linux/drivers/mtd/nand/nand_base.c
<<
>>
Prefs
   1/*
   2 *  Overview:
   3 *   This is the generic MTD driver for NAND flash devices. It should be
   4 *   capable of working with almost all NAND chips currently available.
   5 *
   6 *      Additional technical information is available on
   7 *      http://www.linux-mtd.infradead.org/doc/nand.html
   8 *
   9 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  10 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  11 *
  12 *  Credits:
  13 *      David Woodhouse for adding multichip support
  14 *
  15 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  16 *      rework for 2K page size chips
  17 *
  18 *  TODO:
  19 *      Enable cached programming for 2k page size chips
  20 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  21 *      if we have HW ECC support.
  22 *      BBT table is not serialized, has to be fixed
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License version 2 as
  26 * published by the Free Software Foundation.
  27 *
  28 */
  29
  30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  31
  32#include <linux/module.h>
  33#include <linux/delay.h>
  34#include <linux/errno.h>
  35#include <linux/err.h>
  36#include <linux/sched.h>
  37#include <linux/slab.h>
  38#include <linux/mm.h>
  39#include <linux/nmi.h>
  40#include <linux/types.h>
  41#include <linux/mtd/mtd.h>
  42#include <linux/mtd/nand.h>
  43#include <linux/mtd/nand_ecc.h>
  44#include <linux/mtd/nand_bch.h>
  45#include <linux/interrupt.h>
  46#include <linux/bitops.h>
  47#include <linux/io.h>
  48#include <linux/mtd/partitions.h>
  49#include <linux/of.h>
  50
  51static int nand_get_device(struct mtd_info *mtd, int new_state);
  52
  53static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
  54                             struct mtd_oob_ops *ops);
  55
  56/* Define default oob placement schemes for large and small page devices */
  57static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
  58                                 struct mtd_oob_region *oobregion)
  59{
  60        struct nand_chip *chip = mtd_to_nand(mtd);
  61        struct nand_ecc_ctrl *ecc = &chip->ecc;
  62
  63        if (section > 1)
  64                return -ERANGE;
  65
  66        if (!section) {
  67                oobregion->offset = 0;
  68                if (mtd->oobsize == 16)
  69                        oobregion->length = 4;
  70                else
  71                        oobregion->length = 3;
  72        } else {
  73                if (mtd->oobsize == 8)
  74                        return -ERANGE;
  75
  76                oobregion->offset = 6;
  77                oobregion->length = ecc->total - 4;
  78        }
  79
  80        return 0;
  81}
  82
  83static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
  84                                  struct mtd_oob_region *oobregion)
  85{
  86        if (section > 1)
  87                return -ERANGE;
  88
  89        if (mtd->oobsize == 16) {
  90                if (section)
  91                        return -ERANGE;
  92
  93                oobregion->length = 8;
  94                oobregion->offset = 8;
  95        } else {
  96                oobregion->length = 2;
  97                if (!section)
  98                        oobregion->offset = 3;
  99                else
 100                        oobregion->offset = 6;
 101        }
 102
 103        return 0;
 104}
 105
 106const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
 107        .ecc = nand_ooblayout_ecc_sp,
 108        .free = nand_ooblayout_free_sp,
 109};
 110EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
 111
 112static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
 113                                 struct mtd_oob_region *oobregion)
 114{
 115        struct nand_chip *chip = mtd_to_nand(mtd);
 116        struct nand_ecc_ctrl *ecc = &chip->ecc;
 117
 118        if (section)
 119                return -ERANGE;
 120
 121        oobregion->length = ecc->total;
 122        oobregion->offset = mtd->oobsize - oobregion->length;
 123
 124        return 0;
 125}
 126
 127static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
 128                                  struct mtd_oob_region *oobregion)
 129{
 130        struct nand_chip *chip = mtd_to_nand(mtd);
 131        struct nand_ecc_ctrl *ecc = &chip->ecc;
 132
 133        if (section)
 134                return -ERANGE;
 135
 136        oobregion->length = mtd->oobsize - ecc->total - 2;
 137        oobregion->offset = 2;
 138
 139        return 0;
 140}
 141
 142const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
 143        .ecc = nand_ooblayout_ecc_lp,
 144        .free = nand_ooblayout_free_lp,
 145};
 146EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
 147
 148/*
 149 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
 150 * are placed at a fixed offset.
 151 */
 152static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
 153                                         struct mtd_oob_region *oobregion)
 154{
 155        struct nand_chip *chip = mtd_to_nand(mtd);
 156        struct nand_ecc_ctrl *ecc = &chip->ecc;
 157
 158        if (section)
 159                return -ERANGE;
 160
 161        switch (mtd->oobsize) {
 162        case 64:
 163                oobregion->offset = 40;
 164                break;
 165        case 128:
 166                oobregion->offset = 80;
 167                break;
 168        default:
 169                return -EINVAL;
 170        }
 171
 172        oobregion->length = ecc->total;
 173        if (oobregion->offset + oobregion->length > mtd->oobsize)
 174                return -ERANGE;
 175
 176        return 0;
 177}
 178
 179static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
 180                                          struct mtd_oob_region *oobregion)
 181{
 182        struct nand_chip *chip = mtd_to_nand(mtd);
 183        struct nand_ecc_ctrl *ecc = &chip->ecc;
 184        int ecc_offset = 0;
 185
 186        if (section < 0 || section > 1)
 187                return -ERANGE;
 188
 189        switch (mtd->oobsize) {
 190        case 64:
 191                ecc_offset = 40;
 192                break;
 193        case 128:
 194                ecc_offset = 80;
 195                break;
 196        default:
 197                return -EINVAL;
 198        }
 199
 200        if (section == 0) {
 201                oobregion->offset = 2;
 202                oobregion->length = ecc_offset - 2;
 203        } else {
 204                oobregion->offset = ecc_offset + ecc->total;
 205                oobregion->length = mtd->oobsize - oobregion->offset;
 206        }
 207
 208        return 0;
 209}
 210
 211static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
 212        .ecc = nand_ooblayout_ecc_lp_hamming,
 213        .free = nand_ooblayout_free_lp_hamming,
 214};
 215
 216static int check_offs_len(struct mtd_info *mtd,
 217                                        loff_t ofs, uint64_t len)
 218{
 219        struct nand_chip *chip = mtd_to_nand(mtd);
 220        int ret = 0;
 221
 222        /* Start address must align on block boundary */
 223        if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
 224                pr_debug("%s: unaligned address\n", __func__);
 225                ret = -EINVAL;
 226        }
 227
 228        /* Length must align on block boundary */
 229        if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
 230                pr_debug("%s: length not block aligned\n", __func__);
 231                ret = -EINVAL;
 232        }
 233
 234        return ret;
 235}
 236
 237/**
 238 * nand_release_device - [GENERIC] release chip
 239 * @mtd: MTD device structure
 240 *
 241 * Release chip lock and wake up anyone waiting on the device.
