linux/drivers/md/dm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27
  28#define DM_MSG_PREFIX "core"
  29
  30/*
  31 * Cookies are numeric values sent with CHANGE and REMOVE
  32 * uevents while resuming, removing or renaming the device.
  33 */
  34#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  35#define DM_COOKIE_LENGTH 24
  36
  37static const char *_name = DM_NAME;
  38
  39static unsigned int major = 0;
  40static unsigned int _major = 0;
  41
  42static DEFINE_IDR(_minor_idr);
  43
  44static DEFINE_SPINLOCK(_minor_lock);
  45
  46static void do_deferred_remove(struct work_struct *w);
  47
  48static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  49
  50static struct workqueue_struct *deferred_remove_workqueue;
  51
  52atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  53DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  54
  55/*
  56 * One of these is allocated per bio.
  57 */
  58struct dm_io {
  59        struct mapped_device *md;
  60        blk_status_t status;
  61        atomic_t io_count;
  62        struct bio *bio;
  63        unsigned long start_time;
  64        spinlock_t endio_lock;
  65        struct dm_stats_aux stats_aux;
  66};
  67
  68#define MINOR_ALLOCED ((void *)-1)
  69
  70/*
  71 * Bits for the md->flags field.
  72 */
  73#define DMF_BLOCK_IO_FOR_SUSPEND 0
  74#define DMF_SUSPENDED 1
  75#define DMF_FROZEN 2
  76#define DMF_FREEING 3
  77#define DMF_DELETING 4
  78#define DMF_NOFLUSH_SUSPENDING 5
  79#define DMF_DEFERRED_REMOVE 6
  80#define DMF_SUSPENDED_INTERNALLY 7
  81
  82#define DM_NUMA_NODE NUMA_NO_NODE
  83static int dm_numa_node = DM_NUMA_NODE;
  84
  85/*
  86 * For mempools pre-allocation at the table loading time.
  87 */
  88struct dm_md_mempools {
  89        mempool_t *io_pool;
  90        struct bio_set *bs;
  91};
  92
  93struct table_device {
  94        struct list_head list;
  95        atomic_t count;
  96        struct dm_dev dm_dev;
  97};
  98
  99static struct kmem_cache *_io_cache;
 100static struct kmem_cache *_rq_tio_cache;
 101static struct kmem_cache *_rq_cache;
 102
 103/*
 104 * Bio-based DM's mempools' reserved IOs set by the user.
 105 */
 106#define RESERVED_BIO_BASED_IOS          16
 107static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 108
 109static int __dm_get_module_param_int(int *module_param, int min, int max)
 110{
 111        int param = ACCESS_ONCE(*module_param);
 112        int modified_param = 0;
 113        bool modified = true;
 114
 115        if (param < min)
 116                modified_param = min;
 117        else if (param > max)
 118                modified_param = max;
 119        else
 120                modified = false;
 121
 122        if (modified) {
 123                (void)cmpxchg(module_param, param, modified_param);
 124                param = modified_param;
 125        }
 126
 127        return param;
 128}
 129
 130unsigned __dm_get_module_param(unsigned *module_param,
 131                               unsigned def, unsigned max)
 132{
 133        unsigned param = ACCESS_ONCE(*module_param);
 134        unsigned modified_param = 0;
 135
 136        if (!param)
 137                modified_param = def;
 138        else if (param > max)
 139                modified_param = max;
 140
 141        if (modified_param) {
 142                (void)cmpxchg(module_param, param, modified_param);
 143                param = modified_param;
 144        }
 145
 146        return param;
 147}
 148
 149unsigned dm_get_reserved_bio_based_ios(void)
 150{
 151        return __dm_get_module_param(&reserved_bio_based_ios,
 152                                     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 153}
 154EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 155
 156static unsigned dm_get_numa_node(void)
 157{
 158        return __dm_get_module_param_int(&dm_numa_node,
 159                                         DM_NUMA_NODE, num_online_nodes() - 1);
 160}
 161
 162static int __init local_init(void)
 163{
 164        int r = -ENOMEM;
 165
 166        /* allocate a slab for the dm_ios */
 167        _io_cache = KMEM_CACHE(dm_io, 0);
 168        if (!_io_cache)
 169                return r;
 170
 171        _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 172        if (!_rq_tio_cache)
 173                goto out_free_io_cache;
 174
 175        _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 176                                      __alignof__(struct request), 0, NULL);
 177        if (!_rq_cache)
 178                goto out_free_rq_tio_cache;
 179
 180        r = dm_uevent_init();
 181        if (r)
 182                goto out_free_rq_cache;
 183
 184        deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 185        if (!deferred_remove_workqueue) {
 186                r = -ENOMEM;
 187                goto out_uevent_exit;
 188        }
 189
 190        _major = major;
 191        r = register_blkdev(_major, _name);
 192        if (r < 0)
 193                goto out_free_workqueue;
 194
 195        if (!_major)
 196                _major = r;
 197
 198        return 0;
 199
 200out_free_workqueue:
 201        destroy_workqueue(deferred_remove_workqueue);
 202out_uevent_exit:
 203        dm_uevent_exit();
 204out_free_rq_cache:
 205        kmem_cache_destroy(_rq_cache);
 206out_free_rq_tio_cache:
 207        kmem_cache_destroy(_rq_tio_cache);
 208out_free_io_cache:
 209        kmem_cache_destroy(_io_cache);
 210
 211        return r;
 212}
 213
 214static void local_exit(void)
 215{
 216        flush_scheduled_work();
 217        destroy_workqueue(deferred_remove_workqueue);
 218
 219        kmem_cache_destroy(_rq_cache);
 220        kmem_cache_destroy(_rq_tio_cache);
 221        kmem_cache_destroy(_io_cache);
 222        unregister_blkdev(_major, _name);
 223        dm_uevent_exit();
 224
 225        _major = 0;
 226
 227        DMINFO("cleaned up");
 228}
 229
 230static int (*_inits[])(void) __initdata = {
 231        local_init,
 232        dm_target_init,
 233        dm_linear_init,
 234        dm_stripe_init,
 235        dm_io_init,
 236        dm_kcopyd_init,
 237        dm_interface_init,
 238        dm_statistics_init,
 239};
 240
 241static void (*_exits[])(void) = {
 242        local_exit,
 243        dm_target_exit,
 244        dm_linear_exit,
 245        dm_stripe_exit,
 246        dm_io_exit,
 247        dm_kcopyd_exit,
 248        dm_interface_exit,
 249        dm_statistics_exit,
 250};
 251
 252static int __init dm_init(void)
 253{
 254        const int count = ARRAY_SIZE(_inits);
 255
 256        int r, i;
 257
 258        for (i = 0; i < count; i++) {
 259                r = _inits[i]();
 260                if (r)
 261                        goto bad;
 262        }
 263
 264        return 0;
 265
 266      bad:
 267        while (i--)
 268                _exits[i]();
 269
 270        return r;
 271}
 272
 273static void __exit dm_exit(void)
 274{
 275        int i = ARRAY_SIZE(_exits);
 276
 277        while (i--)
 278                _exits[i]();
 279
 280        /*
 281         * Should be empty by this point.
 282         */
 283        idr_destroy(&_minor_idr);
 284}
 285
 286/*
 287 * Block device functions
 288 */
 289int dm_deleting_md(struct mapped_device *md)
 290{
 291        return test_bit(DMF_DELETING, &md->flags);
 292}
 293
 294static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 295{
 296        struct mapped_device *md;
 297
 298        spin_lock(&_minor_lock);
 299
 300        md = bdev->bd_disk->private_data;
 301        if (!md)
 302                goto out;
 303
 304        if (test_bit(DMF_FREEING, &md->flags) ||
 305            dm_deleting_md(md)) {
 306                md = NULL;
 307                goto out;
 308        }
 309
 310        dm_get(md);
 311        atomic_inc(&md->open_count);
 312out:
 313        spin_unlock(&_minor_lock);
 314
 315        return md ? 0 : -ENXIO;
 316}
 317
 318static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 319{
 320        struct mapped_device *md;
 321
 322        spin_lock(&_minor_lock);
 323
 324        md = disk->private_data;
 325        if (WARN_ON(!md))
 326                goto out;
 327
 328        if (atomic_dec_and_test(&md->open_count) &&
 329            (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 330                queue_work(deferred_remove_workqueue, &deferred_remove_work);
 331
 332        dm_put(md);
 333out:
 334        spin_unlock(&_minor_lock);
 335}
 336
 337int dm_open_count(struct mapped_device *md)
 338{
 339        return atomic_read(&md->open_count);
 340}
 341
 342/*
 343 * Guarantees nothing is using the device before it's deleted.
 344 */
 345int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 346{
 347        int r = 0;
 348
 349        spin_lock(&_minor_lock);
 350
 351        if (dm_open_count(md)) {
 352                r = -EBUSY;
 353                if (mark_deferred)
 354                        set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 355        } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 356                r = -EEXIST;
 357        else
 358                set_bit(DMF_DELETING, &md->flags);
 359
 360        spin_unlock(&_minor_lock);
 361
 362        return r;
 363}
 364
 365int dm_cancel_deferred_remove(struct mapped_device *md)
 366{
 367        int r = 0;
 368
 369        spin_lock(&_minor_lock);
 370
 371        if (test_bit(DMF_DELETING, &md->flags))
 372                r = -EBUSY;
 373        else
 374                clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 375
 376        spin_unlock(&_minor_lock);
 377
 378        return r;
 379}
 380
 381static void do_deferred_remove(struct work_struct *w)
 382{
 383        dm_deferred_remove();
 384}
 385
 386sector_t dm_get_size(struct mapped_device *md)
 387{
 388        return get_capacity(md->disk);
 389}
 390
 391struct request_queue *dm_get_md_queue(struct mapped_device *md)
 392{
 393        return md->queue;
 394}
 395
 396struct dm_stats *dm_get_stats(struct mapped_device *md)
 397{
 398        return &md->stats;
 399}
 400
 401static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 402{
 403        struct mapped_device *md = bdev->bd_disk->private_data;
 404
 405        return dm_get_geometry(md, geo);
 406}
 407
 408static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
 409                                  struct block_device **bdev,
 410                                  fmode_t *mode)
 411{
 412        struct dm_target *tgt;
 413        struct dm_table *map;
 414        int srcu_idx, r;
 415
 416retry:
 417        r = -ENOTTY;
 418        map = dm_get_live_table(md, &srcu_idx);
 419        if (!map || !dm_table_get_size(map))
 420                goto out;
 421
 422        /* We only support devices that have a single target */
 423        if (dm_table_get_num_targets(map) != 1)
 424                goto out;
 425
 426        tgt = dm_table_get_target(map, 0);
 427        if (!tgt->type->prepare_ioctl)
 428                goto out;
 429
 430        if (dm_suspended_md(md)) {
 431                r = -EAGAIN;
 432                goto out;
 433        }
 434
 435        r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 436        if (r < 0)
 437                goto out;
 438
 439        bdgrab(*bdev);
 440        dm_put_live_table(md, srcu_idx);
 441        return r;
 442
 443out:
 444        dm_put_live_table(md, srcu_idx);
 445        if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 446                msleep(10);
 447                goto retry;
 448        }
 449        return r;
 450}
 451
 452static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 453                        unsigned int cmd, unsigned long arg)
 454{
 455        struct mapped_device *md = bdev->bd_disk->private_data;
 456        int r;
 457
 458        r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
 459        if (r < 0)
 460                return r;
 461
 462        if (r > 0) {
 463                /*
 464                 * Target determined this ioctl is being issued against a
 465                 * subset of the parent bdev; require extra privileges.
