linux/drivers/misc/mei/hw-me.c
<<
>>
Prefs
   1/*
   2 *
   3 * Intel Management Engine Interface (Intel MEI) Linux driver
   4 * Copyright (c) 2003-2012, Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 */
  16
  17#include <linux/pci.h>
  18
  19#include <linux/kthread.h>
  20#include <linux/interrupt.h>
  21#include <linux/pm_runtime.h>
  22
  23#include "mei_dev.h"
  24#include "hbm.h"
  25
  26#include "hw-me.h"
  27#include "hw-me-regs.h"
  28
  29#include "mei-trace.h"
  30
  31/**
  32 * mei_me_reg_read - Reads 32bit data from the mei device
  33 *
  34 * @hw: the me hardware structure
  35 * @offset: offset from which to read the data
  36 *
  37 * Return: register value (u32)
  38 */
  39static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
  40                               unsigned long offset)
  41{
  42        return ioread32(hw->mem_addr + offset);
  43}
  44
  45
  46/**
  47 * mei_me_reg_write - Writes 32bit data to the mei device
  48 *
  49 * @hw: the me hardware structure
  50 * @offset: offset from which to write the data
  51 * @value: register value to write (u32)
  52 */
  53static inline void mei_me_reg_write(const struct mei_me_hw *hw,
  54                                 unsigned long offset, u32 value)
  55{
  56        iowrite32(value, hw->mem_addr + offset);
  57}
  58
  59/**
  60 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
  61 *  read window register
  62 *
  63 * @dev: the device structure
  64 *
  65 * Return: ME_CB_RW register value (u32)
  66 */
  67static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
  68{
  69        return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
  70}
  71
  72/**
  73 * mei_me_hcbww_write - write 32bit data to the host circular buffer
  74 *
  75 * @dev: the device structure
  76 * @data: 32bit data to be written to the host circular buffer
  77 */
  78static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
  79{
  80        mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
  81}
  82
  83/**
  84 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
  85 *
  86 * @dev: the device structure
  87 *
  88 * Return: ME_CSR_HA register value (u32)
  89 */
  90static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
  91{
  92        u32 reg;
  93
  94        reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
  95        trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
  96
  97        return reg;
  98}
  99
 100/**
 101 * mei_hcsr_read - Reads 32bit data from the host CSR
 102 *
 103 * @dev: the device structure
 104 *
 105 * Return: H_CSR register value (u32)
 106 */
 107static inline u32 mei_hcsr_read(const struct mei_device *dev)
 108{
 109        u32 reg;
 110
 111        reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
 112        trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
 113
 114        return reg;
 115}
 116
 117/**
 118 * mei_hcsr_write - writes H_CSR register to the mei device
 119 *
 120 * @dev: the device structure
 121 * @reg: new register value
 122 */
 123static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
 124{
 125        trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
 126        mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
 127}
 128
 129/**
 130 * mei_hcsr_set - writes H_CSR register to the mei device,
 131 * and ignores the H_IS bit for it is write-one-to-zero.
 132 *
 133 * @dev: the device structure
 134 * @reg: new register value
 135 */
 136static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
 137{
 138        reg &= ~H_CSR_IS_MASK;
 139        mei_hcsr_write(dev, reg);
 140}
 141
 142/**
 143 * mei_hcsr_set_hig - set host interrupt (set H_IG)
 144 *
 145 * @dev: the device structure
 146 */
 147static inline void mei_hcsr_set_hig(struct mei_device *dev)
 148{
 149        u32 hcsr;
 150
 151        hcsr = mei_hcsr_read(dev) | H_IG;
 152        mei_hcsr_set(dev, hcsr);
 153}
 154
 155/**
 156 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
 157 *
 158 * @dev: the device structure
 159 *
 160 * Return: H_D0I3C register value (u32)
 161 */
 162static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
 163{
 164        u32 reg;
 165
 166        reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
 167        trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
 168
 169        return reg;
 170}
 171
 172/**
 173 * mei_me_d0i3c_write - writes H_D0I3C register to device
 174 *
 175 * @dev: the device structure
 176 * @reg: new register value
 177 */
 178static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
 179{
 180        trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
 181        mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
 182}
 183
 184/**
 185 * mei_me_fw_status - read fw status register from pci config space
 186 *
 187 * @dev: mei device
 188 * @fw_status: fw status register values
 189 *
 190 * Return: 0 on success, error otherwise
 191 */
 192static int mei_me_fw_status(struct mei_device *dev,
 193                            struct mei_fw_status *fw_status)
 194{
 195        struct pci_dev *pdev = to_pci_dev(dev->dev);
 196        struct mei_me_hw *hw = to_me_hw(dev);
 197        const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
 198        int ret;
 199        int i;
 200
 201        if (!fw_status)
 202                return -EINVAL;
 203
 204        fw_status->count = fw_src->count;
 205        for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
 206                ret = pci_read_config_dword(pdev, fw_src->status[i],
 207                                            &fw_status->status[i]);
 208                trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
 209                                       fw_src->status[i],
 210                                       fw_status->status[i]);
 211                if (ret)
 212                        return ret;
 213        }
 214
 215        return 0;
 216}
 217
 218/**
 219 * mei_me_hw_config - configure hw dependent settings
 220 *
 221 * @dev: mei device
 222 */
 223static void mei_me_hw_config(struct mei_device *dev)
 224{
 225        struct pci_dev *pdev = to_pci_dev(dev->dev);
 226        struct mei_me_hw *hw = to_me_hw(dev);
 227        u32 hcsr, reg;
 228
 229        /* Doesn't change in runtime */
 230        hcsr = mei_hcsr_read(dev);
 231        dev->hbuf_depth = (hcsr & H_CBD) >> 24;
 232
 233        reg = 0;
 234        pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
 235        trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
 236        hw->d0i3_supported =
 237                ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
 238
 239        hw->pg_state = MEI_PG_OFF;
 240        if (hw->d0i3_supported) {
 241                reg = mei_me_d0i3c_read(dev);
 242                if (reg & H_D0I3C_I3)
 243                        hw->pg_state = MEI_PG_ON;
 244        }
 245}
 246
 247/**
 248 * mei_me_pg_state  - translate internal pg state
 249 *   to the mei power gating state
 250 *
 251 * @dev:  mei device
 252 *
 253 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
 254 */
 255static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
 256{
 257        struct mei_me_hw *hw = to_me_hw(dev);
 258
 259        return hw->pg_state;
 260}
 261
 262static inline u32 me_intr_src(u32 hcsr)
 263{
 264        return hcsr & H_CSR_IS_MASK;
 265}
 266
 267/**
 268 * me_intr_disable - disables mei device interrupts
 269 *      using supplied hcsr register value.