 242 */
 243static void nand_release_device(struct mtd_info *mtd)
 244{
 245        struct nand_chip *chip = mtd_to_nand(mtd);
 246
 247        /* Release the controller and the chip */
 248        spin_lock(&chip->controller->lock);
 249        chip->controller->active = NULL;
 250        chip->state = FL_READY;
 251        wake_up(&chip->controller->wq);
 252        spin_unlock(&chip->controller->lock);
 253}
 254
 255/**
 256 * nand_read_byte - [DEFAULT] read one byte from the chip
 257 * @mtd: MTD device structure
 258 *
 259 * Default read function for 8bit buswidth
 260 */
 261static uint8_t nand_read_byte(struct mtd_info *mtd)
 262{
 263        struct nand_chip *chip = mtd_to_nand(mtd);
 264        return readb(chip->IO_ADDR_R);
 265}
 266
 267/**
 268 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
 269 * @mtd: MTD device structure
 270 *
 271 * Default read function for 16bit buswidth with endianness conversion.
 272 *
 273 */
 274static uint8_t nand_read_byte16(struct mtd_info *mtd)
 275{
 276        struct nand_chip *chip = mtd_to_nand(mtd);
 277        return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
 278}
 279
 280/**
 281 * nand_read_word - [DEFAULT] read one word from the chip
 282 * @mtd: MTD device structure
 283 *
 284 * Default read function for 16bit buswidth without endianness conversion.
 285 */
 286static u16 nand_read_word(struct mtd_info *mtd)
 287{
 288        struct nand_chip *chip = mtd_to_nand(mtd);
 289        return readw(chip->IO_ADDR_R);
 290}
 291
 292/**
 293 * nand_select_chip - [DEFAULT] control CE line
 294 * @mtd: MTD device structure
 295 * @chipnr: chipnumber to select, -1 for deselect
 296 *
 297 * Default select function for 1 chip devices.
 298 */
 299static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 300{
 301        struct nand_chip *chip = mtd_to_nand(mtd);
 302
 303        switch (chipnr) {
 304        case -1:
 305                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 306                break;
 307        case 0:
 308                break;
 309
 310        default:
 311                BUG();
 312        }
 313}
 314
 315/**
 316 * nand_write_byte - [DEFAULT] write single byte to chip
 317 * @mtd: MTD device structure
 318 * @byte: value to write
 319 *
 320 * Default function to write a byte to I/O[7:0]
 321 */
 322static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
 323{
 324        struct nand_chip *chip = mtd_to_nand(mtd);
 325
 326        chip->write_buf(mtd, &byte, 1);
 327}
 328
 329/**
 330 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
 331 * @mtd: MTD device structure
 332 * @byte: value to write
 333 *
 334 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
 335 */
 336static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
 337{
 338        struct nand_chip *chip = mtd_to_nand(mtd);
 339        uint16_t word = byte;
 340
 341        /*
 342         * It's not entirely clear what should happen to I/O[15:8] when writing
 343         * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
 344         *
 345         *    When the host supports a 16-bit bus width, only data is
 346         *    transferred at the 16-bit width. All address and command line
 347         *    transfers shall use only the lower 8-bits of the data bus. During
 348         *    command transfers, the host may place any value on the upper
 349         *    8-bits of the data bus. During address transfers, the host shall
 350         *    set the upper 8-bits of the data bus to 00h.
 351         *
 352         * One user of the write_byte callback is nand_onfi_set_features. The
 353         * four parameters are specified to be written to I/O[7:0], but this is
 354         * neither an address nor a command transfer. Let's assume a 0 on the
 355         * upper I/O lines is OK.
 356         */
 357        chip->write_buf(mtd, (uint8_t *)&word, 2);
 358}
 359
 360/**
 361 * nand_write_buf - [DEFAULT] write buffer to chip
 362 * @mtd: MTD device structure
 363 * @buf: data buffer
 364 * @len: number of bytes to write
 365 *
 366 * Default write function for 8bit buswidth.
 367 */
 368static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 369{
 370        struct nand_chip *chip = mtd_to_nand(mtd);
 371
 372        iowrite8_rep(chip->IO_ADDR_W, buf, len);
 373}
 374
 375/**
 376 * nand_read_buf - [DEFAULT] read chip data into buffer
 377 * @mtd: MTD device structure
 378 * @buf: buffer to store date
 379 * @len: number of bytes to read
 380 *
 381 * Default read function for 8bit buswidth.
 382 */
 383static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 384{
 385        struct nand_chip *chip = mtd_to_nand(mtd);
 386
 387        ioread8_rep(chip->IO_ADDR_R, buf, len);
 388}
 389
 390/**
 391 * nand_write_buf16 - [DEFAULT] write buffer to chip
 392 * @mtd: MTD device structure
 393 * @buf: data buffer
 394 * @len: number of bytes to write
 395 *
 396 * Default write function for 16bit buswidth.
 397 */
 398static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 399{
 400        struct nand_chip *chip = mtd_to_nand(mtd);
 401        u16 *p = (u16 *) buf;
 402
 403        iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
 404}
 405
 406/**
 407 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 408 * @mtd: MTD device structure
 409 * @buf: buffer to store date
 410 * @len: number of bytes to read
 411 *
 412 * Default read function for 16bit buswidth.
 413 */
 414static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 415{
 416        struct nand_chip *chip = mtd_to_nand(mtd);
 417        u16 *p = (u16 *) buf;
 418
 419        ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
 420}
 421
 422/**
 423 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 424 * @mtd: MTD device structure
 425 * @ofs: offset from device start
 426 *
 427 * Check, if the block is bad.
 428 */
 429static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
 430{
 431        int page, page_end, res;
 432        struct nand_chip *chip = mtd_to_nand(mtd);
 433        u8 bad;
 434
 435        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 436                ofs += mtd->erasesize - mtd->writesize;
 437
 438        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 439        page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
 440
 441        for (; page < page_end; page++) {
 442                res = chip->ecc.read_oob(mtd, chip, page);
 443                if (res)
 444                        return res;
 445
 446                bad = chip->oob_poi[chip->badblockpos];
 447
 448                if (likely(chip->badblockbits == 8))
 449                        res = bad != 0xFF;
 450                else
 451                        res = hweight8(bad) < chip->badblockbits;
 452                if (res)
 453                        return res;
 454        }
 455
 456        return 0;
 457}
 458
 459/**
 460 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
 461 * @mtd: MTD device structure
 462 * @ofs: offset from device start
 463 *
 464 * This is the default implementation, which can be overridden by a hardware
 465 * specific driver. It provides the details for writing a bad block marker to a
 466 * block.
 467 */
 468static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 469{
 470        struct nand_chip *chip = mtd_to_nand(mtd);
 471        struct mtd_oob_ops ops;
 472        uint8_t buf[2] = { 0, 0 };
 473        int ret = 0, res, i = 0;
 474
 475        memset(&ops, 0, sizeof(ops));
 476        ops.oobbuf = buf;
 477        ops.ooboffs = chip->badblockpos;
 478        if (chip->options & NAND_BUSWIDTH_16) {
 479                ops.ooboffs &= ~0x01;
 480                ops.len = ops.ooblen = 2;
 481        } else {
 482                ops.len = ops.ooblen = 1;
 483        }
 484        ops.mode = MTD_OPS_PLACE_OOB;
 485
 486        /* Write to first/last page(s) if necessary */
 487        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 488                ofs += mtd->erasesize - mtd->writesize;
 489        do {
 490                res = nand_do_write_oob(mtd, ofs, &ops);
 491                if (!ret)
 492                        ret = res;
 493
 494                i++;
 495                ofs += mtd->writesize;
 496        } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
 497
 498        return ret;
 499}
 500
 501/**
 502 * nand_block_markbad_lowlevel - mark a block bad
 503 * @mtd: MTD device structure
 504 * @ofs: offset from device start
 505 *
 506 * This function performs the generic NAND bad block marking steps (i.e., bad
 507 * block table(s) and/or marker(s)). We only allow the hardware driver to
 508 * specify how to write bad block markers to OOB (chip->block_markbad).