 466                 */
 467                if (!capable(CAP_SYS_RAWIO)) {
 468                        DMWARN_LIMIT(
 469        "%s: sending ioctl %x to DM device without required privilege.",
 470                                current->comm, cmd);
 471                        r = -ENOIOCTLCMD;
 472                        goto out;
 473                }
 474        }
 475
 476        r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 477out:
 478        bdput(bdev);
 479        return r;
 480}
 481
 482static struct dm_io *alloc_io(struct mapped_device *md)
 483{
 484        return mempool_alloc(md->io_pool, GFP_NOIO);
 485}
 486
 487static void free_io(struct mapped_device *md, struct dm_io *io)
 488{
 489        mempool_free(io, md->io_pool);
 490}
 491
 492static void free_tio(struct dm_target_io *tio)
 493{
 494        bio_put(&tio->clone);
 495}
 496
 497int md_in_flight(struct mapped_device *md)
 498{
 499        return atomic_read(&md->pending[READ]) +
 500               atomic_read(&md->pending[WRITE]);
 501}
 502
 503static void start_io_acct(struct dm_io *io)
 504{
 505        struct mapped_device *md = io->md;
 506        struct bio *bio = io->bio;
 507        int cpu;
 508        int rw = bio_data_dir(bio);
 509
 510        io->start_time = jiffies;
 511
 512        cpu = part_stat_lock();
 513        part_round_stats(cpu, &dm_disk(md)->part0);
 514        part_stat_unlock();
 515        atomic_set(&dm_disk(md)->part0.in_flight[rw],
 516                atomic_inc_return(&md->pending[rw]));
 517
 518        if (unlikely(dm_stats_used(&md->stats)))
 519                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 520                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 521                                    false, 0, &io->stats_aux);
 522}
 523
 524static void end_io_acct(struct dm_io *io)
 525{
 526        struct mapped_device *md = io->md;
 527        struct bio *bio = io->bio;
 528        unsigned long duration = jiffies - io->start_time;
 529        int pending;
 530        int rw = bio_data_dir(bio);
 531
 532        generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
 533
 534        if (unlikely(dm_stats_used(&md->stats)))
 535                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 536                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 537                                    true, duration, &io->stats_aux);
 538
 539        /*
 540         * After this is decremented the bio must not be touched if it is
 541         * a flush.
 542         */
 543        pending = atomic_dec_return(&md->pending[rw]);
 544        atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 545        pending += atomic_read(&md->pending[rw^0x1]);
 546
 547        /* nudge anyone waiting on suspend queue */
 548        if (!pending)
 549                wake_up(&md->wait);
 550}
 551
 552/*
 553 * Add the bio to the list of deferred io.
 554 */
 555static void queue_io(struct mapped_device *md, struct bio *bio)
 556{
 557        unsigned long flags;
 558
 559        spin_lock_irqsave(&md->deferred_lock, flags);
 560        bio_list_add(&md->deferred, bio);
 561        spin_unlock_irqrestore(&md->deferred_lock, flags);
 562        queue_work(md->wq, &md->work);
 563}
 564
 565/*
 566 * Everyone (including functions in this file), should use this
 567 * function to access the md->map field, and make sure they call
 568 * dm_put_live_table() when finished.
 569 */
 570struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 571{
 572        *srcu_idx = srcu_read_lock(&md->io_barrier);
 573
 574        return srcu_dereference(md->map, &md->io_barrier);
 575}
 576
 577void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 578{
 579        srcu_read_unlock(&md->io_barrier, srcu_idx);
 580}
 581
 582void dm_sync_table(struct mapped_device *md)
 583{
 584        synchronize_srcu(&md->io_barrier);
 585        synchronize_rcu_expedited();
 586}
 587
 588/*
 589 * A fast alternative to dm_get_live_table/dm_put_live_table.
 590 * The caller must not block between these two functions.
 591 */
 592static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 593{
 594        rcu_read_lock();
 595        return rcu_dereference(md->map);
 596}
 597
 598static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 599{
 600        rcu_read_unlock();
 601}
 602
 603/*
 604 * Open a table device so we can use it as a map destination.
 605 */
 606static int open_table_device(struct table_device *td, dev_t dev,
 607                             struct mapped_device *md)
 608{
 609        static char *_claim_ptr = "I belong to device-mapper";
 610        struct block_device *bdev;
 611
 612        int r;
 613
 614        BUG_ON(td->dm_dev.bdev);
 615
 616        bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 617        if (IS_ERR(bdev))
 618                return PTR_ERR(bdev);
 619
 620        r = bd_link_disk_holder(bdev, dm_disk(md));
 621        if (r) {
 622                blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 623                return r;
 624        }
 625
 626        td->dm_dev.bdev = bdev;
 627        td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 628        return 0;
 629}
 630
 631/*
 632 * Close a table device that we've been using.
 633 */
 634static void close_table_device(struct table_device *td, struct mapped_device *md)
 635{
 636        if (!td->dm_dev.bdev)
 637                return;
 638
 639        bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 640        blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 641        put_dax(td->dm_dev.dax_dev);
 642        td->dm_dev.bdev = NULL;
 643        td->dm_dev.dax_dev = NULL;
 644}
 645
 646static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 647                                              fmode_t mode) {
 648        struct table_device *td;
 649
 650        list_for_each_entry(td, l, list)
 651                if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 652                        return td;
 653
 654        return NULL;
 655}
 656
 657int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 658                        struct dm_dev **result) {
 659        int r;
 660        struct table_device *td;
 661
 662        mutex_lock(&md->table_devices_lock);
 663        td = find_table_device(&md->table_devices, dev, mode);
 664        if (!td) {
 665                td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 666                if (!td) {
 667                        mutex_unlock(&md->table_devices_lock);
 668                        return -ENOMEM;
 669                }
 670
 671                td->dm_dev.mode = mode;
 672                td->dm_dev.bdev = NULL;
 673
 674                if ((r = open_table_device(td, dev, md))) {
 675                        mutex_unlock(&md->table_devices_lock);
 676                        kfree(td);
 677                        return r;
 678                }
 679
 680                format_dev_t(td->dm_dev.name, dev);
 681
 682                atomic_set(&td->count, 0);
 683                list_add(&td->list, &md->table_devices);
 684        }
 685        atomic_inc(&td->count);
 686        mutex_unlock(&md->table_devices_lock);
 687
 688        *result = &td->dm_dev;
 689        return 0;
 690}
 691EXPORT_SYMBOL_GPL(dm_get_table_device);
 692
 693void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 694{
 695        struct table_device *td = container_of(d, struct table_device, dm_dev);
 696
 697        mutex_lock(&md->table_devices_lock);
 698        if (atomic_dec_and_test(&td->count)) {
 699                close_table_device(td, md);
 700                list_del(&td->list);
 701                kfree(td);
 702        }
 703        mutex_unlock(&md->table_devices_lock);
 704}
 705EXPORT_SYMBOL(dm_put_table_device);
 706
 707static void free_table_devices(struct list_head *devices)
 708{
 709        struct list_head *tmp, *next;
 710
 711        list_for_each_safe(tmp, next, devices) {
 712                struct table_device *td = list_entry(tmp, struct table_device, list);
 713
 714                DMWARN("dm_destroy: %s still exists with %d references",
 715                       td->dm_dev.name, atomic_read(&td->count));
 716                kfree(td);
 717        }
 718}
 719
 720/*
 721 * Get the geometry associated with a dm device
 722 */
 723int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 724{
 725        *geo = md->geometry;
 726
 727        return 0;
 728}
 729
 730/*
 731 * Set the geometry of a device.
 732 */
 733int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 734{
 735        sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 736
 737        if (geo->start > sz) {
 738                DMWARN("Start sector is beyond the geometry limits.");
 739                return -EINVAL;
 740        }
 741
 742        md->geometry = *geo;
 743
 744        return 0;
 745}
 746
 747/*-----------------------------------------------------------------
 748 * CRUD START:
 749 *   A more elegant soln is in the works that uses the queue
 750 *   merge fn, unfortunately there are a couple of changes to
 751 *   the block layer that I want to make for this.  So in the
 752 *   interests of getting something for people to use I give
 753 *   you this clearly demarcated crap.
 754 *---------------------------------------------------------------*/
 755
 756static int __noflush_suspending(struct mapped_device *md)
 757{
 758        return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 759}
 760
 761/*
 762 * Decrements the number of outstanding ios that a bio has been
 763 * cloned into, completing the original io if necc.
 764 */
 765static void dec_pending(struct dm_io *io, blk_status_t error)
 766{
 767        unsigned long flags;
 768        blk_status_t io_error;
 769        struct bio *bio;
 770        struct mapped_device *md = io->md;
 771
 772        /* Push-back supersedes any I/O errors */
 773        if (unlikely(error)) {
 774                spin_lock_irqsave(&io->endio_lock, flags);
 775                if (!(io->status == BLK_STS_DM_REQUEUE &&
 776                                __noflush_suspending(md)))
 777                        io->status = error;
 778                spin_unlock_irqrestore(&io->endio_lock, flags);
 779        }
 780
 781        if (atomic_dec_and_test(&io->io_count)) {
 782                if (io->status == BLK_STS_DM_REQUEUE) {
 783                        /*
 784                         * Target requested pushing back the I/O.
 785                         */
 786                        spin_lock_irqsave(&md->deferred_lock, flags);
 787                        if (__noflush_suspending(md))
 788                                bio_list_add_head(&md->deferred, io->bio);
 789                        else
 790                                /* noflush suspend was interrupted. */
 791                                io->status = BLK_STS_IOERR;
 792                        spin_unlock_irqrestore(&md->deferred_lock, flags);
 793                }
 794
 795                io_error = io->status;
 796                bio = io->bio;
 797                end_io_acct(io);
 798                free_io(md, io);
 799
 800                if (io_error == BLK_STS_DM_REQUEUE)
 801                        return;
 802
 803                if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 804                        /*
 805                         * Preflush done for flush with data, reissue
 806                         * without REQ_PREFLUSH.
