linux/drivers/md/bcache/super.c
<<
>>
Prefs
   1/*
   2 * bcache setup/teardown code, and some metadata io - read a superblock and
   3 * figure out what to do with it.
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "extents.h"
  13#include "request.h"
  14#include "writeback.h"
  15
  16#include <linux/blkdev.h>
  17#include <linux/buffer_head.h>
  18#include <linux/debugfs.h>
  19#include <linux/genhd.h>
  20#include <linux/idr.h>
  21#include <linux/kthread.h>
  22#include <linux/module.h>
  23#include <linux/random.h>
  24#include <linux/reboot.h>
  25#include <linux/sysfs.h>
  26
  27MODULE_LICENSE("GPL");
  28MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
  29
  30static const char bcache_magic[] = {
  31        0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  32        0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  33};
  34
  35static const char invalid_uuid[] = {
  36        0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  37        0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  38};
  39
  40/* Default is -1; we skip past it for struct cached_dev's cache mode */
  41const char * const bch_cache_modes[] = {
  42        "default",
  43        "writethrough",
  44        "writeback",
  45        "writearound",
  46        "none",
  47        NULL
  48};
  49
  50static struct kobject *bcache_kobj;
  51struct mutex bch_register_lock;
  52LIST_HEAD(bch_cache_sets);
  53static LIST_HEAD(uncached_devices);
  54
  55static int bcache_major;
  56static DEFINE_IDA(bcache_minor);
  57static wait_queue_head_t unregister_wait;
  58struct workqueue_struct *bcache_wq;
  59
  60#define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
  61#define BCACHE_MINORS           16 /* partition support */
  62
  63/* Superblock */
  64
  65static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  66                              struct page **res)
  67{
  68        const char *err;
  69        struct cache_sb *s;
  70        struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  71        unsigned i;
  72
  73        if (!bh)
  74                return "IO error";
  75
  76        s = (struct cache_sb *) bh->b_data;
  77
  78        sb->offset              = le64_to_cpu(s->offset);
  79        sb->version             = le64_to_cpu(s->version);
  80
  81        memcpy(sb->magic,       s->magic, 16);
  82        memcpy(sb->uuid,        s->uuid, 16);
  83        memcpy(sb->set_uuid,    s->set_uuid, 16);
  84        memcpy(sb->label,       s->label, SB_LABEL_SIZE);
  85
  86        sb->flags               = le64_to_cpu(s->flags);
  87        sb->seq                 = le64_to_cpu(s->seq);
  88        sb->last_mount          = le32_to_cpu(s->last_mount);
  89        sb->first_bucket        = le16_to_cpu(s->first_bucket);
  90        sb->keys                = le16_to_cpu(s->keys);
  91
  92        for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
  93                sb->d[i] = le64_to_cpu(s->d[i]);
  94
  95        pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
  96                 sb->version, sb->flags, sb->seq, sb->keys);
  97
  98        err = "Not a bcache superblock";
  99        if (sb->offset != SB_SECTOR)
 100                goto err;
 101
 102        if (memcmp(sb->magic, bcache_magic, 16))
 103                goto err;
 104
 105        err = "Too many journal buckets";
 106        if (sb->keys > SB_JOURNAL_BUCKETS)
 107                goto err;
 108
 109        err = "Bad checksum";
 110        if (s->csum != csum_set(s))
 111                goto err;
 112
 113        err = "Bad UUID";
 114        if (bch_is_zero(sb->uuid, 16))
 115                goto err;
 116
 117        sb->block_size  = le16_to_cpu(s->block_size);
 118
 119        err = "Superblock block size smaller than device block size";
 120        if (sb->block_size << 9 < bdev_logical_block_size(bdev))
 121                goto err;
 122
 123        switch (sb->version) {
 124        case BCACHE_SB_VERSION_BDEV:
 125                sb->data_offset = BDEV_DATA_START_DEFAULT;
 126                break;
 127        case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
 128                sb->data_offset = le64_to_cpu(s->data_offset);
 129
 130                err = "Bad data offset";
 131                if (sb->data_offset < BDEV_DATA_START_DEFAULT)
 132                        goto err;
 133
 134                break;
 135        case BCACHE_SB_VERSION_CDEV:
 136        case BCACHE_SB_VERSION_CDEV_WITH_UUID:
 137                sb->nbuckets    = le64_to_cpu(s->nbuckets);
 138                sb->bucket_size = le16_to_cpu(s->bucket_size);
 139
 140                sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
 141                sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
 142
 143                err = "Too many buckets";
 144                if (sb->nbuckets > LONG_MAX)
 145                        goto err;
 146
 147                err = "Not enough buckets";
 148                if (sb->nbuckets < 1 << 7)
 149                        goto err;
 150
 151                err = "Bad block/bucket size";
 152                if (!is_power_of_2(sb->block_size) ||
 153                    sb->block_size > PAGE_SECTORS ||
 154                    !is_power_of_2(sb->bucket_size) ||
 155                    sb->bucket_size < PAGE_SECTORS)
 156                        goto err;
 157
 158                err = "Invalid superblock: device too small";
 159                if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
 160                        goto err;
 161
 162                err = "Bad UUID";
 163                if (bch_is_zero(sb->set_uuid, 16))
 164                        goto err;
 165
 166                err = "Bad cache device number in set";
 167                if (!sb->nr_in_set ||
 168                    sb->nr_in_set <= sb->nr_this_dev ||
 169                    sb->nr_in_set > MAX_CACHES_PER_SET)
 170                        goto err;
 171
 172                err = "Journal buckets not sequential";
 173                for (i = 0; i < sb->keys; i++)
 174                        if (sb->d[i] != sb->first_bucket + i)
 175                                goto err;
 176
 177                err = "Too many journal buckets";
 178                if (sb->first_bucket + sb->keys > sb->nbuckets)
 179                        goto err;
 180
 181                err = "Invalid superblock: first bucket comes before end of super";
 182                if (sb->first_bucket * sb->bucket_size < 16)
 183                        goto err;
 184
 185                break;
 186        default:
 187                err = "Unsupported superblock version";
 188                goto err;
 189        }
 190
 191        sb->last_mount = get_seconds();
 192        err = NULL;
 193
 194        get_page(bh->b_page);
 195        *res = bh->b_page;
 196err:
 197        put_bh(bh);
 198        return err;
 199}
 200
 201static void write_bdev_super_endio(struct bio *bio)
 202{
 203        struct cached_dev *dc = bio->bi_private;
 204        /* XXX: error checking */
 205
 206        closure_put(&dc->sb_write);
 207}
 208
 209static void __write_super(struct cache_sb *sb, struct bio *bio)
 210{
 211        struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
 212        unsigned i;
 213
 214        bio->bi_iter.bi_sector  = SB_SECTOR;
 215        bio->bi_iter.bi_size    = SB_SIZE;
 216        bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
 217        bch_bio_map(bio, NULL);
 218
 219        out->offset             = cpu_to_le64(sb->offset);
 220        out->version            = cpu_to_le64(sb->version);
 221
 222        memcpy(out->uuid,       sb->uuid, 16);
 223        memcpy(out->set_uuid,   sb->set_uuid, 16);
 224        memcpy(out->label,      sb->label, SB_LABEL_SIZE);
 225
 226        out->flags              = cpu_to_le64(sb->flags);
 227        out->seq                = cpu_to_le64(sb->seq);
 228
 229        out->last_mount         = cpu_to_le32(sb->last_mount);
 230        out->first_bucket       = cpu_to_le16(sb->first_bucket);
 231        out->keys               = cpu_to_le16(sb->keys);
 232
 233        for (i = 0; i < sb->keys; i++)
 234                out->d[i] = cpu_to_le64(sb->d[i]);
 235
 236        out->csum = csum_set(out);
 237
 238        pr_debug("ver %llu, flags %llu, seq %llu",
 239                 sb->version, sb->flags, sb->seq);