 270 *
 271 * @dev: the device structure
 272 * @hcsr: supplied hcsr register value
 273 */
 274static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
 275{
 276        hcsr &= ~H_CSR_IE_MASK;
 277        mei_hcsr_set(dev, hcsr);
 278}
 279
 280/**
 281 * mei_me_intr_clear - clear and stop interrupts
 282 *
 283 * @dev: the device structure
 284 * @hcsr: supplied hcsr register value
 285 */
 286static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
 287{
 288        if (me_intr_src(hcsr))
 289                mei_hcsr_write(dev, hcsr);
 290}
 291
 292/**
 293 * mei_me_intr_clear - clear and stop interrupts
 294 *
 295 * @dev: the device structure
 296 */
 297static void mei_me_intr_clear(struct mei_device *dev)
 298{
 299        u32 hcsr = mei_hcsr_read(dev);
 300
 301        me_intr_clear(dev, hcsr);
 302}
 303/**
 304 * mei_me_intr_enable - enables mei device interrupts
 305 *
 306 * @dev: the device structure
 307 */
 308static void mei_me_intr_enable(struct mei_device *dev)
 309{
 310        u32 hcsr = mei_hcsr_read(dev);
 311
 312        hcsr |= H_CSR_IE_MASK;
 313        mei_hcsr_set(dev, hcsr);
 314}
 315
 316/**
 317 * mei_me_intr_disable - disables mei device interrupts
 318 *
 319 * @dev: the device structure
 320 */
 321static void mei_me_intr_disable(struct mei_device *dev)
 322{
 323        u32 hcsr = mei_hcsr_read(dev);
 324
 325        me_intr_disable(dev, hcsr);
 326}
 327
 328/**
 329 * mei_me_synchronize_irq - wait for pending IRQ handlers
 330 *
 331 * @dev: the device structure
 332 */
 333static void mei_me_synchronize_irq(struct mei_device *dev)
 334{
 335        struct pci_dev *pdev = to_pci_dev(dev->dev);
 336
 337        synchronize_irq(pdev->irq);
 338}
 339
 340/**
 341 * mei_me_hw_reset_release - release device from the reset
 342 *
 343 * @dev: the device structure
 344 */
 345static void mei_me_hw_reset_release(struct mei_device *dev)
 346{
 347        u32 hcsr = mei_hcsr_read(dev);
 348
 349        hcsr |= H_IG;
 350        hcsr &= ~H_RST;
 351        mei_hcsr_set(dev, hcsr);
 352
 353        /* complete this write before we set host ready on another CPU */
 354        mmiowb();
 355}
 356
 357/**
 358 * mei_me_host_set_ready - enable device
 359 *
 360 * @dev: mei device
 361 */
 362static void mei_me_host_set_ready(struct mei_device *dev)
 363{
 364        u32 hcsr = mei_hcsr_read(dev);
 365
 366        hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
 367        mei_hcsr_set(dev, hcsr);
 368}
 369
 370/**
 371 * mei_me_host_is_ready - check whether the host has turned ready
 372 *
 373 * @dev: mei device
 374 * Return: bool
 375 */
 376static bool mei_me_host_is_ready(struct mei_device *dev)
 377{
 378        u32 hcsr = mei_hcsr_read(dev);
 379
 380        return (hcsr & H_RDY) == H_RDY;
 381}
 382
 383/**
 384 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
 385 *
 386 * @dev: mei device
 387 * Return: bool
 388 */
 389static bool mei_me_hw_is_ready(struct mei_device *dev)
 390{
 391        u32 mecsr = mei_me_mecsr_read(dev);
 392
 393        return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
 394}
 395
 396/**
 397 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
 398 *
 399 * @dev: mei device
 400 * Return: bool
 401 */
 402static bool mei_me_hw_is_resetting(struct mei_device *dev)
 403{
 404        u32 mecsr = mei_me_mecsr_read(dev);
 405
 406        return (mecsr & ME_RST_HRA) == ME_RST_HRA;
 407}
 408
 409/**
 410 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
 411 *  or timeout is reached
 412 *
 413 * @dev: mei device
 414 * Return: 0 on success, error otherwise
 415 */
 416static int mei_me_hw_ready_wait(struct mei_device *dev)
 417{
 418        mutex_unlock(&dev->device_lock);
 419        wait_event_timeout(dev->wait_hw_ready,
 420                        dev->recvd_hw_ready,
 421                        mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
 422        mutex_lock(&dev->device_lock);
 423        if (!dev->recvd_hw_ready) {
