linux/drivers/lguest/core.c
<<
>>
Prefs
   1/*P:400
   2 * This contains run_guest() which actually calls into the Host<->Guest
   3 * Switcher and analyzes the return, such as determining if the Guest wants the
   4 * Host to do something.  This file also contains useful helper routines.
   5:*/
   6#include <linux/module.h>
   7#include <linux/stringify.h>
   8#include <linux/stddef.h>
   9#include <linux/io.h>
  10#include <linux/mm.h>
  11#include <linux/sched/signal.h>
  12#include <linux/vmalloc.h>
  13#include <linux/cpu.h>
  14#include <linux/freezer.h>
  15#include <linux/highmem.h>
  16#include <linux/slab.h>
  17#include <asm/paravirt.h>
  18#include <asm/pgtable.h>
  19#include <linux/uaccess.h>
  20#include <asm/poll.h>
  21#include <asm/asm-offsets.h>
  22#include "lg.h"
  23
  24unsigned long switcher_addr;
  25struct page **lg_switcher_pages;
  26static struct vm_struct *switcher_text_vma;
  27static struct vm_struct *switcher_stacks_vma;
  28
  29/* This One Big lock protects all inter-guest data structures. */
  30DEFINE_MUTEX(lguest_lock);
  31
  32/*H:010
  33 * We need to set up the Switcher at a high virtual address.  Remember the
  34 * Switcher is a few hundred bytes of assembler code which actually changes the
  35 * CPU to run the Guest, and then changes back to the Host when a trap or
  36 * interrupt happens.
  37 *
  38 * The Switcher code must be at the same virtual address in the Guest as the
  39 * Host since it will be running as the switchover occurs.
  40 *
  41 * Trying to map memory at a particular address is an unusual thing to do, so
  42 * it's not a simple one-liner.
  43 */
  44static __init int map_switcher(void)
  45{
  46        int i, err;
  47
  48        /*
  49         * Map the Switcher in to high memory.
  50         *
  51         * It turns out that if we choose the address 0xFFC00000 (4MB under the
  52         * top virtual address), it makes setting up the page tables really
  53         * easy.
  54         */
  55
  56        /* We assume Switcher text fits into a single page. */
  57        if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
  58                printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
  59                       end_switcher_text - start_switcher_text);
  60                return -EINVAL;
  61        }
  62
  63        /*
  64         * We allocate an array of struct page pointers.  map_vm_area() wants
  65         * this, rather than just an array of pages.
  66         */
  67        lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
  68                                    * TOTAL_SWITCHER_PAGES,
  69                                    GFP_KERNEL);
  70        if (!lg_switcher_pages) {
  71                err = -ENOMEM;
  72                goto out;
  73        }
  74
  75        /*
  76         * Now we actually allocate the pages.  The Guest will see these pages,
  77         * so we make sure they're zeroed.
  78         */
  79        for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
  80                lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
  81                if (!lg_switcher_pages[i]) {
  82                        err = -ENOMEM;
  83                        goto free_some_pages;
  84                }
  85        }
  86
  87        /*
  88         * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
  89         * It goes in the first page, which we map in momentarily.
  90         */
  91        memcpy(kmap(lg_switcher_pages[0]), start_switcher_text,
  92               end_switcher_text - start_switcher_text);
  93        kunmap(lg_switcher_pages[0]);
  94
  95        /*
  96         * We place the Switcher underneath the fixmap area, which is the
  97         * highest virtual address we can get.  This is important, since we
  98         * tell the Guest it can't access this memory, so we want its ceiling
  99         * as high as possible.
 100         */
 101        switcher_addr = FIXADDR_START - TOTAL_SWITCHER_PAGES*PAGE_SIZE;
 102
 103        /*
 104         * Now we reserve the "virtual memory area"s we want.  We might
 105         * not get them in theory, but in practice it's worked so far.
 106         *
 107         * We want the switcher text to be read-only and executable, and
 108         * the stacks to be read-write and non-executable.
 109         */
 110        switcher_text_vma = __get_vm_area(PAGE_SIZE, VM_ALLOC|VM_NO_GUARD,
 111                                          switcher_addr,
 112                                          switcher_addr + PAGE_SIZE);
 113
 114        if (!switcher_text_vma) {
 115                err = -ENOMEM;
 116                printk("lguest: could not map switcher pages high\n");
 117                goto free_pages;
 118        }
 119
 120        switcher_stacks_vma = __get_vm_area(SWITCHER_STACK_PAGES * PAGE_SIZE,
 121                                            VM_ALLOC|VM_NO_GUARD,
 122                                            switcher_addr + PAGE_SIZE,
 123                                            switcher_addr + TOTAL_SWITCHER_PAGES * PAGE_SIZE);
 124        if (!switcher_stacks_vma) {
 125                err = -ENOMEM;
 126                printk("lguest: could not map switcher pages high\n");
 127                goto free_text_vma;
 128        }
 129
 130        /*
 131         * This code actually sets up the pages we've allocated to appear at
 132         * switcher_addr.  map_vm_area() takes the vma we allocated above, the
 133         * kind of pages we're mapping (kernel text pages and kernel writable
 134         * pages respectively), and a pointer to our array of struct pages.
