linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include <linux/sched/signal.h>
  41
  42#include <trace/events/block.h>
  43
  44#include "md.h"
  45#include "raid1.h"
  46#include "bitmap.h"
  47
  48#define UNSUPPORTED_MDDEV_FLAGS         \
  49        ((1L << MD_HAS_JOURNAL) |       \
  50         (1L << MD_JOURNAL_CLEAN) |     \
  51         (1L << MD_HAS_PPL))
  52
  53/*
  54 * Number of guaranteed r1bios in case of extreme VM load:
  55 */
  56#define NR_RAID1_BIOS 256
  57
  58/* when we get a read error on a read-only array, we redirect to another
  59 * device without failing the first device, or trying to over-write to
  60 * correct the read error.  To keep track of bad blocks on a per-bio
  61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  62 */
  63#define IO_BLOCKED ((struct bio *)1)
  64/* When we successfully write to a known bad-block, we need to remove the
  65 * bad-block marking which must be done from process context.  So we record
  66 * the success by setting devs[n].bio to IO_MADE_GOOD
  67 */
  68#define IO_MADE_GOOD ((struct bio *)2)
  69
  70#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  71
  72/* When there are this many requests queue to be written by
  73 * the raid1 thread, we become 'congested' to provide back-pressure
  74 * for writeback.
  75 */
  76static int max_queued_requests = 1024;
  77
  78static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  79static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  80
  81#define raid1_log(md, fmt, args...)                             \
  82        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  83
  84#include "raid1-10.c"
  85
  86/*
  87 * for resync bio, r1bio pointer can be retrieved from the per-bio
  88 * 'struct resync_pages'.
  89 */
  90static inline struct r1bio *get_resync_r1bio(struct bio *bio)
  91{
  92        return get_resync_pages(bio)->raid_bio;
  93}
  94
  95static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  96{
  97        struct pool_info *pi = data;
  98        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  99
 100        /* allocate a r1bio with room for raid_disks entries in the bios array */
 101        return kzalloc(size, gfp_flags);
 102}
 103
 104static void r1bio_pool_free(void *r1_bio, void *data)
 105{
 106        kfree(r1_bio);
 107}
 108
 109#define RESYNC_DEPTH 32
 110#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 111#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 112#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 113#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 114#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 115
 116static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118        struct pool_info *pi = data;
 119        struct r1bio *r1_bio;
 120        struct bio *bio;
 121        int need_pages;
 122        int j;
 123        struct resync_pages *rps;
 124
 125        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 126        if (!r1_bio)
 127                return NULL;
 128
 129        rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
 130                      gfp_flags);
 131        if (!rps)
 132                goto out_free_r1bio;
 133
 134        /*
 135         * Allocate bios : 1 for reading, n-1 for writing
 136         */
 137        for (j = pi->raid_disks ; j-- ; ) {
 138                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 139                if (!bio)
 140                        goto out_free_bio;
 141                r1_bio->bios[j] = bio;
 142        }
 143        /*
 144         * Allocate RESYNC_PAGES data pages and attach them to
 145         * the first bio.
 146         * If this is a user-requested check/repair, allocate
 147         * RESYNC_PAGES for each bio.
 148         */
 149        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 150                need_pages = pi->raid_disks;
 151        else
 152                need_pages = 1;
 153        for (j = 0; j < pi->raid_disks; j++) {
 154                struct resync_pages *rp = &rps[j];
 155
 156                bio = r1_bio->bios[j];
 157
 158                if (j < need_pages) {
 159                        if (resync_alloc_pages(rp, gfp_flags))
 160                                goto out_free_pages;
 161                } else {
 162                        memcpy(rp, &rps[0], sizeof(*rp));
 163                        resync_get_all_pages(rp);
 164                }
 165
 166                rp->raid_bio = r1_bio;
 167                bio->bi_private = rp;
 168        }
 169
 170        r1_bio->master_bio = NULL;
 171
 172        return r1_bio;
 173
 174out_free_pages:
 175        while (--j >= 0)
 176                resync_free_pages(&rps[j]);
 177
 178out_free_bio:
 179        while (++j < pi->raid_disks)
 180                bio_put(r1_bio->bios[j]);
 181        kfree(rps);
 182
 183out_free_r1bio:
 184        r1bio_pool_free(r1_bio, data);
 185        return NULL;
 186}
 187
 188static void r1buf_pool_free(void *__r1_bio, void *data)
 189{
 190        struct pool_info *pi = data;
 191        int i;
 192        struct r1bio *r1bio = __r1_bio;
 193        struct resync_pages *rp = NULL;
 194
 195        for (i = pi->raid_disks; i--; ) {
 196                rp = get_resync_pages(r1bio->bios[i]);
 197                resync_free_pages(rp);
 198                bio_put(r1bio->bios[i]);
 199        }
 200
 201        /* resync pages array stored in the 1st bio's .bi_private */
 202        kfree(rp);
 203
 204        r1bio_pool_free(r1bio, data);
 205}
 206
 207static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 208{
 209        int i;
 210
 211        for (i = 0; i < conf->raid_disks * 2; i++) {
 212                struct bio **bio = r1_bio->bios + i;
 213                if (!BIO_SPECIAL(*bio))
 214                        bio_put(*bio);
 215                *bio = NULL;
 216        }
 217}
 218
 219static void free_r1bio(struct r1bio *r1_bio)
 220{
 221        struct r1conf *conf = r1_bio->mddev->private;
 222
 223        put_all_bios(conf, r1_bio);
 224        mempool_free(r1_bio, conf->r1bio_pool);
 225}
 226
 227static void put_buf(struct r1bio *r1_bio)
 228{
 229        struct r1conf *conf = r1_bio->mddev->private;
 230        sector_t sect = r1_bio->sector;
 231        int i;
 232
 233        for (i = 0; i < conf->raid_disks * 2; i++) {
 234                struct bio *bio = r1_bio->bios[i];
 235                if (bio->bi_end_io)
 236                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 237        }
 238
 239        mempool_free(r1_bio, conf->r1buf_pool);
 240
 241        lower_barrier(conf, sect);
 242}
 243
 244static void reschedule_retry(struct r1bio *r1_bio)
 245{
 246        unsigned long flags;
 247        struct mddev *mddev = r1_bio->mddev;
 248        struct r1conf *conf = mddev->private;
 249        int idx;
 250
 251        idx = sector_to_idx(r1_bio->sector);
 252        spin_lock_irqsave(&conf->device_lock, flags);
 253        list_add(&r1_bio->retry_list, &conf->retry_list);
 254        atomic_inc(&conf->nr_queued[idx]);
 255        spin_unlock_irqrestore(&conf->device_lock, flags);
 256
 257        wake_up(&conf->wait_barrier);
 258        md_wakeup_thread(mddev->thread);
 259}
 260
 261/*
 262 * raid_end_bio_io() is called when we have finished servicing a mirrored
 263 * operation and are ready to return a success/failure code to the buffer
 264 * cache layer.
 265 */
 266static void call_bio_endio(struct r1bio *r1_bio)
 267{
 268        struct bio *bio = r1_bio->master_bio;
 269        struct r1conf *conf = r1_bio->mddev->private;
 270
 271        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 272                bio->bi_status = BLK_STS_IOERR;
 273
 274        bio_endio(bio);
 275        /*
 276         * Wake up any possible resync thread that waits for the device
 277         * to go idle.
 278         */
 279        allow_barrier(conf, r1_bio->sector);
 280}
 281
 282static void raid_end_bio_io(struct r1bio *r1_bio)
 283{
 284        struct bio *bio = r1_bio->master_bio;
 285
 286        /* if nobody has done the final endio yet, do it now */
 287        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 288                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 289                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 290                         (unsigned long long) bio->bi_iter.bi_sector,
 291                         (unsigned long long) bio_end_sector(bio) - 1);
 292
 293                call_bio_endio(r1_bio);
 294        }
 295        free_r1bio(r1_bio);
 296}
 297
 298/*
 299 * Update disk head position estimator based on IRQ completion info.
 300 */
 301static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 302{
 303        struct r1conf *conf = r1_bio->mddev->private;
 304
 305        conf->mirrors[disk].head_position =
 306                r1_bio->sector + (r1_bio->sectors);
 307}
 308
 309/*
 310 * Find the disk number which triggered given bio
 311 */
 312static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 313{
 314        int mirror;
 315        struct r1conf *conf = r1_bio->mddev->private;
 316        int raid_disks = conf->raid_disks;
 317
 318        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 319                if (r1_bio->bios[mirror] == bio)
 320                        break;
 321
 322        BUG_ON(mirror == raid_disks * 2);
 323        update_head_pos(mirror, r1_bio);
 324
 325        return mirror;
 326}
 327
 328static void raid1_end_read_request(struct bio *bio)
 329{
 330        int uptodate = !bio->bi_status;
 331        struct r1bio *r1_bio = bio->bi_private;
 332        struct r1conf *conf = r1_bio->mddev->private;
 333        struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 334
 335        /*
 336         * this branch is our 'one mirror IO has finished' event handler:
 337         */
 338        update_head_pos(r1_bio->read_disk, r1_bio);
 339
 340        if (uptodate)
 341                set_bit(R1BIO_Uptodate, &r1_bio->state);
 342        else if (test_bit(FailFast, &rdev->flags) &&
 343                 test_bit(R1BIO_FailFast, &r1_bio->state))
 344                /* This was a fail-fast read so we definitely
 345                 * want to retry */
 346                ;
 347        else {
 348                /* If all other devices have failed, we want to return
 349                 * the error upwards rather than fail the last device.
 350                 * Here we redefine "uptodate" to mean "Don't want to retry"
 351                 */
 352                unsigned long flags;
 353                spin_lock_irqsave(&conf->device_lock, flags);
 354                if (r1_bio->mddev->degraded == conf->raid_disks ||
 355                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 356                     test_bit(In_sync, &rdev->flags)))
 357                        uptodate = 1;
 358                spin_unlock_irqrestore(&conf->device_lock, flags);
 359        }
 360
 361        if (uptodate) {
 362                raid_end_bio_io(r1_bio);
 363                rdev_dec_pending(rdev, conf->mddev);
 364        } else {
 365                /*
 366                 * oops, read error:
 367                 */
 368                char b[BDEVNAME_SIZE];
 369                pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 370                                   mdname(conf->mddev),
 371                                   bdevname(rdev->bdev, b),
 372                                   (unsigned long long)r1_bio->sector);
 373                set_bit(R1BIO_ReadError, &r1_bio->state);
 374                reschedule_retry(r1_bio);
 375                /* don't drop the reference on read_disk yet */
 376        }
 377}
 378
 379static void close_write(struct r1bio *r1_bio)
 380{
 381        /* it really is the end of this request */
 382        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 383                bio_free_pages(r1_bio->behind_master_bio);
 384                bio_put(r1_bio->behind_master_bio);
 385                r1_bio->behind_master_bio = NULL;
 386        }
 387        /* clear the bitmap if all writes complete successfully */
 388        bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 389                        r1_bio->sectors,
 390                        !test_bit(R1BIO_Degraded, &r1_bio->state),
 391                        test_bit(R1BIO_BehindIO, &r1_bio->state));
 392        md_write_end(r1_bio->mddev);
 393}
 394
 395static void r1_bio_write_done(struct r1bio *r1_bio)
 396{
 397        if (!atomic_dec_and_test(&r1_bio->remaining))
 398                return;
 399
 400        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 401                reschedule_retry(r1_bio);
 402        else {
 403                close_write(r1_bio);
 404                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 405                        reschedule_retry(r1_bio);
 406                else
 407                        raid_end_bio_io(r1_bio);
 408        }
 409}
 410
 411static void raid1_end_write_request(struct bio *bio)
 412{
 413        struct r1bio *r1_bio = bio->bi_private;
 414        int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 415        struct r1conf *conf = r1_bio->mddev->private;
 416        struct bio *to_put = NULL;
 417        int mirror = find_bio_disk(r1_bio, bio);
 418        struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 419        bool discard_error;
 420
 421        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 422
 423        /*
 424         * 'one mirror IO has finished' event handler:
 425         */
 426        if (bio->bi_status && !discard_error) {
 427                set_bit(WriteErrorSeen, &rdev->flags);
 428                if (!test_and_set_bit(WantReplacement, &rdev->flags))
 429                        set_bit(MD_RECOVERY_NEEDED, &
 430                                conf->mddev->recovery);
 431
 432                if (test_bit(FailFast, &rdev->flags) &&
 433                    (bio->bi_opf & MD_FAILFAST) &&
 434                    /* We never try FailFast to WriteMostly devices */
 435                    !test_bit(WriteMostly, &rdev->flags)) {
 436                        md_error(r1_bio->mddev, rdev);
 437                        if (!test_bit(Faulty, &rdev->flags))
 438                                /* This is the only remaining device,
 439                                 * We need to retry the write without
 440                                 * FailFast
 441                                 */
 442                                set_bit(R1BIO_WriteError, &r1_bio->state);
 443                        else {
 444                                /* Finished with this branch */
 445                                r1_bio->bios[mirror] = NULL;
 446                                to_put = bio;
 447                        }
 448                } else
 449                        set_bit(R1BIO_WriteError, &r1_bio->state);
 450        } else {
 451                /*
 452                 * Set R1BIO_Uptodate in our master bio, so that we
 453                 * will return a good error code for to the higher
 454                 * levels even if IO on some other mirrored buffer
 455                 * fails.
 456                 *
 457                 * The 'master' represents the composite IO operation
 458                 * to user-side. So if something waits for IO, then it
 459                 * will wait for the 'master' bio.
 460                 */
 461                sector_t first_bad;
 462                int bad_sectors;
 463
 464                r1_bio->bios[mirror] = NULL;
 465                to_put = bio;
 466                /*
 467                 * Do not set R1BIO_Uptodate if the current device is
 468                 * rebuilding or Faulty. This is because we cannot use
 469                 * such device for properly reading the data back (we could
 470                 * potentially use it, if the current write would have felt
 471                 * before rdev->recovery_offset, but for simplicity we don't
 472                 * check this here.