 509 *
 510 * We try operations in the following order:
 511 *
 512 *  (1) erase the affected block, to allow OOB marker to be written cleanly
 513 *  (2) write bad block marker to OOB area of affected block (unless flag
 514 *      NAND_BBT_NO_OOB_BBM is present)
 515 *  (3) update the BBT
 516 *
 517 * Note that we retain the first error encountered in (2) or (3), finish the
 518 * procedures, and dump the error in the end.
 519*/
 520static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
 521{
 522        struct nand_chip *chip = mtd_to_nand(mtd);
 523        int res, ret = 0;
 524
 525        if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
 526                struct erase_info einfo;
 527
 528                /* Attempt erase before marking OOB */
 529                memset(&einfo, 0, sizeof(einfo));
 530                einfo.mtd = mtd;
 531                einfo.addr = ofs;
 532                einfo.len = 1ULL << chip->phys_erase_shift;
 533                nand_erase_nand(mtd, &einfo, 0);
 534
 535                /* Write bad block marker to OOB */
 536                nand_get_device(mtd, FL_WRITING);
 537                ret = chip->block_markbad(mtd, ofs);
 538                nand_release_device(mtd);
 539        }
 540
 541        /* Mark block bad in BBT */
 542        if (chip->bbt) {
 543                res = nand_markbad_bbt(mtd, ofs);
 544                if (!ret)
 545                        ret = res;
 546        }
 547
 548        if (!ret)
 549                mtd->ecc_stats.badblocks++;
 550
 551        return ret;
 552}
 553
 554/**
 555 * nand_check_wp - [GENERIC] check if the chip is write protected
 556 * @mtd: MTD device structure
 557 *
 558 * Check, if the device is write protected. The function expects, that the
 559 * device is already selected.
 560 */
 561static int nand_check_wp(struct mtd_info *mtd)
 562{
 563        struct nand_chip *chip = mtd_to_nand(mtd);
 564
 565        /* Broken xD cards report WP despite being writable */
 566        if (chip->options & NAND_BROKEN_XD)
 567                return 0;
 568
 569        /* Check the WP bit */
 570        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 571        return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
 572}
 573
 574/**
 575 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
 576 * @mtd: MTD device structure
 577 * @ofs: offset from device start
 578 *
 579 * Check if the block is marked as reserved.
 580 */
 581static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
 582{
 583        struct nand_chip *chip = mtd_to_nand(mtd);
 584
 585        if (!chip->bbt)
 586                return 0;
 587        /* Return info from the table */
 588        return nand_isreserved_bbt(mtd, ofs);
 589}
 590
 591/**
 592 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 593 * @mtd: MTD device structure
 594 * @ofs: offset from device start
 595 * @allowbbt: 1, if its allowed to access the bbt area
 596 *
 597 * Check, if the block is bad. Either by reading the bad block table or
 598 * calling of the scan function.
 599 */
 600static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
 601{
 602        struct nand_chip *chip = mtd_to_nand(mtd);
 603
 604        if (!chip->bbt)
 605                return chip->block_bad(mtd, ofs);
 606
 607        /* Return info from the table */
 608        return nand_isbad_bbt(mtd, ofs, allowbbt);
 609}
 610
 611/**
 612 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 613 * @mtd: MTD device structure
 614 * @timeo: Timeout
 615 *
 616 * Helper function for nand_wait_ready used when needing to wait in interrupt
 617 * context.
 618 */
 619static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
 620{
 621        struct nand_chip *chip = mtd_to_nand(mtd);
 622        int i;
 623
 624        /* Wait for the device to get ready */
 625        for (i = 0; i < timeo; i++) {
 626                if (chip->dev_ready(mtd))
 627                        break;
 628                touch_softlockup_watchdog();
 629                mdelay(1);
 630        }
 631}
 632
 633/**
 634 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 635 * @mtd: MTD device structure
 636 *
 637 * Wait for the ready pin after a command, and warn if a timeout occurs.
 638 */
 639void nand_wait_ready(struct mtd_info *mtd)
 640{
 641        struct nand_chip *chip = mtd_to_nand(mtd);
 642        unsigned long timeo = 400;
 643
 644        if (in_interrupt() || oops_in_progress)
 645                return panic_nand_wait_ready(mtd, timeo);
 646
 647        /* Wait until command is processed or timeout occurs */
 648        timeo = jiffies + msecs_to_jiffies(timeo);
 649        do {
 650                if (chip->dev_ready(mtd))
 651                        return;
 652                cond_resched();
 653        } while (time_before(jiffies, timeo));
 654
 655        if (!chip->dev_ready(mtd))
 656                pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
 657}
 658EXPORT_SYMBOL_GPL(nand_wait_ready);
 659
 660/**
 661 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
 662 * @mtd: MTD device structure
 663 * @timeo: Timeout in ms
 664 *
 665 * Wait for status ready (i.e. command done) or timeout.
 666 */
 667static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
 668{
 669        register struct nand_chip *chip = mtd_to_nand(mtd);
 670
 671        timeo = jiffies + msecs_to_jiffies(timeo);
 672        do {
 673                if ((chip->read_byte(mtd) & NAND_STATUS_READY))
 674                        break;
 675                touch_softlockup_watchdog();
 676        } while (time_before(jiffies, timeo));
 677};
 678
 679/**
 680 * nand_command - [DEFAULT] Send command to NAND device
 681 * @mtd: MTD device structure
 682 * @command: the command to be sent
 683 * @column: the column address for this command, -1 if none
 684 * @page_addr: the page address for this command, -1 if none
 685 *
 686 * Send command to NAND device. This function is used for small page devices
 687 * (512 Bytes per page).
 688 */
 689static void nand_command(struct mtd_info *mtd, unsigned int command,
 690                         int column, int page_addr)
 691{
 692        register struct nand_chip *chip = mtd_to_nand(mtd);
 693        int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 694
 695        /* Write out the command to the device */
 696        if (command == NAND_CMD_SEQIN) {
 697                int readcmd;
 698
 699                if (column >= mtd->writesize) {
 700                        /* OOB area */
 701                        column -= mtd->writesize;
 702                        readcmd = NAND_CMD_READOOB;
 703                } else if (column < 256) {
 704                        /* First 256 bytes --> READ0 */
 705                        readcmd = NAND_CMD_READ0;
 706                } else {
 707                        column -= 256;
 708                        readcmd = NAND_CMD_READ1;
 709                }
 710                chip->cmd_ctrl(mtd, readcmd, ctrl);
 711                ctrl &= ~NAND_CTRL_CHANGE;
 712        }
 713        chip->cmd_ctrl(mtd, command, ctrl);
 714
 715        /* Address cycle, when necessary */
 716        ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 717        /* Serially input address */
 718        if (column != -1) {
 719                /* Adjust columns for 16 bit buswidth */
 720                if (chip->options & NAND_BUSWIDTH_16 &&
 721                                !nand_opcode_8bits(command))
 722                        column >>= 1;
 723                chip->cmd_ctrl(mtd, column, ctrl);
 724                ctrl &= ~NAND_CTRL_CHANGE;
 725        }
 726        if (page_addr != -1) {
 727                chip->cmd_ctrl(mtd, page_addr, ctrl);
 728                ctrl &= ~NAND_CTRL_CHANGE;
 729                chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
 730                /* One more address cycle for devices > 32MiB */
 731                if (chip->chipsize > (32 << 20))
 732                        chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 733        }
 734        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 735
 736        /*
 737         * Program and erase have their own busy handlers status and sequential
 738         * in needs no delay
 739         */
 740        switch (command) {
 741
 742        case NAND_CMD_PAGEPROG:
 743        case NAND_CMD_ERASE1:
 744        case NAND_CMD_ERASE2:
 745        case NAND_CMD_SEQIN:
 746        case NAND_CMD_STATUS:
 747        case NAND_CMD_READID:
 748        case NAND_CMD_SET_FEATURES:
 749                return;
 750
 751        case NAND_CMD_RESET:
 752                if (chip->dev_ready)
 753                        break;
 754                udelay(chip->chip_delay);
 755                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 756                               NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 757                chip->cmd_ctrl(mtd,
 758                               NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 759                /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
 760                nand_wait_status_ready(mtd, 250);
 761                return;
 762
 763                /* This applies to read commands */
 764        case NAND_CMD_READ0:
 765                /*
 766                 * READ0 is sometimes used to exit GET STATUS mode. When this
 767                 * is the case no address cycles are requested, and we can use
 768                 * this information to detect that we should not wait for the
 769                 * device to be ready.