 807                         */
 808                        bio->bi_opf &= ~REQ_PREFLUSH;
 809                        queue_io(md, bio);
 810                } else {
 811                        /* done with normal IO or empty flush */
 812                        bio->bi_status = io_error;
 813                        bio_endio(bio);
 814                }
 815        }
 816}
 817
 818void disable_write_same(struct mapped_device *md)
 819{
 820        struct queue_limits *limits = dm_get_queue_limits(md);
 821
 822        /* device doesn't really support WRITE SAME, disable it */
 823        limits->max_write_same_sectors = 0;
 824}
 825
 826void disable_write_zeroes(struct mapped_device *md)
 827{
 828        struct queue_limits *limits = dm_get_queue_limits(md);
 829
 830        /* device doesn't really support WRITE ZEROES, disable it */
 831        limits->max_write_zeroes_sectors = 0;
 832}
 833
 834static void clone_endio(struct bio *bio)
 835{
 836        blk_status_t error = bio->bi_status;
 837        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 838        struct dm_io *io = tio->io;
 839        struct mapped_device *md = tio->io->md;
 840        dm_endio_fn endio = tio->ti->type->end_io;
 841
 842        if (unlikely(error == BLK_STS_TARGET)) {
 843                if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 844                    !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)
 845                        disable_write_same(md);
 846                if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 847                    !bdev_get_queue(bio->bi_bdev)->limits.max_write_zeroes_sectors)
 848                        disable_write_zeroes(md);
 849        }
 850
 851        if (endio) {
 852                int r = endio(tio->ti, bio, &error);
 853                switch (r) {
 854                case DM_ENDIO_REQUEUE:
 855                        error = BLK_STS_DM_REQUEUE;
 856                        /*FALLTHRU*/
 857                case DM_ENDIO_DONE:
 858                        break;
 859                case DM_ENDIO_INCOMPLETE:
 860                        /* The target will handle the io */
 861                        return;
 862                default:
 863                        DMWARN("unimplemented target endio return value: %d", r);
 864                        BUG();
 865                }
 866        }
 867
 868        free_tio(tio);
 869        dec_pending(io, error);
 870}
 871
 872/*
 873 * Return maximum size of I/O possible at the supplied sector up to the current
 874 * target boundary.
 875 */
 876static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 877{
 878        sector_t target_offset = dm_target_offset(ti, sector);
 879
 880        return ti->len - target_offset;
 881}
 882
 883static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 884{
 885        sector_t len = max_io_len_target_boundary(sector, ti);
 886        sector_t offset, max_len;
 887
 888        /*
 889         * Does the target need to split even further?
 890         */
 891        if (ti->max_io_len) {
 892                offset = dm_target_offset(ti, sector);
 893                if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 894                        max_len = sector_div(offset, ti->max_io_len);
 895                else
 896                        max_len = offset & (ti->max_io_len - 1);
 897                max_len = ti->max_io_len - max_len;
 898
 899                if (len > max_len)
 900                        len = max_len;
 901        }
 902
 903        return len;
 904}
 905
 906int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 907{
 908        if (len > UINT_MAX) {
 909                DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 910                      (unsigned long long)len, UINT_MAX);
 911                ti->error = "Maximum size of target IO is too large";
 912                return -EINVAL;
 913        }
 914
 915        ti->max_io_len = (uint32_t) len;
 916
 917        return 0;
 918}
 919EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 920
 921static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
 922                sector_t sector, int *srcu_idx)
 923{
 924        struct dm_table *map;
 925        struct dm_target *ti;
 926
 927        map = dm_get_live_table(md, srcu_idx);
 928        if (!map)
 929                return NULL;
 930
 931        ti = dm_table_find_target(map, sector);
 932        if (!dm_target_is_valid(ti))
 933                return NULL;
 934
 935        return ti;
 936}
 937
 938static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
 939                long nr_pages, void **kaddr, pfn_t *pfn)
 940{
 941        struct mapped_device *md = dax_get_private(dax_dev);
 942        sector_t sector = pgoff * PAGE_SECTORS;
 943        struct dm_target *ti;
 944        long len, ret = -EIO;
 945        int srcu_idx;
 946
 947        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 948
 949        if (!ti)
 950                goto out;
 951        if (!ti->type->direct_access)
 952                goto out;
 953        len = max_io_len(sector, ti) / PAGE_SECTORS;
 954        if (len < 1)
 955                goto out;
 956        nr_pages = min(len, nr_pages);
 957        if (ti->type->direct_access)
 958                ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
 959
 960 out:
 961        dm_put_live_table(md, srcu_idx);
 962
 963        return ret;
 964}
 965
 966static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 967                void *addr, size_t bytes, struct iov_iter *i)
 968{
 969        struct mapped_device *md = dax_get_private(dax_dev);
 970        sector_t sector = pgoff * PAGE_SECTORS;
 971        struct dm_target *ti;
 972        long ret = 0;
 973        int srcu_idx;
 974
 975        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 976
 977        if (!ti)
 978                goto out;
 979        if (!ti->type->dax_copy_from_iter) {
 980                ret = copy_from_iter(addr, bytes, i);
 981                goto out;
 982        }
 983        ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
 984 out:
 985        dm_put_live_table(md, srcu_idx);
 986
 987        return ret;
 988}
 989
 990static void dm_dax_flush(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
 991                size_t size)
 992{
 993        struct mapped_device *md = dax_get_private(dax_dev);
 994        sector_t sector = pgoff * PAGE_SECTORS;
 995        struct dm_target *ti;
 996        int srcu_idx;
 997
 998        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 999
1000        if (!ti)
1001                goto out;
1002        if (ti->type->dax_flush)
1003                ti->type->dax_flush(ti, pgoff, addr, size);
1004 out:
1005        dm_put_live_table(md, srcu_idx);
1006}
1007
1008/*
1009 * A target may call dm_accept_partial_bio only from the map routine.  It is
1010 * allowed for all bio types except REQ_PREFLUSH.
1011 *
1012 * dm_accept_partial_bio informs the dm that the target only wants to process
1013 * additional n_sectors sectors of the bio and the rest of the data should be
1014 * sent in a next bio.
1015 *
1016 * A diagram that explains the arithmetics:
1017 * +--------------------+---------------+-------+
1018 * |         1          |       2       |   3   |
1019 * +--------------------+---------------+-------+
1020 *
1021 * <-------------- *tio->len_ptr --------------->
1022 *                      <------- bi_size ------->
1023 *                      <-- n_sectors -->
1024 *
1025 * Region 1 was already iterated over with bio_advance or similar function.
1026 *      (it may be empty if the target doesn't use bio_advance)
1027 * Region 2 is the remaining bio size that the target wants to process.
1028 *      (it may be empty if region 1 is non-empty, although there is no reason
1029 *       to make it empty)
1030 * The target requires that region 3 is to be sent in the next bio.
1031 *
1032 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1033 * the partially processed part (the sum of regions 1+2) must be the same for all
1034 * copies of the bio.
1035 */
1036void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1037{
1038        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1039        unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1040        BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1041        BUG_ON(bi_size > *tio->len_ptr);
1042        BUG_ON(n_sectors > bi_size);
1043        *tio->len_ptr -= bi_size - n_sectors;
1044        bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1045}
1046EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1047
1048/*
1049 * The zone descriptors obtained with a zone report indicate
1050 * zone positions within the target device. The zone descriptors
1051 * must be remapped to match their position within the dm device.
1052 * A target may call dm_remap_zone_report after completion of a
1053 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1054 * from the target device mapping to the dm device.
1055 */
1056void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1057{
1058#ifdef CONFIG_BLK_DEV_ZONED
1059        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1060        struct bio *report_bio = tio->io->bio;
1061        struct blk_zone_report_hdr *hdr = NULL;
1062        struct blk_zone *zone;
1063        unsigned int nr_rep = 0;
1064        unsigned int ofst;
1065        struct bio_vec bvec;
1066        struct bvec_iter iter;
1067        void *addr;
1068
1069        if (bio->bi_status)
1070                return;
1071
1072        /*
1073         * Remap the start sector of the reported zones. For sequential zones,
1074         * also remap the write pointer position.
1075         */
1076        bio_for_each_segment(bvec, report_bio, iter) {
1077                addr = kmap_atomic(bvec.bv_page);
1078
1079                /* Remember the report header in the first page */
1080                if (!hdr) {
1081                        hdr = addr;
1082                        ofst = sizeof(struct blk_zone_report_hdr);
1083                } else
1084                        ofst = 0;
1085
1086                /* Set zones start sector */
1087                while (hdr->nr_zones && ofst < bvec.bv_len) {
1088                        zone = addr + ofst;
1089                        if (zone->start >= start + ti->len) {
1090                                hdr->nr_zones = 0;
1091                                break;
1092                        }
1093                        zone->start = zone->start + ti->begin - start;
1094                        if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1095                                if (zone->cond == BLK_ZONE_COND_FULL)
1096                                        zone->wp = zone->start + zone->len;
1097                                else if (zone->cond == BLK_ZONE_COND_EMPTY)
1098                                        zone->wp = zone->start;
1099                                else
1100                                        zone->wp = zone->wp + ti->begin - start;
1101                        }
1102                        ofst += sizeof(struct blk_zone);
1103                        hdr->nr_zones--;
1104                        nr_rep++;
1105                }
1106
1107                if (addr != hdr)
1108                        kunmap_atomic(addr);
1109
1110                if (!hdr->nr_zones)
1111                        break;
1112        }
1113
1114        if (hdr) {
1115                hdr->nr_zones = nr_rep;
1116                kunmap_atomic(hdr);
1117        }
1118
1119        bio_advance(report_bio, report_bio->bi_iter.bi_size);
1120
1121#else /* !CONFIG_BLK_DEV_ZONED */
1122        bio->bi_status = BLK_STS_NOTSUPP;
1123#endif
1124}
1125EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1126
1127/*
1128 * Flush current->bio_list when the target map method blocks.
1129 * This fixes deadlocks in snapshot and possibly in other targets.