 473                 */
 474                if (test_bit(In_sync, &rdev->flags) &&
 475                    !test_bit(Faulty, &rdev->flags))
 476                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 477
 478                /* Maybe we can clear some bad blocks. */
 479                if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 480                                &first_bad, &bad_sectors) && !discard_error) {
 481                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 482                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 483                }
 484        }
 485
 486        if (behind) {
 487                if (test_bit(WriteMostly, &rdev->flags))
 488                        atomic_dec(&r1_bio->behind_remaining);
 489
 490                /*
 491                 * In behind mode, we ACK the master bio once the I/O
 492                 * has safely reached all non-writemostly
 493                 * disks. Setting the Returned bit ensures that this
 494                 * gets done only once -- we don't ever want to return
 495                 * -EIO here, instead we'll wait
 496                 */
 497                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 498                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 499                        /* Maybe we can return now */
 500                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 501                                struct bio *mbio = r1_bio->master_bio;
 502                                pr_debug("raid1: behind end write sectors"
 503                                         " %llu-%llu\n",
 504                                         (unsigned long long) mbio->bi_iter.bi_sector,
 505                                         (unsigned long long) bio_end_sector(mbio) - 1);
 506                                call_bio_endio(r1_bio);
 507                        }
 508                }
 509        }
 510        if (r1_bio->bios[mirror] == NULL)
 511                rdev_dec_pending(rdev, conf->mddev);
 512
 513        /*
 514         * Let's see if all mirrored write operations have finished
 515         * already.
 516         */
 517        r1_bio_write_done(r1_bio);
 518
 519        if (to_put)
 520                bio_put(to_put);
 521}
 522
 523static sector_t align_to_barrier_unit_end(sector_t start_sector,
 524                                          sector_t sectors)
 525{
 526        sector_t len;
 527
 528        WARN_ON(sectors == 0);
 529        /*
 530         * len is the number of sectors from start_sector to end of the
 531         * barrier unit which start_sector belongs to.
 532         */
 533        len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 534              start_sector;
 535
 536        if (len > sectors)
 537                len = sectors;
 538
 539        return len;
 540}
 541
 542/*
 543 * This routine returns the disk from which the requested read should
 544 * be done. There is a per-array 'next expected sequential IO' sector
 545 * number - if this matches on the next IO then we use the last disk.
 546 * There is also a per-disk 'last know head position' sector that is
 547 * maintained from IRQ contexts, both the normal and the resync IO
 548 * completion handlers update this position correctly. If there is no
 549 * perfect sequential match then we pick the disk whose head is closest.
 550 *
 551 * If there are 2 mirrors in the same 2 devices, performance degrades
 552 * because position is mirror, not device based.
 553 *
 554 * The rdev for the device selected will have nr_pending incremented.
 555 */
 556static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 557{
 558        const sector_t this_sector = r1_bio->sector;
 559        int sectors;
 560        int best_good_sectors;
 561        int best_disk, best_dist_disk, best_pending_disk;
 562        int has_nonrot_disk;
 563        int disk;
 564        sector_t best_dist;
 565        unsigned int min_pending;
 566        struct md_rdev *rdev;
 567        int choose_first;
 568        int choose_next_idle;
 569
 570        rcu_read_lock();
 571        /*
 572         * Check if we can balance. We can balance on the whole
 573         * device if no resync is going on, or below the resync window.
 574         * We take the first readable disk when above the resync window.
 575         */
 576 retry:
 577        sectors = r1_bio->sectors;
 578        best_disk = -1;
 579        best_dist_disk = -1;
 580        best_dist = MaxSector;
 581        best_pending_disk = -1;
 582        min_pending = UINT_MAX;
 583        best_good_sectors = 0;
 584        has_nonrot_disk = 0;
 585        choose_next_idle = 0;
 586        clear_bit(R1BIO_FailFast, &r1_bio->state);
 587
 588        if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 589            (mddev_is_clustered(conf->mddev) &&
 590            md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 591                    this_sector + sectors)))
 592                choose_first = 1;
 593        else
 594                choose_first = 0;
 595
 596        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 597                sector_t dist;
 598                sector_t first_bad;
 599                int bad_sectors;
 600                unsigned int pending;
 601                bool nonrot;
 602
 603                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 604                if (r1_bio->bios[disk] == IO_BLOCKED
 605                    || rdev == NULL
 606                    || test_bit(Faulty, &rdev->flags))
 607                        continue;
 608                if (!test_bit(In_sync, &rdev->flags) &&
 609                    rdev->recovery_offset < this_sector + sectors)
 610                        continue;
 611                if (test_bit(WriteMostly, &rdev->flags)) {
 612                        /* Don't balance among write-mostly, just
 613                         * use the first as a last resort */
 614                        if (best_dist_disk < 0) {
 615                                if (is_badblock(rdev, this_sector, sectors,
 616                                                &first_bad, &bad_sectors)) {
 617                                        if (first_bad <= this_sector)
 618                                                /* Cannot use this */
 619                                                continue;
 620                                        best_good_sectors = first_bad - this_sector;
 621                                } else
 622                                        best_good_sectors = sectors;
 623                                best_dist_disk = disk;
 624                                best_pending_disk = disk;
 625                        }
 626                        continue;
 627                }
 628                /* This is a reasonable device to use.  It might
 629                 * even be best.
 630                 */
 631                if (is_badblock(rdev, this_sector, sectors,
 632                                &first_bad, &bad_sectors)) {
 633                        if (best_dist < MaxSector)
 634                                /* already have a better device */
 635                                continue;
 636                        if (first_bad <= this_sector) {
 637                                /* cannot read here. If this is the 'primary'
 638                                 * device, then we must not read beyond
 639                                 * bad_sectors from another device..
 640                                 */
 641                                bad_sectors -= (this_sector - first_bad);
 642                                if (choose_first && sectors > bad_sectors)
 643                                        sectors = bad_sectors;
 644                                if (best_good_sectors > sectors)
 645                                        best_good_sectors = sectors;
 646
 647                        } else {
 648                                sector_t good_sectors = first_bad - this_sector;
 649                                if (good_sectors > best_good_sectors) {
 650                                        best_good_sectors = good_sectors;
 651                                        best_disk = disk;
 652                                }
 653                                if (choose_first)
 654                                        break;
 655                        }
 656                        continue;
 657                } else {
 658                        if ((sectors > best_good_sectors) && (best_disk >= 0))
 659                                best_disk = -1;
 660                        best_good_sectors = sectors;
 661                }
 662
 663                if (best_disk >= 0)
 664                        /* At least two disks to choose from so failfast is OK */
 665                        set_bit(R1BIO_FailFast, &r1_bio->state);
 666
 667                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 668                has_nonrot_disk |= nonrot;
 669                pending = atomic_read(&rdev->nr_pending);
 670                dist = abs(this_sector - conf->mirrors[disk].head_position);
 671                if (choose_first) {
 672                        best_disk = disk;
 673                        break;
 674                }
 675                /* Don't change to another disk for sequential reads */
 676                if (conf->mirrors[disk].next_seq_sect == this_sector
 677                    || dist == 0) {
 678                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 679                        struct raid1_info *mirror = &conf->mirrors[disk];
 680
 681                        best_disk = disk;
 682                        /*
 683                         * If buffered sequential IO size exceeds optimal
 684                         * iosize, check if there is idle disk. If yes, choose
 685                         * the idle disk. read_balance could already choose an
 686                         * idle disk before noticing it's a sequential IO in
 687                         * this disk. This doesn't matter because this disk
 688                         * will idle, next time it will be utilized after the
 689                         * first disk has IO size exceeds optimal iosize. In
 690                         * this way, iosize of the first disk will be optimal
 691                         * iosize at least. iosize of the second disk might be
 692                         * small, but not a big deal since when the second disk
 693                         * starts IO, the first disk is likely still busy.
 694                         */
 695                        if (nonrot && opt_iosize > 0 &&
 696                            mirror->seq_start != MaxSector &&
 697                            mirror->next_seq_sect > opt_iosize &&
 698                            mirror->next_seq_sect - opt_iosize >=
 699                            mirror->seq_start) {
 700                                choose_next_idle = 1;
 701                                continue;
 702                        }
 703                        break;
 704                }
 705
 706                if (choose_next_idle)
 707                        continue;
 708
 709                if (min_pending > pending) {
 710                        min_pending = pending;
 711                        best_pending_disk = disk;
 712                }
 713
 714                if (dist < best_dist) {
 715                        best_dist = dist;
 716                        best_dist_disk = disk;
 717                }
 718        }
 719
 720        /*
 721         * If all disks are rotational, choose the closest disk. If any disk is
 722         * non-rotational, choose the disk with less pending request even the
 723         * disk is rotational, which might/might not be optimal for raids with
 724         * mixed ratation/non-rotational disks depending on workload.
 725         */
 726        if (best_disk == -1) {
 727                if (has_nonrot_disk || min_pending == 0)
 728                        best_disk = best_pending_disk;
 729                else
 730                        best_disk = best_dist_disk;
 731        }
 732
 733        if (best_disk >= 0) {
 734                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 735                if (!rdev)
 736                        goto retry;
 737                atomic_inc(&rdev->nr_pending);
 738                sectors = best_good_sectors;
 739
 740                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 741                        conf->mirrors[best_disk].seq_start = this_sector;
 742
 743                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 744        }
 745        rcu_read_unlock();
 746        *max_sectors = sectors;
 747
 748        return best_disk;
 749}
 750
 751static int raid1_congested(struct mddev *mddev, int bits)
 752{
 753        struct r1conf *conf = mddev->private;
 754        int i, ret = 0;
 755
 756        if ((bits & (1 << WB_async_congested)) &&
 757            conf->pending_count >= max_queued_requests)
 758                return 1;
 759
 760        rcu_read_lock();
 761        for (i = 0; i < conf->raid_disks * 2; i++) {
 762                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 763                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 764                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 765
 766                        BUG_ON(!q);
 767
 768                        /* Note the '|| 1' - when read_balance prefers
 769                         * non-congested targets, it can be removed
 770                         */
 771                        if ((bits & (1 << WB_async_congested)) || 1)
 772                                ret |= bdi_congested(q->backing_dev_info, bits);
 773                        else
 774                                ret &= bdi_congested(q->backing_dev_info, bits);
 775                }
 776        }
 777        rcu_read_unlock();
 778        return ret;
 779}
 780
 781static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 782{
 783        /* flush any pending bitmap writes to disk before proceeding w/ I/O */
 784        bitmap_unplug(conf->mddev->bitmap);
 785        wake_up(&conf->wait_barrier);
 786
 787        while (bio) { /* submit pending writes */
 788                struct bio *next = bio->bi_next;
 789                struct md_rdev *rdev = (void*)bio->bi_bdev;
 790                bio->bi_next = NULL;
 791                bio->bi_bdev = rdev->bdev;
 792                if (test_bit(Faulty, &rdev->flags)) {
 793                        bio_io_error(bio);
 794                } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 795                                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 796                        /* Just ignore it */
 797                        bio_endio(bio);
 798                else
 799                        generic_make_request(bio);
 800                bio = next;
 801        }
 802}
 803
 804static void flush_pending_writes(struct r1conf *conf)
 805{
 806        /* Any writes that have been queued but are awaiting
 807         * bitmap updates get flushed here.
 808         */
 809        spin_lock_irq(&conf->device_lock);
 810
 811        if (conf->pending_bio_list.head) {
 812                struct bio *bio;
 813                bio = bio_list_get(&conf->pending_bio_list);
 814                conf->pending_count = 0;
 815                spin_unlock_irq(&conf->device_lock);
 816                flush_bio_list(conf, bio);
 817        } else
 818                spin_unlock_irq(&conf->device_lock);
 819}
 820
 821/* Barriers....
 822 * Sometimes we need to suspend IO while we do something else,
 823 * either some resync/recovery, or reconfigure the array.
 824 * To do this we raise a 'barrier'.
 825 * The 'barrier' is a counter that can be raised multiple times
 826 * to count how many activities are happening which preclude
 827 * normal IO.
 828 * We can only raise the barrier if there is no pending IO.
 829 * i.e. if nr_pending == 0.
 830 * We choose only to raise the barrier if no-one is waiting for the
 831 * barrier to go down.  This means that as soon as an IO request
 832 * is ready, no other operations which require a barrier will start
 833 * until the IO request has had a chance.
 834 *
 835 * So: regular IO calls 'wait_barrier'.  When that returns there
 836 *    is no backgroup IO happening,  It must arrange to call
 837 *    allow_barrier when it has finished its IO.
 838 * backgroup IO calls must call raise_barrier.  Once that returns
 839 *    there is no normal IO happeing.  It must arrange to call
 840 *    lower_barrier when the particular background IO completes.
 841 */
 842static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
 843{
 844        int idx = sector_to_idx(sector_nr);
 845
 846        spin_lock_irq(&conf->resync_lock);
 847
 848        /* Wait until no block IO is waiting */
 849        wait_event_lock_irq(conf->wait_barrier,
 850                            !atomic_read(&conf->nr_waiting[idx]),
 851                            conf->resync_lock);
 852
 853        /* block any new IO from starting */
 854        atomic_inc(&conf->barrier[idx]);
 855        /*
 856         * In raise_barrier() we firstly increase conf->barrier[idx] then
 857         * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 858         * increase conf->nr_pending[idx] then check conf->barrier[idx].
 859         * A memory barrier here to make sure conf->nr_pending[idx] won't
 860         * be fetched before conf->barrier[idx] is increased. Otherwise
 861         * there will be a race between raise_barrier() and _wait_barrier().
 862         */
 863        smp_mb__after_atomic();
 864
 865        /* For these conditions we must wait:
 866         * A: while the array is in frozen state
 867         * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 868         *    existing in corresponding I/O barrier bucket.
 869         * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 870         *    max resync count which allowed on current I/O barrier bucket.