 240
 241        submit_bio(bio);
 242}
 243
 244static void bch_write_bdev_super_unlock(struct closure *cl)
 245{
 246        struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
 247
 248        up(&dc->sb_write_mutex);
 249}
 250
 251void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
 252{
 253        struct closure *cl = &dc->sb_write;
 254        struct bio *bio = &dc->sb_bio;
 255
 256        down(&dc->sb_write_mutex);
 257        closure_init(cl, parent);
 258
 259        bio_reset(bio);
 260        bio->bi_bdev    = dc->bdev;
 261        bio->bi_end_io  = write_bdev_super_endio;
 262        bio->bi_private = dc;
 263
 264        closure_get(cl);
 265        __write_super(&dc->sb, bio);
 266
 267        closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
 268}
 269
 270static void write_super_endio(struct bio *bio)
 271{
 272        struct cache *ca = bio->bi_private;
 273
 274        bch_count_io_errors(ca, bio->bi_status, "writing superblock");
 275        closure_put(&ca->set->sb_write);
 276}
 277
 278static void bcache_write_super_unlock(struct closure *cl)
 279{
 280        struct cache_set *c = container_of(cl, struct cache_set, sb_write);
 281
 282        up(&c->sb_write_mutex);
 283}
 284
 285void bcache_write_super(struct cache_set *c)
 286{
 287        struct closure *cl = &c->sb_write;
 288        struct cache *ca;
 289        unsigned i;
 290
 291        down(&c->sb_write_mutex);
 292        closure_init(cl, &c->cl);
 293
 294        c->sb.seq++;
 295
 296        for_each_cache(ca, c, i) {
 297                struct bio *bio = &ca->sb_bio;
 298
 299                ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
 300                ca->sb.seq              = c->sb.seq;
 301                ca->sb.last_mount       = c->sb.last_mount;
 302
 303                SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
 304
 305                bio_reset(bio);
 306                bio->bi_bdev    = ca->bdev;
 307                bio->bi_end_io  = write_super_endio;
 308                bio->bi_private = ca;
 309
 310                closure_get(cl);
 311                __write_super(&ca->sb, bio);
 312        }
 313
 314        closure_return_with_destructor(cl, bcache_write_super_unlock);
 315}
 316
 317/* UUID io */
 318
 319static void uuid_endio(struct bio *bio)
 320{
 321        struct closure *cl = bio->bi_private;
 322        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 323
 324        cache_set_err_on(bio->bi_status, c, "accessing uuids");
 325        bch_bbio_free(bio, c);
 326        closure_put(cl);
 327}
 328
 329static void uuid_io_unlock(struct closure *cl)
 330{
 331        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 332
 333        up(&c->uuid_write_mutex);
 334}
 335
 336static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
 337                    struct bkey *k, struct closure *parent)
 338{
 339        struct closure *cl = &c->uuid_write;
 340        struct uuid_entry *u;
 341        unsigned i;
 342        char buf[80];
 343
 344        BUG_ON(!parent);
 345        down(&c->uuid_write_mutex);
 346        closure_init(cl, parent);
 347
 348        for (i = 0; i < KEY_PTRS(k); i++) {
 349                struct bio *bio = bch_bbio_alloc(c);
 350
 351                bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
 352                bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
 353
 354                bio->bi_end_io  = uuid_endio;
 355                bio->bi_private = cl;
 356                bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 357                bch_bio_map(bio, c->uuids);
 358
 359                bch_submit_bbio(bio, c, k, i);
 360
 361                if (op != REQ_OP_WRITE)
 362                        break;
 363        }
 364
 365        bch_extent_to_text(buf, sizeof(buf), k);
 366        pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
 367
 368        for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
 369                if (!bch_is_zero(u->uuid, 16))
 370                        pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
 371                                 u - c->uuids, u->uuid, u->label,
 372                                 u->first_reg, u->last_reg, u->invalidated);
 373
 374        closure_return_with_destructor(cl, uuid_io_unlock);
 375}
 376
 377static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
 378{
 379        struct bkey *k = &j->uuid_bucket;
 380
 381        if (__bch_btree_ptr_invalid(c, k))
 382                return "bad uuid pointer";
 383
 384        bkey_copy(&c->uuid_bucket, k);
 385        uuid_io(c, REQ_OP_READ, 0, k, cl);
 386
 387        if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
 388                struct uuid_entry_v0    *u0 = (void *) c->uuids;
 389                struct uuid_entry       *u1 = (void *) c->uuids;
 390                int i;
 391
 392                closure_sync(cl);
 393
 394                /*
 395                 * Since the new uuid entry is bigger than the old, we have to
 396                 * convert starting at the highest memory address and work down
 397                 * in order to do it in place
 398                 */
 399
 400                for (i = c->nr_uuids - 1;
 401                     i >= 0;
 402                     --i) {
 403                        memcpy(u1[i].uuid,      u0[i].uuid, 16);
 404                        memcpy(u1[i].label,     u0[i].label, 32);
 405
 406                        u1[i].first_reg         = u0[i].first_reg;
 407                        u1[i].last_reg          = u0[i].last_reg;
 408                        u1[i].invalidated       = u0[i].invalidated;
 409
 410                        u1[i].flags     = 0;
 411                        u1[i].sectors   = 0;
 412                }
 413        }
 414
 415        return NULL;
 416}
 417
 418static int __uuid_write(struct cache_set *c)
 419{
 420        BKEY_PADDED(key) k;
 421        struct closure cl;
 422        closure_init_stack(&cl);
 423
 424        lockdep_assert_held(&bch_register_lock);
 425
 426        if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
 427                return 1;
 428
 429        SET_KEY_SIZE(&k.key, c->sb.bucket_size);
 430        uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
 431        closure_sync(&cl);
 432
 433        bkey_copy(&c->uuid_bucket, &k.key);
 434        bkey_put(c, &k.key);
 435        return 0;
 436}
 437
 438int bch_uuid_write(struct cache_set *c)
 439{
 440        int ret = __uuid_write(c);
 441
 442        if (!ret)
 443                bch_journal_meta(c, NULL);
 444
 445        return ret;
 446}
 447
 448static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
 449{
 450        struct uuid_entry *u;
 451
 452        for (u = c->uuids;
 453             u < c->uuids + c->nr_uuids; u++)
 454                if (!memcmp(u->uuid, uuid, 16))
 455                        return u;
 456
 457        return NULL;
 458}
 459
 460static struct uuid_entry *uuid_find_empty(struct cache_set *c)
 461{
 462        static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 463        return uuid_find(c, zero_uuid);
 464}
 465
 466/*
 467 * Bucket priorities/gens:
 468 *
 469 * For each bucket, we store on disk its
 470   * 8 bit gen
 471   * 16 bit priority
 472 *
 473 * See alloc.c for an explanation of the gen. The priority is used to implement
 474 * lru (and in the future other) cache replacement policies; for most purposes
 475 * it's just an opaque integer.
 476 *
 477 * The gens and the priorities don't have a whole lot to do with each other, and
 478 * it's actually the gens that must be written out at specific times - it's no
 479 * big deal if the priorities don't get written, if we lose them we just reuse
 480 * buckets in suboptimal order.
 481 *
 482 * On disk they're stored in a packed array, and in as many buckets are required
 483 * to fit them all. The buckets we use to store them form a list; the journal
 484 * header points to the first bucket, the first bucket points to the second
 485 * bucket, et cetera.
 486 *
 487 * This code is used by the allocation code; periodically (whenever it runs out
 488 * of buckets to allocate from) the allocation code will invalidate some
 489 * buckets, but it can't use those buckets until their new gens are safely on
 490 * disk.