1130 */
1131struct dm_offload {
1132        struct blk_plug plug;
1133        struct blk_plug_cb cb;
1134};
1135
1136static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1137{
1138        struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1139        struct bio_list list;
1140        struct bio *bio;
1141        int i;
1142
1143        INIT_LIST_HEAD(&o->cb.list);
1144
1145        if (unlikely(!current->bio_list))
1146                return;
1147
1148        for (i = 0; i < 2; i++) {
1149                list = current->bio_list[i];
1150                bio_list_init(&current->bio_list[i]);
1151
1152                while ((bio = bio_list_pop(&list))) {
1153                        struct bio_set *bs = bio->bi_pool;
1154                        if (unlikely(!bs) || bs == fs_bio_set ||
1155                            !bs->rescue_workqueue) {
1156                                bio_list_add(&current->bio_list[i], bio);
1157                                continue;
1158                        }
1159
1160                        spin_lock(&bs->rescue_lock);
1161                        bio_list_add(&bs->rescue_list, bio);
1162                        queue_work(bs->rescue_workqueue, &bs->rescue_work);
1163                        spin_unlock(&bs->rescue_lock);
1164                }
1165        }
1166}
1167
1168static void dm_offload_start(struct dm_offload *o)
1169{
1170        blk_start_plug(&o->plug);
1171        o->cb.callback = flush_current_bio_list;
1172        list_add(&o->cb.list, &current->plug->cb_list);
1173}
1174
1175static void dm_offload_end(struct dm_offload *o)
1176{
1177        list_del(&o->cb.list);
1178        blk_finish_plug(&o->plug);
1179}
1180
1181static void __map_bio(struct dm_target_io *tio)
1182{
1183        int r;
1184        sector_t sector;
1185        struct dm_offload o;
1186        struct bio *clone = &tio->clone;
1187        struct dm_target *ti = tio->ti;
1188
1189        clone->bi_end_io = clone_endio;
1190
1191        /*
1192         * Map the clone.  If r == 0 we don't need to do
1193         * anything, the target has assumed ownership of
1194         * this io.
1195         */
1196        atomic_inc(&tio->io->io_count);
1197        sector = clone->bi_iter.bi_sector;
1198
1199        dm_offload_start(&o);
1200        r = ti->type->map(ti, clone);
1201        dm_offload_end(&o);
1202
1203        switch (r) {
1204        case DM_MAPIO_SUBMITTED:
1205                break;
1206        case DM_MAPIO_REMAPPED:
1207                /* the bio has been remapped so dispatch it */
1208                trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1209                                      tio->io->bio->bi_bdev->bd_dev, sector);
1210                generic_make_request(clone);
1211                break;
1212        case DM_MAPIO_KILL:
1213                dec_pending(tio->io, BLK_STS_IOERR);
1214                free_tio(tio);
1215                break;
1216        case DM_MAPIO_REQUEUE:
1217                dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1218                free_tio(tio);
1219                break;
1220        default:
1221                DMWARN("unimplemented target map return value: %d", r);
1222                BUG();
1223        }
1224}
1225
1226struct clone_info {
1227        struct mapped_device *md;
1228        struct dm_table *map;
1229        struct bio *bio;
1230        struct dm_io *io;
1231        sector_t sector;
1232        unsigned sector_count;
1233};
1234
1235static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1236{
1237        bio->bi_iter.bi_sector = sector;
1238        bio->bi_iter.bi_size = to_bytes(len);
1239}
1240
1241/*
1242 * Creates a bio that consists of range of complete bvecs.
1243 */
1244static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1245                     sector_t sector, unsigned len)
1246{
1247        struct bio *clone = &tio->clone;
1248
1249        __bio_clone_fast(clone, bio);
1250
1251        if (unlikely(bio_integrity(bio) != NULL)) {
1252                int r;
1253
1254                if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1255                             !dm_target_passes_integrity(tio->ti->type))) {
1256                        DMWARN("%s: the target %s doesn't support integrity data.",
1257                                dm_device_name(tio->io->md),
1258                                tio->ti->type->name);
1259                        return -EIO;
1260                }
1261
1262                r = bio_integrity_clone(clone, bio, GFP_NOIO);
1263                if (r < 0)
1264                        return r;
1265        }
1266
1267        if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1268                bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1269        clone->bi_iter.bi_size = to_bytes(len);
1270
1271        if (unlikely(bio_integrity(bio) != NULL))
1272                bio_integrity_trim(clone);
1273
1274        return 0;
1275}
1276
1277static struct dm_target_io *alloc_tio(struct clone_info *ci,
1278                                      struct dm_target *ti,
1279                                      unsigned target_bio_nr)
1280{
1281        struct dm_target_io *tio;
1282        struct bio *clone;
1283
1284        clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1285        tio = container_of(clone, struct dm_target_io, clone);
1286
1287        tio->io = ci->io;
1288        tio->ti = ti;
1289        tio->target_bio_nr = target_bio_nr;
1290
1291        return tio;
1292}
1293
1294static void __clone_and_map_simple_bio(struct clone_info *ci,
1295                                       struct dm_target *ti,
1296                                       unsigned target_bio_nr, unsigned *len)
1297{
1298        struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1299        struct bio *clone = &tio->clone;
1300
1301        tio->len_ptr = len;
1302
1303        __bio_clone_fast(clone, ci->bio);
1304        if (len)
1305                bio_setup_sector(clone, ci->sector, *len);
1306
1307        __map_bio(tio);
1308}
1309
1310static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1311                                  unsigned num_bios, unsigned *len)
1312{
1313        unsigned target_bio_nr;
1314
1315        for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1316                __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1317}
1318
1319static int __send_empty_flush(struct clone_info *ci)
1320{
1321        unsigned target_nr = 0;
1322        struct dm_target *ti;
1323
1324        BUG_ON(bio_has_data(ci->bio));
1325        while ((ti = dm_table_get_target(ci->map, target_nr++)))
1326                __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1327
1328        return 0;
1329}
1330
1331static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1332                                     sector_t sector, unsigned *len)
1333{
1334        struct bio *bio = ci->bio;
1335        struct dm_target_io *tio;
1336        unsigned target_bio_nr;
1337        unsigned num_target_bios = 1;
1338        int r = 0;
1339
1340        /*
1341         * Does the target want to receive duplicate copies of the bio?
1342         */
1343        if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1344                num_target_bios = ti->num_write_bios(ti, bio);
1345
1346        for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1347                tio = alloc_tio(ci, ti, target_bio_nr);
1348                tio->len_ptr = len;
1349                r = clone_bio(tio, bio, sector, *len);
1350                if (r < 0) {
1351                        free_tio(tio);
1352                        break;
1353                }
1354                __map_bio(tio);
1355        }
1356
1357        return r;
1358}
1359
1360typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1361
1362static unsigned get_num_discard_bios(struct dm_target *ti)
1363{
1364        return ti->num_discard_bios;
1365}
1366
1367static unsigned get_num_write_same_bios(struct dm_target *ti)
1368{
1369        return ti->num_write_same_bios;
1370}
1371
1372static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1373{
1374        return ti->num_write_zeroes_bios;
1375}
1376
1377typedef bool (*is_split_required_fn)(struct dm_target *ti);
1378
1379static bool is_split_required_for_discard(struct dm_target *ti)
1380{
1381        return ti->split_discard_bios;
1382}
1383
1384static int __send_changing_extent_only(struct clone_info *ci,
1385                                       get_num_bios_fn get_num_bios,
1386                                       is_split_required_fn is_split_required)
1387{
1388        struct dm_target *ti;
1389        unsigned len;
1390        unsigned num_bios;
1391
1392        do {
1393                ti = dm_table_find_target(ci->map, ci->sector);
1394                if (!dm_target_is_valid(ti))
1395                        return -EIO;
1396
1397                /*
1398                 * Even though the device advertised support for this type of
1399                 * request, that does not mean every target supports it, and
1400                 * reconfiguration might also have changed that since the
1401                 * check was performed.
1402                 */
1403                num_bios = get_num_bios ? get_num_bios(ti) : 0;
1404                if (!num_bios)
1405                        return -EOPNOTSUPP;
1406
1407                if (is_split_required && !is_split_required(ti))
1408                        len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1409                else
1410                        len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1411
1412                __send_duplicate_bios(ci, ti, num_bios, &len);
1413
1414                ci->sector += len;
1415        } while (ci->sector_count -= len);
1416
1417        return 0;
1418}
1419
1420static int __send_discard(struct clone_info *ci)
1421{
1422        return __send_changing_extent_only(ci, get_num_discard_bios,
1423                                           is_split_required_for_discard);
1424}
1425
1426static int __send_write_same(struct clone_info *ci)
1427{
1428        return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1429}
1430
1431static int __send_write_zeroes(struct clone_info *ci)
1432{
1433        return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1434}
1435
1436/*
1437 * Select the correct strategy for processing a non-flush bio.
1438 */
1439static int __split_and_process_non_flush(struct clone_info *ci)
1440{
1441        struct bio *bio = ci->bio;
1442        struct dm_target *ti;
1443        unsigned len;
1444        int r;
1445
1446        if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1447                return __send_discard(ci);
1448        else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1449                return __send_write_same(ci);
1450        else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1451                return __send_write_zeroes(ci);
1452
1453        ti = dm_table_find_target(ci->map, ci->sector);
1454        if (!dm_target_is_valid(ti))
1455                return -EIO;
1456
1457        if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1458                len = ci->sector_count;
1459        else
1460                len = min_t(sector_t, max_io_len(ci->sector, ti),
1461                            ci->sector_count);
1462
1463        r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1464        if (r < 0)
1465                return r;
1466
1467        ci->sector += len;
1468        ci->sector_count -= len;
1469
1470        return 0;
1471}
1472
1473/*
1474 * Entry point to split a bio into clones and submit them to the targets.
1475 */
1476static void __split_and_process_bio(struct mapped_device *md,
1477                                    struct dm_table *map, struct bio *bio)
1478{
1479        struct clone_info ci;
1480        int error = 0;
1481
1482        if (unlikely(!map)) {
1483                bio_io_error(bio);
1484                return;
1485        }
1486
1487        ci.map = map;
1488        ci.md = md;
1489        ci.io = alloc_io(md);
1490        ci.io->status = 0;
1491        atomic_set(&ci.io->io_count, 1);
1492        ci.io->bio = bio;
1493        ci.io->md = md;
1494        spin_lock_init(&ci.io->endio_lock);
1495        ci.sector = bio->bi_iter.bi_sector;
1496
1497        start_io_acct(ci.io);
1498
1499        if (bio->bi_opf & REQ_PREFLUSH) {
1500                ci.bio = &ci.md->flush_bio;
1501                ci.sector_count = 0;
1502                error = __send_empty_flush(&ci);
1503                /* dec_pending submits any data associated with flush */
1504        } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1505                ci.bio = bio;
1506                ci.sector_count = 0;
1507                error = __split_and_process_non_flush(&ci);
1508        } else {
1509                ci.bio = bio;
1510                ci.sector_count = bio_sectors(bio);
1511                while (ci.sector_count && !error)
1512                        error = __split_and_process_non_flush(&ci);
1513        }
1514
1515        /* drop the extra reference count */
1516        dec_pending(ci.io, errno_to_blk_status(error));
1517}
1518/*-----------------------------------------------------------------
1519 * CRUD END
1520 *---------------------------------------------------------------*/
1521
1522/*
1523 * The request function that just remaps the bio built up by
1524 * dm_merge_bvec.