 871         */
 872        wait_event_lock_irq(conf->wait_barrier,
 873                            !conf->array_frozen &&
 874                             !atomic_read(&conf->nr_pending[idx]) &&
 875                             atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
 876                            conf->resync_lock);
 877
 878        atomic_inc(&conf->nr_sync_pending);
 879        spin_unlock_irq(&conf->resync_lock);
 880}
 881
 882static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 883{
 884        int idx = sector_to_idx(sector_nr);
 885
 886        BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 887
 888        atomic_dec(&conf->barrier[idx]);
 889        atomic_dec(&conf->nr_sync_pending);
 890        wake_up(&conf->wait_barrier);
 891}
 892
 893static void _wait_barrier(struct r1conf *conf, int idx)
 894{
 895        /*
 896         * We need to increase conf->nr_pending[idx] very early here,
 897         * then raise_barrier() can be blocked when it waits for
 898         * conf->nr_pending[idx] to be 0. Then we can avoid holding
 899         * conf->resync_lock when there is no barrier raised in same
 900         * barrier unit bucket. Also if the array is frozen, I/O
 901         * should be blocked until array is unfrozen.
 902         */
 903        atomic_inc(&conf->nr_pending[idx]);
 904        /*
 905         * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 906         * check conf->barrier[idx]. In raise_barrier() we firstly increase
 907         * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 908         * barrier is necessary here to make sure conf->barrier[idx] won't be
 909         * fetched before conf->nr_pending[idx] is increased. Otherwise there
 910         * will be a race between _wait_barrier() and raise_barrier().
 911         */
 912        smp_mb__after_atomic();
 913
 914        /*
 915         * Don't worry about checking two atomic_t variables at same time
 916         * here. If during we check conf->barrier[idx], the array is
 917         * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 918         * 0, it is safe to return and make the I/O continue. Because the
 919         * array is frozen, all I/O returned here will eventually complete
 920         * or be queued, no race will happen. See code comment in
 921         * frozen_array().
 922         */
 923        if (!READ_ONCE(conf->array_frozen) &&
 924            !atomic_read(&conf->barrier[idx]))
 925                return;
 926
 927        /*
 928         * After holding conf->resync_lock, conf->nr_pending[idx]
 929         * should be decreased before waiting for barrier to drop.
 930         * Otherwise, we may encounter a race condition because
 931         * raise_barrer() might be waiting for conf->nr_pending[idx]
 932         * to be 0 at same time.
 933         */
 934        spin_lock_irq(&conf->resync_lock);
 935        atomic_inc(&conf->nr_waiting[idx]);
 936        atomic_dec(&conf->nr_pending[idx]);
 937        /*
 938         * In case freeze_array() is waiting for
 939         * get_unqueued_pending() == extra
 940         */
 941        wake_up(&conf->wait_barrier);
 942        /* Wait for the barrier in same barrier unit bucket to drop. */
 943        wait_event_lock_irq(conf->wait_barrier,
 944                            !conf->array_frozen &&
 945                             !atomic_read(&conf->barrier[idx]),
 946                            conf->resync_lock);
 947        atomic_inc(&conf->nr_pending[idx]);
 948        atomic_dec(&conf->nr_waiting[idx]);
 949        spin_unlock_irq(&conf->resync_lock);
 950}
 951
 952static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
 953{
 954        int idx = sector_to_idx(sector_nr);
 955
 956        /*
 957         * Very similar to _wait_barrier(). The difference is, for read
 958         * I/O we don't need wait for sync I/O, but if the whole array
 959         * is frozen, the read I/O still has to wait until the array is
 960         * unfrozen. Since there is no ordering requirement with
 961         * conf->barrier[idx] here, memory barrier is unnecessary as well.
 962         */
 963        atomic_inc(&conf->nr_pending[idx]);
 964
 965        if (!READ_ONCE(conf->array_frozen))
 966                return;
 967
 968        spin_lock_irq(&conf->resync_lock);
 969        atomic_inc(&conf->nr_waiting[idx]);
 970        atomic_dec(&conf->nr_pending[idx]);
 971        /*
 972         * In case freeze_array() is waiting for
 973         * get_unqueued_pending() == extra
 974         */
 975        wake_up(&conf->wait_barrier);
 976        /* Wait for array to be unfrozen */
 977        wait_event_lock_irq(conf->wait_barrier,
 978                            !conf->array_frozen,
 979                            conf->resync_lock);
 980        atomic_inc(&conf->nr_pending[idx]);
 981        atomic_dec(&conf->nr_waiting[idx]);
 982        spin_unlock_irq(&conf->resync_lock);
 983}
 984
 985static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
 986{
 987        int idx = sector_to_idx(sector_nr);
 988
 989        _wait_barrier(conf, idx);
 990}
 991
 992static void wait_all_barriers(struct r1conf *conf)
 993{
 994        int idx;
 995
 996        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
 997                _wait_barrier(conf, idx);
 998}
 999
1000static void _allow_barrier(struct r1conf *conf, int idx)
1001{
1002        atomic_dec(&conf->nr_pending[idx]);
1003        wake_up(&conf->wait_barrier);
1004}
1005
1006static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1007{
1008        int idx = sector_to_idx(sector_nr);
1009
1010        _allow_barrier(conf, idx);
1011}
1012
1013static void allow_all_barriers(struct r1conf *conf)
1014{
1015        int idx;
1016
1017        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1018                _allow_barrier(conf, idx);
1019}
1020
1021/* conf->resync_lock should be held */
1022static int get_unqueued_pending(struct r1conf *conf)
1023{
1024        int idx, ret;
1025
1026        ret = atomic_read(&conf->nr_sync_pending);
1027        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1028                ret += atomic_read(&conf->nr_pending[idx]) -
1029                        atomic_read(&conf->nr_queued[idx]);
1030
1031        return ret;
1032}
1033
1034static void freeze_array(struct r1conf *conf, int extra)
1035{
1036        /* Stop sync I/O and normal I/O and wait for everything to
1037         * go quiet.
1038         * This is called in two situations:
1039         * 1) management command handlers (reshape, remove disk, quiesce).
1040         * 2) one normal I/O request failed.
1041
1042         * After array_frozen is set to 1, new sync IO will be blocked at
1043         * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1044         * or wait_read_barrier(). The flying I/Os will either complete or be
1045         * queued. When everything goes quite, there are only queued I/Os left.
1046
1047         * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1048         * barrier bucket index which this I/O request hits. When all sync and
1049         * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1050         * of all conf->nr_queued[]. But normal I/O failure is an exception,
1051         * in handle_read_error(), we may call freeze_array() before trying to
1052         * fix the read error. In this case, the error read I/O is not queued,
1053         * so get_unqueued_pending() == 1.
1054         *
1055         * Therefore before this function returns, we need to wait until
1056         * get_unqueued_pendings(conf) gets equal to extra. For
1057         * normal I/O context, extra is 1, in rested situations extra is 0.
1058         */
1059        spin_lock_irq(&conf->resync_lock);
1060        conf->array_frozen = 1;
1061        raid1_log(conf->mddev, "wait freeze");
1062        wait_event_lock_irq_cmd(
1063                conf->wait_barrier,
1064                get_unqueued_pending(conf) == extra,
1065                conf->resync_lock,
1066                flush_pending_writes(conf));
1067        spin_unlock_irq(&conf->resync_lock);
1068}
1069static void unfreeze_array(struct r1conf *conf)
1070{
1071        /* reverse the effect of the freeze */
1072        spin_lock_irq(&conf->resync_lock);
1073        conf->array_frozen = 0;
1074        spin_unlock_irq(&conf->resync_lock);
1075        wake_up(&conf->wait_barrier);
1076}
1077
1078static void alloc_behind_master_bio(struct r1bio *r1_bio,
1079                                           struct bio *bio)
1080{
1081        int size = bio->bi_iter.bi_size;
1082        unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083        int i = 0;
1084        struct bio *behind_bio = NULL;
1085
1086        behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1087        if (!behind_bio)
1088                return;
1089
1090        /* discard op, we don't support writezero/writesame yet */
1091        if (!bio_has_data(bio)) {
1092                behind_bio->bi_iter.bi_size = size;
1093                goto skip_copy;
1094        }
1095
1096        while (i < vcnt && size) {
1097                struct page *page;
1098                int len = min_t(int, PAGE_SIZE, size);
1099
1100                page = alloc_page(GFP_NOIO);
1101                if (unlikely(!page))
1102                        goto free_pages;
1103
1104                bio_add_page(behind_bio, page, len, 0);
1105
1106                size -= len;
1107                i++;
1108        }
1109
1110        bio_copy_data(behind_bio, bio);
1111skip_copy:
1112        r1_bio->behind_master_bio = behind_bio;;
1113        set_bit(R1BIO_BehindIO, &r1_bio->state);
1114
1115        return;
1116
1117free_pages:
1118        pr_debug("%dB behind alloc failed, doing sync I/O\n",
1119                 bio->bi_iter.bi_size);
1120        bio_free_pages(behind_bio);
1121        bio_put(behind_bio);
1122}
1123
1124struct raid1_plug_cb {
1125        struct blk_plug_cb      cb;
1126        struct bio_list         pending;
1127        int                     pending_cnt;
1128};
1129
1130static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1131{
1132        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1133                                                  cb);
1134        struct mddev *mddev = plug->cb.data;
1135        struct r1conf *conf = mddev->private;
1136        struct bio *bio;
1137
1138        if (from_schedule || current->bio_list) {
1139                spin_lock_irq(&conf->device_lock);
1140                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1141                conf->pending_count += plug->pending_cnt;
1142                spin_unlock_irq(&conf->device_lock);
1143                wake_up(&conf->wait_barrier);
1144                md_wakeup_thread(mddev->thread);
1145                kfree(plug);
1146                return;
1147        }
1148
1149        /* we aren't scheduling, so we can do the write-out directly. */
1150        bio = bio_list_get(&plug->pending);
1151        flush_bio_list(conf, bio);
1152        kfree(plug);
1153}
1154
1155static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1156{
1157        r1_bio->master_bio = bio;
1158        r1_bio->sectors = bio_sectors(bio);
1159        r1_bio->state = 0;
1160        r1_bio->mddev = mddev;
1161        r1_bio->sector = bio->bi_iter.bi_sector;
1162}
1163
1164static inline struct r1bio *
1165alloc_r1bio(struct mddev *mddev, struct bio *bio)
1166{
1167        struct r1conf *conf = mddev->private;
1168        struct r1bio *r1_bio;
1169
1170        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1171        /* Ensure no bio records IO_BLOCKED */
1172        memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1173        init_r1bio(r1_bio, mddev, bio);
1174        return r1_bio;
1175}
1176
1177static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1178                               int max_read_sectors, struct r1bio *r1_bio)
1179{
1180        struct r1conf *conf = mddev->private;
1181        struct raid1_info *mirror;
1182        struct bio *read_bio;
1183        struct bitmap *bitmap = mddev->bitmap;
1184        const int op = bio_op(bio);
1185        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1186        int max_sectors;
1187        int rdisk;
1188        bool print_msg = !!r1_bio;
1189        char b[BDEVNAME_SIZE];
1190
1191        /*
1192         * If r1_bio is set, we are blocking the raid1d thread
1193         * so there is a tiny risk of deadlock.  So ask for
1194         * emergency memory if needed.
1195         */
1196        gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1197
1198        if (print_msg) {
1199                /* Need to get the block device name carefully */
1200                struct md_rdev *rdev;
1201                rcu_read_lock();
1202                rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1203                if (rdev)
1204                        bdevname(rdev->bdev, b);
1205                else
1206                        strcpy(b, "???");
1207                rcu_read_unlock();
1208        }
1209
1210        /*
1211         * Still need barrier for READ in case that whole
1212         * array is frozen.
1213         */
1214        wait_read_barrier(conf, bio->bi_iter.bi_sector);
1215
1216        if (!r1_bio)
1217                r1_bio = alloc_r1bio(mddev, bio);
1218        else
1219                init_r1bio(r1_bio, mddev, bio);
1220        r1_bio->sectors = max_read_sectors;
1221
1222        /*
1223         * make_request() can abort the operation when read-ahead is being
1224         * used and no empty request is available.
1225         */
1226        rdisk = read_balance(conf, r1_bio, &max_sectors);
1227
1228        if (rdisk < 0) {
1229                /* couldn't find anywhere to read from */
1230                if (print_msg) {
1231                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1232                                            mdname(mddev),
1233                                            b,
1234                                            (unsigned long long)r1_bio->sector);
1235                }
1236                raid_end_bio_io(r1_bio);
1237                return;
1238        }
1239        mirror = conf->mirrors + rdisk;
1240
1241        if (print_msg)
1242                pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1243                                    mdname(mddev),
1244                                    (unsigned long long)r1_bio->sector,
1245                                    bdevname(mirror->rdev->bdev, b));
1246
1247        if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1248            bitmap) {
1249                /*
1250                 * Reading from a write-mostly device must take care not to
1251                 * over-take any writes that are 'behind'
1252                 */
1253                raid1_log(mddev, "wait behind writes");
1254                wait_event(bitmap->behind_wait,
1255                           atomic_read(&bitmap->behind_writes) == 0);
1256        }
1257
1258        if (max_sectors < bio_sectors(bio)) {
1259                struct bio *split = bio_split(bio, max_sectors,
1260                                              gfp, conf->bio_split);
1261                bio_chain(split, bio);
1262                generic_make_request(bio);
1263                bio = split;
1264                r1_bio->master_bio = bio;
1265                r1_bio->sectors = max_sectors;
1266        }
1267
1268        r1_bio->read_disk = rdisk;
1269
1270        read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1271
1272        r1_bio->bios[rdisk] = read_bio;
1273
1274        read_bio->bi_iter.bi_sector = r1_bio->sector +
1275                mirror->rdev->data_offset;
1276        read_bio->bi_bdev = mirror->rdev->bdev;
1277        read_bio->bi_end_io = raid1_end_read_request;
1278        bio_set_op_attrs(read_bio, op, do_sync);
1279        if (test_bit(FailFast, &mirror->rdev->flags) &&
1280            test_bit(R1BIO_FailFast, &r1_bio->state))
1281                read_bio->bi_opf |= MD_FAILFAST;
1282        read_bio->bi_private = r1_bio;
1283
1284        if (mddev->gendisk)
1285                trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1286                                      read_bio, disk_devt(mddev->gendisk),
1287                                      r1_bio->sector);
1288
1289        generic_make_request(read_bio);
1290}
1291
1292static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1293                                int max_write_sectors)
1294{
1295        struct r1conf *conf = mddev->private;
1296        struct r1bio *r1_bio;
1297        int i, disks;
1298        struct bitmap *bitmap = mddev->bitmap;
1299        unsigned long flags;
1300        struct md_rdev *blocked_rdev;
1301        struct blk_plug_cb *cb;
1302        struct raid1_plug_cb *plug = NULL;
1303        int first_clone;
1304        int max_sectors;
1305
1306        /*
1307         * Register the new request and wait if the reconstruction
1308         * thread has put up a bar for new requests.