 770                 */
 771                if (column == -1 && page_addr == -1)
 772                        return;
 773
 774        default:
 775                /*
 776                 * If we don't have access to the busy pin, we apply the given
 777                 * command delay
 778                 */
 779                if (!chip->dev_ready) {
 780                        udelay(chip->chip_delay);
 781                        return;
 782                }
 783        }
 784        /*
 785         * Apply this short delay always to ensure that we do wait tWB in
 786         * any case on any machine.
 787         */
 788        ndelay(100);
 789
 790        nand_wait_ready(mtd);
 791}
 792
 793static void nand_ccs_delay(struct nand_chip *chip)
 794{
 795        /*
 796         * The controller already takes care of waiting for tCCS when the RNDIN
 797         * or RNDOUT command is sent, return directly.
 798         */
 799        if (!(chip->options & NAND_WAIT_TCCS))
 800                return;
 801
 802        /*
 803         * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
 804         * (which should be safe for all NANDs).
 805         */
 806        if (chip->data_interface && chip->data_interface->timings.sdr.tCCS_min)
 807                ndelay(chip->data_interface->timings.sdr.tCCS_min / 1000);
 808        else
 809                ndelay(500);
 810}
 811
 812/**
 813 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 814 * @mtd: MTD device structure
 815 * @command: the command to be sent
 816 * @column: the column address for this command, -1 if none
 817 * @page_addr: the page address for this command, -1 if none
 818 *
 819 * Send command to NAND device. This is the version for the new large page
 820 * devices. We don't have the separate regions as we have in the small page
 821 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
 822 */
 823static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 824                            int column, int page_addr)
 825{
 826        register struct nand_chip *chip = mtd_to_nand(mtd);
 827
 828        /* Emulate NAND_CMD_READOOB */
 829        if (command == NAND_CMD_READOOB) {
 830                column += mtd->writesize;
 831                command = NAND_CMD_READ0;
 832        }
 833
 834        /* Command latch cycle */
 835        chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 836
 837        if (column != -1 || page_addr != -1) {
 838                int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 839
 840                /* Serially input address */
 841                if (column != -1) {
 842                        /* Adjust columns for 16 bit buswidth */
 843                        if (chip->options & NAND_BUSWIDTH_16 &&
 844                                        !nand_opcode_8bits(command))
 845                                column >>= 1;
 846                        chip->cmd_ctrl(mtd, column, ctrl);
 847                        ctrl &= ~NAND_CTRL_CHANGE;
 848
 849                        /* Only output a single addr cycle for 8bits opcodes. */
 850                        if (!nand_opcode_8bits(command))
 851                                chip->cmd_ctrl(mtd, column >> 8, ctrl);
 852                }
 853                if (page_addr != -1) {
 854                        chip->cmd_ctrl(mtd, page_addr, ctrl);
 855                        chip->cmd_ctrl(mtd, page_addr >> 8,
 856                                       NAND_NCE | NAND_ALE);
 857                        /* One more address cycle for devices > 128MiB */
 858                        if (chip->chipsize > (128 << 20))
 859                                chip->cmd_ctrl(mtd, page_addr >> 16,
 860                                               NAND_NCE | NAND_ALE);
 861                }
 862        }
 863        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 864
 865        /*
 866         * Program and erase have their own busy handlers status, sequential
 867         * in and status need no delay.
 868         */
 869        switch (command) {
 870
 871        case NAND_CMD_CACHEDPROG:
 872        case NAND_CMD_PAGEPROG:
 873        case NAND_CMD_ERASE1:
 874        case NAND_CMD_ERASE2:
 875        case NAND_CMD_SEQIN:
 876        case NAND_CMD_STATUS:
 877        case NAND_CMD_READID:
 878        case NAND_CMD_SET_FEATURES:
 879                return;
 880
 881        case NAND_CMD_RNDIN:
 882                nand_ccs_delay(chip);
 883                return;
 884
 885        case NAND_CMD_RESET:
 886                if (chip->dev_ready)
 887                        break;
 888                udelay(chip->chip_delay);
 889                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 890                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 891                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 892                               NAND_NCE | NAND_CTRL_CHANGE);
 893                /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
 894                nand_wait_status_ready(mtd, 250);
 895                return;
 896
 897        case NAND_CMD_RNDOUT:
 898                /* No ready / busy check necessary */
 899                chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
 900                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 901                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 902                               NAND_NCE | NAND_CTRL_CHANGE);
 903
 904                nand_ccs_delay(chip);
 905                return;
 906
 907        case NAND_CMD_READ0:
 908                /*
 909                 * READ0 is sometimes used to exit GET STATUS mode. When this
 910                 * is the case no address cycles are requested, and we can use
 911                 * this information to detect that READSTART should not be
 912                 * issued.
 913                 */
 914                if (column == -1 && page_addr == -1)
 915                        return;
 916
 917                chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 918                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 919                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 920                               NAND_NCE | NAND_CTRL_CHANGE);
 921
 922                /* This applies to read commands */
 923        default:
 924                /*
 925                 * If we don't have access to the busy pin, we apply the given
 926                 * command delay.
 927                 */
 928                if (!chip->dev_ready) {
 929                        udelay(chip->chip_delay);
 930                        return;
 931                }
 932        }
 933
 934        /*
 935         * Apply this short delay always to ensure that we do wait tWB in
 936         * any case on any machine.
 937         */
 938        ndelay(100);
 939
 940        nand_wait_ready(mtd);
 941}
 942
 943/**
 944 * panic_nand_get_device - [GENERIC] Get chip for selected access
 945 * @chip: the nand chip descriptor
 946 * @mtd: MTD device structure
 947 * @new_state: the state which is requested
 948 *
 949 * Used when in panic, no locks are taken.