 424                dev_err(dev->dev, "wait hw ready failed\n");
 425                return -ETIME;
 426        }
 427
 428        mei_me_hw_reset_release(dev);
 429        dev->recvd_hw_ready = false;
 430        return 0;
 431}
 432
 433/**
 434 * mei_me_hw_start - hw start routine
 435 *
 436 * @dev: mei device
 437 * Return: 0 on success, error otherwise
 438 */
 439static int mei_me_hw_start(struct mei_device *dev)
 440{
 441        int ret = mei_me_hw_ready_wait(dev);
 442
 443        if (ret)
 444                return ret;
 445        dev_dbg(dev->dev, "hw is ready\n");
 446
 447        mei_me_host_set_ready(dev);
 448        return ret;
 449}
 450
 451
 452/**
 453 * mei_hbuf_filled_slots - gets number of device filled buffer slots
 454 *
 455 * @dev: the device structure
 456 *
 457 * Return: number of filled slots
 458 */
 459static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
 460{
 461        u32 hcsr;
 462        char read_ptr, write_ptr;
 463
 464        hcsr = mei_hcsr_read(dev);
 465
 466        read_ptr = (char) ((hcsr & H_CBRP) >> 8);
 467        write_ptr = (char) ((hcsr & H_CBWP) >> 16);
 468
 469        return (unsigned char) (write_ptr - read_ptr);
 470}
 471
 472/**
 473 * mei_me_hbuf_is_empty - checks if host buffer is empty.
 474 *
 475 * @dev: the device structure
 476 *
 477 * Return: true if empty, false - otherwise.
 478 */
 479static bool mei_me_hbuf_is_empty(struct mei_device *dev)
 480{
 481        return mei_hbuf_filled_slots(dev) == 0;
 482}
 483
 484/**
 485 * mei_me_hbuf_empty_slots - counts write empty slots.
 486 *
 487 * @dev: the device structure
 488 *
 489 * Return: -EOVERFLOW if overflow, otherwise empty slots count
 490 */
 491static int mei_me_hbuf_empty_slots(struct mei_device *dev)
 492{
 493        unsigned char filled_slots, empty_slots;
 494
 495        filled_slots = mei_hbuf_filled_slots(dev);
 496        empty_slots = dev->hbuf_depth - filled_slots;
 497
 498        /* check for overflow */
 499        if (filled_slots > dev->hbuf_depth)
 500                return -EOVERFLOW;
 501
 502        return empty_slots;
 503}
 504
 505/**
 506 * mei_me_hbuf_max_len - returns size of hw buffer.
 507 *
 508 * @dev: the device structure
 509 *
 510 * Return: size of hw buffer in bytes
 511 */
 512static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
 513{
 514        return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
 515}
 516
 517
 518/**
 519 * mei_me_hbuf_write - writes a message to host hw buffer.
 520 *
 521 * @dev: the device structure
 522 * @header: mei HECI header of message
 523 * @buf: message payload will be written
 524 *
 525 * Return: -EIO if write has failed
 526 */
 527static int mei_me_hbuf_write(struct mei_device *dev,
 528                             struct mei_msg_hdr *header,
 529                             const unsigned char *buf)
 530{
 531        unsigned long rem;
 532        unsigned long length = header->length;
 533        u32 *reg_buf = (u32 *)buf;
 534        u32 dw_cnt;
 535        int i;
 536        int empty_slots;
 537
 538        dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
 539
 540        empty_slots = mei_hbuf_empty_slots(dev);
 541        dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
 542
 543        dw_cnt = mei_data2slots(length);
 544        if (empty_slots < 0 || dw_cnt > empty_slots)
 545                return -EMSGSIZE;
 546
 547        mei_me_hcbww_write(dev, *((u32 *) header));
 548
 549        for (i = 0; i < length / 4; i++)
 550                mei_me_hcbww_write(dev, reg_buf[i]);
 551
 552        rem = length & 0x3;
 553        if (rem > 0) {
 554                u32 reg = 0;
 555
 556                memcpy(&reg, &buf[length - rem], rem);
 557                mei_me_hcbww_write(dev, reg);
 558        }
 559
 560        mei_hcsr_set_hig(dev);
 561        if (!mei_me_hw_is_ready(dev))
 562                return -EIO;
 563
 564        return 0;
 565}
 566
 567/**
 568 * mei_me_count_full_read_slots - counts read full slots.
