758};
1759
1760static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1761        .regs = &stm32h7_adc_regspec,
1762        .adc_info = &stm32h7_adc_info,
1763        .trigs = stm32h7_adc_trigs,
1764        .selfcalib = stm32h7_adc_selfcalib,
1765        .start_conv = stm32h7_adc_start_conv,
1766        .stop_conv = stm32h7_adc_stop_conv,
1767        .prepare = stm32h7_adc_prepare,
1768        .unprepare = stm32h7_adc_unprepare,
1769};
1770
1771static const struct of_device_id stm32_adc_of_match[] = {
1772        { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
1773        { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
1774        {},
1775};
1776MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1777
1778static struct platform_driver stm32_adc_driver = {
1779        .probe = stm32_adc_probe,
1780        .remove = stm32_adc_remove,
1781        .driver = {
1782                .name = "stm32-adc",
1783                .of_match_table = stm32_adc_of_match,
1784        },
1785};
1786module_platform_driver(stm32_adc_driver);
1787
1788MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
1789MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
1790MODULE_LICENSE("GPL v2");
1791MODULE_ALIAS("platform:stm32-adc");
1792