 491 */
 492
 493static void prio_endio(struct bio *bio)
 494{
 495        struct cache *ca = bio->bi_private;
 496
 497        cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
 498        bch_bbio_free(bio, ca->set);
 499        closure_put(&ca->prio);
 500}
 501
 502static void prio_io(struct cache *ca, uint64_t bucket, int op,
 503                    unsigned long op_flags)
 504{
 505        struct closure *cl = &ca->prio;
 506        struct bio *bio = bch_bbio_alloc(ca->set);
 507
 508        closure_init_stack(cl);
 509
 510        bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
 511        bio->bi_bdev            = ca->bdev;
 512        bio->bi_iter.bi_size    = bucket_bytes(ca);
 513
 514        bio->bi_end_io  = prio_endio;
 515        bio->bi_private = ca;
 516        bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 517        bch_bio_map(bio, ca->disk_buckets);
 518
 519        closure_bio_submit(bio, &ca->prio);
 520        closure_sync(cl);
 521}
 522
 523void bch_prio_write(struct cache *ca)
 524{
 525        int i;
 526        struct bucket *b;
 527        struct closure cl;
 528
 529        closure_init_stack(&cl);
 530
 531        lockdep_assert_held(&ca->set->bucket_lock);
 532
 533        ca->disk_buckets->seq++;
 534
 535        atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
 536                        &ca->meta_sectors_written);
 537
 538        //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
 539        //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
 540
 541        for (i = prio_buckets(ca) - 1; i >= 0; --i) {
 542                long bucket;
 543                struct prio_set *p = ca->disk_buckets;
 544                struct bucket_disk *d = p->data;
 545                struct bucket_disk *end = d + prios_per_bucket(ca);
 546
 547                for (b = ca->buckets + i * prios_per_bucket(ca);
 548                     b < ca->buckets + ca->sb.nbuckets && d < end;
 549                     b++, d++) {
 550                        d->prio = cpu_to_le16(b->prio);
 551                        d->gen = b->gen;
 552                }
 553
 554                p->next_bucket  = ca->prio_buckets[i + 1];
 555                p->magic        = pset_magic(&ca->sb);
 556                p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
 557
 558                bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
 559                BUG_ON(bucket == -1);
 560
 561                mutex_unlock(&ca->set->bucket_lock);
 562                prio_io(ca, bucket, REQ_OP_WRITE, 0);
 563                mutex_lock(&ca->set->bucket_lock);
 564
 565                ca->prio_buckets[i] = bucket;
 566                atomic_dec_bug(&ca->buckets[bucket].pin);
 567        }
 568
 569        mutex_unlock(&ca->set->bucket_lock);
 570
 571        bch_journal_meta(ca->set, &cl);
 572        closure_sync(&cl);
 573
 574        mutex_lock(&ca->set->bucket_lock);
 575
 576        /*
 577         * Don't want the old priorities to get garbage collected until after we
 578         * finish writing the new ones, and they're journalled
 579         */
 580        for (i = 0; i < prio_buckets(ca); i++) {
 581                if (ca->prio_last_buckets[i])
 582                        __bch_bucket_free(ca,
 583                                &ca->buckets[ca->prio_last_buckets[i]]);
 584
 585                ca->prio_last_buckets[i] = ca->prio_buckets[i];
 586        }
 587}
 588
 589static void prio_read(struct cache *ca, uint64_t bucket)
 590{
 591        struct prio_set *p = ca->disk_buckets;
 592        struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
 593        struct bucket *b;
 594        unsigned bucket_nr = 0;
 595
 596        for (b = ca->buckets;
 597             b < ca->buckets + ca->sb.nbuckets;
 598             b++, d++) {
 599                if (d == end) {
 600                        ca->prio_buckets[bucket_nr] = bucket;
 601                        ca->prio_last_buckets[bucket_nr] = bucket;
 602                        bucket_nr++;
 603
 604                        prio_io(ca, bucket, REQ_OP_READ, 0);
 605
 606                        if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
 607                                pr_warn("bad csum reading priorities");
 608
 609                        if (p->magic != pset_magic(&ca->sb))
 610                                pr_warn("bad magic reading priorities");
 611
 612                        bucket = p->next_bucket;
 613                        d = p->data;
 614                }
 615
 616                b->prio = le16_to_cpu(d->prio);
 617                b->gen = b->last_gc = d->gen;
 618        }
 619}
 620
 621/* Bcache device */
 622
 623static int open_dev(struct block_device *b, fmode_t mode)
 624{
 625        struct bcache_device *d = b->bd_disk->private_data;
 626        if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
 627                return -ENXIO;
 628
 629        closure_get(&d->cl);
 630        return 0;
 631}
 632
 633static void release_dev(struct gendisk *b, fmode_t mode)
 634{
 635        struct bcache_device *d = b->private_data;
 636        closure_put(&d->cl);
 637}
 638
 639static int ioctl_dev(struct block_device *b, fmode_t mode,
 640                     unsigned int cmd, unsigned long arg)
 641{
 642        struct bcache_device *d = b->bd_disk->private_data;
 643        return d->ioctl(d, mode, cmd, arg);
 644}
 645
 646static const struct block_device_operations bcache_ops = {
 647        .open           = open_dev,
 648        .release        = release_dev,
 649        .ioctl          = ioctl_dev,
 650        .owner          = THIS_MODULE,
 651};
 652
 653void bcache_device_stop(struct bcache_device *d)
 654{
 655        if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
 656                closure_queue(&d->cl);
 657}
 658
 659static void bcache_device_unlink(struct bcache_device *d)
 660{
 661        lockdep_assert_held(&bch_register_lock);
 662
 663        if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
 664                unsigned i;
 665                struct cache *ca;
 666
 667                sysfs_remove_link(&d->c->kobj, d->name);
 668                sysfs_remove_link(&d->kobj, "cache");
 669
 670                for_each_cache(ca, d->c, i)
 671                        bd_unlink_disk_holder(ca->bdev, d->disk);
 672        }
 673}
 674
 675static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
 676                               const char *name)
 677{
 678        unsigned i;
 679        struct cache *ca;
 680
 681        for_each_cache(ca, d->c, i)
 682                bd_link_disk_holder(ca->bdev, d->disk);
 683
 684        snprintf(d->name, BCACHEDEVNAME_SIZE,
 685                 "%s%u", name, d->id);
 686
 687        WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
 688             sysfs_create_link(&c->kobj, &d->kobj, d->name),
 689             "Couldn't create device <-> cache set symlinks");
 690
 691        clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
 692}
 693
 694static void bcache_device_detach(struct bcache_device *d)
 695{
 696        lockdep_assert_held(&bch_register_lock);
 697
 698        if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
 699                struct uuid_entry *u = d->c->uuids + d->id;
 700
 701                SET_UUID_FLASH_ONLY(u, 0);
 702                memcpy(u->uuid, invalid_uuid, 16);
 703                u->invalidated = cpu_to_le32(get_seconds());
 704                bch_uuid_write(d->c);
 705        }
 706
 707        bcache_device_unlink(d);
 708
 709        d->c->devices[d->id] = NULL;
 710        closure_put(&d->c->caching);
 711        d->c = NULL;
 712}
 713
 714static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
 715                                 unsigned id)
 716{
 717        d->id = id;
 718        d->c = c;
 719        c->devices[id] = d;
 720
 721        closure_get(&c->caching);
 722}
 723
 724static void bcache_device_free(struct bcache_device *d)
 725{
 726        lockdep_assert_held(&bch_register_lock);
 727
 728        pr_info("%s stopped", d->disk->disk_name);
 729
 730        if (d->c)
 731                bcache_device_detach(d);
 732        if (d->disk && d->disk->flags & GENHD_FL_UP)
 733                del_gendisk(d->disk);
 734        if (d->disk && d->disk->queue)
 735                blk_cleanup_queue(d->disk->queue);
 736        if (d->disk) {
 737                ida_simple_remove(&bcache_minor, d->disk->first_minor);
 738                put_disk(d->disk);
 739        }
 740
 741        if (d->bio_split)
 742                bioset_free(d->bio_split);
 743        kvfree(d->full_dirty_stripes);
 744        kvfree(d->stripe_sectors_dirty);