 569 *
 570 * @dev: the device structure
 571 *
 572 * Return: -EOVERFLOW if overflow, otherwise filled slots count
 573 */
 574static int mei_me_count_full_read_slots(struct mei_device *dev)
 575{
 576        u32 me_csr;
 577        char read_ptr, write_ptr;
 578        unsigned char buffer_depth, filled_slots;
 579
 580        me_csr = mei_me_mecsr_read(dev);
 581        buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
 582        read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
 583        write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
 584        filled_slots = (unsigned char) (write_ptr - read_ptr);
 585
 586        /* check for overflow */
 587        if (filled_slots > buffer_depth)
 588                return -EOVERFLOW;
 589
 590        dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
 591        return (int)filled_slots;
 592}
 593
 594/**
 595 * mei_me_read_slots - reads a message from mei device.
 596 *
 597 * @dev: the device structure
 598 * @buffer: message buffer will be written
 599 * @buffer_length: message size will be read
 600 *
 601 * Return: always 0
 602 */
 603static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
 604                    unsigned long buffer_length)
 605{
 606        u32 *reg_buf = (u32 *)buffer;
 607
 608        for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
 609                *reg_buf++ = mei_me_mecbrw_read(dev);
 610
 611        if (buffer_length > 0) {
 612                u32 reg = mei_me_mecbrw_read(dev);
 613
 614                memcpy(reg_buf, &reg, buffer_length);
 615        }
 616
 617        mei_hcsr_set_hig(dev);
 618        return 0;
 619}
 620
 621/**
 622 * mei_me_pg_set - write pg enter register
 623 *
 624 * @dev: the device structure
 625 */
 626static void mei_me_pg_set(struct mei_device *dev)
 627{
 628        struct mei_me_hw *hw = to_me_hw(dev);
 629        u32 reg;
 630
 631        reg = mei_me_reg_read(hw, H_HPG_CSR);
 632        trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 633
 634        reg |= H_HPG_CSR_PGI;
 635
 636        trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 637        mei_me_reg_write(hw, H_HPG_CSR, reg);
 638}
 639
 640/**
 641 * mei_me_pg_unset - write pg exit register
 642 *
 643 * @dev: the device structure
 644 */
 645static void mei_me_pg_unset(struct mei_device *dev)
 646{
 647        struct mei_me_hw *hw = to_me_hw(dev);
 648        u32 reg;
 649
 650        reg = mei_me_reg_read(hw, H_HPG_CSR);
 651        trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 652
 653        WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
 654
 655        reg |= H_HPG_CSR_PGIHEXR;
 656
 657        trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 658        mei_me_reg_write(hw, H_HPG_CSR, reg);
 659}
 660
 661/**
 662 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
 663 *
 664 * @dev: the device structure
 665 *
 666 * Return: 0 on success an error code otherwise
 667 */
 668static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
 669{
 670        struct mei_me_hw *hw = to_me_hw(dev);
 671        unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 672        int ret;
 673
 674        dev->pg_event = MEI_PG_EVENT_WAIT;
 675
 676        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
 677        if (ret)
 678                return ret;
 679
 680        mutex_unlock(&dev->device_lock);
 681        wait_event_timeout(dev->wait_pg,
 682                dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 683        mutex_lock(&dev->device_lock);
 684
 685        if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
 686                mei_me_pg_set(dev);
 687                ret = 0;
 688        } else {
 689                ret = -ETIME;
 690        }
 691
 692        dev->pg_event = MEI_PG_EVENT_IDLE;
 693        hw->pg_state = MEI_PG_ON;
 694
 695        return ret;
 696}
 697
 698/**
 699 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
 700 *
 701 * @dev: the device structure
 702 *
 703 * Return: 0 on success an error code otherwise
 704 */
 705static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
 706{
 707        struct mei_me_hw *hw = to_me_hw(dev);
 708        unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 709        int ret;
 710
 711        if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
 712                goto reply;
 713
 714        dev->pg_event = MEI_PG_EVENT_WAIT;
 715
 716        mei_me_pg_unset(dev);
 717
 718        mutex_unlock(&dev->device_lock);
 719        wait_event_timeout(dev->wait_pg,
 720                dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 721        mutex_lock(&dev->device_lock);
 722
 723reply:
 724        if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
 725                ret = -ETIME;
 726                goto out;
 727        }
 728
 729        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 730        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
 731        if (ret)
 732                return ret;
 733
 734        mutex_unlock(&dev->device_lock);
 735        wait_event_timeout(dev->wait_pg,
 736                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
 737        mutex_lock(&dev->device_lock);
 738
 739        if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
 740                ret = 0;
 741        else
 742                ret = -ETIME;
 743
 744out:
 745        dev->pg_event = MEI_PG_EVENT_IDLE;
 746        hw->pg_state = MEI_PG_OFF;
 747
 748        return ret;
 749}
 750
 751/**
 752 * mei_me_pg_in_transition - is device now in pg transition
 753 *
 754 * @dev: the device structure
 755 *
 756 * Return: true if in pg transition, false otherwise
 757 */
 758static bool mei_me_pg_in_transition(struct mei_device *dev)
 759{
 760        return dev->pg_event >= MEI_PG_EVENT_WAIT &&
 761               dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
 762}
 763
 764/**
 765 * mei_me_pg_is_enabled - detect if PG is supported by HW
 766 *
 767 * @dev: the device structure
 768 *
 769 * Return: true is pg supported, false otherwise
 770 */
 771static bool mei_me_pg_is_enabled(struct mei_device *dev)
 772{
 773        struct mei_me_hw *hw = to_me_hw(dev);
 774        u32 reg = mei_me_mecsr_read(dev);
 775
 776        if (hw->d0i3_supported)
 777                return true;
 778
 779        if ((reg & ME_PGIC_HRA) == 0)
 780                goto notsupported;
 781
 782        if (!dev->hbm_f_pg_supported)
 783                goto notsupported;
 784
 785        return true;
 786
 787notsupported:
 788        dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
 789                hw->d0i3_supported,
 790                !!(reg & ME_PGIC_HRA),
 791                dev->version.major_version,
 792                dev->version.minor_version,
 793                HBM_MAJOR_VERSION_PGI,
 794                HBM_MINOR_VERSION_PGI);
 795
 796        return false;
 797}
 798
 799/**
 800 * mei_me_d0i3_set - write d0i3 register bit on mei device.