1525 */
1526static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1527{
1528        int rw = bio_data_dir(bio);
1529        struct mapped_device *md = q->queuedata;
1530        int srcu_idx;
1531        struct dm_table *map;
1532
1533        map = dm_get_live_table(md, &srcu_idx);
1534
1535        generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1536
1537        /* if we're suspended, we have to queue this io for later */
1538        if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1539                dm_put_live_table(md, srcu_idx);
1540
1541                if (!(bio->bi_opf & REQ_RAHEAD))
1542                        queue_io(md, bio);
1543                else
1544                        bio_io_error(bio);
1545                return BLK_QC_T_NONE;
1546        }
1547
1548        __split_and_process_bio(md, map, bio);
1549        dm_put_live_table(md, srcu_idx);
1550        return BLK_QC_T_NONE;
1551}
1552
1553static int dm_any_congested(void *congested_data, int bdi_bits)
1554{
1555        int r = bdi_bits;
1556        struct mapped_device *md = congested_data;
1557        struct dm_table *map;
1558
1559        if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1560                if (dm_request_based(md)) {
1561                        /*
1562                         * With request-based DM we only need to check the
1563                         * top-level queue for congestion.
1564                         */
1565                        r = md->queue->backing_dev_info->wb.state & bdi_bits;
1566                } else {
1567                        map = dm_get_live_table_fast(md);
1568                        if (map)
1569                                r = dm_table_any_congested(map, bdi_bits);
1570                        dm_put_live_table_fast(md);
1571                }
1572        }
1573
1574        return r;
1575}
1576
1577/*-----------------------------------------------------------------
1578 * An IDR is used to keep track of allocated minor numbers.
1579 *---------------------------------------------------------------*/
1580static void free_minor(int minor)
1581{
1582        spin_lock(&_minor_lock);
1583        idr_remove(&_minor_idr, minor);
1584        spin_unlock(&_minor_lock);
1585}
1586
1587/*
1588 * See if the device with a specific minor # is free.
1589 */
1590static int specific_minor(int minor)
1591{
1592        int r;
1593
1594        if (minor >= (1 << MINORBITS))
1595                return -EINVAL;
1596
1597        idr_preload(GFP_KERNEL);
1598        spin_lock(&_minor_lock);
1599
1600        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1601
1602        spin_unlock(&_minor_lock);
1603        idr_preload_end();
1604        if (r < 0)
1605                return r == -ENOSPC ? -EBUSY : r;
1606        return 0;
1607}
1608
1609static int next_free_minor(int *minor)
1610{
1611        int r;
1612
1613        idr_preload(GFP_KERNEL);
1614        spin_lock(&_minor_lock);
1615
1616        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1617
1618        spin_unlock(&_minor_lock);
1619        idr_preload_end();
1620        if (r < 0)
1621                return r;
1622        *minor = r;
1623        return 0;
1624}
1625
1626static const struct block_device_operations dm_blk_dops;
1627static const struct dax_operations dm_dax_ops;
1628
1629static void dm_wq_work(struct work_struct *work);
1630
1631void dm_init_md_queue(struct mapped_device *md)
1632{
1633        /*
1634         * Request-based dm devices cannot be stacked on top of bio-based dm
1635         * devices.  The type of this dm device may not have been decided yet.
1636         * The type is decided at the first table loading time.
1637         * To prevent problematic device stacking, clear the queue flag
1638         * for request stacking support until then.
1639         *
1640         * This queue is new, so no concurrency on the queue_flags.
1641         */
1642        queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1643
1644        /*
1645         * Initialize data that will only be used by a non-blk-mq DM queue
1646         * - must do so here (in alloc_dev callchain) before queue is used
1647         */
1648        md->queue->queuedata = md;
1649        md->queue->backing_dev_info->congested_data = md;
1650}
1651
1652void dm_init_normal_md_queue(struct mapped_device *md)
1653{
1654        md->use_blk_mq = false;
1655        dm_init_md_queue(md);
1656
1657        /*
1658         * Initialize aspects of queue that aren't relevant for blk-mq
1659         */
1660        md->queue->backing_dev_info->congested_fn = dm_any_congested;
1661}
1662
1663static void cleanup_mapped_device(struct mapped_device *md)
1664{
1665        if (md->wq)
1666                destroy_workqueue(md->wq);
1667        if (md->kworker_task)
1668                kthread_stop(md->kworker_task);
1669        mempool_destroy(md->io_pool);
1670        if (md->bs)
1671                bioset_free(md->bs);
1672
1673        if (md->dax_dev) {
1674                kill_dax(md->dax_dev);
1675                put_dax(md->dax_dev);
1676                md->dax_dev = NULL;
1677        }
1678
1679        if (md->disk) {
1680                spin_lock(&_minor_lock);
1681                md->disk->private_data = NULL;
1682                spin_unlock(&_minor_lock);
1683                del_gendisk(md->disk);
1684                put_disk(md->disk);
1685        }
1686
1687        if (md->queue)
1688                blk_cleanup_queue(md->queue);
1689
1690        cleanup_srcu_struct(&md->io_barrier);
1691
1692        if (md->bdev) {
1693                bdput(md->bdev);
1694                md->bdev = NULL;
1695        }
1696
1697        dm_mq_cleanup_mapped_device(md);
1698}
1699
1700/*
1701 * Allocate and initialise a blank device with a given minor.
1702 */
1703static struct mapped_device *alloc_dev(int minor)
1704{
1705        int r, numa_node_id = dm_get_numa_node();
1706        struct dax_device *dax_dev;
1707        struct mapped_device *md;
1708        void *old_md;
1709
1710        md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1711        if (!md) {
1712                DMWARN("unable to allocate device, out of memory.");
1713                return NULL;
1714        }
1715
1716        if (!try_module_get(THIS_MODULE))
1717                goto bad_module_get;
1718
1719        /* get a minor number for the dev */
1720        if (minor == DM_ANY_MINOR)
1721                r = next_free_minor(&minor);
1722        else
1723                r = specific_minor(minor);
1724        if (r < 0)
1725                goto bad_minor;
1726
1727        r = init_srcu_struct(&md->io_barrier);
1728        if (r < 0)
1729                goto bad_io_barrier;
1730
1731        md->numa_node_id = numa_node_id;
1732        md->use_blk_mq = dm_use_blk_mq_default();
1733        md->init_tio_pdu = false;
1734        md->type = DM_TYPE_NONE;
1735        mutex_init(&md->suspend_lock);
1736        mutex_init(&md->type_lock);
1737        mutex_init(&md->table_devices_lock);
1738        spin_lock_init(&md->deferred_lock);
1739        atomic_set(&md->holders, 1);
1740        atomic_set(&md->open_count, 0);
1741        atomic_set(&md->event_nr, 0);
1742        atomic_set(&md->uevent_seq, 0);
1743        INIT_LIST_HEAD(&md->uevent_list);
1744        INIT_LIST_HEAD(&md->table_devices);
1745        spin_lock_init(&md->uevent_lock);
1746
1747        md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1748        if (!md->queue)
1749                goto bad;
1750
1751        dm_init_md_queue(md);
1752
1753        md->disk = alloc_disk_node(1, numa_node_id);
1754        if (!md->disk)
1755                goto bad;
1756
1757        atomic_set(&md->pending[0], 0);
1758        atomic_set(&md->pending[1], 0);
1759        init_waitqueue_head(&md->wait);
1760        INIT_WORK(&md->work, dm_wq_work);
1761        init_waitqueue_head(&md->eventq);
1762        init_completion(&md->kobj_holder.completion);
1763        md->kworker_task = NULL;
1764
1765        md->disk->major = _major;
1766        md->disk->first_minor = minor;
1767        md->disk->fops = &dm_blk_dops;
1768        md->disk->queue = md->queue;
1769        md->disk->private_data = md;
1770        sprintf(md->disk->disk_name, "dm-%d", minor);
1771
1772        dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1773        if (!dax_dev)
1774                goto bad;
1775        md->dax_dev = dax_dev;
1776
1777        add_disk(md->disk);
1778        format_dev_t(md->name, MKDEV(_major, minor));
1779
1780        md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1781        if (!md->wq)
1782                goto bad;
1783
1784        md->bdev = bdget_disk(md->disk, 0);
1785        if (!md->bdev)
1786                goto bad;
1787
1788        bio_init(&md->flush_bio, NULL, 0);
1789        md->flush_bio.bi_bdev = md->bdev;
1790        md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1791
1792        dm_stats_init(&md->stats);
1793
1794        /* Populate the mapping, nobody knows we exist yet */
1795        spin_lock(&_minor_lock);
1796        old_md = idr_replace(&_minor_idr, md, minor);
1797        spin_unlock(&_minor_lock);
1798
1799        BUG_ON(old_md != MINOR_ALLOCED);
1800
1801        return md;
1802
1803bad:
1804        cleanup_mapped_device(md);
1805bad_io_barrier:
1806        free_minor(minor);
1807bad_minor:
1808        module_put(THIS_MODULE);
1809bad_module_get:
1810        kfree(md);
1811        return NULL;
1812}
1813
1814static void unlock_fs(struct mapped_device *md);
1815
1816static void free_dev(struct mapped_device *md)
1817{
1818        int minor = MINOR(disk_devt(md->disk));
1819
1820        unlock_fs(md);
1821
1822        cleanup_mapped_device(md);
1823
1824        free_table_devices(&md->table_devices);
1825        dm_stats_cleanup(&md->stats);
1826        free_minor(minor);
1827
1828        module_put(THIS_MODULE);
1829        kfree(md);
1830}
1831
1832static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1833{
1834        struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1835
1836        if (md->bs) {
1837                /* The md already has necessary mempools. */
1838                if (dm_table_bio_based(t)) {
1839                        /*
1840                         * Reload bioset because front_pad may have changed
1841                         * because a different table was loaded.
1842                         */
1843                        bioset_free(md->bs);
1844                        md->bs = p->bs;
1845                        p->bs = NULL;
1846                }
1847                /*
1848                 * There's no need to reload with request-based dm
1849                 * because the size of front_pad doesn't change.
1850                 * Note for future: If you are to reload bioset,
1851                 * prep-ed requests in the queue may refer
1852                 * to bio from the old bioset, so you must walk
1853                 * through the queue to unprep.
1854                 */
1855                goto out;
1856        }
1857
1858        BUG_ON(!p || md->io_pool || md->bs);
1859
1860        md->io_pool = p->io_pool;
1861        p->io_pool = NULL;
1862        md->bs = p->bs;
1863        p->bs = NULL;
1864
1865out:
1866        /* mempool bind completed, no longer need any mempools in the table */
1867        dm_table_free_md_mempools(t);
1868}
1869
1870/*
1871 * Bind a table to the device.