 950 */
 951static void panic_nand_get_device(struct nand_chip *chip,
 952                      struct mtd_info *mtd, int new_state)
 953{
 954        /* Hardware controller shared among independent devices */
 955        chip->controller->active = chip;
 956        chip->state = new_state;
 957}
 958
 959/**
 960 * nand_get_device - [GENERIC] Get chip for selected access
 961 * @mtd: MTD device structure
 962 * @new_state: the state which is requested
 963 *
 964 * Get the device and lock it for exclusive access
 965 */
 966static int
 967nand_get_device(struct mtd_info *mtd, int new_state)
 968{
 969        struct nand_chip *chip = mtd_to_nand(mtd);
 970        spinlock_t *lock = &chip->controller->lock;
 971        wait_queue_head_t *wq = &chip->controller->wq;
 972        DECLARE_WAITQUEUE(wait, current);
 973retry:
 974        spin_lock(lock);
 975
 976        /* Hardware controller shared among independent devices */
 977        if (!chip->controller->active)
 978                chip->controller->active = chip;
 979
 980        if (chip->controller->active == chip && chip->state == FL_READY) {
 981                chip->state = new_state;
 982                spin_unlock(lock);
 983                return 0;
 984        }
 985        if (new_state == FL_PM_SUSPENDED) {
 986                if (chip->controller->active->state == FL_PM_SUSPENDED) {
 987                        chip->state = FL_PM_SUSPENDED;
 988                        spin_unlock(lock);
 989                        return 0;
 990                }
 991        }
 992        set_current_state(TASK_UNINTERRUPTIBLE);
 993        add_wait_queue(wq, &wait);
 994        spin_unlock(lock);
 995        schedule();
 996        remove_wait_queue(wq, &wait);
 997        goto retry;
 998}
 999
1000/**
1001 * panic_nand_wait - [GENERIC] wait until the command is done
1002 * @mtd: MTD device structure
1003 * @chip: NAND chip structure
1004 * @timeo: timeout
1005 *
1006 * Wait for command done. This is a helper function for nand_wait used when
1007 * we are in interrupt context. May happen when in panic and trying to write
1008 * an oops through mtdoops.
1009 */
1010static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
1011                            unsigned long timeo)
1012{
1013        int i;
1014        for (i = 0; i < timeo; i++) {
1015                if (chip->dev_ready) {
1016                        if (chip->dev_ready(mtd))
1017                                break;
1018                } else {
1019                        if (chip->read_byte(mtd) & NAND_STATUS_READY)
1020                                break;
1021                }
1022                mdelay(1);
1023        }
1024}
1025
1026/**
1027 * nand_wait - [DEFAULT] wait until the command is done
1028 * @mtd: MTD device structure
1029 * @chip: NAND chip structure
1030 *
1031 * Wait for command done. This applies to erase and program only.
1032 */
1033static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1034{
1035
1036        int status;
1037        unsigned long timeo = 400;
1038
1039        /*
1040         * Apply this short delay always to ensure that we do wait tWB in any
1041         * case on any machine.
1042         */
1043        ndelay(100);
1044
1045        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1046
1047        if (in_interrupt() || oops_in_progress)
1048                panic_nand_wait(mtd, chip, timeo);
1049        else {
1050                timeo = jiffies + msecs_to_jiffies(timeo);
1051                do {
1052                        if (chip->dev_ready) {
1053                                if (chip->dev_ready(mtd))
1054                                        break;
1055                        } else {
1056                                if (chip->read_byte(mtd) & NAND_STATUS_READY)
1057                                        break;
1058                        }
1059                        cond_resched();
1060                } while (time_before(jiffies, timeo));
1061        }
1062
1063        status = (int)chip->read_byte(mtd);
1064        /* This can happen if in case of timeout or buggy dev_ready */
1065        WARN_ON(!(status & NAND_STATUS_READY));
1066        return status;
1067}
1068
1069/**
1070 * nand_reset_data_interface - Reset data interface and timings
1071 * @chip: The NAND chip
1072 * @chipnr: Internal die id
1073 *
1074 * Reset the Data interface and timings to ONFI mode 0.
1075 *
1076 * Returns 0 for success or negative error code otherwise.
1077 */
1078static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
1079{
1080        struct mtd_info *mtd = nand_to_mtd(chip);
1081        const struct nand_data_interface *conf;
1082        int ret;
1083
1084        if (!chip->setup_data_interface)
1085                return 0;
1086
1087        /*
1088         * The ONFI specification says:
1089         * "
1090         * To transition from NV-DDR or NV-DDR2 to the SDR data
1091         * interface, the host shall use the Reset (FFh) command
1092         * using SDR timing mode 0. A device in any timing mode is
1093         * required to recognize Reset (FFh) command issued in SDR
1094         * timing mode 0.
1095         * "
1096         *
1097         * Configure the data interface in SDR mode and set the
1098         * timings to timing mode 0.
1099         */
1100
1101        conf = nand_get_default_data_interface();
1102        ret = chip->setup_data_interface(mtd, chipnr, conf);
1103        if (ret)
1104                pr_err("Failed to configure data interface to SDR timing mode 0\n");
1105
1106        return ret;
1107}
1108
1109/**
1110 * nand_setup_data_interface - Setup the best data interface and timings
1111 * @chip: The NAND chip
1112 * @chipnr: Internal die id
1113 *
1114 * Find and configure the best data interface and NAND timings supported by
1115 * the chip and the driver.
1116 * First tries to retrieve supported timing modes from ONFI information,
1117 * and if the NAND chip does not support ONFI, relies on the
1118 * ->onfi_timing_mode_default specified in the nand_ids table.
1119 *
1120 * Returns 0 for success or negative error code otherwise.
1121 */
1122static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
1123{
1124        struct mtd_info *mtd = nand_to_mtd(chip);
1125        int ret;
1126
1127        if (!chip->setup_data_interface || !chip->data_interface)
1128                return 0;
1129
1130        /*
1131         * Ensure the timing mode has been changed on the chip side
1132         * before changing timings on the controller side.
1133         */
1134        if (chip->onfi_version &&
1135            (le16_to_cpu(chip->onfi_params.opt_cmd) &
1136             ONFI_OPT_CMD_SET_GET_FEATURES)) {
1137                u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1138                        chip->onfi_timing_mode_default,
1139                };
1140
1141                ret = chip->onfi_set_features(mtd, chip,
1142                                ONFI_FEATURE_ADDR_TIMING_MODE,
1143                                tmode_param);
1144                if (ret)
1145                        goto err;
1146        }
1147
1148        ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
1149err:
1150        return ret;
1151}
1152
1153/**
1154 * nand_init_data_interface - find the best data interface and timings
1155 * @chip: The NAND chip
1156 *
1157 * Find the best data interface and NAND timings supported by the chip
1158 * and the driver.
1159 * First tries to retrieve supported timing modes from ONFI information,
1160 * and if the NAND chip does not support ONFI, relies on the
1161 * ->onfi_timing_mode_default specified in the nand_ids table. After this
1162 * function nand_chip->data_interface is initialized with the best timing mode
1163 * available.
1164 *
1165 * Returns 0 for success or negative error code otherwise.
1166 */
1167static int nand_init_data_interface(struct nand_chip *chip)
1168{
1169        struct mtd_info *mtd = nand_to_mtd(chip);
1170        int modes, mode, ret;
1171
1172        if (!chip->setup_data_interface)
1173                return 0;
1174
1175        /*
1176         * First try to identify the best timings from ONFI parameters and
1177         * if the NAND does not support ONFI, fallback to the default ONFI
1178         * timing mode.