 801 *
 802 * @dev: the device structure
 803 * @intr: ask for interrupt
 804 *
 805 * Return: D0I3C register value
 806 */
 807static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
 808{
 809        u32 reg = mei_me_d0i3c_read(dev);
 810
 811        reg |= H_D0I3C_I3;
 812        if (intr)
 813                reg |= H_D0I3C_IR;
 814        else
 815                reg &= ~H_D0I3C_IR;
 816        mei_me_d0i3c_write(dev, reg);
 817        /* read it to ensure HW consistency */
 818        reg = mei_me_d0i3c_read(dev);
 819        return reg;
 820}
 821
 822/**
 823 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
 824 *
 825 * @dev: the device structure
 826 *
 827 * Return: D0I3C register value
 828 */
 829static u32 mei_me_d0i3_unset(struct mei_device *dev)
 830{
 831        u32 reg = mei_me_d0i3c_read(dev);
 832
 833        reg &= ~H_D0I3C_I3;
 834        reg |= H_D0I3C_IR;
 835        mei_me_d0i3c_write(dev, reg);
 836        /* read it to ensure HW consistency */
 837        reg = mei_me_d0i3c_read(dev);
 838        return reg;
 839}
 840
 841/**
 842 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
 843 *
 844 * @dev: the device structure
 845 *
 846 * Return: 0 on success an error code otherwise
 847 */
 848static int mei_me_d0i3_enter_sync(struct mei_device *dev)
 849{
 850        struct mei_me_hw *hw = to_me_hw(dev);
 851        unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
 852        unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 853        int ret;
 854        u32 reg;
 855
 856        reg = mei_me_d0i3c_read(dev);
 857        if (reg & H_D0I3C_I3) {
 858                /* we are in d0i3, nothing to do */
 859                dev_dbg(dev->dev, "d0i3 set not needed\n");
 860                ret = 0;
 861                goto on;
 862        }
 863
 864        /* PGI entry procedure */
 865        dev->pg_event = MEI_PG_EVENT_WAIT;
 866
 867        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
 868        if (ret)
 869                /* FIXME: should we reset here? */
 870                goto out;
 871
 872        mutex_unlock(&dev->device_lock);
 873        wait_event_timeout(dev->wait_pg,
 874                dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
 875        mutex_lock(&dev->device_lock);
 876
 877        if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
 878                ret = -ETIME;
 879                goto out;
 880        }
 881        /* end PGI entry procedure */
 882
 883        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 884
 885        reg = mei_me_d0i3_set(dev, true);
 886        if (!(reg & H_D0I3C_CIP)) {
 887                dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
 888                ret = 0;
 889                goto on;
 890        }
 891
 892        mutex_unlock(&dev->device_lock);
 893        wait_event_timeout(dev->wait_pg,
 894                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
 895        mutex_lock(&dev->device_lock);
 896
 897        if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
 898                reg = mei_me_d0i3c_read(dev);
 899                if (!(reg & H_D0I3C_I3)) {
 900                        ret = -ETIME;
 901                        goto out;
 902                }
 903        }
 904
 905        ret = 0;
 906on:
 907        hw->pg_state = MEI_PG_ON;
 908out:
 909        dev->pg_event = MEI_PG_EVENT_IDLE;
 910        dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
 911        return ret;
 912}
 913
 914/**
 915 * mei_me_d0i3_enter - perform d0i3 entry procedure
 916 *   no hbm PG handshake
 917 *   no waiting for confirmation; runs with interrupts
 918 *   disabled
 919 *
 920 * @dev: the device structure
 921 *
 922 * Return: 0 on success an error code otherwise
 923 */
 924static int mei_me_d0i3_enter(struct mei_device *dev)
 925{
 926        struct mei_me_hw *hw = to_me_hw(dev);
 927        u32 reg;
 928
 929        reg = mei_me_d0i3c_read(dev);
 930        if (reg & H_D0I3C_I3) {
 931                /* we are in d0i3, nothing to do */
 932                dev_dbg(dev->dev, "already d0i3 : set not needed\n");
 933                goto on;
 934        }
 935
 936        mei_me_d0i3_set(dev, false);
 937on:
 938        hw->pg_state = MEI_PG_ON;
 939        dev->pg_event = MEI_PG_EVENT_IDLE;
 940        dev_dbg(dev->dev, "d0i3 enter\n");
 941        return 0;
 942}
 943
 944/**
 945 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
 946 *
 947 * @dev: the device structure
 948 *
 949 * Return: 0 on success an error code otherwise
 950 */
 951static int mei_me_d0i3_exit_sync(struct mei_device *dev)
 952{
 953        struct mei_me_hw *hw = to_me_hw(dev);
 954        unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
 955        int ret;
 956        u32 reg;
 957
 958        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 959
 960        reg = mei_me_d0i3c_read(dev);
 961        if (!(reg & H_D0I3C_I3)) {