1872 */
1873static void event_callback(void *context)
1874{
1875        unsigned long flags;
1876        LIST_HEAD(uevents);
1877        struct mapped_device *md = (struct mapped_device *) context;
1878
1879        spin_lock_irqsave(&md->uevent_lock, flags);
1880        list_splice_init(&md->uevent_list, &uevents);
1881        spin_unlock_irqrestore(&md->uevent_lock, flags);
1882
1883        dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1884
1885        atomic_inc(&md->event_nr);
1886        atomic_inc(&dm_global_event_nr);
1887        wake_up(&md->eventq);
1888        wake_up(&dm_global_eventq);
1889}
1890
1891/*
1892 * Protected by md->suspend_lock obtained by dm_swap_table().
1893 */
1894static void __set_size(struct mapped_device *md, sector_t size)
1895{
1896        lockdep_assert_held(&md->suspend_lock);
1897
1898        set_capacity(md->disk, size);
1899
1900        i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1901}
1902
1903/*
1904 * Returns old map, which caller must destroy.
1905 */
1906static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1907                               struct queue_limits *limits)
1908{
1909        struct dm_table *old_map;
1910        struct request_queue *q = md->queue;
1911        sector_t size;
1912
1913        lockdep_assert_held(&md->suspend_lock);
1914
1915        size = dm_table_get_size(t);
1916
1917        /*
1918         * Wipe any geometry if the size of the table changed.
1919         */
1920        if (size != dm_get_size(md))
1921                memset(&md->geometry, 0, sizeof(md->geometry));
1922
1923        __set_size(md, size);
1924
1925        dm_table_event_callback(t, event_callback, md);
1926
1927        /*
1928         * The queue hasn't been stopped yet, if the old table type wasn't
1929         * for request-based during suspension.  So stop it to prevent
1930         * I/O mapping before resume.
1931         * This must be done before setting the queue restrictions,
1932         * because request-based dm may be run just after the setting.
1933         */
1934        if (dm_table_request_based(t)) {
1935                dm_stop_queue(q);
1936                /*
1937                 * Leverage the fact that request-based DM targets are
1938                 * immutable singletons and establish md->immutable_target
1939                 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1940                 */
1941                md->immutable_target = dm_table_get_immutable_target(t);
1942        }
1943
1944        __bind_mempools(md, t);
1945
1946        old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1947        rcu_assign_pointer(md->map, (void *)t);
1948        md->immutable_target_type = dm_table_get_immutable_target_type(t);
1949
1950        dm_table_set_restrictions(t, q, limits);
1951        if (old_map)
1952                dm_sync_table(md);
1953
1954        return old_map;
1955}
1956
1957/*
1958 * Returns unbound table for the caller to free.
1959 */
1960static struct dm_table *__unbind(struct mapped_device *md)
1961{
1962        struct dm_table *map = rcu_dereference_protected(md->map, 1);
1963
1964        if (!map)
1965                return NULL;
1966
1967        dm_table_event_callback(map, NULL, NULL);
1968        RCU_INIT_POINTER(md->map, NULL);
1969        dm_sync_table(md);
1970
1971        return map;
1972}
1973
1974/*
1975 * Constructor for a new device.
1976 */
1977int dm_create(int minor, struct mapped_device **result)
1978{
1979        struct mapped_device *md;
1980
1981        md = alloc_dev(minor);
1982        if (!md)
1983                return -ENXIO;
1984
1985        dm_sysfs_init(md);
1986
1987        *result = md;
1988        return 0;
1989}
1990
1991/*
1992 * Functions to manage md->type.
1993 * All are required to hold md->type_lock.
1994 */
1995void dm_lock_md_type(struct mapped_device *md)
1996{
1997        mutex_lock(&md->type_lock);
1998}
1999
2000void dm_unlock_md_type(struct mapped_device *md)
2001{
2002        mutex_unlock(&md->type_lock);
2003}
2004
2005void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2006{
2007        BUG_ON(!mutex_is_locked(&md->type_lock));
2008        md->type = type;
2009}
2010
2011enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2012{
2013        return md->type;
2014}
2015
2016struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2017{
2018        return md->immutable_target_type;
2019}
2020
2021/*
2022 * The queue_limits are only valid as long as you have a reference
2023 * count on 'md'.
2024 */
2025struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2026{
2027        BUG_ON(!atomic_read(&md->holders));
2028        return &md->queue->limits;
2029}
2030EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2031
2032/*
2033 * Setup the DM device's queue based on md's type
2034 */
2035int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2036{
2037        int r;
2038        enum dm_queue_mode type = dm_get_md_type(md);
2039
2040        switch (type) {
2041        case DM_TYPE_REQUEST_BASED:
2042                r = dm_old_init_request_queue(md, t);
2043                if (r) {
2044                        DMERR("Cannot initialize queue for request-based mapped device");
2045                        return r;
2046                }
2047                break;
2048        case DM_TYPE_MQ_REQUEST_BASED:
2049                r = dm_mq_init_request_queue(md, t);
2050                if (r) {
2051                        DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2052                        return r;
2053                }
2054                break;
2055        case DM_TYPE_BIO_BASED:
2056        case DM_TYPE_DAX_BIO_BASED:
2057                dm_init_normal_md_queue(md);
2058                blk_queue_make_request(md->queue, dm_make_request);
2059                /*
2060                 * DM handles splitting bios as needed.  Free the bio_split bioset
2061                 * since it won't be used (saves 1 process per bio-based DM device).
2062                 */
2063                bioset_free(md->queue->bio_split);
2064                md->queue->bio_split = NULL;
2065
2066                if (type == DM_TYPE_DAX_BIO_BASED)
2067                        queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2068                break;
2069        case DM_TYPE_NONE:
2070                WARN_ON_ONCE(true);
2071                break;
2072        }
2073
2074        return 0;
2075}
2076
2077struct mapped_device *dm_get_md(dev_t dev)
2078{
2079        struct mapped_device *md;
2080        unsigned minor = MINOR(dev);
2081
2082        if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2083                return NULL;
2084
2085        spin_lock(&_minor_lock);
2086
2087        md = idr_find(&_minor_idr, minor);
2088        if (md) {
2089                if ((md == MINOR_ALLOCED ||
2090                     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2091                     dm_deleting_md(md) ||
2092                     test_bit(DMF_FREEING, &md->flags))) {
2093                        md = NULL;
2094                        goto out;
2095                }
2096                dm_get(md);
2097        }
2098
2099out:
2100        spin_unlock(&_minor_lock);
2101
2102        return md;
2103}
2104EXPORT_SYMBOL_GPL(dm_get_md);
2105
2106void *dm_get_mdptr(struct mapped_device *md)
2107{
2108        return md->interface_ptr;
2109}
2110
2111void dm_set_mdptr(struct mapped_device *md, void *ptr)
2112{
2113        md->interface_ptr = ptr;
2114}
2115
2116void dm_get(struct mapped_device *md)
2117{
2118        atomic_inc(&md->holders);
2119        BUG_ON(test_bit(DMF_FREEING, &md->flags));
2120}
2121
2122int dm_hold(struct mapped_device *md)
2123{
2124        spin_lock(&_minor_lock);
2125        if (test_bit(DMF_FREEING, &md->flags)) {
2126                spin_unlock(&_minor_lock);
2127                return -EBUSY;
2128        }
2129        dm_get(md);
2130        spin_unlock(&_minor_lock);
2131        return 0;
2132}
2133EXPORT_SYMBOL_GPL(dm_hold);
2134
2135const char *dm_device_name(struct mapped_device *md)
2136{
2137        return md->name;
2138}
2139EXPORT_SYMBOL_GPL(dm_device_name);
2140
2141static void __dm_destroy(struct mapped_device *md, bool wait)
2142{
2143        struct request_queue *q = dm_get_md_queue(md);
2144        struct dm_table *map;
2145        int srcu_idx;
2146
2147        might_sleep();
2148
2149        spin_lock(&_minor_lock);
2150        idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2151        set_bit(DMF_FREEING, &md->flags);
2152        spin_unlock(&_minor_lock);
2153
2154        blk_set_queue_dying(q);
2155
2156        if (dm_request_based(md) && md->kworker_task)
2157                kthread_flush_worker(&md->kworker);
2158
2159        /*
2160         * Take suspend_lock so that presuspend and postsuspend methods
2161         * do not race with internal suspend.
2162         */
2163        mutex_lock(&md->suspend_lock);
2164        map = dm_get_live_table(md, &srcu_idx);
2165        if (!dm_suspended_md(md)) {
2166                dm_table_presuspend_targets(map);
2167                dm_table_postsuspend_targets(map);
2168        }
2169        /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2170        dm_put_live_table(md, srcu_idx);
2171        mutex_unlock(&md->suspend_lock);
2172
2173        /*
2174         * Rare, but there may be I/O requests still going to complete,
2175         * for example.  Wait for all references to disappear.
2176         * No one should increment the reference count of the mapped_device,
2177         * after the mapped_device state becomes DMF_FREEING.
2178         */
2179        if (wait)
2180                while (atomic_read(&md->holders))
2181                        msleep(1);
2182        else if (atomic_read(&md->holders))
2183                DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2184                       dm_device_name(md), atomic_read(&md->holders));
2185
2186        dm_sysfs_exit(md);
2187        dm_table_destroy(__unbind(md));
2188        free_dev(md);
2189}
2190
2191void dm_destroy(struct mapped_device *md)
2192{
2193        __dm_destroy(md, true);
2194}
2195
2196void dm_destroy_immediate(struct mapped_device *md)
2197{
2198        __dm_destroy(md, false);
2199}
2200
2201void dm_put(struct mapped_device *md)
2202{
2203        atomic_dec(&md->holders);
2204}
2205EXPORT_SYMBOL_GPL(dm_put);
2206
2207static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2208{
2209        int r = 0;
2210        DEFINE_WAIT(wait);
2211
2212        while (1) {
2213                prepare_to_wait(&md->wait, &wait, task_state);
2214
2215                if (!md_in_flight(md))
2216                        break;
2217
2218                if (signal_pending_state(task_state, current)) {
2219                        r = -EINTR;
2220                        break;
2221                }
2222
2223                io_schedule();
2224        }
2225        finish_wait(&md->wait, &wait);
2226
2227        return r;
2228}
2229
2230/*
2231 * Process the deferred bios
2232 */
2233static void dm_wq_work(struct work_struct *work)
2234{
2235        struct mapped_device *md = container_of(work, struct mapped_device,
2236                                                work);
2237        struct bio *c;
2238        int srcu_idx;
2239        struct dm_table *map;
2240
2241        map = dm_get_live_table(md, &srcu_idx);
2242
2243        while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2244                spin_lock_irq(&md->deferred_lock);
2245                c = bio_list_pop(&md->deferred);
2246                spin_unlock_irq(&md->deferred_lock);
2247
2248                if (!c)
2249                        break;
2250
2251                if (dm_request_based(md))
2252                        generic_make_request(c);
2253                else
2254                        __split_and_process_bio(md, map, c);
2255        }
2256
2257        dm_put_live_table(md, srcu_idx);
2258}
2259
2260static void dm_queue_flush(struct mapped_device *md)
2261{
2262        clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2263        smp_mb__after_atomic();
2264        queue_work(md->wq, &md->work);
2265}
2266
2267/*
2268 * Swap in a new table, returning the old one for the caller to destroy.