1309         * Continue immediately if no resync is active currently.
1310         */
1311
1312
1313        if ((bio_end_sector(bio) > mddev->suspend_lo &&
1314            bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1315            (mddev_is_clustered(mddev) &&
1316             md_cluster_ops->area_resyncing(mddev, WRITE,
1317                     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1318
1319                /*
1320                 * As the suspend_* range is controlled by userspace, we want
1321                 * an interruptible wait.
1322                 */
1323                DEFINE_WAIT(w);
1324                for (;;) {
1325                        sigset_t full, old;
1326                        prepare_to_wait(&conf->wait_barrier,
1327                                        &w, TASK_INTERRUPTIBLE);
1328                        if (bio_end_sector(bio) <= mddev->suspend_lo ||
1329                            bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1330                            (mddev_is_clustered(mddev) &&
1331                             !md_cluster_ops->area_resyncing(mddev, WRITE,
1332                                     bio->bi_iter.bi_sector,
1333                                     bio_end_sector(bio))))
1334                                break;
1335                        sigfillset(&full);
1336                        sigprocmask(SIG_BLOCK, &full, &old);
1337                        schedule();
1338                        sigprocmask(SIG_SETMASK, &old, NULL);
1339                }
1340                finish_wait(&conf->wait_barrier, &w);
1341        }
1342        wait_barrier(conf, bio->bi_iter.bi_sector);
1343
1344        r1_bio = alloc_r1bio(mddev, bio);
1345        r1_bio->sectors = max_write_sectors;
1346
1347        if (conf->pending_count >= max_queued_requests) {
1348                md_wakeup_thread(mddev->thread);
1349                raid1_log(mddev, "wait queued");
1350                wait_event(conf->wait_barrier,
1351                           conf->pending_count < max_queued_requests);
1352        }
1353        /* first select target devices under rcu_lock and
1354         * inc refcount on their rdev.  Record them by setting
1355         * bios[x] to bio
1356         * If there are known/acknowledged bad blocks on any device on
1357         * which we have seen a write error, we want to avoid writing those
1358         * blocks.
1359         * This potentially requires several writes to write around
1360         * the bad blocks.  Each set of writes gets it's own r1bio
1361         * with a set of bios attached.
1362         */
1363
1364        disks = conf->raid_disks * 2;
1365 retry_write:
1366        blocked_rdev = NULL;
1367        rcu_read_lock();
1368        max_sectors = r1_bio->sectors;
1369        for (i = 0;  i < disks; i++) {
1370                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1371                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372                        atomic_inc(&rdev->nr_pending);
1373                        blocked_rdev = rdev;
1374                        break;
1375                }
1376                r1_bio->bios[i] = NULL;
1377                if (!rdev || test_bit(Faulty, &rdev->flags)) {
1378                        if (i < conf->raid_disks)
1379                                set_bit(R1BIO_Degraded, &r1_bio->state);
1380                        continue;
1381                }
1382
1383                atomic_inc(&rdev->nr_pending);
1384                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1385                        sector_t first_bad;
1386                        int bad_sectors;
1387                        int is_bad;
1388
1389                        is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1390                                             &first_bad, &bad_sectors);
1391                        if (is_bad < 0) {
1392                                /* mustn't write here until the bad block is
1393                                 * acknowledged*/
1394                                set_bit(BlockedBadBlocks, &rdev->flags);
1395                                blocked_rdev = rdev;
1396                                break;
1397                        }
1398                        if (is_bad && first_bad <= r1_bio->sector) {
1399                                /* Cannot write here at all */
1400                                bad_sectors -= (r1_bio->sector - first_bad);
1401                                if (bad_sectors < max_sectors)
1402                                        /* mustn't write more than bad_sectors
1403                                         * to other devices yet
1404                                         */
1405                                        max_sectors = bad_sectors;
1406                                rdev_dec_pending(rdev, mddev);
1407                                /* We don't set R1BIO_Degraded as that
1408                                 * only applies if the disk is
1409                                 * missing, so it might be re-added,
1410                                 * and we want to know to recover this
1411                                 * chunk.
1412                                 * In this case the device is here,
1413                                 * and the fact that this chunk is not
1414                                 * in-sync is recorded in the bad
1415                                 * block log
1416                                 */
1417                                continue;
1418                        }
1419                        if (is_bad) {
1420                                int good_sectors = first_bad - r1_bio->sector;
1421                                if (good_sectors < max_sectors)
1422                                        max_sectors = good_sectors;
1423                        }
1424                }
1425                r1_bio->bios[i] = bio;
1426        }
1427        rcu_read_unlock();
1428
1429        if (unlikely(blocked_rdev)) {
1430                /* Wait for this device to become unblocked */
1431                int j;
1432
1433                for (j = 0; j < i; j++)
1434                        if (r1_bio->bios[j])
1435                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1436                r1_bio->state = 0;
1437                allow_barrier(conf, bio->bi_iter.bi_sector);
1438                raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1439                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1440                wait_barrier(conf, bio->bi_iter.bi_sector);
1441                goto retry_write;
1442        }
1443
1444        if (max_sectors < bio_sectors(bio)) {
1445                struct bio *split = bio_split(bio, max_sectors,
1446                                              GFP_NOIO, conf->bio_split);
1447                bio_chain(split, bio);
1448                generic_make_request(bio);
1449                bio = split;
1450                r1_bio->master_bio = bio;
1451                r1_bio->sectors = max_sectors;
1452        }
1453
1454        atomic_set(&r1_bio->remaining, 1);
1455        atomic_set(&r1_bio->behind_remaining, 0);
1456
1457        first_clone = 1;
1458
1459        for (i = 0; i < disks; i++) {
1460                struct bio *mbio = NULL;
1461                if (!r1_bio->bios[i])
1462                        continue;
1463
1464
1465                if (first_clone) {
1466                        /* do behind I/O ?
1467                         * Not if there are too many, or cannot
1468                         * allocate memory, or a reader on WriteMostly
1469                         * is waiting for behind writes to flush */
1470                        if (bitmap &&
1471                            (atomic_read(&bitmap->behind_writes)
1472                             < mddev->bitmap_info.max_write_behind) &&
1473                            !waitqueue_active(&bitmap->behind_wait)) {
1474                                alloc_behind_master_bio(r1_bio, bio);
1475                        }
1476
1477                        bitmap_startwrite(bitmap, r1_bio->sector,
1478                                          r1_bio->sectors,
1479                                          test_bit(R1BIO_BehindIO,
1480                                                   &r1_bio->state));
1481                        first_clone = 0;
1482                }
1483
1484                if (r1_bio->behind_master_bio)
1485                        mbio = bio_clone_fast(r1_bio->behind_master_bio,
1486                                              GFP_NOIO, mddev->bio_set);
1487                else
1488                        mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1489
1490                if (r1_bio->behind_master_bio) {
1491                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1492                                atomic_inc(&r1_bio->behind_remaining);
1493                }
1494
1495                r1_bio->bios[i] = mbio;
1496
1497                mbio->bi_iter.bi_sector = (r1_bio->sector +
1498                                   conf->mirrors[i].rdev->data_offset);
1499                mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1500                mbio->bi_end_io = raid1_end_write_request;
1501                mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1502                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1503                    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1504                    conf->raid_disks - mddev->degraded > 1)
1505                        mbio->bi_opf |= MD_FAILFAST;
1506                mbio->bi_private = r1_bio;
1507
1508                atomic_inc(&r1_bio->remaining);
1509
1510                if (mddev->gendisk)
1511                        trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1512                                              mbio, disk_devt(mddev->gendisk),
1513                                              r1_bio->sector);
1514                /* flush_pending_writes() needs access to the rdev so...*/
1515                mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1516
1517                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1518                if (cb)
1519                        plug = container_of(cb, struct raid1_plug_cb, cb);
1520                else
1521                        plug = NULL;
1522                if (plug) {
1523                        bio_list_add(&plug->pending, mbio);
1524                        plug->pending_cnt++;
1525                } else {
1526                        spin_lock_irqsave(&conf->device_lock, flags);
1527                        bio_list_add(&conf->pending_bio_list, mbio);
1528                        conf->pending_count++;
1529                        spin_unlock_irqrestore(&conf->device_lock, flags);
1530                        md_wakeup_thread(mddev->thread);
1531                }
1532        }
1533
1534        r1_bio_write_done(r1_bio);
1535
1536        /* In case raid1d snuck in to freeze_array */
1537        wake_up(&conf->wait_barrier);
1538}
1539
1540static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1541{
1542        sector_t sectors;
1543
1544        if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1545                md_flush_request(mddev, bio);
1546                return true;
1547        }
1548
1549        /*
1550         * There is a limit to the maximum size, but
1551         * the read/write handler might find a lower limit
1552         * due to bad blocks.  To avoid multiple splits,
1553         * we pass the maximum number of sectors down
1554         * and let the lower level perform the split.
1555         */
1556        sectors = align_to_barrier_unit_end(
1557                bio->bi_iter.bi_sector, bio_sectors(bio));
1558
1559        if (bio_data_dir(bio) == READ)
1560                raid1_read_request(mddev, bio, sectors, NULL);
1561        else {
1562                if (!md_write_start(mddev,bio))
1563                        return false;
1564                raid1_write_request(mddev, bio, sectors);
1565        }
1566        return true;
1567}
1568
1569static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1570{
1571        struct r1conf *conf = mddev->private;
1572        int i;
1573
1574        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1575                   conf->raid_disks - mddev->degraded);
1576        rcu_read_lock();
1577        for (i = 0; i < conf->raid_disks; i++) {
1578                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1579                seq_printf(seq, "%s",
1580                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1581        }
1582        rcu_read_unlock();
1583        seq_printf(seq, "]");
1584}
1585
1586static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1587{
1588        char b[BDEVNAME_SIZE];
1589        struct r1conf *conf = mddev->private;
1590        unsigned long flags;
1591
1592        /*
1593         * If it is not operational, then we have already marked it as dead
1594         * else if it is the last working disks, ignore the error, let the
1595         * next level up know.
1596         * else mark the drive as failed
1597         */
1598        spin_lock_irqsave(&conf->device_lock, flags);
1599        if (test_bit(In_sync, &rdev->flags)
1600            && (conf->raid_disks - mddev->degraded) == 1) {
1601                /*
1602                 * Don't fail the drive, act as though we were just a
1603                 * normal single drive.
1604                 * However don't try a recovery from this drive as
1605                 * it is very likely to fail.
1606                 */
1607                conf->recovery_disabled = mddev->recovery_disabled;
1608                spin_unlock_irqrestore(&conf->device_lock, flags);
1609                return;
1610        }
1611        set_bit(Blocked, &rdev->flags);
1612        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1613                mddev->degraded++;
1614                set_bit(Faulty, &rdev->flags);
1615        } else
1616                set_bit(Faulty, &rdev->flags);
1617        spin_unlock_irqrestore(&conf->device_lock, flags);
1618        /*
1619         * if recovery is running, make sure it aborts.
1620         */
1621        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1622        set_mask_bits(&mddev->sb_flags, 0,
1623                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1624        pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1625                "md/raid1:%s: Operation continuing on %d devices.\n",
1626                mdname(mddev), bdevname(rdev->bdev, b),
1627                mdname(mddev), conf->raid_disks - mddev->degraded);
1628}
1629
1630static void print_conf(struct r1conf *conf)
1631{
1632        int i;
1633
1634        pr_debug("RAID1 conf printout:\n");
1635        if (!conf) {
1636                pr_debug("(!conf)\n");
1637                return;
1638        }
1639        pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1640                 conf->raid_disks);
1641
1642        rcu_read_lock();
1643        for (i = 0; i < conf->raid_disks; i++) {
1644                char b[BDEVNAME_SIZE];
1645                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1646                if (rdev)
1647                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1648                                 i, !test_bit(In_sync, &rdev->flags),
1649                                 !test_bit(Faulty, &rdev->flags),
1650                                 bdevname(rdev->bdev,b));
1651        }
1652        rcu_read_unlock();
1653}
1654
1655static void close_sync(struct r1conf *conf)
1656{
1657        wait_all_barriers(conf);
1658        allow_all_barriers(conf);
1659
1660        mempool_destroy(conf->r1buf_pool);
1661        conf->r1buf_pool = NULL;
1662}
1663
1664static int raid1_spare_active(struct mddev *mddev)
1665{
1666        int i;
1667        struct r1conf *conf = mddev->private;
1668        int count = 0;
1669        unsigned long flags;
1670
1671        /*
1672         * Find all failed disks within the RAID1 configuration
1673         * and mark them readable.
1674         * Called under mddev lock, so rcu protection not needed.
1675         * device_lock used to avoid races with raid1_end_read_request
1676         * which expects 'In_sync' flags and ->degraded to be consistent.