 962                /* we are not in d0i3, nothing to do */
 963                dev_dbg(dev->dev, "d0i3 exit not needed\n");
 964                ret = 0;
 965                goto off;
 966        }
 967
 968        reg = mei_me_d0i3_unset(dev);
 969        if (!(reg & H_D0I3C_CIP)) {
 970                dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
 971                ret = 0;
 972                goto off;
 973        }
 974
 975        mutex_unlock(&dev->device_lock);
 976        wait_event_timeout(dev->wait_pg,
 977                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
 978        mutex_lock(&dev->device_lock);
 979
 980        if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
 981                reg = mei_me_d0i3c_read(dev);
 982                if (reg & H_D0I3C_I3) {
 983                        ret = -ETIME;
 984                        goto out;
 985                }
 986        }
 987
 988        ret = 0;
 989off:
 990        hw->pg_state = MEI_PG_OFF;
 991out:
 992        dev->pg_event = MEI_PG_EVENT_IDLE;
 993
 994        dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
 995        return ret;
 996}
 997
 998/**
 999 * mei_me_pg_legacy_intr - perform legacy pg processing
1000 *                         in interrupt thread handler
1001 *
1002 * @dev: the device structure
1003 */
1004static void mei_me_pg_legacy_intr(struct mei_device *dev)
1005{
1006        struct mei_me_hw *hw = to_me_hw(dev);
1007
1008        if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1009                return;
1010
1011        dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1012        hw->pg_state = MEI_PG_OFF;
1013        if (waitqueue_active(&dev->wait_pg))
1014                wake_up(&dev->wait_pg);
1015}
1016
1017/**
1018 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1019 *
1020 * @dev: the device structure
1021 * @intr_source: interrupt source
1022 */
1023static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1024{
1025        struct mei_me_hw *hw = to_me_hw(dev);
1026
1027        if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1028            (intr_source & H_D0I3C_IS)) {
1029                dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1030                if (hw->pg_state == MEI_PG_ON) {
1031                        hw->pg_state = MEI_PG_OFF;
1032                        if (dev->hbm_state != MEI_HBM_IDLE) {
1033                                /*
1034                                 * force H_RDY because it could be
1035                                 * wiped off during PG
1036                                 */
1037                                dev_dbg(dev->dev, "d0i3 set host ready\n");
1038                                mei_me_host_set_ready(dev);
1039                        }
1040                } else {
1041                        hw->pg_state = MEI_PG_ON;
1042                }
1043
1044                wake_up(&dev->wait_pg);
1045        }
1046
1047        if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1048                /*
1049                 * HW sent some data and we are in D0i3, so
1050                 * we got here because of HW initiated exit from D0i3.
1051                 * Start runtime pm resume sequence to exit low power state.
1052                 */
1053                dev_dbg(dev->dev, "d0i3 want resume\n");
1054                mei_hbm_pg_resume(dev);
1055        }
1056}
1057
1058/**
1059 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1060 *
1061 * @dev: the device structure
1062 * @intr_source: interrupt source
1063 */
1064static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1065{
1066        struct mei_me_hw *hw = to_me_hw(dev);
1067
1068        if (hw->d0i3_supported)
1069                mei_me_d0i3_intr(dev, intr_source);
1070        else
1071                mei_me_pg_legacy_intr(dev);
1072}
1073
1074/**
1075 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1076 *
1077 * @dev: the device structure
1078 *
1079 * Return: 0 on success an error code otherwise
1080 */
1081int mei_me_pg_enter_sync(struct mei_device *dev)
1082{
1083        struct mei_me_hw *hw = to_me_hw(dev);
1084
1085        if (hw->d0i3_supported)
1086                return mei_me_d0i3_enter_sync(dev);
1087        else
1088                return mei_me_pg_legacy_enter_sync(dev);
1089}
1090
1091/**
1092 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1093 *
1094 * @dev: the device structure
1095 *
1096 * Return: 0 on success an error code otherwise
1097 */
1098int mei_me_pg_exit_sync(struct mei_device *dev)
1099{
1100        struct mei_me_hw *hw = to_me_hw(dev);
1101
1102        if (hw->d0i3_supported)
1103                return mei_me_d0i3_exit_sync(dev);
1104        else
1105                return mei_me_pg_legacy_exit_sync(dev);
1106}
1107
1108/**
1109 * mei_me_hw_reset - resets fw via mei csr register.
1110 *
1111 * @dev: the device structure
1112 * @intr_enable: if interrupt should be enabled after reset.