2269 */
2270struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2271{
2272        struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2273        struct queue_limits limits;
2274        int r;
2275
2276        mutex_lock(&md->suspend_lock);
2277
2278        /* device must be suspended */
2279        if (!dm_suspended_md(md))
2280                goto out;
2281
2282        /*
2283         * If the new table has no data devices, retain the existing limits.
2284         * This helps multipath with queue_if_no_path if all paths disappear,
2285         * then new I/O is queued based on these limits, and then some paths
2286         * reappear.
2287         */
2288        if (dm_table_has_no_data_devices(table)) {
2289                live_map = dm_get_live_table_fast(md);
2290                if (live_map)
2291                        limits = md->queue->limits;
2292                dm_put_live_table_fast(md);
2293        }
2294
2295        if (!live_map) {
2296                r = dm_calculate_queue_limits(table, &limits);
2297                if (r) {
2298                        map = ERR_PTR(r);
2299                        goto out;
2300                }
2301        }
2302
2303        map = __bind(md, table, &limits);
2304
2305out:
2306        mutex_unlock(&md->suspend_lock);
2307        return map;
2308}
2309
2310/*
2311 * Functions to lock and unlock any filesystem running on the
2312 * device.
2313 */
2314static int lock_fs(struct mapped_device *md)
2315{
2316        int r;
2317
2318        WARN_ON(md->frozen_sb);
2319
2320        md->frozen_sb = freeze_bdev(md->bdev);
2321        if (IS_ERR(md->frozen_sb)) {
2322                r = PTR_ERR(md->frozen_sb);
2323                md->frozen_sb = NULL;
2324                return r;
2325        }
2326
2327        set_bit(DMF_FROZEN, &md->flags);
2328
2329        return 0;
2330}
2331
2332static void unlock_fs(struct mapped_device *md)
2333{
2334        if (!test_bit(DMF_FROZEN, &md->flags))
2335                return;
2336
2337        thaw_bdev(md->bdev, md->frozen_sb);
2338        md->frozen_sb = NULL;
2339        clear_bit(DMF_FROZEN, &md->flags);
2340}
2341
2342/*
2343 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2344 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2345 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2346 *
2347 * If __dm_suspend returns 0, the device is completely quiescent
2348 * now. There is no request-processing activity. All new requests
2349 * are being added to md->deferred list.
2350 */
2351static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2352                        unsigned suspend_flags, long task_state,
2353                        int dmf_suspended_flag)
2354{
2355        bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2356        bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2357        int r;
2358
2359        lockdep_assert_held(&md->suspend_lock);
2360
2361        /*
2362         * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2363         * This flag is cleared before dm_suspend returns.
2364         */
2365        if (noflush)
2366                set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2367        else
2368                pr_debug("%s: suspending with flush\n", dm_device_name(md));
2369
2370        /*
2371         * This gets reverted if there's an error later and the targets
2372         * provide the .presuspend_undo hook.
2373         */
2374        dm_table_presuspend_targets(map);
2375
2376        /*
2377         * Flush I/O to the device.
2378         * Any I/O submitted after lock_fs() may not be flushed.
2379         * noflush takes precedence over do_lockfs.
2380         * (lock_fs() flushes I/Os and waits for them to complete.)
2381         */
2382        if (!noflush && do_lockfs) {
2383                r = lock_fs(md);
2384                if (r) {
2385                        dm_table_presuspend_undo_targets(map);
2386                        return r;
2387                }
2388        }
2389
2390        /*
2391         * Here we must make sure that no processes are submitting requests
2392         * to target drivers i.e. no one may be executing
2393         * __split_and_process_bio. This is called from dm_request and
2394         * dm_wq_work.
2395         *
2396         * To get all processes out of __split_and_process_bio in dm_request,
2397         * we take the write lock. To prevent any process from reentering
2398         * __split_and_process_bio from dm_request and quiesce the thread
2399         * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2400         * flush_workqueue(md->wq).
2401         */
2402        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2403        if (map)
2404                synchronize_srcu(&md->io_barrier);
2405
2406        /*
2407         * Stop md->queue before flushing md->wq in case request-based
2408         * dm defers requests to md->wq from md->queue.
2409         */
2410        if (dm_request_based(md)) {
2411                dm_stop_queue(md->queue);
2412                if (md->kworker_task)
2413                        kthread_flush_worker(&md->kworker);
2414        }
2415
2416        flush_workqueue(md->wq);
2417
2418        /*
2419         * At this point no more requests are entering target request routines.
2420         * We call dm_wait_for_completion to wait for all existing requests
2421         * to finish.
2422         */
2423        r = dm_wait_for_completion(md, task_state);
2424        if (!r)
2425                set_bit(dmf_suspended_flag, &md->flags);
2426
2427        if (noflush)
2428                clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2429        if (map)
2430                synchronize_srcu(&md->io_barrier);
2431
2432        /* were we interrupted ? */
2433        if (r < 0) {
2434                dm_queue_flush(md);
2435
2436                if (dm_request_based(md))
2437                        dm_start_queue(md->queue);
2438
2439                unlock_fs(md);
2440                dm_table_presuspend_undo_targets(map);
2441                /* pushback list is already flushed, so skip flush */
2442        }
2443
2444        return r;
2445}
2446
2447/*
2448 * We need to be able to change a mapping table under a mounted
2449 * filesystem.  For example we might want to move some data in
2450 * the background.  Before the table can be swapped with
2451 * dm_bind_table, dm_suspend must be called to flush any in
2452 * flight bios and ensure that any further io gets deferred.
2453 */
2454/*
2455 * Suspend mechanism in request-based dm.
2456 *
2457 * 1. Flush all I/Os by lock_fs() if needed.
2458 * 2. Stop dispatching any I/O by stopping the request_queue.
2459 * 3. Wait for all in-flight I/Os to be completed or requeued.
2460 *
2461 * To abort suspend, start the request_queue.
2462 */
2463int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2464{
2465        struct dm_table *map = NULL;
2466        int r = 0;
2467
2468retry:
2469        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2470
2471        if (dm_suspended_md(md)) {
2472                r = -EINVAL;
2473                goto out_unlock;
2474        }
2475
2476        if (dm_suspended_internally_md(md)) {
2477                /* already internally suspended, wait for internal resume */
2478                mutex_unlock(&md->suspend_lock);
2479                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2480                if (r)
2481                        return r;
2482                goto retry;
2483        }
2484
2485        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2486
2487        r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2488        if (r)
2489                goto out_unlock;
2490
2491        dm_table_postsuspend_targets(map);
2492
2493out_unlock:
2494        mutex_unlock(&md->suspend_lock);
2495        return r;
2496}
2497
2498static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2499{
2500        if (map) {
2501                int r = dm_table_resume_targets(map);
2502                if (r)
2503                        return r;
2504        }
2505
2506        dm_queue_flush(md);
2507
2508        /*
2509         * Flushing deferred I/Os must be done after targets are resumed
2510         * so that mapping of targets can work correctly.
2511         * Request-based dm is queueing the deferred I/Os in its request_queue.
2512         */
2513        if (dm_request_based(md))
2514                dm_start_queue(md->queue);
2515
2516        unlock_fs(md);
2517
2518        return 0;
2519}
2520
2521int dm_resume(struct mapped_device *md)
2522{
2523        int r;
2524        struct dm_table *map = NULL;
2525
2526retry:
2527        r = -EINVAL;
2528        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2529
2530        if (!dm_suspended_md(md))
2531                goto out;
2532
2533        if (dm_suspended_internally_md(md)) {
2534                /* already internally suspended, wait for internal resume */
2535                mutex_unlock(&md->suspend_lock);
2536                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2537                if (r)
2538                        return r;
2539                goto retry;
2540        }
2541
2542        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2543        if (!map || !dm_table_get_size(map))
2544                goto out;
2545
2546        r = __dm_resume(md, map);
2547        if (r)
2548                goto out;
2549
2550        clear_bit(DMF_SUSPENDED, &md->flags);
2551out:
2552        mutex_unlock(&md->suspend_lock);
2553
2554        return r;
2555}
2556
2557/*
2558 * Internal suspend/resume works like userspace-driven suspend. It waits
2559 * until all bios finish and prevents issuing new bios to the target drivers.
2560 * It may be used only from the kernel.
2561 */
2562
2563static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2564{
2565        struct dm_table *map = NULL;
2566
2567        lockdep_assert_held(&md->suspend_lock);
2568
2569        if (md->internal_suspend_count++)
2570                return; /* nested internal suspend */
2571
2572        if (dm_suspended_md(md)) {
2573                set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2574                return; /* nest suspend */
2575        }
2576
2577        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2578
2579        /*
2580         * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2581         * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2582         * would require changing .presuspend to return an error -- avoid this
2583         * until there is a need for more elaborate variants of internal suspend.
2584         */
2585        (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2586                            DMF_SUSPENDED_INTERNALLY);
2587
2588        dm_table_postsuspend_targets(map);
2589}
2590
2591static void __dm_internal_resume(struct mapped_device *md)
2592{
2593        BUG_ON(!md->internal_suspend_count);
2594
2595        if (--md->internal_suspend_count)
2596                return; /* resume from nested internal suspend */
2597
2598        if (dm_suspended_md(md))
2599                goto done; /* resume from nested suspend */
2600
2601        /*
2602         * NOTE: existing callers don't need to call dm_table_resume_targets
2603         * (which may fail -- so best to avoid it for now by passing NULL map)
2604         */
2605        (void) __dm_resume(md, NULL);
2606
2607done:
2608        clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2609        smp_mb__after_atomic();
2610        wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2611}
2612
2613void dm_internal_suspend_noflush(struct mapped_device *md)
2614{
2615        mutex_lock(&md->suspend_lock);
2616        __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2617        mutex_unlock(&md->suspend_lock);
2618}
2619EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2620
2621void dm_internal_resume(struct mapped_device *md)
2622{
2623        mutex_lock(&md->suspend_lock);
2624        __dm_internal_resume(md);
2625        mutex_unlock(&md->suspend_lock);
2626}
2627EXPORT_SYMBOL_GPL(dm_internal_resume);
2628
2629/*
2630 * Fast variants of internal suspend/resume hold md->suspend_lock,
2631 * which prevents interaction with userspace-driven suspend.