1677         */
1678        spin_lock_irqsave(&conf->device_lock, flags);
1679        for (i = 0; i < conf->raid_disks; i++) {
1680                struct md_rdev *rdev = conf->mirrors[i].rdev;
1681                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1682                if (repl
1683                    && !test_bit(Candidate, &repl->flags)
1684                    && repl->recovery_offset == MaxSector
1685                    && !test_bit(Faulty, &repl->flags)
1686                    && !test_and_set_bit(In_sync, &repl->flags)) {
1687                        /* replacement has just become active */
1688                        if (!rdev ||
1689                            !test_and_clear_bit(In_sync, &rdev->flags))
1690                                count++;
1691                        if (rdev) {
1692                                /* Replaced device not technically
1693                                 * faulty, but we need to be sure
1694                                 * it gets removed and never re-added
1695                                 */
1696                                set_bit(Faulty, &rdev->flags);
1697                                sysfs_notify_dirent_safe(
1698                                        rdev->sysfs_state);
1699                        }
1700                }
1701                if (rdev
1702                    && rdev->recovery_offset == MaxSector
1703                    && !test_bit(Faulty, &rdev->flags)
1704                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1705                        count++;
1706                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1707                }
1708        }
1709        mddev->degraded -= count;
1710        spin_unlock_irqrestore(&conf->device_lock, flags);
1711
1712        print_conf(conf);
1713        return count;
1714}
1715
1716static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1717{
1718        struct r1conf *conf = mddev->private;
1719        int err = -EEXIST;
1720        int mirror = 0;
1721        struct raid1_info *p;
1722        int first = 0;
1723        int last = conf->raid_disks - 1;
1724
1725        if (mddev->recovery_disabled == conf->recovery_disabled)
1726                return -EBUSY;
1727
1728        if (md_integrity_add_rdev(rdev, mddev))
1729                return -ENXIO;
1730
1731        if (rdev->raid_disk >= 0)
1732                first = last = rdev->raid_disk;
1733
1734        /*
1735         * find the disk ... but prefer rdev->saved_raid_disk
1736         * if possible.
1737         */
1738        if (rdev->saved_raid_disk >= 0 &&
1739            rdev->saved_raid_disk >= first &&
1740            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1741                first = last = rdev->saved_raid_disk;
1742
1743        for (mirror = first; mirror <= last; mirror++) {
1744                p = conf->mirrors+mirror;
1745                if (!p->rdev) {
1746
1747                        if (mddev->gendisk)
1748                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1749                                                  rdev->data_offset << 9);
1750
1751                        p->head_position = 0;
1752                        rdev->raid_disk = mirror;
1753                        err = 0;
1754                        /* As all devices are equivalent, we don't need a full recovery
1755                         * if this was recently any drive of the array
1756                         */
1757                        if (rdev->saved_raid_disk < 0)
1758                                conf->fullsync = 1;
1759                        rcu_assign_pointer(p->rdev, rdev);
1760                        break;
1761                }
1762                if (test_bit(WantReplacement, &p->rdev->flags) &&
1763                    p[conf->raid_disks].rdev == NULL) {
1764                        /* Add this device as a replacement */
1765                        clear_bit(In_sync, &rdev->flags);
1766                        set_bit(Replacement, &rdev->flags);
1767                        rdev->raid_disk = mirror;
1768                        err = 0;
1769                        conf->fullsync = 1;
1770                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1771                        break;
1772                }
1773        }
1774        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1775                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1776        print_conf(conf);
1777        return err;
1778}
1779
1780static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1781{
1782        struct r1conf *conf = mddev->private;
1783        int err = 0;
1784        int number = rdev->raid_disk;
1785        struct raid1_info *p = conf->mirrors + number;
1786
1787        if (rdev != p->rdev)
1788                p = conf->mirrors + conf->raid_disks + number;
1789
1790        print_conf(conf);
1791        if (rdev == p->rdev) {
1792                if (test_bit(In_sync, &rdev->flags) ||
1793                    atomic_read(&rdev->nr_pending)) {
1794                        err = -EBUSY;
1795                        goto abort;
1796                }
1797                /* Only remove non-faulty devices if recovery
1798                 * is not possible.
1799                 */
1800                if (!test_bit(Faulty, &rdev->flags) &&
1801                    mddev->recovery_disabled != conf->recovery_disabled &&
1802                    mddev->degraded < conf->raid_disks) {
1803                        err = -EBUSY;
1804                        goto abort;
1805                }
1806                p->rdev = NULL;
1807                if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1808                        synchronize_rcu();
1809                        if (atomic_read(&rdev->nr_pending)) {
1810                                /* lost the race, try later */
1811                                err = -EBUSY;
1812                                p->rdev = rdev;
1813                                goto abort;
1814                        }
1815                }
1816                if (conf->mirrors[conf->raid_disks + number].rdev) {
1817                        /* We just removed a device that is being replaced.
1818                         * Move down the replacement.  We drain all IO before
1819                         * doing this to avoid confusion.
1820                         */
1821                        struct md_rdev *repl =
1822                                conf->mirrors[conf->raid_disks + number].rdev;
1823                        freeze_array(conf, 0);
1824                        clear_bit(Replacement, &repl->flags);
1825                        p->rdev = repl;
1826                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1827                        unfreeze_array(conf);
1828                }
1829
1830                clear_bit(WantReplacement, &rdev->flags);
1831                err = md_integrity_register(mddev);
1832        }
1833abort:
1834
1835        print_conf(conf);
1836        return err;
1837}
1838
1839static void end_sync_read(struct bio *bio)
1840{
1841        struct r1bio *r1_bio = get_resync_r1bio(bio);
1842
1843        update_head_pos(r1_bio->read_disk, r1_bio);
1844
1845        /*
1846         * we have read a block, now it needs to be re-written,
1847         * or re-read if the read failed.
1848         * We don't do much here, just schedule handling by raid1d
1849         */
1850        if (!bio->bi_status)
1851                set_bit(R1BIO_Uptodate, &r1_bio->state);
1852
1853        if (atomic_dec_and_test(&r1_bio->remaining))
1854                reschedule_retry(r1_bio);
1855}
1856
1857static void end_sync_write(struct bio *bio)
1858{
1859        int uptodate = !bio->bi_status;
1860        struct r1bio *r1_bio = get_resync_r1bio(bio);
1861        struct mddev *mddev = r1_bio->mddev;
1862        struct r1conf *conf = mddev->private;
1863        sector_t first_bad;
1864        int bad_sectors;
1865        struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1866
1867        if (!uptodate) {
1868                sector_t sync_blocks = 0;
1869                sector_t s = r1_bio->sector;
1870                long sectors_to_go = r1_bio->sectors;
1871                /* make sure these bits doesn't get cleared. */
1872                do {
1873                        bitmap_end_sync(mddev->bitmap, s,
1874                                        &sync_blocks, 1);
1875                        s += sync_blocks;
1876                        sectors_to_go -= sync_blocks;
1877                } while (sectors_to_go > 0);
1878                set_bit(WriteErrorSeen, &rdev->flags);
1879                if (!test_and_set_bit(WantReplacement, &rdev->flags))
1880                        set_bit(MD_RECOVERY_NEEDED, &
1881                                mddev->recovery);
1882                set_bit(R1BIO_WriteError, &r1_bio->state);
1883        } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1884                               &first_bad, &bad_sectors) &&
1885                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1886                                r1_bio->sector,
1887                                r1_bio->sectors,
1888                                &first_bad, &bad_sectors)
1889                )
1890                set_bit(R1BIO_MadeGood, &r1_bio->state);
1891
1892        if (atomic_dec_and_test(&r1_bio->remaining)) {
1893                int s = r1_bio->sectors;
1894                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1895                    test_bit(R1BIO_WriteError, &r1_bio->state))
1896                        reschedule_retry(r1_bio);
1897                else {
1898                        put_buf(r1_bio);
1899                        md_done_sync(mddev, s, uptodate);
1900                }
1901        }
1902}
1903
1904static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1905                            int sectors, struct page *page, int rw)
1906{
1907        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1908                /* success */
1909                return 1;
1910        if (rw == WRITE) {
1911                set_bit(WriteErrorSeen, &rdev->flags);
1912                if (!test_and_set_bit(WantReplacement,
1913                                      &rdev->flags))
1914                        set_bit(MD_RECOVERY_NEEDED, &
1915                                rdev->mddev->recovery);
1916        }
1917        /* need to record an error - either for the block or the device */
1918        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1919                md_error(rdev->mddev, rdev);
1920        return 0;
1921}
1922
1923static int fix_sync_read_error(struct r1bio *r1_bio)
1924{
1925        /* Try some synchronous reads of other devices to get
1926         * good data, much like with normal read errors.  Only
1927         * read into the pages we already have so we don't
1928         * need to re-issue the read request.
1929         * We don't need to freeze the array, because being in an
1930         * active sync request, there is no normal IO, and
1931         * no overlapping syncs.
1932         * We don't need to check is_badblock() again as we
1933         * made sure that anything with a bad block in range
1934         * will have bi_end_io clear.
1935         */
1936        struct mddev *mddev = r1_bio->mddev;
1937        struct r1conf *conf = mddev->private;
1938        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1939        struct page **pages = get_resync_pages(bio)->pages;
1940        sector_t sect = r1_bio->sector;
1941        int sectors = r1_bio->sectors;
1942        int idx = 0;
1943        struct md_rdev *rdev;
1944
1945        rdev = conf->mirrors[r1_bio->read_disk].rdev;
1946        if (test_bit(FailFast, &rdev->flags)) {
1947                /* Don't try recovering from here - just fail it
1948                 * ... unless it is the last working device of course */
1949                md_error(mddev, rdev);
1950                if (test_bit(Faulty, &rdev->flags))
1951                        /* Don't try to read from here, but make sure
1952                         * put_buf does it's thing
1953                         */
1954                        bio->bi_end_io = end_sync_write;
1955        }
1956
1957        while(sectors) {
1958                int s = sectors;
1959                int d = r1_bio->read_disk;
1960                int success = 0;
1961                int start;
1962
1963                if (s > (PAGE_SIZE>>9))
1964                        s = PAGE_SIZE >> 9;
1965                do {
1966                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1967                                /* No rcu protection needed here devices
1968                                 * can only be removed when no resync is
1969                                 * active, and resync is currently active
1970                                 */
1971                                rdev = conf->mirrors[d].rdev;
1972                                if (sync_page_io(rdev, sect, s<<9,
1973                                                 pages[idx],
1974                                                 REQ_OP_READ, 0, false)) {
1975                                        success = 1;
1976                                        break;
1977                                }
1978                        }
1979                        d++;
1980                        if (d == conf->raid_disks * 2)
1981                                d = 0;
1982                } while (!success && d != r1_bio->read_disk);
1983
1984                if (!success) {
1985                        char b[BDEVNAME_SIZE];
1986                        int abort = 0;
1987                        /* Cannot read from anywhere, this block is lost.
1988                         * Record a bad block on each device.  If that doesn't
1989                         * work just disable and interrupt the recovery.
1990                         * Don't fail devices as that won't really help.
1991                         */
1992                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1993                                            mdname(mddev),
1994                                            bdevname(bio->bi_bdev, b),
1995                                            (unsigned long long)r1_bio->sector);
1996                        for (d = 0; d < conf->raid_disks * 2; d++) {
1997                                rdev = conf->mirrors[d].rdev;
1998                                if (!rdev || test_bit(Faulty, &rdev->flags))
1999                                        continue;
2000                                if (!rdev_set_badblocks(rdev, sect, s, 0))
2001                                        abort = 1;
2002                        }
2003                        if (abort) {
2004                                conf->recovery_disabled =
2005                                        mddev->recovery_disabled;
2006                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2007                                md_done_sync(mddev, r1_bio->sectors, 0);
2008                                put_buf(r1_bio);
2009                                return 0;
2010                        }
2011                        /* Try next page */
2012                        sectors -= s;
2013                        sect += s;
2014                        idx++;
2015                        continue;
2016                }
2017
2018                start = d;
2019                /* write it back and re-read */
2020                while (d != r1_bio->read_disk) {
2021                        if (d == 0)
2022                                d = conf->raid_disks * 2;
2023                        d--;
2024                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2025                                continue;
2026                        rdev = conf->mirrors[d].rdev;
2027                        if (r1_sync_page_io(rdev, sect, s,
2028                                            pages[idx],
2029                                            WRITE) == 0) {
2030                                r1_bio->bios[d]->bi_end_io = NULL;
2031                                rdev_dec_pending(rdev, mddev);
2032                        }
2033                }
2034                d = start;
2035                while (d != r1_bio->read_disk) {
2036                        if (d == 0)
2037                                d = conf->raid_disks * 2;
2038                        d--;
2039                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2040                                continue;
2041                        rdev = conf->mirrors[d].rdev;
2042                        if (r1_sync_page_io(rdev, sect, s,
2043                                            pages[idx],
2044                                            READ) != 0)
2045                                atomic_add(s, &rdev->corrected_errors);
2046                }
2047                sectors -= s;
2048                sect += s;
2049                idx ++;
2050        }
2051        set_bit(R1BIO_Uptodate, &r1_bio->state);
2052        bio->bi_status = 0;
2053        return 1;
2054}
2055
2056static void process_checks(struct r1bio *r1_bio)
2057{
2058        /* We have read all readable devices.  If we haven't
2059         * got the block, then there is no hope left.
2060         * If we have, then we want to do a comparison
2061         * and skip the write if everything is the same.