1179         */
1180        modes = onfi_get_async_timing_mode(chip);
1181        if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1182                if (!chip->onfi_timing_mode_default)
1183                        return 0;
1184
1185                modes = GENMASK(chip->onfi_timing_mode_default, 0);
1186        }
1187
1188        chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1189                                       GFP_KERNEL);
1190        if (!chip->data_interface)
1191                return -ENOMEM;
1192
1193        for (mode = fls(modes) - 1; mode >= 0; mode--) {
1194                ret = onfi_init_data_interface(chip, chip->data_interface,
1195                                               NAND_SDR_IFACE, mode);
1196                if (ret)
1197                        continue;
1198
1199                /* Pass -1 to only */
1200                ret = chip->setup_data_interface(mtd,
1201                                                 NAND_DATA_IFACE_CHECK_ONLY,
1202                                                 chip->data_interface);
1203                if (!ret) {
1204                        chip->onfi_timing_mode_default = mode;
1205                        break;
1206                }
1207        }
1208
1209        return 0;
1210}
1211
1212static void nand_release_data_interface(struct nand_chip *chip)
1213{
1214        kfree(chip->data_interface);
1215}
1216
1217/**
1218 * nand_reset - Reset and initialize a NAND device
1219 * @chip: The NAND chip
1220 * @chipnr: Internal die id
1221 *
1222 * Returns 0 for success or negative error code otherwise
1223 */
1224int nand_reset(struct nand_chip *chip, int chipnr)
1225{
1226        struct mtd_info *mtd = nand_to_mtd(chip);
1227        int ret;
1228
1229        ret = nand_reset_data_interface(chip, chipnr);
1230        if (ret)
1231                return ret;
1232
1233        /*
1234         * The CS line has to be released before we can apply the new NAND
1235         * interface settings, hence this weird ->select_chip() dance.
1236         */
1237        chip->select_chip(mtd, chipnr);
1238        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1239        chip->select_chip(mtd, -1);
1240
1241        chip->select_chip(mtd, chipnr);
1242        ret = nand_setup_data_interface(chip, chipnr);
1243        chip->select_chip(mtd, -1);
1244        if (ret)
1245                return ret;
1246
1247        return 0;
1248}
1249
1250/**
1251 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
1252 * @mtd: mtd info
1253 * @ofs: offset to start unlock from
1254 * @len: length to unlock
1255 * @invert:
1256 *        - when = 0, unlock the range of blocks within the lower and
1257 *                    upper boundary address
1258 *        - when = 1, unlock the range of blocks outside the boundaries
1259 *                    of the lower and upper boundary address
1260 *
1261 * Returs unlock status.
1262 */
1263static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
1264                                        uint64_t len, int invert)
1265{
1266        int ret = 0;
1267        int status, page;
1268        struct nand_chip *chip = mtd_to_nand(mtd);
1269
1270        /* Submit address of first page to unlock */
1271        page = ofs >> chip->page_shift;
1272        chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
1273
1274        /* Submit address of last page to unlock */
1275        page = (ofs + len) >> chip->page_shift;
1276        chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
1277                                (page | invert) & chip->pagemask);
1278
1279        /* Call wait ready function */
1280        status = chip->waitfunc(mtd, chip);
1281        /* See if device thinks it succeeded */
1282        if (status & NAND_STATUS_FAIL) {
1283                pr_debug("%s: error status = 0x%08x\n",
1284                                        __func__, status);
1285                ret = -EIO;
1286        }
1287
1288        return ret;
1289}
1290
1291/**
1292 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
1293 * @mtd: mtd info
1294 * @ofs: offset to start unlock from
1295 * @len: length to unlock
1296 *
1297 * Returns unlock status.
1298 */
1299int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1300{
1301        int ret = 0;
1302        int chipnr;
1303        struct nand_chip *chip = mtd_to_nand(mtd);
1304
1305        pr_debug("%s: start = 0x%012llx, len = %llu\n",
1306                        __func__, (unsigned long long)ofs, len);
1307
1308        if (check_offs_len(mtd, ofs, len))
1309                return -EINVAL;
1310
1311        /* Align to last block address if size addresses end of the device */
1312        if (ofs + len == mtd->size)
1313                len -= mtd->erasesize;
1314
1315        nand_get_device(mtd, FL_UNLOCKING);
1316
1317        /* Shift to get chip number */
1318        chipnr = ofs >> chip->chip_shift;
1319
1320        /*
1321         * Reset the chip.
1322         * If we want to check the WP through READ STATUS and check the bit 7
1323         * we must reset the chip
1324         * some operation can also clear the bit 7 of status register
1325         * eg. erase/program a locked block
1326         */
1327        nand_reset(chip, chipnr);
1328
1329        chip->select_chip(mtd, chipnr);
1330
1331        /* Check, if it is write protected */
1332        if (nand_check_wp(mtd)) {
1333                pr_debug("%s: device is write protected!\n",
1334                                        __func__);
1335                ret = -EIO;
1336                goto out;
1337        }
1338
1339        ret = __nand_unlock(mtd, ofs, len, 0);
1340
1341out:
1342        chip->select_chip(mtd, -1);
1343        nand_release_device(mtd);
1344
1345        return ret;
1346}
1347EXPORT_SYMBOL(nand_unlock);
1348
1349/**
1350 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1351 * @mtd: mtd info
1352 * @ofs: offset to start unlock from
1353 * @len: length to unlock
1354 *
1355 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1356 * have this feature, but it allows only to lock all blocks, not for specified
1357 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1358 * now.
1359 *
1360 * Returns lock status.
1361 */
1362int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1363{
1364        int ret = 0;
1365        int chipnr, status, page;
1366        struct nand_chip *chip = mtd_to_nand(mtd);
1367
1368        pr_debug("%s: start = 0x%012llx, len = %llu\n",
1369                        __func__, (unsigned long long)ofs, len);
1370
1371        if (check_offs_len(mtd, ofs, len))
1372                return -EINVAL;
1373
1374        nand_get_device(mtd, FL_LOCKING);
1375
1376        /* Shift to get chip number */
1377        chipnr = ofs >> chip->chip_shift;
1378
1379        /*
1380         * Reset the chip.
1381         * If we want to check the WP through READ STATUS and check the bit 7
1382         * we must reset the chip
1383         * some operation can also clear the bit 7 of status register
1384         * eg. erase/program a locked block
1385         */
1386        nand_reset(chip, chipnr);
1387
1388        chip->select_chip(mtd, chipnr);
1389
1390        /* Check, if it is write protected */
1391        if (nand_check_wp(mtd)) {
1392                pr_debug("%s: device is write protected!\n",
1393                                        __func__);
1394                status = MTD_ERASE_FAILED;
1395                ret = -EIO;
1396                goto out;
1397        }
1398
1399        /* Submit address of first page to lock */
1400        page = ofs >> chip->page_shift;
1401        chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1402
1403        /* Call wait ready function */
1404        status = chip->waitfunc(mtd, chip);
1405        /* See if device thinks it succeeded */
1406        if (status & NAND_STATUS_FAIL) {
1407                pr_debug("%s: error status = 0x%08x\n",
1408                                        __func__, status);
1409                ret = -EIO;
1410                goto out;
1411        }
1412
1413        ret = __nand_unlock(mtd, ofs, len, 0x1);
1414
1415out:
1416        chip->select_chip(mtd, -1);
1417        nand_release_device(mtd);
1418
1419        return ret;
1420}
1421EXPORT_SYMBOL(nand_lock);
1422
1423/**
1424 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1425 * @buf: buffer to test
1426 * @len: buffer length
1427 * @bitflips_threshold: maximum number of bitflips
1428 *
1429 * Check if a buffer contains only 0xff, which means the underlying region
1430 * has been erased and is ready to be programmed.