2632 */
2633
2634void dm_internal_suspend_fast(struct mapped_device *md)
2635{
2636        mutex_lock(&md->suspend_lock);
2637        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2638                return;
2639
2640        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2641        synchronize_srcu(&md->io_barrier);
2642        flush_workqueue(md->wq);
2643        dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2644}
2645EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2646
2647void dm_internal_resume_fast(struct mapped_device *md)
2648{
2649        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2650                goto done;
2651
2652        dm_queue_flush(md);
2653
2654done:
2655        mutex_unlock(&md->suspend_lock);
2656}
2657EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2658
2659/*-----------------------------------------------------------------
2660 * Event notification.
2661 *---------------------------------------------------------------*/
2662int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2663                       unsigned cookie)
2664{
2665        char udev_cookie[DM_COOKIE_LENGTH];
2666        char *envp[] = { udev_cookie, NULL };
2667
2668        if (!cookie)
2669                return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2670        else {
2671                snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2672                         DM_COOKIE_ENV_VAR_NAME, cookie);
2673                return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2674                                          action, envp);
2675        }
2676}
2677
2678uint32_t dm_next_uevent_seq(struct mapped_device *md)
2679{
2680        return atomic_add_return(1, &md->uevent_seq);
2681}
2682
2683uint32_t dm_get_event_nr(struct mapped_device *md)
2684{
2685        return atomic_read(&md->event_nr);
2686}
2687
2688int dm_wait_event(struct mapped_device *md, int event_nr)
2689{
2690        return wait_event_interruptible(md->eventq,
2691                        (event_nr != atomic_read(&md->event_nr)));
2692}
2693
2694void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2695{
2696        unsigned long flags;
2697
2698        spin_lock_irqsave(&md->uevent_lock, flags);
2699        list_add(elist, &md->uevent_list);
2700        spin_unlock_irqrestore(&md->uevent_lock, flags);
2701}
2702
2703/*
2704 * The gendisk is only valid as long as you have a reference
2705 * count on 'md'.
2706 */
2707struct gendisk *dm_disk(struct mapped_device *md)
2708{
2709        return md->disk;
2710}
2711EXPORT_SYMBOL_GPL(dm_disk);
2712
2713struct kobject *dm_kobject(struct mapped_device *md)
2714{
2715        return &md->kobj_holder.kobj;
2716}
2717
2718struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2719{
2720        struct mapped_device *md;
2721
2722        md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2723
2724        if (test_bit(DMF_FREEING, &md->flags) ||
2725            dm_deleting_md(md))
2726                return NULL;
2727
2728        dm_get(md);
2729        return md;
2730}
2731
2732int dm_suspended_md(struct mapped_device *md)
2733{
2734        return test_bit(DMF_SUSPENDED, &md->flags);
2735}
2736
2737int dm_suspended_internally_md(struct mapped_device *md)
2738{
2739        return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2740}
2741
2742int dm_test_deferred_remove_flag(struct mapped_device *md)
2743{
2744        return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2745}
2746
2747int dm_suspended(struct dm_target *ti)
2748{
2749        return dm_suspended_md(dm_table_get_md(ti->table));
2750}
2751EXPORT_SYMBOL_GPL(dm_suspended);
2752
2753int dm_noflush_suspending(struct dm_target *ti)
2754{
2755        return __noflush_suspending(dm_table_get_md(ti->table));
2756}
2757EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2758
2759struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2760                                            unsigned integrity, unsigned per_io_data_size)
2761{
2762        struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2763        unsigned int pool_size = 0;
2764        unsigned int front_pad;
2765
2766        if (!pools)
2767                return NULL;
2768
2769        switch (type) {
2770        case DM_TYPE_BIO_BASED:
2771        case DM_TYPE_DAX_BIO_BASED:
2772                pool_size = dm_get_reserved_bio_based_ios();
2773                front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2774        
2775                pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2776                if (!pools->io_pool)
2777                        goto out;
2778                break;
2779        case DM_TYPE_REQUEST_BASED:
2780        case DM_TYPE_MQ_REQUEST_BASED:
2781                pool_size = dm_get_reserved_rq_based_ios();
2782                front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2783                /* per_io_data_size is used for blk-mq pdu at queue allocation */
2784                break;
2785        default:
2786                BUG();
2787        }
2788
2789        pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2790        if (!pools->bs)
2791                goto out;
2792
2793        if (integrity && bioset_integrity_create(pools->bs, pool_size))
2794                goto out;
2795
2796        return pools;
2797
2798out:
2799        dm_free_md_mempools(pools);
2800
2801        return NULL;
2802}
2803
2804void dm_free_md_mempools(struct dm_md_mempools *pools)
2805{
2806        if (!pools)
2807                return;
2808
2809        mempool_destroy(pools->io_pool);
2810
2811        if (pools->bs)
2812                bioset_free(pools->bs);
2813
2814        kfree(pools);
2815}
2816
2817struct dm_pr {
2818        u64     old_key;
2819        u64     new_key;
2820        u32     flags;
2821        bool    fail_early;
2822};
2823
2824static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2825                      void *data)
2826{
2827        struct mapped_device *md = bdev->bd_disk->private_data;
2828        struct dm_table *table;
2829        struct dm_target *ti;
2830        int ret = -ENOTTY, srcu_idx;
2831
2832        table = dm_get_live_table(md, &srcu_idx);
2833        if (!table || !dm_table_get_size(table))
2834                goto out;
2835
2836        /* We only support devices that have a single target */
2837        if (dm_table_get_num_targets(table) != 1)
2838                goto out;
2839        ti = dm_table_get_target(table, 0);
2840
2841        ret = -EINVAL;
2842        if (!ti->type->iterate_devices)
2843                goto out;
2844
2845        ret = ti->type->iterate_devices(ti, fn, data);
2846out:
2847        dm_put_live_table(md, srcu_idx);
2848        return ret;
2849}
2850
2851/*
2852 * For register / unregister we need to manually call out to every path.
2853 */
2854static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2855                            sector_t start, sector_t len, void *data)
2856{
2857        struct dm_pr *pr = data;
2858        const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2859
2860        if (!ops || !ops->pr_register)
2861                return -EOPNOTSUPP;
2862        return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2863}
2864
2865static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2866                          u32 flags)
2867{
2868        struct dm_pr pr = {
2869                .old_key        = old_key,
2870                .new_key        = new_key,
2871                .flags          = flags,
2872                .fail_early     = true,
2873        };
2874        int ret;
2875
2876        ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2877        if (ret && new_key) {
2878                /* unregister all paths if we failed to register any path */
2879                pr.old_key = new_key;
2880                pr.new_key = 0;
2881                pr.flags = 0;
2882                pr.fail_early = false;
2883                dm_call_pr(bdev, __dm_pr_register, &pr);
2884        }
2885
2886        return ret;
2887}
2888
2889static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2890                         u32 flags)
2891{
2892        struct mapped_device *md = bdev->bd_disk->private_data;
2893        const struct pr_ops *ops;
2894        fmode_t mode;
2895        int r;
2896
2897        r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2898        if (r < 0)
2899                return r;
2900
2901        ops = bdev->bd_disk->fops->pr_ops;
2902        if (ops && ops->pr_reserve)
2903                r = ops->pr_reserve(bdev, key, type, flags);
2904        else
2905                r = -EOPNOTSUPP;
2906
2907        bdput(bdev);
2908        return r;
2909}
2910
2911static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2912{
2913        struct mapped_device *md = bdev->bd_disk->private_data;
2914        const struct pr_ops *ops;
2915        fmode_t mode;
2916        int r;
2917
2918        r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2919        if (r < 0)
2920                return r;
2921
2922        ops = bdev->bd_disk->fops->pr_ops;
2923        if (ops && ops->pr_release)
2924                r = ops->pr_release(bdev, key, type);
2925        else
2926                r = -EOPNOTSUPP;
2927
2928        bdput(bdev);
2929        return r;
2930}
2931
2932static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2933                         enum pr_type type, bool abort)
2934{
2935        struct mapped_device *md = bdev->bd_disk->private_data;
2936        const struct pr_ops *ops;
2937        fmode_t mode;
2938        int r;
2939
2940        r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2941        if (r < 0)
2942                return r;
2943
2944        ops = bdev->bd_disk->fops->pr_ops;
2945        if (ops && ops->pr_preempt)
2946                r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2947        else
2948                r = -EOPNOTSUPP;
2949
2950        bdput(bdev);
2951        return r;
2952}
2953
2954static int dm_pr_clear(struct block_device *bdev, u64 key)
2955{
2956        struct mapped_device *md = bdev->bd_disk->private_data;
2957        const struct pr_ops *ops;
2958        fmode_t mode;
2959        int r;
2960
2961        r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2962        if (r < 0)
2963                return r;
2964
2965        ops = bdev->bd_disk->fops->pr_ops;
2966        if (ops && ops->pr_clear)
2967                r = ops->pr_clear(bdev, key);
2968        else
2969                r = -EOPNOTSUPP;
2970
2971        bdput(bdev);
2972        return r;
2973}
2974
2975static const struct pr_ops dm_pr_ops = {
2976        .pr_register    = dm_pr_register,
2977        .pr_reserve     = dm_pr_reserve,
2978        .pr_release     = dm_pr_release,
2979        .pr_preempt     = dm_pr_preempt,
2980        .pr_clear       = dm_pr_clear,
2981};
2982
2983static const struct block_device_operations dm_blk_dops = {
2984        .open = dm_blk_open,
2985        .release = dm_blk_close,
2986        .ioctl = dm_blk_ioctl,
2987        .getgeo = dm_blk_getgeo,
2988        .pr_ops = &dm_pr_ops,
2989        .owner = THIS_MODULE
2990};
2991
2992static const struct dax_operations dm_dax_ops = {
2993        .direct_access = dm_dax_direct_access,
2994        .copy_from_iter = dm_dax_copy_from_iter,
2995        .flush = dm_dax_flush,
2996};
2997
2998/*
2999 * module hooks
3000 */
3001module_init(dm_init);
3002module_exit(dm_exit);
3003
3004module_param(major, uint, 0);
3005MODULE_PARM_DESC(major, "The major number of the device mapper");
3006
3007module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3008MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3009
3010module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3011MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3012
3013MODULE_DESCRIPTION(DM_NAME " driver");
3014MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3015MODULE_LICENSE("GPL");
3016