2062         * If any blocks failed to read, then we need to
2063         * attempt an over-write
2064         */
2065        struct mddev *mddev = r1_bio->mddev;
2066        struct r1conf *conf = mddev->private;
2067        int primary;
2068        int i;
2069        int vcnt;
2070
2071        /* Fix variable parts of all bios */
2072        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2073        for (i = 0; i < conf->raid_disks * 2; i++) {
2074                blk_status_t status;
2075                struct bio *b = r1_bio->bios[i];
2076                struct resync_pages *rp = get_resync_pages(b);
2077                if (b->bi_end_io != end_sync_read)
2078                        continue;
2079                /* fixup the bio for reuse, but preserve errno */
2080                status = b->bi_status;
2081                bio_reset(b);
2082                b->bi_status = status;
2083                b->bi_iter.bi_sector = r1_bio->sector +
2084                        conf->mirrors[i].rdev->data_offset;
2085                b->bi_bdev = conf->mirrors[i].rdev->bdev;
2086                b->bi_end_io = end_sync_read;
2087                rp->raid_bio = r1_bio;
2088                b->bi_private = rp;
2089
2090                /* initialize bvec table again */
2091                md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2092        }
2093        for (primary = 0; primary < conf->raid_disks * 2; primary++)
2094                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2095                    !r1_bio->bios[primary]->bi_status) {
2096                        r1_bio->bios[primary]->bi_end_io = NULL;
2097                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2098                        break;
2099                }
2100        r1_bio->read_disk = primary;
2101        for (i = 0; i < conf->raid_disks * 2; i++) {
2102                int j;
2103                struct bio *pbio = r1_bio->bios[primary];
2104                struct bio *sbio = r1_bio->bios[i];
2105                blk_status_t status = sbio->bi_status;
2106                struct page **ppages = get_resync_pages(pbio)->pages;
2107                struct page **spages = get_resync_pages(sbio)->pages;
2108                struct bio_vec *bi;
2109                int page_len[RESYNC_PAGES] = { 0 };
2110
2111                if (sbio->bi_end_io != end_sync_read)
2112                        continue;
2113                /* Now we can 'fixup' the error value */
2114                sbio->bi_status = 0;
2115
2116                bio_for_each_segment_all(bi, sbio, j)
2117                        page_len[j] = bi->bv_len;
2118
2119                if (!status) {
2120                        for (j = vcnt; j-- ; ) {
2121                                if (memcmp(page_address(ppages[j]),
2122                                           page_address(spages[j]),
2123                                           page_len[j]))
2124                                        break;
2125                        }
2126                } else
2127                        j = 0;
2128                if (j >= 0)
2129                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2130                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2131                              && !status)) {
2132                        /* No need to write to this device. */
2133                        sbio->bi_end_io = NULL;
2134                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2135                        continue;
2136                }
2137
2138                bio_copy_data(sbio, pbio);
2139        }
2140}
2141
2142static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2143{
2144        struct r1conf *conf = mddev->private;
2145        int i;
2146        int disks = conf->raid_disks * 2;
2147        struct bio *wbio;
2148
2149        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2150                /* ouch - failed to read all of that. */
2151                if (!fix_sync_read_error(r1_bio))
2152                        return;
2153
2154        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2155                process_checks(r1_bio);
2156
2157        /*
2158         * schedule writes
2159         */
2160        atomic_set(&r1_bio->remaining, 1);
2161        for (i = 0; i < disks ; i++) {
2162                wbio = r1_bio->bios[i];
2163                if (wbio->bi_end_io == NULL ||
2164                    (wbio->bi_end_io == end_sync_read &&
2165                     (i == r1_bio->read_disk ||
2166                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2167                        continue;
2168                if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2169                        continue;
2170
2171                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2172                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2173                        wbio->bi_opf |= MD_FAILFAST;
2174
2175                wbio->bi_end_io = end_sync_write;
2176                atomic_inc(&r1_bio->remaining);
2177                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2178
2179                generic_make_request(wbio);
2180        }
2181
2182        if (atomic_dec_and_test(&r1_bio->remaining)) {
2183                /* if we're here, all write(s) have completed, so clean up */
2184                int s = r1_bio->sectors;
2185                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2186                    test_bit(R1BIO_WriteError, &r1_bio->state))
2187                        reschedule_retry(r1_bio);
2188                else {
2189                        put_buf(r1_bio);
2190                        md_done_sync(mddev, s, 1);
2191                }
2192        }
2193}
2194
2195/*
2196 * This is a kernel thread which:
2197 *
2198 *      1.      Retries failed read operations on working mirrors.
2199 *      2.      Updates the raid superblock when problems encounter.
2200 *      3.      Performs writes following reads for array synchronising.
2201 */
2202
2203static void fix_read_error(struct r1conf *conf, int read_disk,
2204                           sector_t sect, int sectors)
2205{
2206        struct mddev *mddev = conf->mddev;
2207        while(sectors) {
2208                int s = sectors;
2209                int d = read_disk;
2210                int success = 0;
2211                int start;
2212                struct md_rdev *rdev;
2213
2214                if (s > (PAGE_SIZE>>9))
2215                        s = PAGE_SIZE >> 9;
2216
2217                do {
2218                        sector_t first_bad;
2219                        int bad_sectors;
2220
2221                        rcu_read_lock();
2222                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2223                        if (rdev &&
2224                            (test_bit(In_sync, &rdev->flags) ||
2225                             (!test_bit(Faulty, &rdev->flags) &&
2226                              rdev->recovery_offset >= sect + s)) &&
2227                            is_badblock(rdev, sect, s,
2228                                        &first_bad, &bad_sectors) == 0) {
2229                                atomic_inc(&rdev->nr_pending);
2230                                rcu_read_unlock();
2231                                if (sync_page_io(rdev, sect, s<<9,
2232                                         conf->tmppage, REQ_OP_READ, 0, false))
2233                                        success = 1;
2234                                rdev_dec_pending(rdev, mddev);
2235                                if (success)
2236                                        break;
2237                        } else
2238                                rcu_read_unlock();
2239                        d++;
2240                        if (d == conf->raid_disks * 2)
2241                                d = 0;
2242                } while (!success && d != read_disk);
2243
2244                if (!success) {
2245                        /* Cannot read from anywhere - mark it bad */
2246                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2247                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2248                                md_error(mddev, rdev);
2249                        break;
2250                }
2251                /* write it back and re-read */
2252                start = d;
2253                while (d != read_disk) {
2254                        if (d==0)
2255                                d = conf->raid_disks * 2;
2256                        d--;
2257                        rcu_read_lock();
2258                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2259                        if (rdev &&
2260                            !test_bit(Faulty, &rdev->flags)) {
2261                                atomic_inc(&rdev->nr_pending);
2262                                rcu_read_unlock();
2263                                r1_sync_page_io(rdev, sect, s,
2264                                                conf->tmppage, WRITE);
2265                                rdev_dec_pending(rdev, mddev);
2266                        } else
2267                                rcu_read_unlock();
2268                }
2269                d = start;
2270                while (d != read_disk) {
2271                        char b[BDEVNAME_SIZE];
2272                        if (d==0)
2273                                d = conf->raid_disks * 2;
2274                        d--;
2275                        rcu_read_lock();
2276                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2277                        if (rdev &&
2278                            !test_bit(Faulty, &rdev->flags)) {
2279                                atomic_inc(&rdev->nr_pending);
2280                                rcu_read_unlock();
2281                                if (r1_sync_page_io(rdev, sect, s,
2282                                                    conf->tmppage, READ)) {
2283                                        atomic_add(s, &rdev->corrected_errors);
2284                                        pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2285                                                mdname(mddev), s,
2286                                                (unsigned long long)(sect +
2287                                                                     rdev->data_offset),
2288                                                bdevname(rdev->bdev, b));
2289                                }
2290                                rdev_dec_pending(rdev, mddev);
2291                        } else
2292                                rcu_read_unlock();
2293                }
2294                sectors -= s;
2295                sect += s;
2296        }
2297}
2298
2299static int narrow_write_error(struct r1bio *r1_bio, int i)
2300{
2301        struct mddev *mddev = r1_bio->mddev;
2302        struct r1conf *conf = mddev->private;
2303        struct md_rdev *rdev = conf->mirrors[i].rdev;
2304
2305        /* bio has the data to be written to device 'i' where
2306         * we just recently had a write error.
2307         * We repeatedly clone the bio and trim down to one block,
2308         * then try the write.  Where the write fails we record
2309         * a bad block.
2310         * It is conceivable that the bio doesn't exactly align with
2311         * blocks.  We must handle this somehow.
2312         *
2313         * We currently own a reference on the rdev.
2314         */
2315
2316        int block_sectors;
2317        sector_t sector;
2318        int sectors;
2319        int sect_to_write = r1_bio->sectors;
2320        int ok = 1;
2321
2322        if (rdev->badblocks.shift < 0)
2323                return 0;
2324
2325        block_sectors = roundup(1 << rdev->badblocks.shift,
2326                                bdev_logical_block_size(rdev->bdev) >> 9);
2327        sector = r1_bio->sector;
2328        sectors = ((sector + block_sectors)
2329                   & ~(sector_t)(block_sectors - 1))
2330                - sector;
2331
2332        while (sect_to_write) {
2333                struct bio *wbio;
2334                if (sectors > sect_to_write)
2335                        sectors = sect_to_write;
2336                /* Write at 'sector' for 'sectors'*/
2337
2338                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2339                        wbio = bio_clone_fast(r1_bio->behind_master_bio,
2340                                              GFP_NOIO,
2341                                              mddev->bio_set);
2342                } else {
2343                        wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2344                                              mddev->bio_set);
2345                }
2346
2347                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2348                wbio->bi_iter.bi_sector = r1_bio->sector;
2349                wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2350
2351                bio_trim(wbio, sector - r1_bio->sector, sectors);
2352                wbio->bi_iter.bi_sector += rdev->data_offset;
2353                wbio->bi_bdev = rdev->bdev;
2354
2355                if (submit_bio_wait(wbio) < 0)
2356                        /* failure! */
2357                        ok = rdev_set_badblocks(rdev, sector,
2358                                                sectors, 0)
2359                                && ok;
2360
2361                bio_put(wbio);
2362                sect_to_write -= sectors;
2363                sector += sectors;
2364                sectors = block_sectors;
2365        }
2366        return ok;
2367}
2368
2369static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2370{
2371        int m;
2372        int s = r1_bio->sectors;
2373        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2374                struct md_rdev *rdev = conf->mirrors[m].rdev;
2375                struct bio *bio = r1_bio->bios[m];
2376                if (bio->bi_end_io == NULL)
2377                        continue;
2378                if (!bio->bi_status &&
2379                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2380                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2381                }
2382                if (bio->bi_status &&
2383                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2384                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2385                                md_error(conf->mddev, rdev);
2386                }
2387        }
2388        put_buf(r1_bio);
2389        md_done_sync(conf->mddev, s, 1);
2390}
2391
2392static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2393{
2394        int m, idx;
2395        bool fail = false;
2396
2397        for (m = 0; m < conf->raid_disks * 2 ; m++)
2398                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2399                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2400                        rdev_clear_badblocks(rdev,
2401                                             r1_bio->sector,
2402                                             r1_bio->sectors, 0);
2403                        rdev_dec_pending(rdev, conf->mddev);
2404                } else if (r1_bio->bios[m] != NULL) {
2405                        /* This drive got a write error.  We need to
2406                         * narrow down and record precise write
2407                         * errors.
2408                         */
2409                        fail = true;
2410                        if (!narrow_write_error(r1_bio, m)) {
2411                                md_error(conf->mddev,
2412                                         conf->mirrors[m].rdev);
2413                                /* an I/O failed, we can't clear the bitmap */
2414                                set_bit(R1BIO_Degraded, &r1_bio->state);
2415                        }
2416                        rdev_dec_pending(conf->mirrors[m].rdev,
2417                                         conf->mddev);
2418                }
2419        if (fail) {
2420                spin_lock_irq(&conf->device_lock);
2421                list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2422                idx = sector_to_idx(r1_bio->sector);
2423                atomic_inc(&conf->nr_queued[idx]);
2424                spin_unlock_irq(&conf->device_lock);
2425                /*
2426                 * In case freeze_array() is waiting for condition
2427                 * get_unqueued_pending() == extra to be true.
2428                 */
2429                wake_up(&conf->wait_barrier);
2430                md_wakeup_thread(conf->mddev->thread);
2431        } else {
2432                if (test_bit(R1BIO_WriteError, &r1_bio->state))
2433                        close_write(r1_bio);
2434                raid_end_bio_io(r1_bio);
2435        }
2436}
2437
2438static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2439{
2440        struct mddev *mddev = conf->mddev;
2441        struct bio *bio;
2442        struct md_rdev *rdev;
2443        dev_t bio_dev;
2444        sector_t bio_sector;
2445
2446        clear_bit(R1BIO_ReadError, &r1_bio->state);
2447        /* we got a read error. Maybe the drive is bad.  Maybe just
2448         * the block and we can fix it.
2449         * We freeze all other IO, and try reading the block from
2450         * other devices.  When we find one, we re-write
2451         * and check it that fixes the read error.