1431 * The bitflips_threshold specify the maximum number of bitflips before
1432 * considering the region is not erased.
1433 * Note: The logic of this function has been extracted from the memweight
1434 * implementation, except that nand_check_erased_buf function exit before
1435 * testing the whole buffer if the number of bitflips exceed the
1436 * bitflips_threshold value.
1437 *
1438 * Returns a positive number of bitflips less than or equal to
1439 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1440 * threshold.
1441 */
1442static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1443{
1444        const unsigned char *bitmap = buf;
1445        int bitflips = 0;
1446        int weight;
1447
1448        for (; len && ((uintptr_t)bitmap) % sizeof(long);
1449             len--, bitmap++) {
1450                weight = hweight8(*bitmap);
1451                bitflips += BITS_PER_BYTE - weight;
1452                if (unlikely(bitflips > bitflips_threshold))
1453                        return -EBADMSG;
1454        }
1455
1456        for (; len >= sizeof(long);
1457             len -= sizeof(long), bitmap += sizeof(long)) {
1458                unsigned long d = *((unsigned long *)bitmap);
1459                if (d == ~0UL)
1460                        continue;
1461                weight = hweight_long(d);
1462                bitflips += BITS_PER_LONG - weight;
1463                if (unlikely(bitflips > bitflips_threshold))
1464                        return -EBADMSG;
1465        }
1466
1467        for (; len > 0; len--, bitmap++) {
1468                weight = hweight8(*bitmap);
1469                bitflips += BITS_PER_BYTE - weight;
1470                if (unlikely(bitflips > bitflips_threshold))
1471                        return -EBADMSG;
1472        }
1473
1474        return bitflips;
1475}
1476
1477/**
1478 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1479 *                               0xff data
1480 * @data: data buffer to test
1481 * @datalen: data length
1482 * @ecc: ECC buffer
1483 * @ecclen: ECC length
1484 * @extraoob: extra OOB buffer
1485 * @extraooblen: extra OOB length
1486 * @bitflips_threshold: maximum number of bitflips
1487 *
1488 * Check if a data buffer and its associated ECC and OOB data contains only
1489 * 0xff pattern, which means the underlying region has been erased and is
1490 * ready to be programmed.
1491 * The bitflips_threshold specify the maximum number of bitflips before
1492 * considering the region as not erased.
1493 *
1494 * Note:
1495 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1496 *    different from the NAND page size. When fixing bitflips, ECC engines will
1497 *    report the number of errors per chunk, and the NAND core infrastructure
1498 *    expect you to return the maximum number of bitflips for the whole page.
1499 *    This is why you should always use this function on a single chunk and
1500 *    not on the whole page. After checking each chunk you should update your
1501 *    max_bitflips value accordingly.
1502 * 2/ When checking for bitflips in erased pages you should not only check
1503 *    the payload data but also their associated ECC data, because a user might
1504 *    have programmed almost all bits to 1 but a few. In this case, we
1505 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
1506 *    this case.
1507 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1508 *    data are protected by the ECC engine.
1509 *    It could also be used if you support subpages and want to attach some
1510 *    extra OOB data to an ECC chunk.
1511 *
1512 * Returns a positive number of bitflips less than or equal to
1513 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1514 * threshold. In case of success, the passed buffers are filled with 0xff.
1515 */
1516int nand_check_erased_ecc_chunk(void *data, int datalen,
1517                                void *ecc, int ecclen,
1518                                void *extraoob, int extraooblen,
1519                                int bitflips_threshold)
1520{
1521        int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1522
1523        data_bitflips = nand_check_erased_buf(data, datalen,
1524                                              bitflips_threshold);
1525        if (data_bitflips < 0)
1526                return data_bitflips;
1527
1528        bitflips_threshold -= data_bitflips;
1529
1530        ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1531        if (ecc_bitflips < 0)
1532                return ecc_bitflips;
1533
1534        bitflips_threshold -= ecc_bitflips;
1535
1536        extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1537                                                  bitflips_threshold);
1538        if (extraoob_bitflips < 0)
1539                return extraoob_bitflips;
1540
1541        if (data_bitflips)
1542                memset(data, 0xff, datalen);
1543
1544        if (ecc_bitflips)
1545                memset(ecc, 0xff, ecclen);
1546
1547        if (extraoob_bitflips)
1548                memset(extraoob, 0xff, extraooblen);
1549
1550        return data_bitflips + ecc_bitflips + extraoob_bitflips;
1551}
1552EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1553
1554/**
1555 * nand_read_page_raw - [INTERN] read raw page data without ecc
1556 * @mtd: mtd info structure
1557 * @chip: nand chip info structure
1558 * @buf: buffer to store read data
1559 * @oob_required: caller requires OOB data read to chip->oob_poi
1560 * @page: page number to read
1561 *
1562 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1563 */
1564int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1565                       uint8_t *buf, int oob_required, int page)
1566{
1567        chip->read_buf(mtd, buf, mtd->writesize);
1568        if (oob_required)
1569                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1570        return 0;
1571}
1572EXPORT_SYMBOL(nand_read_page_raw);
1573
1574/**
1575 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1576 * @mtd: mtd info structure
1577 * @chip: nand chip info structure
1578 * @buf: buffer to store read data
1579 * @oob_required: caller requires OOB data read to chip->oob_poi
1580 * @page: page number to read
1581 *
1582 * We need a special oob layout and handling even when OOB isn't used.