 745
 746        closure_debug_destroy(&d->cl);
 747}
 748
 749static int bcache_device_init(struct bcache_device *d, unsigned block_size,
 750                              sector_t sectors)
 751{
 752        struct request_queue *q;
 753        size_t n;
 754        int minor;
 755
 756        if (!d->stripe_size)
 757                d->stripe_size = 1 << 31;
 758
 759        d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
 760
 761        if (!d->nr_stripes ||
 762            d->nr_stripes > INT_MAX ||
 763            d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
 764                pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
 765                        (unsigned)d->nr_stripes);
 766                return -ENOMEM;
 767        }
 768
 769        n = d->nr_stripes * sizeof(atomic_t);
 770        d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
 771        if (!d->stripe_sectors_dirty)
 772                return -ENOMEM;
 773
 774        n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
 775        d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
 776        if (!d->full_dirty_stripes)
 777                return -ENOMEM;
 778
 779        minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
 780        if (minor < 0)
 781                return minor;
 782
 783        minor *= BCACHE_MINORS;
 784
 785        if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio),
 786                                           BIOSET_NEED_BVECS |
 787                                           BIOSET_NEED_RESCUER)) ||
 788            !(d->disk = alloc_disk(BCACHE_MINORS))) {
 789                ida_simple_remove(&bcache_minor, minor);
 790                return -ENOMEM;
 791        }
 792
 793        set_capacity(d->disk, sectors);
 794        snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
 795
 796        d->disk->major          = bcache_major;
 797        d->disk->first_minor    = minor;
 798        d->disk->fops           = &bcache_ops;
 799        d->disk->private_data   = d;
 800
 801        q = blk_alloc_queue(GFP_KERNEL);
 802        if (!q)
 803                return -ENOMEM;
 804
 805        blk_queue_make_request(q, NULL);
 806        d->disk->queue                  = q;
 807        q->queuedata                    = d;
 808        q->backing_dev_info->congested_data = d;
 809        q->limits.max_hw_sectors        = UINT_MAX;
 810        q->limits.max_sectors           = UINT_MAX;
 811        q->limits.max_segment_size      = UINT_MAX;
 812        q->limits.max_segments          = BIO_MAX_PAGES;
 813        blk_queue_max_discard_sectors(q, UINT_MAX);
 814        q->limits.discard_granularity   = 512;
 815        q->limits.io_min                = block_size;
 816        q->limits.logical_block_size    = block_size;
 817        q->limits.physical_block_size   = block_size;
 818        set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
 819        clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
 820        set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
 821
 822        blk_queue_write_cache(q, true, true);
 823
 824        return 0;
 825}
 826
 827/* Cached device */
 828
 829static void calc_cached_dev_sectors(struct cache_set *c)
 830{
 831        uint64_t sectors = 0;
 832        struct cached_dev *dc;
 833
 834        list_for_each_entry(dc, &c->cached_devs, list)
 835                sectors += bdev_sectors(dc->bdev);
 836
 837        c->cached_dev_sectors = sectors;
 838}
 839
 840void bch_cached_dev_run(struct cached_dev *dc)
 841{
 842        struct bcache_device *d = &dc->disk;
 843        char buf[SB_LABEL_SIZE + 1];
 844        char *env[] = {
 845                "DRIVER=bcache",
 846                kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
 847                NULL,
 848                NULL,
 849        };
 850
 851        memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
 852        buf[SB_LABEL_SIZE] = '\0';
 853        env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
 854
 855        if (atomic_xchg(&dc->running, 1)) {
 856                kfree(env[1]);
 857                kfree(env[2]);
 858                return;
 859        }
 860
 861        if (!d->c &&
 862            BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
 863                struct closure cl;
 864                closure_init_stack(&cl);
 865
 866                SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
 867                bch_write_bdev_super(dc, &cl);
 868                closure_sync(&cl);
 869        }
 870
 871        add_disk(d->disk);
 872        bd_link_disk_holder(dc->bdev, dc->disk.disk);
 873        /* won't show up in the uevent file, use udevadm monitor -e instead
 874         * only class / kset properties are persistent */
 875        kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
 876        kfree(env[1]);
 877        kfree(env[2]);
 878
 879        if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
 880            sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
 881                pr_debug("error creating sysfs link");
 882}
 883
 884static void cached_dev_detach_finish(struct work_struct *w)
 885{
 886        struct cached_dev *dc = container_of(w, struct cached_dev, detach);
 887        char buf[BDEVNAME_SIZE];
 888        struct closure cl;
 889        closure_init_stack(&cl);
 890
 891        BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
 892        BUG_ON(atomic_read(&dc->count));
 893
 894        mutex_lock(&bch_register_lock);
 895
 896        memset(&dc->sb.set_uuid, 0, 16);
 897        SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
 898
 899        bch_write_bdev_super(dc, &cl);
 900        closure_sync(&cl);
 901
 902        bcache_device_detach(&dc->disk);
 903        list_move(&dc->list, &uncached_devices);
 904
 905        clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
 906        clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
 907
 908        mutex_unlock(&bch_register_lock);
 909
 910        pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
 911
 912        /* Drop ref we took in cached_dev_detach() */
 913        closure_put(&dc->disk.cl);
 914}
 915
 916void bch_cached_dev_detach(struct cached_dev *dc)
 917{
 918        lockdep_assert_held(&bch_register_lock);
 919
 920        if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
 921                return;
 922
 923        if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
 924                return;
 925
 926        /*
 927         * Block the device from being closed and freed until we're finished
 928         * detaching
 929         */
 930        closure_get(&dc->disk.cl);
 931
 932        bch_writeback_queue(dc);
 933        cached_dev_put(dc);
 934}
 935
 936int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
 937{
 938        uint32_t rtime = cpu_to_le32(get_seconds());
 939        struct uuid_entry *u;
 940        char buf[BDEVNAME_SIZE];
 941
 942        bdevname(dc->bdev, buf);
 943
 944        if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
 945                return -ENOENT;
 946
 947        if (dc->disk.c) {
 948                pr_err("Can't attach %s: already attached", buf);
 949                return -EINVAL;
 950        }
 951
 952        if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
 953                pr_err("Can't attach %s: shutting down", buf);
 954                return -EINVAL;
 955        }
 956
 957        if (dc->sb.block_size < c->sb.block_size) {
 958                /* Will die */
 959                pr_err("Couldn't attach %s: block size less than set's block size",
 960                       buf);
 961                return -EINVAL;
 962        }
 963
 964        u = uuid_find(c, dc->sb.uuid);
 965
 966        if (u &&
 967            (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
 968             BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
 969                memcpy(u->uuid, invalid_uuid, 16);
 970                u->invalidated = cpu_to_le32(get_seconds());
 971                u = NULL;
 972        }
 973
 974        if (!u) {
 975                if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
 976                        pr_err("Couldn't find uuid for %s in set", buf);
 977                        return -ENOENT;
 978                }
 979
 980                u = uuid_find_empty(c);
 981                if (!u) {
 982                        pr_err("Not caching %s, no room for UUID", buf);
 983                        return -EINVAL;
 984                }
 985        }
 986
 987        /* Deadlocks since we're called via sysfs...