2452         * This is all done synchronously while the array is
2453         * frozen
2454         */
2455
2456        bio = r1_bio->bios[r1_bio->read_disk];
2457        bio_dev = bio->bi_bdev->bd_dev;
2458        bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2459        bio_put(bio);
2460        r1_bio->bios[r1_bio->read_disk] = NULL;
2461
2462        rdev = conf->mirrors[r1_bio->read_disk].rdev;
2463        if (mddev->ro == 0
2464            && !test_bit(FailFast, &rdev->flags)) {
2465                freeze_array(conf, 1);
2466                fix_read_error(conf, r1_bio->read_disk,
2467                               r1_bio->sector, r1_bio->sectors);
2468                unfreeze_array(conf);
2469        } else {
2470                r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2471        }
2472
2473        rdev_dec_pending(rdev, conf->mddev);
2474        allow_barrier(conf, r1_bio->sector);
2475        bio = r1_bio->master_bio;
2476
2477        /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2478        r1_bio->state = 0;
2479        raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2480}
2481
2482static void raid1d(struct md_thread *thread)
2483{
2484        struct mddev *mddev = thread->mddev;
2485        struct r1bio *r1_bio;
2486        unsigned long flags;
2487        struct r1conf *conf = mddev->private;
2488        struct list_head *head = &conf->retry_list;
2489        struct blk_plug plug;
2490        int idx;
2491
2492        md_check_recovery(mddev);
2493
2494        if (!list_empty_careful(&conf->bio_end_io_list) &&
2495            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2496                LIST_HEAD(tmp);
2497                spin_lock_irqsave(&conf->device_lock, flags);
2498                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2499                        list_splice_init(&conf->bio_end_io_list, &tmp);
2500                spin_unlock_irqrestore(&conf->device_lock, flags);
2501                while (!list_empty(&tmp)) {
2502                        r1_bio = list_first_entry(&tmp, struct r1bio,
2503                                                  retry_list);
2504                        list_del(&r1_bio->retry_list);
2505                        idx = sector_to_idx(r1_bio->sector);
2506                        atomic_dec(&conf->nr_queued[idx]);
2507                        if (mddev->degraded)
2508                                set_bit(R1BIO_Degraded, &r1_bio->state);
2509                        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2510                                close_write(r1_bio);
2511                        raid_end_bio_io(r1_bio);
2512                }
2513        }
2514
2515        blk_start_plug(&plug);
2516        for (;;) {
2517
2518                flush_pending_writes(conf);
2519
2520                spin_lock_irqsave(&conf->device_lock, flags);
2521                if (list_empty(head)) {
2522                        spin_unlock_irqrestore(&conf->device_lock, flags);
2523                        break;
2524                }
2525                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2526                list_del(head->prev);
2527                idx = sector_to_idx(r1_bio->sector);
2528                atomic_dec(&conf->nr_queued[idx]);
2529                spin_unlock_irqrestore(&conf->device_lock, flags);
2530
2531                mddev = r1_bio->mddev;
2532                conf = mddev->private;
2533                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2534                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2535                            test_bit(R1BIO_WriteError, &r1_bio->state))
2536                                handle_sync_write_finished(conf, r1_bio);
2537                        else
2538                                sync_request_write(mddev, r1_bio);
2539                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2540                           test_bit(R1BIO_WriteError, &r1_bio->state))
2541                        handle_write_finished(conf, r1_bio);
2542                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2543                        handle_read_error(conf, r1_bio);
2544                else
2545                        WARN_ON_ONCE(1);
2546
2547                cond_resched();
2548                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2549                        md_check_recovery(mddev);
2550        }
2551        blk_finish_plug(&plug);
2552}
2553
2554static int init_resync(struct r1conf *conf)
2555{
2556        int buffs;
2557
2558        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2559        BUG_ON(conf->r1buf_pool);
2560        conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2561                                          conf->poolinfo);
2562        if (!conf->r1buf_pool)
2563                return -ENOMEM;
2564        return 0;
2565}
2566
2567/*
2568 * perform a "sync" on one "block"
2569 *
2570 * We need to make sure that no normal I/O request - particularly write
2571 * requests - conflict with active sync requests.
2572 *
2573 * This is achieved by tracking pending requests and a 'barrier' concept
2574 * that can be installed to exclude normal IO requests.
2575 */
2576
2577static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2578                                   int *skipped)
2579{
2580        struct r1conf *conf = mddev->private;
2581        struct r1bio *r1_bio;
2582        struct bio *bio;
2583        sector_t max_sector, nr_sectors;
2584        int disk = -1;
2585        int i;
2586        int wonly = -1;
2587        int write_targets = 0, read_targets = 0;
2588        sector_t sync_blocks;
2589        int still_degraded = 0;
2590        int good_sectors = RESYNC_SECTORS;
2591        int min_bad = 0; /* number of sectors that are bad in all devices */
2592        int idx = sector_to_idx(sector_nr);
2593        int page_idx = 0;
2594
2595        if (!conf->r1buf_pool)
2596                if (init_resync(conf))
2597                        return 0;
2598
2599        max_sector = mddev->dev_sectors;
2600        if (sector_nr >= max_sector) {
2601                /* If we aborted, we need to abort the
2602                 * sync on the 'current' bitmap chunk (there will
2603                 * only be one in raid1 resync.
2604                 * We can find the current addess in mddev->curr_resync
2605                 */
2606                if (mddev->curr_resync < max_sector) /* aborted */
2607                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2608                                                &sync_blocks, 1);
2609                else /* completed sync */
2610                        conf->fullsync = 0;
2611
2612                bitmap_close_sync(mddev->bitmap);
2613                close_sync(conf);
2614
2615                if (mddev_is_clustered(mddev)) {
2616                        conf->cluster_sync_low = 0;
2617                        conf->cluster_sync_high = 0;
2618                }
2619                return 0;
2620        }
2621
2622        if (mddev->bitmap == NULL &&
2623            mddev->recovery_cp == MaxSector &&
2624            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2625            conf->fullsync == 0) {
2626                *skipped = 1;
2627                return max_sector - sector_nr;
2628        }
2629        /* before building a request, check if we can skip these blocks..
2630         * This call the bitmap_start_sync doesn't actually record anything
2631         */
2632        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2633            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2634                /* We can skip this block, and probably several more */
2635                *skipped = 1;
2636                return sync_blocks;
2637        }
2638
2639        /*
2640         * If there is non-resync activity waiting for a turn, then let it
2641         * though before starting on this new sync request.
2642         */
2643        if (atomic_read(&conf->nr_waiting[idx]))
2644                schedule_timeout_uninterruptible(1);
2645
2646        /* we are incrementing sector_nr below. To be safe, we check against
2647         * sector_nr + two times RESYNC_SECTORS
2648         */
2649
2650        bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2651                mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2652        r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2653
2654        raise_barrier(conf, sector_nr);
2655
2656        rcu_read_lock();
2657        /*
2658         * If we get a correctably read error during resync or recovery,
2659         * we might want to read from a different device.  So we
2660         * flag all drives that could conceivably be read from for READ,
2661         * and any others (which will be non-In_sync devices) for WRITE.
2662         * If a read fails, we try reading from something else for which READ
2663         * is OK.
2664         */
2665
2666        r1_bio->mddev = mddev;
2667        r1_bio->sector = sector_nr;
2668        r1_bio->state = 0;
2669        set_bit(R1BIO_IsSync, &r1_bio->state);
2670        /* make sure good_sectors won't go across barrier unit boundary */
2671        good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2672
2673        for (i = 0; i < conf->raid_disks * 2; i++) {
2674                struct md_rdev *rdev;
2675                bio = r1_bio->bios[i];
2676
2677                rdev = rcu_dereference(conf->mirrors[i].rdev);
2678                if (rdev == NULL ||
2679                    test_bit(Faulty, &rdev->flags)) {
2680                        if (i < conf->raid_disks)
2681                                still_degraded = 1;
2682                } else if (!test_bit(In_sync, &rdev->flags)) {
2683                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2684                        bio->bi_end_io = end_sync_write;
2685                        write_targets ++;
2686                } else {
2687                        /* may need to read from here */
2688                        sector_t first_bad = MaxSector;
2689                        int bad_sectors;
2690
2691                        if (is_badblock(rdev, sector_nr, good_sectors,
2692                                        &first_bad, &bad_sectors)) {
2693                                if (first_bad > sector_nr)
2694                                        good_sectors = first_bad - sector_nr;
2695                                else {
2696                                        bad_sectors -= (sector_nr - first_bad);
2697                                        if (min_bad == 0 ||
2698                                            min_bad > bad_sectors)
2699                                                min_bad = bad_sectors;
2700                                }
2701                        }
2702                        if (sector_nr < first_bad) {
2703                                if (test_bit(WriteMostly, &rdev->flags)) {
2704                                        if (wonly < 0)
2705                                                wonly = i;
2706                                } else {
2707                                        if (disk < 0)
2708                                                disk = i;
2709                                }
2710                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
2711                                bio->bi_end_io = end_sync_read;
2712                                read_targets++;
2713                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2714                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2715                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2716                                /*
2717                                 * The device is suitable for reading (InSync),
2718                                 * but has bad block(s) here. Let's try to correct them,
2719                                 * if we are doing resync or repair. Otherwise, leave
2720                                 * this device alone for this sync request.
2721                                 */
2722                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2723                                bio->bi_end_io = end_sync_write;
2724                                write_targets++;
2725                        }
2726                }
2727                if (bio->bi_end_io) {
2728                        atomic_inc(&rdev->nr_pending);
2729                        bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2730                        bio->bi_bdev = rdev->bdev;
2731                        if (test_bit(FailFast, &rdev->flags))
2732                                bio->bi_opf |= MD_FAILFAST;
2733                }
2734        }
2735        rcu_read_unlock();
2736        if (disk < 0)
2737                disk = wonly;
2738        r1_bio->read_disk = disk;
2739
2740        if (read_targets == 0 && min_bad > 0) {
2741                /* These sectors are bad on all InSync devices, so we
2742                 * need to mark them bad on all write targets
2743                 */
2744                int ok = 1;
2745                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2746                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2747                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2748                                ok = rdev_set_badblocks(rdev, sector_nr,
2749                                                        min_bad, 0
2750                                        ) && ok;
2751                        }
2752                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2753                *skipped = 1;
2754                put_buf(r1_bio);
2755
2756                if (!ok) {
2757                        /* Cannot record the badblocks, so need to
2758                         * abort the resync.
2759                         * If there are multiple read targets, could just
2760                         * fail the really bad ones ???
2761                         */
2762                        conf->recovery_disabled = mddev->recovery_disabled;
2763                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2764                        return 0;
2765                } else
2766                        return min_bad;
2767
2768        }
2769        if (min_bad > 0 && min_bad < good_sectors) {
2770                /* only resync enough to reach the next bad->good
2771                 * transition */
2772                good_sectors = min_bad;
2773        }
2774
2775        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2776                /* extra read targets are also write targets */
2777                write_targets += read_targets-1;
2778
2779        if (write_targets == 0 || read_targets == 0) {
2780                /* There is nowhere to write, so all non-sync
2781                 * drives must be failed - so we are finished
2782                 */
2783                sector_t rv;
2784                if (min_bad > 0)
2785                        max_sector = sector_nr + min_bad;
2786                rv = max_sector - sector_nr;
2787                *skipped = 1;
2788                put_buf(r1_bio);
2789                return rv;
2790        }
2791
2792        if (max_sector > mddev->resync_max)
2793                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2794        if (max_sector > sector_nr + good_sectors)
2795                max_sector = sector_nr + good_sectors;
2796        nr_sectors = 0;
2797        sync_blocks = 0;
2798        do {
2799                struct page *page;
2800                int len = PAGE_SIZE;
2801                if (sector_nr + (len>>9) > max_sector)
2802                        len = (max_sector - sector_nr) << 9;
2803                if (len == 0)
2804                        break;
2805                if (sync_blocks == 0) {
2806                        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2807                                               &sync_blocks, still_degraded) &&
2808                            !conf->fullsync &&
2809                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2810                                break;
2811                        if ((len >> 9) > sync_blocks)
2812                                len = sync_blocks<<9;
2813                }
2814
2815                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2816                        struct resync_pages *rp;
2817
2818                        bio = r1_bio->bios[i];
2819                        rp = get_resync_pages(bio);
2820                        if (bio->bi_end_io) {
2821                                page = resync_fetch_page(rp, page_idx);
2822
2823                                /*
2824                                 * won't fail because the vec table is big
2825                                 * enough to hold all these pages
2826                                 */
2827                                bio_add_page(bio, page, len, 0);
2828                        }
2829                }
2830                nr_sectors += len>>9;
2831                sector_nr += len>>9;
2832                sync_blocks -= (len>>9);
2833        } while (++page_idx < RESYNC_PAGES);
2834
2835        r1_bio->sectors = nr_sectors;
2836
2837        if (mddev_is_clustered(mddev) &&
2838                        conf->cluster_sync_high < sector_nr + nr_sectors) {
2839                conf->cluster_sync_low = mddev->curr_resync_completed;
2840                conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2841                /* Send resync message */
2842                md_cluster_ops->resync_info_update(mddev,
2843                                conf->cluster_sync_low,
2844                                conf->cluster_sync_high);
2845        }
2846
2847        /* For a user-requested sync, we read all readable devices and do a
2848         * compare
2849         */
2850        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2851                atomic_set(&r1_bio->remaining, read_targets);
2852                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2853                        bio = r1_bio->bios[i];
2854                        if (bio->bi_end_io == end_sync_read) {
2855                                read_targets--;
2856                                md_sync_acct(bio->bi_bdev, nr_sectors);
2857                                if (read_targets == 1)