1113 *
1114 * Return: 0 on success an error code otherwise
1115 */
1116static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1117{
1118        struct mei_me_hw *hw = to_me_hw(dev);
1119        int ret;
1120        u32 hcsr;
1121
1122        if (intr_enable) {
1123                mei_me_intr_enable(dev);
1124                if (hw->d0i3_supported) {
1125                        ret = mei_me_d0i3_exit_sync(dev);
1126                        if (ret)
1127                                return ret;
1128                }
1129        }
1130
1131        pm_runtime_set_active(dev->dev);
1132
1133        hcsr = mei_hcsr_read(dev);
1134        /* H_RST may be found lit before reset is started,
1135         * for example if preceding reset flow hasn't completed.
1136         * In that case asserting H_RST will be ignored, therefore
1137         * we need to clean H_RST bit to start a successful reset sequence.
1138         */
1139        if ((hcsr & H_RST) == H_RST) {
1140                dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1141                hcsr &= ~H_RST;
1142                mei_hcsr_set(dev, hcsr);
1143                hcsr = mei_hcsr_read(dev);
1144        }
1145
1146        hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1147
1148        if (!intr_enable)
1149                hcsr &= ~H_CSR_IE_MASK;
1150
1151        dev->recvd_hw_ready = false;
1152        mei_hcsr_write(dev, hcsr);
1153
1154        /*
1155         * Host reads the H_CSR once to ensure that the
1156         * posted write to H_CSR completes.
1157         */
1158        hcsr = mei_hcsr_read(dev);
1159
1160        if ((hcsr & H_RST) == 0)
1161                dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1162
1163        if ((hcsr & H_RDY) == H_RDY)
1164                dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1165
1166        if (!intr_enable) {
1167                mei_me_hw_reset_release(dev);
1168                if (hw->d0i3_supported) {
1169                        ret = mei_me_d0i3_enter(dev);
1170                        if (ret)
1171                                return ret;
1172                }
1173        }
1174        return 0;
1175}
1176
1177/**
1178 * mei_me_irq_quick_handler - The ISR of the MEI device
1179 *
1180 * @irq: The irq number
1181 * @dev_id: pointer to the device structure
1182 *
1183 * Return: irqreturn_t
1184 */
1185irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1186{
1187        struct mei_device *dev = (struct mei_device *)dev_id;
1188        u32 hcsr;
1189
1190        hcsr = mei_hcsr_read(dev);
1191        if (!me_intr_src(hcsr))
1192                return IRQ_NONE;
1193
1194        dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1195
1196        /* disable interrupts on device */
1197        me_intr_disable(dev, hcsr);
1198        return IRQ_WAKE_THREAD;
1199}
1200
1201/**
1202 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1203 * processing.
1204 *
1205 * @irq: The irq number
1206 * @dev_id: pointer to the device structure
1207 *
1208 * Return: irqreturn_t
1209 *
1210 */
1211irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1212{
1213        struct mei_device *dev = (struct mei_device *) dev_id;
1214        struct list_head cmpl_list;
1215        s32 slots;
1216        u32 hcsr;
1217        int rets = 0;
1218
1219        dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1220        /* initialize our complete list */
1221        mutex_lock(&dev->device_lock);
1222
1223        hcsr = mei_hcsr_read(dev);
1224        me_intr_clear(dev, hcsr);
1225
1226        INIT_LIST_HEAD(&cmpl_list);
1227
1228        /* check if ME wants a reset */
1229        if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1230                dev_warn(dev->dev, "FW not ready: resetting.\n");
1231                schedule_work(&dev->reset_work);
1232                goto end;
1233        }
1234
1235        if (mei_me_hw_is_resetting(dev))
1236                mei_hcsr_set_hig(dev);
1237
1238        mei_me_pg_intr(dev, me_intr_src(hcsr));
1239
1240        /*  check if we need to start the dev */
1241        if (!mei_host_is_ready(dev)) {
1242                if (mei_hw_is_ready(dev)) {
1243                        dev_dbg(dev->dev, "we need to start the dev.\n");
1244                        dev->recvd_hw_ready = true;
1245                        wake_up(&dev->wait_hw_ready);
1246                } else {
1247                        dev_dbg(dev->dev, "Spurious Interrupt\n");
1248                }
1249                goto end;
1250        }
1251        /* check slots available for reading */
1252        slots = mei_count_full_read_slots(dev);
1253        while (slots > 0) {
1254                dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1255                rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1256                /* There is a race between ME write and interrupt delivery:
1257                 * Not all data is always available immediately after the
1258                 * interrupt, so try to read again on the next interrupt.