 988        sysfs_remove_file(&dc->kobj, &sysfs_attach);
 989         */
 990
 991        if (bch_is_zero(u->uuid, 16)) {
 992                struct closure cl;
 993                closure_init_stack(&cl);
 994
 995                memcpy(u->uuid, dc->sb.uuid, 16);
 996                memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
 997                u->first_reg = u->last_reg = rtime;
 998                bch_uuid_write(c);
 999
1000                memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1001                SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1002
1003                bch_write_bdev_super(dc, &cl);
1004                closure_sync(&cl);
1005        } else {
1006                u->last_reg = rtime;
1007                bch_uuid_write(c);
1008        }
1009
1010        bcache_device_attach(&dc->disk, c, u - c->uuids);
1011        list_move(&dc->list, &c->cached_devs);
1012        calc_cached_dev_sectors(c);
1013
1014        smp_wmb();
1015        /*
1016         * dc->c must be set before dc->count != 0 - paired with the mb in
1017         * cached_dev_get()
1018         */
1019        atomic_set(&dc->count, 1);
1020
1021        /* Block writeback thread, but spawn it */
1022        down_write(&dc->writeback_lock);
1023        if (bch_cached_dev_writeback_start(dc)) {
1024                up_write(&dc->writeback_lock);
1025                return -ENOMEM;
1026        }
1027
1028        if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1029                bch_sectors_dirty_init(dc);
1030                atomic_set(&dc->has_dirty, 1);
1031                atomic_inc(&dc->count);
1032                bch_writeback_queue(dc);
1033        }
1034
1035        bch_cached_dev_run(dc);
1036        bcache_device_link(&dc->disk, c, "bdev");
1037
1038        /* Allow the writeback thread to proceed */
1039        up_write(&dc->writeback_lock);
1040
1041        pr_info("Caching %s as %s on set %pU",
1042                bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1043                dc->disk.c->sb.set_uuid);
1044        return 0;
1045}
1046
1047void bch_cached_dev_release(struct kobject *kobj)
1048{
1049        struct cached_dev *dc = container_of(kobj, struct cached_dev,
1050                                             disk.kobj);
1051        kfree(dc);
1052        module_put(THIS_MODULE);
1053}
1054
1055static void cached_dev_free(struct closure *cl)
1056{
1057        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1058
1059        cancel_delayed_work_sync(&dc->writeback_rate_update);
1060        if (!IS_ERR_OR_NULL(dc->writeback_thread))
1061                kthread_stop(dc->writeback_thread);
1062
1063        mutex_lock(&bch_register_lock);
1064
1065        if (atomic_read(&dc->running))
1066                bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1067        bcache_device_free(&dc->disk);
1068        list_del(&dc->list);
1069
1070        mutex_unlock(&bch_register_lock);
1071
1072        if (!IS_ERR_OR_NULL(dc->bdev))
1073                blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1074
1075        wake_up(&unregister_wait);
1076
1077        kobject_put(&dc->disk.kobj);
1078}
1079
1080static void cached_dev_flush(struct closure *cl)
1081{
1082        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1083        struct bcache_device *d = &dc->disk;
1084
1085        mutex_lock(&bch_register_lock);
1086        bcache_device_unlink(d);
1087        mutex_unlock(&bch_register_lock);
1088
1089        bch_cache_accounting_destroy(&dc->accounting);
1090        kobject_del(&d->kobj);
1091
1092        continue_at(cl, cached_dev_free, system_wq);
1093}
1094
1095static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1096{
1097        int ret;
1098        struct io *io;
1099        struct request_queue *q = bdev_get_queue(dc->bdev);
1100
1101        __module_get(THIS_MODULE);
1102        INIT_LIST_HEAD(&dc->list);
1103        closure_init(&dc->disk.cl, NULL);
1104        set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1105        kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1106        INIT_WORK(&dc->detach, cached_dev_detach_finish);
1107        sema_init(&dc->sb_write_mutex, 1);
1108        INIT_LIST_HEAD(&dc->io_lru);
1109        spin_lock_init(&dc->io_lock);
1110        bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1111
1112        dc->sequential_cutoff           = 4 << 20;
1113
1114        for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1115                list_add(&io->lru, &dc->io_lru);
1116                hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1117        }
1118
1119        dc->disk.stripe_size = q->limits.io_opt >> 9;
1120
1121        if (dc->disk.stripe_size)
1122                dc->partial_stripes_expensive =
1123                        q->limits.raid_partial_stripes_expensive;
1124
1125        ret = bcache_device_init(&dc->disk, block_size,
1126                         dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1127        if (ret)
1128                return ret;
1129
1130        set_capacity(dc->disk.disk,
1131                     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1132
1133        dc->disk.disk->queue->backing_dev_info->ra_pages =
1134                max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1135                    q->backing_dev_info->ra_pages);
1136
1137        bch_cached_dev_request_init(dc);
1138        bch_cached_dev_writeback_init(dc);
1139        return 0;
1140}
1141
1142/* Cached device - bcache superblock */
1143
1144static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1145                                 struct block_device *bdev,
1146                                 struct cached_dev *dc)
1147{
1148        char name[BDEVNAME_SIZE];
1149        const char *err = "cannot allocate memory";
1150        struct cache_set *c;
1151
1152        memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1153        dc->bdev = bdev;
1154        dc->bdev->bd_holder = dc;
1155
1156        bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1157        dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1158        get_page(sb_page);
1159
1160        if (cached_dev_init(dc, sb->block_size << 9))
1161                goto err;
1162
1163        err = "error creating kobject";
1164        if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1165                        "bcache"))
1166                goto err;
1167        if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1168                goto err;
1169
1170        pr_info("registered backing device %s", bdevname(bdev, name));
1171
1172        list_add(&dc->list, &uncached_devices);
1173        list_for_each_entry(c, &bch_cache_sets, list)
1174                bch_cached_dev_attach(dc, c);
1175
1176        if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1177            BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1178                bch_cached_dev_run(dc);
1179
1180        return;
1181err:
1182        pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1183        bcache_device_stop(&dc->disk);
1184}
1185
1186/* Flash only volumes */
1187
1188void bch_flash_dev_release(struct kobject *kobj)
1189{
1190        struct bcache_device *d = container_of(kobj, struct bcache_device,
1191                                               kobj);
1192        kfree(d);
1193}
1194
1195static void flash_dev_free(struct closure *cl)
1196{
1197        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1198        mutex_lock(&bch_register_lock);
1199        bcache_device_free(d);
1200        mutex_unlock(&bch_register_lock);
1201        kobject_put(&d->kobj);
1202}
1203
1204static void flash_dev_flush(struct closure *cl)
1205{
1206        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1207
1208        mutex_lock(&bch_register_lock);
1209        bcache_device_unlink(d);
1210        mutex_unlock(&bch_register_lock);
1211        kobject_del(&d->kobj);
1212        continue_at(cl, flash_dev_free, system_wq);
1213}
1214
1215static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1216{
1217        struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1218                                          GFP_KERNEL);
1219        if (!d)
1220                return -ENOMEM;
1221
1222        closure_init(&d->cl, NULL);
1223        set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1224
1225        kobject_init(&d->kobj, &bch_flash_dev_ktype);
1226
1227        if (bcache_device_init(d, block_bytes(c), u->sectors))
1228                goto err;
1229
1230        bcache_device_attach(d, c, u - c->uuids);
1231        bch_flash_dev_request_init(d);
1232        add_disk(d->disk);
1233
1234        if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1235                goto err;
1236
1237        bcache_device_link(d, c, "volume");
1238
1239        return 0;
1240err:
1241        kobject_put(&d->kobj);
1242        return -ENOMEM;
1243}
1244
1245static int flash_devs_run(struct cache_set *c)
1246{
1247        int ret = 0;
1248        struct uuid_entry *u;
1249
1250        for (u = c->uuids;
1251             u < c->uuids + c->nr_uuids && !ret;
1252             u++)
1253                if (UUID_FLASH_ONLY(u))
1254                        ret = flash_dev_run(c, u);
1255
1256        return ret;
1257}
1258
1259int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1260{
1261        struct uuid_entry *u;
1262
1263        if (test_bit(CACHE_SET_STOPPING, &c->flags))
1264                return -EINTR;
1265
1266        if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1267                return -EPERM;
1268
1269        u = uuid_find_empty(c);
1270        if (!u) {
1271                pr_err("Can't create volume, no room for UUID");
1272                return -EINVAL;
1273        }
1274
1275        get_random_bytes(u->uuid, 16);
1276        memset(u->label, 0, 32);
1277        u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1278
1279        SET_UUID_FLASH_ONLY(u, 1);
1280        u->sectors = size >> 9;
1281
1282        bch_uuid_write(c);
1283
1284        return flash_dev_run(c, u);
1285}
1286
1287/* Cache set */
1288
1289__printf(2, 3)
1290bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1291{
1292        va_list args;
1293
1294        if (c->on_error != ON_ERROR_PANIC &&
1295            test_bit(CACHE_SET_STOPPING, &c->flags))
1296                return false;
1297