 135         */
 136        err = map_vm_area(switcher_text_vma, PAGE_KERNEL_RX, lg_switcher_pages);
 137        if (err) {
 138                printk("lguest: text map_vm_area failed: %i\n", err);
 139                goto free_vmas;
 140        }
 141
 142        err = map_vm_area(switcher_stacks_vma, PAGE_KERNEL,
 143                          lg_switcher_pages + SWITCHER_TEXT_PAGES);
 144        if (err) {
 145                printk("lguest: stacks map_vm_area failed: %i\n", err);
 146                goto free_vmas;
 147        }
 148
 149        /*
 150         * Now the Switcher is mapped at the right address, we can't fail!
 151         */
 152        printk(KERN_INFO "lguest: mapped switcher at %p\n",
 153               switcher_text_vma->addr);
 154        /* And we succeeded... */
 155        return 0;
 156
 157free_vmas:
 158        /* Undoes map_vm_area and __get_vm_area */
 159        vunmap(switcher_stacks_vma->addr);
 160free_text_vma:
 161        vunmap(switcher_text_vma->addr);
 162free_pages:
 163        i = TOTAL_SWITCHER_PAGES;
 164free_some_pages:
 165        for (--i; i >= 0; i--)
 166                __free_pages(lg_switcher_pages[i], 0);
 167        kfree(lg_switcher_pages);
 168out:
 169        return err;
 170}
 171/*:*/
 172
 173/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
 174static void unmap_switcher(void)
 175{
 176        unsigned int i;
 177
 178        /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
 179        vunmap(switcher_text_vma->addr);
 180        vunmap(switcher_stacks_vma->addr);
 181        /* Now we just need to free the pages we copied the switcher into */
 182        for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
 183                __free_pages(lg_switcher_pages[i], 0);
 184        kfree(lg_switcher_pages);
 185}
 186
 187/*H:032
 188 * Dealing With Guest Memory.
 189 *
 190 * Before we go too much further into the Host, we need to grok the routines
 191 * we use to deal with Guest memory.
 192 *
 193 * When the Guest gives us (what it thinks is) a physical address, we can use
 194 * the normal copy_from_user() & copy_to_user() on the corresponding place in
 195 * the memory region allocated by the Launcher.
 196 *
 197 * But we can't trust the Guest: it might be trying to access the Launcher
 198 * code.  We have to check that the range is below the pfn_limit the Launcher
 199 * gave us.  We have to make sure that addr + len doesn't give us a false
 200 * positive by overflowing, too.
 201 */
 202bool lguest_address_ok(const struct lguest *lg,
 203                       unsigned long addr, unsigned long len)
 204{
 205        return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr);
 206}
 207
 208/*
 209 * This routine copies memory from the Guest.  Here we can see how useful the
 210 * kill_lguest() routine we met in the Launcher can be: we return a random
 211 * value (all zeroes) instead of needing to return an error.
 212 */
 213void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
 214{
 215        if (!lguest_address_ok(cpu->lg, addr, bytes)
 216            || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
 217                /* copy_from_user should do this, but as we rely on it... */
 218                memset(b, 0, bytes);
 219                kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
 220        }
 221}
 222
 223/* This is the write (copy into Guest) version. */
 224void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
 225               unsigned bytes)
 226{
 227        if (!lguest_address_ok(cpu->lg, addr, bytes)
 228            || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
 229                kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
 230}
 231/*:*/
 232
 233/*H:030
 234 * Let's jump straight to the the main loop which runs the Guest.
 235 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
 236 * going around and around until something interesting happens.