2858                                        bio->bi_opf &= ~MD_FAILFAST;
2859                                generic_make_request(bio);
2860                        }
2861                }
2862        } else {
2863                atomic_set(&r1_bio->remaining, 1);
2864                bio = r1_bio->bios[r1_bio->read_disk];
2865                md_sync_acct(bio->bi_bdev, nr_sectors);
2866                if (read_targets == 1)
2867                        bio->bi_opf &= ~MD_FAILFAST;
2868                generic_make_request(bio);
2869
2870        }
2871        return nr_sectors;
2872}
2873
2874static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2875{
2876        if (sectors)
2877                return sectors;
2878
2879        return mddev->dev_sectors;
2880}
2881
2882static struct r1conf *setup_conf(struct mddev *mddev)
2883{
2884        struct r1conf *conf;
2885        int i;
2886        struct raid1_info *disk;
2887        struct md_rdev *rdev;
2888        int err = -ENOMEM;
2889
2890        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2891        if (!conf)
2892                goto abort;
2893
2894        conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2895                                   sizeof(atomic_t), GFP_KERNEL);
2896        if (!conf->nr_pending)
2897                goto abort;
2898
2899        conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2900                                   sizeof(atomic_t), GFP_KERNEL);
2901        if (!conf->nr_waiting)
2902                goto abort;
2903
2904        conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2905                                  sizeof(atomic_t), GFP_KERNEL);
2906        if (!conf->nr_queued)
2907                goto abort;
2908
2909        conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2910                                sizeof(atomic_t), GFP_KERNEL);
2911        if (!conf->barrier)
2912                goto abort;
2913
2914        conf->mirrors = kzalloc(sizeof(struct raid1_info)
2915                                * mddev->raid_disks * 2,
2916                                 GFP_KERNEL);
2917        if (!conf->mirrors)
2918                goto abort;
2919
2920        conf->tmppage = alloc_page(GFP_KERNEL);
2921        if (!conf->tmppage)
2922                goto abort;
2923
2924        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2925        if (!conf->poolinfo)
2926                goto abort;
2927        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2928        conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2929                                          r1bio_pool_free,
2930                                          conf->poolinfo);
2931        if (!conf->r1bio_pool)
2932                goto abort;
2933
2934        conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2935        if (!conf->bio_split)
2936                goto abort;
2937
2938        conf->poolinfo->mddev = mddev;
2939
2940        err = -EINVAL;
2941        spin_lock_init(&conf->device_lock);
2942        rdev_for_each(rdev, mddev) {
2943                int disk_idx = rdev->raid_disk;
2944                if (disk_idx >= mddev->raid_disks
2945                    || disk_idx < 0)
2946                        continue;
2947                if (test_bit(Replacement, &rdev->flags))
2948                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
2949                else
2950                        disk = conf->mirrors + disk_idx;
2951
2952                if (disk->rdev)
2953                        goto abort;
2954                disk->rdev = rdev;
2955                disk->head_position = 0;
2956                disk->seq_start = MaxSector;
2957        }
2958        conf->raid_disks = mddev->raid_disks;
2959        conf->mddev = mddev;
2960        INIT_LIST_HEAD(&conf->retry_list);
2961        INIT_LIST_HEAD(&conf->bio_end_io_list);
2962
2963        spin_lock_init(&conf->resync_lock);
2964        init_waitqueue_head(&conf->wait_barrier);
2965
2966        bio_list_init(&conf->pending_bio_list);
2967        conf->pending_count = 0;
2968        conf->recovery_disabled = mddev->recovery_disabled - 1;
2969
2970        err = -EIO;
2971        for (i = 0; i < conf->raid_disks * 2; i++) {
2972
2973                disk = conf->mirrors + i;
2974
2975                if (i < conf->raid_disks &&
2976                    disk[conf->raid_disks].rdev) {
2977                        /* This slot has a replacement. */
2978                        if (!disk->rdev) {
2979                                /* No original, just make the replacement
2980                                 * a recovering spare
2981                                 */
2982                                disk->rdev =
2983                                        disk[conf->raid_disks].rdev;
2984                                disk[conf->raid_disks].rdev = NULL;
2985                        } else if (!test_bit(In_sync, &disk->rdev->flags))
2986                                /* Original is not in_sync - bad */
2987                                goto abort;
2988                }
2989
2990                if (!disk->rdev ||
2991                    !test_bit(In_sync, &disk->rdev->flags)) {
2992                        disk->head_position = 0;
2993                        if (disk->rdev &&
2994                            (disk->rdev->saved_raid_disk < 0))
2995                                conf->fullsync = 1;
2996                }
2997        }
2998
2999        err = -ENOMEM;
3000        conf->thread = md_register_thread(raid1d, mddev, "raid1");
3001        if (!conf->thread)
3002                goto abort;
3003
3004        return conf;
3005
3006 abort:
3007        if (conf) {
3008                mempool_destroy(conf->r1bio_pool);
3009                kfree(conf->mirrors);
3010                safe_put_page(conf->tmppage);
3011                kfree(conf->poolinfo);
3012                kfree(conf->nr_pending);
3013                kfree(conf->nr_waiting);
3014                kfree(conf->nr_queued);
3015                kfree(conf->barrier);
3016                if (conf->bio_split)
3017                        bioset_free(conf->bio_split);
3018                kfree(conf);
3019        }
3020        return ERR_PTR(err);
3021}
3022
3023static void raid1_free(struct mddev *mddev, void *priv);
3024static int raid1_run(struct mddev *mddev)
3025{
3026        struct r1conf *conf;
3027        int i;
3028        struct md_rdev *rdev;
3029        int ret;
3030        bool discard_supported = false;
3031
3032        if (mddev->level != 1) {
3033                pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3034                        mdname(mddev), mddev->level);
3035                return -EIO;
3036        }
3037        if (mddev->reshape_position != MaxSector) {
3038                pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3039                        mdname(mddev));
3040                return -EIO;
3041        }
3042        if (mddev_init_writes_pending(mddev) < 0)
3043                return -ENOMEM;
3044        /*
3045         * copy the already verified devices into our private RAID1
3046         * bookkeeping area. [whatever we allocate in run(),
3047         * should be freed in raid1_free()]
3048         */
3049        if (mddev->private == NULL)
3050                conf = setup_conf(mddev);
3051        else
3052                conf = mddev->private;
3053
3054        if (IS_ERR(conf))
3055                return PTR_ERR(conf);
3056
3057        if (mddev->queue) {
3058                blk_queue_max_write_same_sectors(mddev->queue, 0);
3059                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3060        }
3061
3062        rdev_for_each(rdev, mddev) {
3063                if (!mddev->gendisk)
3064                        continue;
3065                disk_stack_limits(mddev->gendisk, rdev->bdev,
3066                                  rdev->data_offset << 9);
3067                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3068                        discard_supported = true;
3069        }
3070
3071        mddev->degraded = 0;
3072        for (i=0; i < conf->raid_disks; i++)
3073                if (conf->mirrors[i].rdev == NULL ||
3074                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3075                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3076                        mddev->degraded++;
3077
3078        if (conf->raid_disks - mddev->degraded == 1)
3079                mddev->recovery_cp = MaxSector;
3080
3081        if (mddev->recovery_cp != MaxSector)
3082                pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3083                        mdname(mddev));
3084        pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3085                mdname(mddev), mddev->raid_disks - mddev->degraded,
3086                mddev->raid_disks);
3087
3088        /*
3089         * Ok, everything is just fine now
3090         */
3091        mddev->thread = conf->thread;
3092        conf->thread = NULL;
3093        mddev->private = conf;
3094        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3095
3096        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3097
3098        if (mddev->queue) {
3099                if (discard_supported)
3100                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3101                                                mddev->queue);
3102                else
3103                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3104                                                  mddev->queue);
3105        }
3106
3107        ret =  md_integrity_register(mddev);
3108        if (ret) {
3109                md_unregister_thread(&mddev->thread);
3110                raid1_free(mddev, conf);
3111        }
3112        return ret;
3113}
3114
3115static void raid1_free(struct mddev *mddev, void *priv)
3116{
3117        struct r1conf *conf = priv;
3118
3119        mempool_destroy(conf->r1bio_pool);
3120        kfree(conf->mirrors);
3121        safe_put_page(conf->tmppage);
3122        kfree(conf->poolinfo);
3123        kfree(conf->nr_pending);
3124        kfree(conf->nr_waiting);
3125        kfree(conf->nr_queued);
3126        kfree(conf->barrier);
3127        if (conf->bio_split)
3128                bioset_free(conf->bio_split);
3129        kfree(conf);
3130}
3131
3132static int raid1_resize(struct mddev *mddev, sector_t sectors)
3133{
3134        /* no resync is happening, and there is enough space
3135         * on all devices, so we can resize.
3136         * We need to make sure resync covers any new space.
3137         * If the array is shrinking we should possibly wait until
3138         * any io in the removed space completes, but it hardly seems
3139         * worth it.
3140         */
3141        sector_t newsize = raid1_size(mddev, sectors, 0);
3142        if (mddev->external_size &&
3143            mddev->array_sectors > newsize)
3144                return -EINVAL;
3145        if (mddev->bitmap) {
3146                int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3147                if (ret)
3148                        return ret;
3149        }
3150        md_set_array_sectors(mddev, newsize);
3151        if (sectors > mddev->dev_sectors &&
3152            mddev->recovery_cp > mddev->dev_sectors) {
3153                mddev->recovery_cp = mddev->dev_sectors;
3154                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3155        }
3156        mddev->dev_sectors = sectors;
3157        mddev->resync_max_sectors = sectors;
3158        return 0;
3159}
3160
3161static int raid1_reshape(struct mddev *mddev)
3162{
3163        /* We need to:
3164         * 1/ resize the r1bio_pool
3165         * 2/ resize conf->mirrors
3166         *
3167         * We allocate a new r1bio_pool if we can.
3168         * Then raise a device barrier and wait until all IO stops.
3169         * Then resize conf->mirrors and swap in the new r1bio pool.
3170         *
3171         * At the same time, we "pack" the devices so that all the missing
3172         * devices have the higher raid_disk numbers.
3173         */
3174        mempool_t *newpool, *oldpool;
3175        struct pool_info *newpoolinfo;
3176        struct raid1_info *newmirrors;
3177        struct r1conf *conf = mddev->private;
3178        int cnt, raid_disks;
3179        unsigned long flags;
3180        int d, d2;
3181
3182        /* Cannot change chunk_size, layout, or level */
3183        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3184            mddev->layout != mddev->new_layout ||
3185            mddev->level != mddev->new_level) {
3186                mddev->new_chunk_sectors = mddev->chunk_sectors;
3187                mddev->new_layout = mddev->layout;
3188                mddev->new_level = mddev->level;
3189                return -EINVAL;
3190        }
3191
3192        if (!mddev_is_clustered(mddev))
3193                md_allow_write(mddev);
3194
3195        raid_disks = mddev->raid_disks + mddev->delta_disks;
3196
3197        if (raid_disks < conf->raid_disks) {
3198                cnt=0;
3199                for (d= 0; d < conf->raid_disks; d++)
3200                        if (conf->mirrors[d].rdev)
3201                                cnt++;
3202                if (cnt > raid_disks)
3203                        return -EBUSY;
3204        }
3205
3206        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3207        if (!newpoolinfo)
3208                return -ENOMEM;
3209        newpoolinfo->mddev = mddev;
3210        newpoolinfo->raid_disks = raid_disks * 2;
3211
3212        newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3213                                 r1bio_pool_free, newpoolinfo);
3214        if (!newpool) {
3215                kfree(newpoolinfo);
3216                return -ENOMEM;
3217        }
3218        newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3219                             GFP_KERNEL);
3220        if (!newmirrors) {
3221                kfree(newpoolinfo);
3222                mempool_destroy(newpool);
3223                return -ENOMEM;
3224        }
3225
3226        freeze_array(conf, 0);
3227
3228        /* ok, everything is stopped */
3229        oldpool = conf->r1bio_pool;
3230        conf->r1bio_pool = newpool;
3231
3232        for (d = d2 = 0; d < conf->raid_disks; d++) {
3233                struct md_rdev *rdev = conf->mirrors[d].rdev;
3234                if (rdev && rdev->raid_disk != d2) {
3235                        sysfs_unlink_rdev(mddev, rdev);
3236                        rdev->raid_disk = d2;
3237                        sysfs_unlink_rdev(mddev, rdev);
3238                        if (sysfs_link_rdev(mddev, rdev))
3239                                pr_warn("md/raid1:%s: cannot register rd%d\n",
3240                                        mdname(mddev), rdev->raid_disk);
3241                }
3242                if (rdev)
3243                        newmirrors[d2++].rdev = rdev;
3244        }
3245        kfree(conf->mirrors);
3246        conf->mirrors = newmirrors;
3247        kfree(conf->poolinfo);
3248        conf->poolinfo = newpoolinfo;
3249
3250        spin_lock_irqsave(&conf->device_lock, flags);
3251        mddev->degraded += (raid_disks - conf->raid_disks);
3252        spin_unlock_irqrestore(&conf->device_lock, flags);
3253        conf->raid_disks = mddev->raid_disks = raid_disks;
3254        mddev->delta_disks = 0;
3255
3256        unfreeze_array(conf);
3257
3258        set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3259        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3260        md_wakeup_thread(mddev->thread);
3261
3262        mempool_destroy(oldpool);
3263        return 0;
3264}
3265
3266static void raid1_quiesce(struct mddev *mddev, int state)
3267{
3268        struct r1conf *conf = mddev->private;
3269
3270        switch(state) {
3271        case 2: /* wake for suspend */
3272                wake_up(&conf->wait_barrier);
3273                break;
3274        case 1:
3275                freeze_array(conf, 0);
3276                break;
3277        case 0:
3278                unfreeze_array(conf);
3279                break;
3280        }
3281}
3282
3283static void *raid1_takeover(struct mddev *mddev)
3284{
3285        /* raid1 can take over:
3286         *  raid5 with 2 devices, any layout or chunk size
3287         */
3288        if (mddev->level == 5 && mddev->raid_disks == 2) {
3289                struct r1conf *conf;
3290                mddev->new_level = 1;
3291                mddev->new_layout = 0;
3292                mddev->new_chunk_sectors = 0;
3293                conf = setup_conf(mddev);
3294                if (!IS_ERR(conf)) {
3295                        /* Array must appear to be quiesced */
3296                        conf->array_frozen = 1;
3297                        mddev_clear_unsupported_flags(mddev,
3298                                UNSUPPORTED_MDDEV_FLAGS);
3299                }
3300                return conf;
3301        }
3302        return ERR_PTR(-EINVAL);
3303}
3304
3305static struct md_personality raid1_personality =
3306{
3307        .name           = "raid1",
3308        .level          = 1,
3309        .owner          = THIS_MODULE,
3310        .make_request   = raid1_make_request,
3311        .run            = raid1_run,
3312        .free           = raid1_free,
3313        .status         = raid1_status,
3314        .error_handler  = raid1_error,
3315        .hot_add_disk   = raid1_add_disk,
3316        .hot_remove_disk= raid1_remove_disk,
3317        .spare_active   = raid1_spare_active,
3318        .sync_request   = raid1_sync_request,
3319        .resize         = raid1_resize,
3320        .size           = raid1_size,
3321        .check_reshape  = raid1_reshape,
3322        .quiesce        = raid1_quiesce,
3323        .takeover       = raid1_takeover,
3324        .congested      = raid1_congested,
3325};
3326
3327static int __init raid_init(void)
3328{
3329        return register_md_personality(&raid1_personality);
3330}
3331
3332static void raid_exit(void)
3333{
3334        unregister_md_personality(&raid1_personality);
3335}
3336
3337module_init(raid_init);
3338module_exit(raid_exit);
3339MODULE_LICENSE("GPL");
3340MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3341MODULE_ALIAS("md-personality-3"); /* RAID1 */
3342MODULE_ALIAS("md-raid1");
3343MODULE_ALIAS("md-level-1");
3344
3345module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3346