1298        /* XXX: we can be called from atomic context
1299        acquire_console_sem();
1300        */
1301
1302        printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1303
1304        va_start(args, fmt);
1305        vprintk(fmt, args);
1306        va_end(args);
1307
1308        printk(", disabling caching\n");
1309
1310        if (c->on_error == ON_ERROR_PANIC)
1311                panic("panic forced after error\n");
1312
1313        bch_cache_set_unregister(c);
1314        return true;
1315}
1316
1317void bch_cache_set_release(struct kobject *kobj)
1318{
1319        struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1320        kfree(c);
1321        module_put(THIS_MODULE);
1322}
1323
1324static void cache_set_free(struct closure *cl)
1325{
1326        struct cache_set *c = container_of(cl, struct cache_set, cl);
1327        struct cache *ca;
1328        unsigned i;
1329
1330        if (!IS_ERR_OR_NULL(c->debug))
1331                debugfs_remove(c->debug);
1332
1333        bch_open_buckets_free(c);
1334        bch_btree_cache_free(c);
1335        bch_journal_free(c);
1336
1337        for_each_cache(ca, c, i)
1338                if (ca) {
1339                        ca->set = NULL;
1340                        c->cache[ca->sb.nr_this_dev] = NULL;
1341                        kobject_put(&ca->kobj);
1342                }
1343
1344        bch_bset_sort_state_free(&c->sort);
1345        free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1346
1347        if (c->moving_gc_wq)
1348                destroy_workqueue(c->moving_gc_wq);
1349        if (c->bio_split)
1350                bioset_free(c->bio_split);
1351        if (c->fill_iter)
1352                mempool_destroy(c->fill_iter);
1353        if (c->bio_meta)
1354                mempool_destroy(c->bio_meta);
1355        if (c->search)
1356                mempool_destroy(c->search);
1357        kfree(c->devices);
1358
1359        mutex_lock(&bch_register_lock);
1360        list_del(&c->list);
1361        mutex_unlock(&bch_register_lock);
1362
1363        pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1364        wake_up(&unregister_wait);
1365
1366        closure_debug_destroy(&c->cl);
1367        kobject_put(&c->kobj);
1368}
1369
1370static void cache_set_flush(struct closure *cl)
1371{
1372        struct cache_set *c = container_of(cl, struct cache_set, caching);
1373        struct cache *ca;
1374        struct btree *b;
1375        unsigned i;
1376
1377        if (!c)
1378                closure_return(cl);
1379
1380        bch_cache_accounting_destroy(&c->accounting);
1381
1382        kobject_put(&c->internal);
1383        kobject_del(&c->kobj);
1384
1385        if (c->gc_thread)
1386                kthread_stop(c->gc_thread);
1387
1388        if (!IS_ERR_OR_NULL(c->root))
1389                list_add(&c->root->list, &c->btree_cache);
1390
1391        /* Should skip this if we're unregistering because of an error */
1392        list_for_each_entry(b, &c->btree_cache, list) {
1393                mutex_lock(&b->write_lock);
1394                if (btree_node_dirty(b))
1395                        __bch_btree_node_write(b, NULL);
1396                mutex_unlock(&b->write_lock);
1397        }
1398
1399        for_each_cache(ca, c, i)
1400                if (ca->alloc_thread)
1401                        kthread_stop(ca->alloc_thread);
1402
1403        if (c->journal.cur) {
1404                cancel_delayed_work_sync(&c->journal.work);
1405                /* flush last journal entry if needed */
1406                c->journal.work.work.func(&c->journal.work.work);
1407        }
1408
1409        closure_return(cl);
1410}
1411
1412static void __cache_set_unregister(struct closure *cl)
1413{
1414        struct cache_set *c = container_of(cl, struct cache_set, caching);
1415        struct cached_dev *dc;
1416        size_t i;
1417
1418        mutex_lock(&bch_register_lock);
1419
1420        for (i = 0; i < c->nr_uuids; i++)
1421                if (c->devices[i]) {
1422                        if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1423                            test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1424                                dc = container_of(c->devices[i],
1425                                                  struct cached_dev, disk);
1426                                bch_cached_dev_detach(dc);
1427                        } else {
1428                                bcache_device_stop(c->devices[i]);
1429                        }
1430                }
1431
1432        mutex_unlock(&bch_register_lock);
1433
1434        continue_at(cl, cache_set_flush, system_wq);
1435}
1436
1437void bch_cache_set_stop(struct cache_set *c)
1438{
1439        if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1440                closure_queue(&c->caching);
1441}
1442
1443void bch_cache_set_unregister(struct cache_set *c)
1444{
1445        set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1446        bch_cache_set_stop(c);
1447}
1448
1449#define alloc_bucket_pages(gfp, c)                      \
1450        ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1451
1452struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1453{
1454        int iter_size;
1455        struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1456        if (!c)
1457                return NULL;
1458
1459        __module_get(THIS_MODULE);
1460        closure_init(&c->cl, NULL);
1461        set_closure_fn(&c->cl, cache_set_free, system_wq);
1462
1463        closure_init(&c->caching, &c->cl);
1464        set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1465
1466        /* Maybe create continue_at_noreturn() and use it here? */
1467        closure_set_stopped(&c->cl);
1468        closure_put(&c->cl);
1469
1470        kobject_init(&c->kobj, &bch_cache_set_ktype);
1471        kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1472
1473        bch_cache_accounting_init(&c->accounting, &c->cl);
1474
1475        memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1476        c->sb.block_size        = sb->block_size;
1477        c->sb.bucket_size       = sb->bucket_size;
1478        c->sb.nr_in_set         = sb->nr_in_set;
1479        c->sb.last_mount        = sb->last_mount;
1480        c->bucket_bits          = ilog2(sb->bucket_size);
1481        c->block_bits           = ilog2(sb->block_size);
1482        c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1483
1484        c->btree_pages          = bucket_pages(c);
1485        if (c->btree_pages > BTREE_MAX_PAGES)
1486                c->btree_pages = max_t(int, c->btree_pages / 4,
1487                                       BTREE_MAX_PAGES);
1488
1489        sema_init(&c->sb_write_mutex, 1);
1490        mutex_init(&c->bucket_lock);
1491        init_waitqueue_head(&c->btree_cache_wait);
1492        init_waitqueue_head(&c->bucket_wait);
1493        init_waitqueue_head(&c->gc_wait);
1494        sema_init(&c->uuid_write_mutex, 1);
1495
1496        spin_lock_init(&c->btree_gc_time.lock);
1497        spin_lock_init(&c->btree_split_time.lock);
1498        spin_lock_init(&c->btree_read_time.lock);
1499
1500        bch_moving_init_cache_set(c);
1501
1502        INIT_LIST_HEAD(&c->list);
1503        INIT_LIST_HEAD(&c->cached_devs);
1504        INIT_LIST_HEAD(&c->btree_cache);
1505        INIT_LIST_HEAD(&c->btree_cache_freeable);
1506        INIT_LIST_HEAD(&c->btree_cache_freed);
1507        INIT_LIST_HEAD(&c->data_buckets);
1508
1509        c->search = mempool_create_slab_pool(32, bch_search_cache);
1510        if (!c->search)
1511                goto err;
1512
1513        iter_size = (sb->bucket_size / sb->block_size + 1) *
1514                sizeof(struct btree_iter_set);
1515
1516        if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1517            !(c->bio_meta = mempool_create_kmalloc_pool(2,
1518                                sizeof(struct bbio) + sizeof(struct bio_vec) *
1519                                bucket_pages(c))) ||
1520            !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1521            !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio),
1522                                           BIOSET_NEED_BVECS |
1523                                           BIOSET_NEED_RESCUER)) ||
1524            !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1525            !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1526                                                WQ_MEM_RECLAIM, 0)) ||
1527            bch_journal_alloc(c) ||
1528            bch_btree_cache_alloc(c) ||
1529            bch_open_buckets_alloc(c) ||
1530            bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1531                goto err;
1532
1533        c->congested_read_threshold_us  = 2000;
1534        c->congested_write_threshold_us = 20000;
1535        c->error_limit  = 8 << IO_ERROR_SHIFT;
1536
1537        return c;
1538err:
1539        bch_cache_set_unregister(c);
1540        return NULL;
1541}
1542
1543static void run_cache_set(struct cache_set *c)
1544{
1545        const char *err = "cannot allocate memory";
1546        struct cached_dev *dc, *t;
1547        struct cache *ca;
1548        struct closure cl;
1549        unsigned i;
1550
1551        closure_init_stack(&cl);
1552
1553        for_each_cache(ca, c, i)
1554                c->nbuckets += ca->sb.nbuckets;
1555        set_gc_sectors(c);
1556
1557        if (CACHE_SYNC(&c->sb)) {
1558                LIST_HEAD(journal);
1559                struct bkey *k;
1560                struct jset *j;
1561
1562                err = "cannot allocate memory for journal";
1563                if (bch_journal_read(c, &journal))
1564                        goto err;
1565
1566                pr_debug("btree_journal_read() done");
1567
1568                err = "no journal entries found";
1569                if (list_empty(&journal))
1570                        goto err;
1571
1572                j = &list_entry(journal.prev, struct journal_replay, list)->j;
1573
1574                err = "IO error reading priorities";
1575                for_each_cache(ca, c, i)
1576                        prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1577
1578                /*
1579                 * If prio_read() fails it'll call cache_set_error and we'll
1580                 * tear everything down right away, but if we perhaps checked
1581                 * sooner we could avoid journal replay.