 237 */
 238int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
 239{
 240        /* If the launcher asked for a register with LHREQ_GETREG */
 241        if (cpu->reg_read) {
 242                if (put_user(*cpu->reg_read, user))
 243                        return -EFAULT;
 244                cpu->reg_read = NULL;
 245                return sizeof(*cpu->reg_read);
 246        }
 247
 248        /* We stop running once the Guest is dead. */
 249        while (!cpu->lg->dead) {
 250                unsigned int irq;
 251                bool more;
 252
 253                /* First we run any hypercalls the Guest wants done. */
 254                if (cpu->hcall)
 255                        do_hypercalls(cpu);
 256
 257                /* Do we have to tell the Launcher about a trap? */
 258                if (cpu->pending.trap) {
 259                        if (copy_to_user(user, &cpu->pending,
 260                                         sizeof(cpu->pending)))
 261                                return -EFAULT;
 262                        return sizeof(cpu->pending);
 263                }
 264
 265                /*
 266                 * All long-lived kernel loops need to check with this horrible
 267                 * thing called the freezer.  If the Host is trying to suspend,
 268                 * it stops us.
 269                 */
 270                try_to_freeze();
 271
 272                /* Check for signals */
 273                if (signal_pending(current))
 274                        return -ERESTARTSYS;
 275
 276                /*
 277                 * Check if there are any interrupts which can be delivered now:
 278                 * if so, this sets up the hander to be executed when we next
 279                 * run the Guest.
 280                 */
 281                irq = interrupt_pending(cpu, &more);
 282                if (irq < LGUEST_IRQS)
 283                        try_deliver_interrupt(cpu, irq, more);
 284
 285                /*
 286                 * Just make absolutely sure the Guest is still alive.  One of
 287                 * those hypercalls could have been fatal, for example.
 288                 */
 289                if (cpu->lg->dead)
 290                        break;
 291
 292                /*
 293                 * If the Guest asked to be stopped, we sleep.  The Guest's
 294                 * clock timer will wake us.
 295                 */
 296                if (cpu->halted) {
 297                        set_current_state(TASK_INTERRUPTIBLE);
 298                        /*
 299                         * Just before we sleep, make sure no interrupt snuck in
 300                         * which we should be doing.
 301                         */
 302                        if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
 303                                set_current_state(TASK_RUNNING);
 304                        else
 305                                schedule();
 306                        continue;
 307                }
 308
 309                /*
 310                 * OK, now we're ready to jump into the Guest.  First we put up
 311                 * the "Do Not Disturb" sign:
 312                 */
 313                local_irq_disable();
 314
 315                /* Actually run the Guest until something happens. */
 316                lguest_arch_run_guest(cpu);
 317
 318                /* Now we're ready to be interrupted or moved to other CPUs */
 319                local_irq_enable();
 320
 321                /* Now we deal with whatever happened to the Guest. */
 322                lguest_arch_handle_trap(cpu);
 323        }
 324
 325        /* Special case: Guest is 'dead' but wants a reboot. */
 326        if (cpu->lg->dead == ERR_PTR(-ERESTART))
 327                return -ERESTART;
 328
 329        /* The Guest is dead => "No such file or directory" */
 330        return -ENOENT;
 331}
 332
 333/*H:000
 334 * Welcome to the Host!
 335 *
 336 * By this point your brain has been tickled by the Guest code and numbed by
 337 * the Launcher code; prepare for it to be stretched by the Host code.  This is
 338 * the heart.  Let's begin at the initialization routine for the Host's lg
 339 * module.
 340 */
 341static int __init init(void)
 342{
 343        int err;
 344
 345        /* Lguest can't run under Xen, VMI or itself.  It does Tricky Stuff. */
 346        if (get_kernel_rpl() != 0) {
 347                printk("lguest is afraid of being a guest\n");
 348                return -EPERM;
 349        }
 350
 351        /* First we put the Switcher up in very high virtual memory. */
 352        err = map_switcher();
 353        if (err)
 354                goto out;
 355
 356        /* We might need to reserve an interrupt vector. */
 357        err = init_interrupts();
 358        if (err)
 359                goto unmap;
 360
 361        /* /dev/lguest needs to be registered. */
 362        err = lguest_device_init();
 363        if (err)
 364                goto free_interrupts;
 365
 366        /* Finally we do some architecture-specific setup. */
 367        lguest_arch_host_init();
 368
 369        /* All good! */
 370        return 0;
 371
 372free_interrupts:
 373        free_interrupts();
 374unmap:
 375        unmap_switcher();
 376out:
 377        return err;
 378}
 379
 380/* Cleaning up is just the same code, backwards.  With a little French. */
 381static void __exit fini(void)
 382{
 383        lguest_device_remove();
 384        free_interrupts();
 385        unmap_switcher();
 386
 387        lguest_arch_host_fini();
 388}
 389/*:*/
 390
 391/*
 392 * The Host side of lguest can be a module.  This is a nice way for people to
 393 * play with it.
 394 */
 395module_init(init);
 396module_exit(fini);
 397MODULE_LICENSE("GPL");
 398MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");
 399