1259                 */
1260                if (rets == -ENODATA)
1261                        break;
1262
1263                if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1264                        dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1265                                                rets);
1266                        schedule_work(&dev->reset_work);
1267                        goto end;
1268                }
1269        }
1270
1271        dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1272
1273        /*
1274         * During PG handshake only allowed write is the replay to the
1275         * PG exit message, so block calling write function
1276         * if the pg event is in PG handshake
1277         */
1278        if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1279            dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1280                rets = mei_irq_write_handler(dev, &cmpl_list);
1281                dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1282        }
1283
1284        mei_irq_compl_handler(dev, &cmpl_list);
1285
1286end:
1287        dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1288        mei_me_intr_enable(dev);
1289        mutex_unlock(&dev->device_lock);
1290        return IRQ_HANDLED;
1291}
1292
1293static const struct mei_hw_ops mei_me_hw_ops = {
1294
1295        .fw_status = mei_me_fw_status,
1296        .pg_state  = mei_me_pg_state,
1297
1298        .host_is_ready = mei_me_host_is_ready,
1299
1300        .hw_is_ready = mei_me_hw_is_ready,
1301        .hw_reset = mei_me_hw_reset,
1302        .hw_config = mei_me_hw_config,
1303        .hw_start = mei_me_hw_start,
1304
1305        .pg_in_transition = mei_me_pg_in_transition,
1306        .pg_is_enabled = mei_me_pg_is_enabled,
1307
1308        .intr_clear = mei_me_intr_clear,
1309        .intr_enable = mei_me_intr_enable,
1310        .intr_disable = mei_me_intr_disable,
1311        .synchronize_irq = mei_me_synchronize_irq,
1312
1313        .hbuf_free_slots = mei_me_hbuf_empty_slots,
1314        .hbuf_is_ready = mei_me_hbuf_is_empty,
1315        .hbuf_max_len = mei_me_hbuf_max_len,
1316
1317        .write = mei_me_hbuf_write,
1318
1319        .rdbuf_full_slots = mei_me_count_full_read_slots,
1320        .read_hdr = mei_me_mecbrw_read,
1321        .read = mei_me_read_slots
1322};
1323
1324static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1325{
1326        u32 reg;
1327
1328        pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1329        trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1330        /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1331        return (reg & 0x600) == 0x200;
1332}
1333
1334#define MEI_CFG_FW_NM                           \
1335        .quirk_probe = mei_me_fw_type_nm
1336
1337static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1338{
1339        u32 reg;
1340        unsigned int devfn;
1341
1342        /*
1343         * Read ME FW Status register to check for SPS Firmware
1344         * The SPS FW is only signaled in pci function 0
1345         */
1346        devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1347        pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1348        trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1349        /* if bits [19:16] = 15, running SPS Firmware */
1350        return (reg & 0xf0000) == 0xf0000;
1351}
1352
1353#define MEI_CFG_FW_SPS                           \
1354        .quirk_probe = mei_me_fw_type_sps
1355
1356
1357#define MEI_CFG_LEGACY_HFS                      \
1358        .fw_status.count = 0
1359
1360#define MEI_CFG_ICH_HFS                        \
1361        .fw_status.count = 1,                   \
1362        .fw_status.status[0] = PCI_CFG_HFS_1
1363
1364#define MEI_CFG_PCH_HFS                         \
1365        .fw_status.count = 2,                   \
1366        .fw_status.status[0] = PCI_CFG_HFS_1,   \
1367        .fw_status.status[1] = PCI_CFG_HFS_2
1368
1369#define MEI_CFG_PCH8_HFS                        \
1370        .fw_status.count = 6,                   \
1371        .fw_status.status[0] = PCI_CFG_HFS_1,   \
1372        .fw_status.status[1] = PCI_CFG_HFS_2,   \
1373        .fw_status.status[2] = PCI_CFG_HFS_3,   \
1374        .fw_status.status[3] = PCI_CFG_HFS_4,   \
1375        .fw_status.status[4] = PCI_CFG_HFS_5,   \
1376        .fw_status.status[5] = PCI_CFG_HFS_6
1377
1378/* ICH Legacy devices */
1379const struct mei_cfg mei_me_legacy_cfg = {
1380        MEI_CFG_LEGACY_HFS,
1381};
1382
1383/* ICH devices */
1384const struct mei_cfg mei_me_ich_cfg = {
1385        MEI_CFG_ICH_HFS,
1386};
1387
1388/* PCH devices */
1389const struct mei_cfg mei_me_pch_cfg = {
1390        MEI_CFG_PCH_HFS,
1391};
1392
1393
1394/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1395const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1396        MEI_CFG_PCH_HFS,
1397        MEI_CFG_FW_NM,
1398};
1399
1400/* PCH8 Lynx Point and newer devices */
1401const struct mei_cfg mei_me_pch8_cfg = {
1402        MEI_CFG_PCH8_HFS,
1403};
1404
1405/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1406const struct mei_cfg mei_me_pch8_sps_cfg = {
1407        MEI_CFG_PCH8_HFS,
1408        MEI_CFG_FW_SPS,
1409};
1410
1411/**
1412 * mei_me_dev_init - allocates and initializes the mei device structure
1413 *
1414 * @pdev: The pci device structure
1415 * @cfg: per device generation config
1416 *
1417 * Return: The mei_device pointer on success, NULL on failure.
1418 */
1419struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1420                                   const struct mei_cfg *cfg)
1421{
1422        struct mei_device *dev;
1423        struct mei_me_hw *hw;
1424
1425        dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1426                           sizeof(struct mei_me_hw), GFP_KERNEL);
1427        if (!dev)
1428                return NULL;
1429        hw = to_me_hw(dev);
1430
1431        mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1432        hw->cfg = cfg;
1433        return dev;
1434}
1435
1436