1582                 */
1583
1584                k = &j->btree_root;
1585
1586                err = "bad btree root";
1587                if (__bch_btree_ptr_invalid(c, k))
1588                        goto err;
1589
1590                err = "error reading btree root";
1591                c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1592                if (IS_ERR_OR_NULL(c->root))
1593                        goto err;
1594
1595                list_del_init(&c->root->list);
1596                rw_unlock(true, c->root);
1597
1598                err = uuid_read(c, j, &cl);
1599                if (err)
1600                        goto err;
1601
1602                err = "error in recovery";
1603                if (bch_btree_check(c))
1604                        goto err;
1605
1606                bch_journal_mark(c, &journal);
1607                bch_initial_gc_finish(c);
1608                pr_debug("btree_check() done");
1609
1610                /*
1611                 * bcache_journal_next() can't happen sooner, or
1612                 * btree_gc_finish() will give spurious errors about last_gc >
1613                 * gc_gen - this is a hack but oh well.
1614                 */
1615                bch_journal_next(&c->journal);
1616
1617                err = "error starting allocator thread";
1618                for_each_cache(ca, c, i)
1619                        if (bch_cache_allocator_start(ca))
1620                                goto err;
1621
1622                /*
1623                 * First place it's safe to allocate: btree_check() and
1624                 * btree_gc_finish() have to run before we have buckets to
1625                 * allocate, and bch_bucket_alloc_set() might cause a journal
1626                 * entry to be written so bcache_journal_next() has to be called
1627                 * first.
1628                 *
1629                 * If the uuids were in the old format we have to rewrite them
1630                 * before the next journal entry is written:
1631                 */
1632                if (j->version < BCACHE_JSET_VERSION_UUID)
1633                        __uuid_write(c);
1634
1635                bch_journal_replay(c, &journal);
1636        } else {
1637                pr_notice("invalidating existing data");
1638
1639                for_each_cache(ca, c, i) {
1640                        unsigned j;
1641
1642                        ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1643                                              2, SB_JOURNAL_BUCKETS);
1644
1645                        for (j = 0; j < ca->sb.keys; j++)
1646                                ca->sb.d[j] = ca->sb.first_bucket + j;
1647                }
1648
1649                bch_initial_gc_finish(c);
1650
1651                err = "error starting allocator thread";
1652                for_each_cache(ca, c, i)
1653                        if (bch_cache_allocator_start(ca))
1654                                goto err;
1655
1656                mutex_lock(&c->bucket_lock);
1657                for_each_cache(ca, c, i)
1658                        bch_prio_write(ca);
1659                mutex_unlock(&c->bucket_lock);
1660
1661                err = "cannot allocate new UUID bucket";
1662                if (__uuid_write(c))
1663                        goto err;
1664
1665                err = "cannot allocate new btree root";
1666                c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1667                if (IS_ERR_OR_NULL(c->root))
1668                        goto err;
1669
1670                mutex_lock(&c->root->write_lock);
1671                bkey_copy_key(&c->root->key, &MAX_KEY);
1672                bch_btree_node_write(c->root, &cl);
1673                mutex_unlock(&c->root->write_lock);
1674
1675                bch_btree_set_root(c->root);
1676                rw_unlock(true, c->root);
1677
1678                /*
1679                 * We don't want to write the first journal entry until
1680                 * everything is set up - fortunately journal entries won't be
1681                 * written until the SET_CACHE_SYNC() here:
1682                 */
1683                SET_CACHE_SYNC(&c->sb, true);
1684
1685                bch_journal_next(&c->journal);
1686                bch_journal_meta(c, &cl);
1687        }
1688
1689        err = "error starting gc thread";
1690        if (bch_gc_thread_start(c))
1691                goto err;
1692
1693        closure_sync(&cl);
1694        c->sb.last_mount = get_seconds();
1695        bcache_write_super(c);
1696
1697        list_for_each_entry_safe(dc, t, &uncached_devices, list)
1698                bch_cached_dev_attach(dc, c);
1699
1700        flash_devs_run(c);
1701
1702        set_bit(CACHE_SET_RUNNING, &c->flags);
1703        return;
1704err:
1705        closure_sync(&cl);
1706        /* XXX: test this, it's broken */
1707        bch_cache_set_error(c, "%s", err);
1708}
1709
1710static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1711{
1712        return ca->sb.block_size        == c->sb.block_size &&
1713                ca->sb.bucket_size      == c->sb.bucket_size &&
1714                ca->sb.nr_in_set        == c->sb.nr_in_set;
1715}
1716
1717static const char *register_cache_set(struct cache *ca)
1718{
1719        char buf[12];
1720        const char *err = "cannot allocate memory";
1721        struct cache_set *c;
1722
1723        list_for_each_entry(c, &bch_cache_sets, list)
1724                if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1725                        if (c->cache[ca->sb.nr_this_dev])
1726                                return "duplicate cache set member";
1727
1728                        if (!can_attach_cache(ca, c))
1729                                return "cache sb does not match set";
1730
1731                        if (!CACHE_SYNC(&ca->sb))
1732                                SET_CACHE_SYNC(&c->sb, false);
1733
1734                        goto found;
1735                }
1736
1737        c = bch_cache_set_alloc(&ca->sb);
1738        if (!c)
1739                return err;
1740
1741        err = "error creating kobject";
1742        if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1743            kobject_add(&c->internal, &c->kobj, "internal"))
1744                goto err;
1745
1746        if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1747                goto err;
1748
1749        bch_debug_init_cache_set(c);
1750
1751        list_add(&c->list, &bch_cache_sets);
1752found:
1753        sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1754        if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1755            sysfs_create_link(&c->kobj, &ca->kobj, buf))
1756                goto err;
1757
1758        if (ca->sb.seq > c->sb.seq) {
1759                c->sb.version           = ca->sb.version;
1760                memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1761                c->sb.flags             = ca->sb.flags;
1762                c->sb.seq               = ca->sb.seq;
1763                pr_debug("set version = %llu", c->sb.version);
1764        }
1765
1766        kobject_get(&ca->kobj);
1767        ca->set = c;
1768        ca->set->cache[ca->sb.nr_this_dev] = ca;
1769        c->cache_by_alloc[c->caches_loaded++] = ca;
1770
1771        if (c->caches_loaded == c->sb.nr_in_set)
1772                run_cache_set(c);
1773
1774        return NULL;
1775err:
1776        bch_cache_set_unregister(c);
1777        return err;
1778}
1779
1780/* Cache device */
1781
1782void bch_cache_release(struct kobject *kobj)
1783{
1784        struct cache *ca = container_of(kobj, struct cache, kobj);
1785        unsigned i;
1786
1787        if (ca->set) {
1788                BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1789                ca->set->cache[ca->sb.nr_this_dev] = NULL;
1790        }
1791
1792        free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1793        kfree(ca->prio_buckets);
1794        vfree(ca->buckets);
1795
1796        free_heap(&ca->heap);
1797        free_fifo(&ca->free_inc);
1798
1799        for (i = 0; i < RESERVE_NR; i++)
1800                free_fifo(&ca->free[i]);
1801
1802        if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1803                put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1804
1805        if (!IS_ERR_OR_NULL(ca->bdev))
1806                blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1807
1808        kfree(ca);
1809        module_put(THIS_MODULE);
1810}
1811
1812static int cache_alloc(struct cache *ca)
1813{
1814        size_t free;
1815        struct bucket *b;
1816
1817        __module_get(THIS_MODULE);
1818        kobject_init(&ca->kobj, &bch_cache_ktype);
1819
1820        bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
1821
1822        free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1823
1824        if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1825            !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1826            !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1827            !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1828            !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1829            !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1830            !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1831                                          ca->sb.nbuckets)) ||
1832            !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1833                                          2, GFP_KERNEL)) ||
1834            !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
1835                return -ENOMEM;
1836
1837        ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1838
1839        for_each_bucket(b, ca)
1840                atomic_set(&b->pin, 0);
1841
1842        return 0;
1843}
1844
1845static int register_cache(struct cache_sb *sb, struct page *sb_page,
1846                                struct block_device *bdev, struct cache *ca)
1847{
1848        char name[BDEVNAME_SIZE];
1849        const char *err = NULL; /* must be set for any error case */
1850        int ret = 0;
1851
1852        memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1853        ca->bdev = bdev;
1854        ca->bdev->bd_holder = ca;
1855
1856        bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
1857        ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1858        get_page(sb_page);
1859
1860        if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1861                ca->discard = CACHE_DISCARD(&ca->sb);
1862
1863        ret = cache_alloc(ca);
1864        if (ret != 0) {
1865                if (ret == -ENOMEM)
1866                        err = "cache_alloc(): -ENOMEM";
1867                else
1868                        err = "cache_alloc(): unknown error";
1869                goto err;
1870        }
1871
1872        if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1873                err = "error calling kobject_add";
1874                ret = -ENOMEM;
1875                goto out;
1876        }
1877
1878        mutex_lock(&bch_register_lock);
1879        err = register_cache_set(ca);
1880        mutex_unlock(&bch_register_lock);
1881
1882        if (err) {
1883                ret = -ENODEV;
1884                goto out;
1885        }
1886
1887        pr_info("registered cache device %s", bdevname(bdev, name));
1888
1889out:
1890        kobject_put(&ca->kobj);
1891
1892err:
1893        if (err)
1894                pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1895
1896        return ret;
1897}
1898
1899/* Global interfaces/init */
1900
1901static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1902                               const char *, size_t);
1903
1904kobj_attribute_write(register,          register_bcache);
1905kobj_attribute_write(register_quiet,    register_bcache);
1906
1907static bool bch_is_open_backing(struct block_device *bdev) {
1908        struct cache_set *c, *tc;
1909        struct cached_dev *dc, *t;
1910
1911        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1912                list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1913                        if (dc->bdev == bdev)
1914                                return true;
1915        list_for_each_entry_safe(dc, t, &uncached_devices, list)
1916                if (dc->bdev == bdev)
1917                        return true;
1918        return false;
1919}
1920
1921static bool bch_is_open_cache(struct block_device *bdev) {
1922        struct cache_set *c, *tc;
1923        struct cache *ca;
1924        unsigned i;
1925
1926        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1927                for_each_cache(ca, c, i)
1928                        if (ca->bdev == bdev)
1929                                return true;
1930        return false;
1931}
1932
1933static bool bch_is_open(struct block_device *bdev) {
1934        return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1935}
1936
1937static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1938                               const char *buffer, size_t size)
1939{
1940        ssize_t ret = size;
1941        const char *err = "cannot allocate memory";
1942        char *path = NULL;
1943        struct cache_sb *sb = NULL;
1944        struct block_device *bdev = NULL;
1945        struct page *sb_page = NULL;
1946
1947        if (!try_module_get(THIS_MODULE))
1948                return -EBUSY;
1949
1950        if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1951            !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1952                goto err;
1953
1954        err = "failed to open device";
1955        bdev = blkdev_get_by_path(strim(path),
1956                                  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1957                                  sb);
1958        if (IS_ERR(bdev)) {
1959                if (bdev == ERR_PTR(-EBUSY)) {
1960                        bdev = lookup_bdev(strim(path));
1961                        mutex_lock(&bch_register_lock);
1962                        if (!IS_ERR(bdev) && bch_is_open(bdev))
1963                                err = "device already registered";
1964                        else
1965                                err = "device busy";
1966                        mutex_unlock(&bch_register_lock);
1967                        if (attr == &ksysfs_register_quiet)
1968                                goto out;
1969                }
1970                goto err;
1971        }
1972
1973        err = "failed to set blocksize";
1974        if (set_blocksize(bdev, 4096))
1975                goto err_close;
1976
1977        err = read_super(sb, bdev, &sb_page);
1978        if (err)
1979                goto err_close;
1980
1981        if (SB_IS_BDEV(sb)) {
1982                struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1983                if (!dc)
1984                        goto err_close;
1985
1986                mutex_lock(&bch_register_lock);
1987                register_bdev(sb, sb_page, bdev, dc);
1988                mutex_unlock(&bch_register_lock);
1989        } else {
1990                struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1991                if (!ca)
1992                        goto err_close;
1993
1994                if (register_cache(sb, sb_page, bdev, ca) != 0)
1995                        goto err_close;
1996        }
1997out:
1998        if (sb_page)
1999                put_page(sb_page);
2000        kfree(sb);
2001        kfree(path);
2002        module_put(THIS_MODULE);
2003        return ret;
2004
2005err_close:
2006        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2007err:
2008        pr_info("error opening %s: %s", path, err);
2009        ret = -EINVAL;
2010        goto out;
2011}
2012
2013static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2014{
2015        if (code == SYS_DOWN ||
2016            code == SYS_HALT ||
2017            code == SYS_POWER_OFF) {
2018                DEFINE_WAIT(wait);
2019                unsigned long start = jiffies;
2020                bool stopped = false;
2021
2022                struct cache_set *c, *tc;
2023                struct cached_dev *dc, *tdc;
2024
2025                mutex_lock(&bch_register_lock);
2026
2027                if (list_empty(&bch_cache_sets) &&
2028                    list_empty(&uncached_devices))
2029                        goto out;
2030
2031                pr_info("Stopping all devices:");
2032
2033                list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2034                        bch_cache_set_stop(c);
2035
2036                list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2037                        bcache_device_stop(&dc->disk);
2038
2039                /* What's a condition variable? */
2040                while (1) {
2041                        long timeout = start + 2 * HZ - jiffies;
2042
2043                        stopped = list_empty(&bch_cache_sets) &&
2044                                list_empty(&uncached_devices);
2045
2046                        if (timeout < 0 || stopped)
2047                                break;
2048
2049                        prepare_to_wait(&unregister_wait, &wait,
2050                                        TASK_UNINTERRUPTIBLE);
2051
2052                        mutex_unlock(&bch_register_lock);
2053                        schedule_timeout(timeout);
2054                        mutex_lock(&bch_register_lock);
2055                }
2056
2057                finish_wait(&unregister_wait, &wait);
2058
2059                if (stopped)
2060                        pr_info("All devices stopped");
2061                else
2062                        pr_notice("Timeout waiting for devices to be closed");
2063out:
2064                mutex_unlock(&bch_register_lock);
2065        }
2066
2067        return NOTIFY_DONE;
2068}
2069
2070static struct notifier_block reboot = {
2071        .notifier_call  = bcache_reboot,
2072        .priority       = INT_MAX, /* before any real devices */
2073};
2074
2075static void bcache_exit(void)
2076{
2077        bch_debug_exit();
2078        bch_request_exit();
2079        if (bcache_kobj)
2080                kobject_put(bcache_kobj);
2081        if (bcache_wq)
2082                destroy_workqueue(bcache_wq);
2083        if (bcache_major)
2084                unregister_blkdev(bcache_major, "bcache");
2085        unregister_reboot_notifier(&reboot);
2086}
2087
2088static int __init bcache_init(void)
2089{
2090        static const struct attribute *files[] = {
2091                &ksysfs_register.attr,
2092                &ksysfs_register_quiet.attr,
2093                NULL
2094        };
2095
2096        mutex_init(&bch_register_lock);
2097        init_waitqueue_head(&unregister_wait);
2098        register_reboot_notifier(&reboot);
2099        closure_debug_init();
2100
2101        bcache_major = register_blkdev(0, "bcache");
2102        if (bcache_major < 0) {
2103                unregister_reboot_notifier(&reboot);
2104                return bcache_major;
2105        }
2106
2107        if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2108            !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2109            sysfs_create_files(bcache_kobj, files) ||
2110            bch_request_init() ||
2111            bch_debug_init(bcache_kobj))
2112                goto err;
2113
2114        return 0;
2115err:
2116        bcache_exit();
2117        return -ENOMEM;
2118}
2119
2120module_exit(bcache_exit);
2121module_init(bcache_init);
2122