1583 */
1584static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1585                                       struct nand_chip *chip, uint8_t *buf,
1586                                       int oob_required, int page)
1587{
1588        int eccsize = chip->ecc.size;
1589        int eccbytes = chip->ecc.bytes;
1590        uint8_t *oob = chip->oob_poi;
1591        int steps, size;
1592
1593        for (steps = chip->ecc.steps; steps > 0; steps--) {
1594                chip->read_buf(mtd, buf, eccsize);
1595                buf += eccsize;
1596
1597                if (chip->ecc.prepad) {
1598                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1599                        oob += chip->ecc.prepad;
1600                }
1601
1602                chip->read_buf(mtd, oob, eccbytes);
1603                oob += eccbytes;
1604
1605                if (chip->ecc.postpad) {
1606                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1607                        oob += chip->ecc.postpad;
1608                }
1609        }
1610
1611        size = mtd->oobsize - (oob - chip->oob_poi);
1612        if (size)
1613                chip->read_buf(mtd, oob, size);
1614
1615        return 0;
1616}
1617
1618/**
1619 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1620 * @mtd: mtd info structure
1621 * @chip: nand chip info structure
1622 * @buf: buffer to store read data
1623 * @oob_required: caller requires OOB data read to chip->oob_poi
1624 * @page: page number to read
1625 */
1626static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1627                                uint8_t *buf, int oob_required, int page)
1628{
1629        int i, eccsize = chip->ecc.size, ret;
1630        int eccbytes = chip->ecc.bytes;
1631        int eccsteps = chip->ecc.steps;
1632        uint8_t *p = buf;
1633        uint8_t *ecc_calc = chip->buffers->ecccalc;
1634        uint8_t *ecc_code = chip->buffers->ecccode;
1635        unsigned int max_bitflips = 0;
1636
1637        chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1638
1639        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1640                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1641
1642        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1643                                         chip->ecc.total);
1644        if (ret)
1645                return ret;
1646
1647        eccsteps = chip->ecc.steps;
1648        p = buf;
1649
1650        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1651                int stat;
1652
1653                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1654                if (stat < 0) {
1655                        mtd->ecc_stats.failed++;
1656                } else {
1657                        mtd->ecc_stats.corrected += stat;
1658                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1659                }
1660        }
1661        return max_bitflips;
1662}
1663
1664/**
1665 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1666 * @mtd: mtd info structure
1667 * @chip: nand chip info structure
1668 * @data_offs: offset of requested data within the page
1669 * @readlen: data length
1670 * @bufpoi: buffer to store read data
1671 * @page: page number to read
1672 */
1673static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1674                        uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1675                        int page)
1676{
1677        int start_step, end_step, num_steps, ret;
1678        uint8_t *p;
1679        int data_col_addr, i, gaps = 0;
1680        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1681        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1682        int index, section = 0;
1683        unsigned int max_bitflips = 0;
1684        struct mtd_oob_region oobregion = { };
1685
1686        /* Column address within the page aligned to ECC size (256bytes) */
1687        start_step = data_offs / chip->ecc.size;
1688        end_step = (data_offs + readlen - 1) / chip->ecc.size;
1689        num_steps = end_step - start_step + 1;
1690        index = start_step * chip->ecc.bytes;
1691
1692        /* Data size aligned to ECC ecc.size */
1693        datafrag_len = num_steps * chip->ecc.size;
1694        eccfrag_len = num_steps * chip->ecc.bytes;
1695
1696        data_col_addr = start_step * chip->ecc.size;
1697        /* If we read not a page aligned data */
1698        if (data_col_addr != 0)
1699                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1700
1701        p = bufpoi + data_col_addr;
1702        chip->read_buf(mtd, p, datafrag_len);
1703
1704        /* Calculate ECC */
1705        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1706                chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1707
1708        /*
1709         * The performance is faster if we position offsets according to
1710         * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1711         */
1712        ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
1713        if (ret)
1714                return ret;
1715
1716        if (oobregion.length < eccfrag_len)
1717                gaps = 1;
1718
1719        if (gaps) {
1720                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1721                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1722        } else {
1723                /*
1724                 * Send the command to read the particular ECC bytes take care
1725                 * about buswidth alignment in read_buf.
1726                 */
1727                aligned_pos = oobregion.offset & ~(busw - 1);
1728                aligned_len = eccfrag_len;
1729                if (oobregion.offset & (busw - 1))
1730                        aligned_len++;
1731                if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
1732                    (busw - 1))
1733                        aligned_len++;
1734
1735                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1736                              mtd->writesize + aligned_pos, -1);
1737                chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1738        }
1739
1740        ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
1741                                         chip->oob_poi, index, eccfrag_len);
1742        if (ret)
1743                return ret;
1744
1745        p = bufpoi + data_col_addr;
1746        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1747                int stat;
1748
1749                stat = chip->ecc.correct(mtd, p,
1750                        &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1751                if (stat == -EBADMSG &&
1752                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1753                        /* check for empty pages with bitflips */
1754                        stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1755                                                &chip->buffers->ecccode[i],
1756                                                chip->ecc.bytes,
1757                                                NULL, 0,
1758                                                chip->ecc.strength);
1759                }
1760
1761                if (stat < 0) {
1762                        mtd->ecc_stats.failed++;
1763                } else {
1764                        mtd->ecc_stats.corrected += stat;
1765                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1766                }
1767        }
1768        return max_bitflips;
1769}
1770
1771/**
1772 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1773 * @mtd: mtd info structure
1774 * @chip: nand chip info structure
1775 * @buf: buffer to store read data
1776 * @oob_required: caller requires OOB data read to chip->oob_poi
1777 * @page: page number to read
1778 *
1779 * Not for syndrome calculating ECC controllers which need a special oob layout.
1780 */
1781static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1782                                uint8_t *buf, int oob_required, int page)
1783{
1784        int i, eccsize = chip->ecc.size, ret;
1785        int eccbytes = chip->ecc.bytes;
1786        int eccsteps = chip->ecc.steps;
1787        uint8_t *p = buf;
1788        uint8_t *ecc_calc = chip->buffers->ecccalc;
1789        uint8_t *ecc_code = chip->buffers->ecccode;
1790        unsigned int max_bitflips = 0;
1791
1792        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1793                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1794                chip->read_buf(mtd, p, eccsize);
1795                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1796        }
1797        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1798
1799        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1800                                         chip->ecc.total);
1801        if (ret)
1802                return ret;
1803
1804        eccsteps = chip->ecc.steps;
1805        p = buf;
1806
1807        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1808                int stat;
1809
1810                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1811                if (stat == -EBADMSG &&
1812                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1813                        /* check for empty pages with bitflips */
1814                        stat = nand_check_erased_ecc_chunk(p, eccsize,
1815                                                &ecc_code[i], eccbytes,
1816                                                NULL, 0,
1817                                                chip->ecc.strength);
1818                }
1819
1820                if (stat < 0) {
1821                        mtd->ecc_stats.failed++;
1822                } else {
1823                        mtd->ecc_stats.corrected += stat;
1824                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1825                }
1826        }
1827        return max_bitflips;
1828}
1829
1830/**
1831 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1832 * @mtd: mtd info structure
1833 * @chip: nand chip info structure
1834 * @buf: buffer to store read data
1835 * @oob_required: caller requires OOB data read to chip->oob_poi
1836 * @page: page number to read
1837 *
1838 * Hardware ECC for large page chips, require OOB to be read first. For this
1839 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1840 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1841 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1842 * the data area, by overwriting the NAND manufacturer bad block markings.
1843 */
1844static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1845        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1846{
1847        int i, eccsize = chip->ecc.size, ret;
1848        int eccbytes = chip->ecc.bytes;
1849        int eccsteps = chip->ecc.steps;
1850        uint8_t *p = buf;
1851        uint8_t *ecc_code = chip->buffers->ecccode;
1852        uint8_t *ecc_calc = chip->buffers->ecccalc;
1853        unsigned int max_bitflips = 0;
1854
1855        /* Read the OOB area first */
1856        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1857        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1858        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1859
1860        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1861                                         chip->ecc.total);
1862        if (ret)
1863                return ret;
1864
1865        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1866                int stat;
1867
1868                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1869                chip->read_buf(mtd, p, eccsize);
1870                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1871
1872                stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1873                if (stat == -EBADMSG &&
1874                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1875                        /* check for empty pages with bitflips */
1876                        stat = nand_check_erased_ecc_chunk(p, eccsize,
1877                                                &ecc_code[i], eccbytes,
1878                                                NULL, 0,
1879                                                chip->ecc.strength);
1880                }
1881
1882                if (stat < 0) {
1883                        mtd->ecc_stats.failed++;
1884                } else {
1885                        mtd->ecc_stats.corrected += stat;
1886                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1887                }
1888        }
1889        return max_bitflips;
1890}
1891
1892/**
1893 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1894 * @mtd: mtd info structure
1895 * @chip: nand chip info structure
1896 * @buf: buffer to store read data
1897 * @oob_required: caller requires OOB data read to chip->oob_poi
1898 * @page: page number to read
1899 *
1900 * The hw generator calculates the error syndrome automatically. Therefore we
1901 * need a special oob layout and handling.
1902 */
1903static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1904                                   uint8_t *buf, int oob_required, int page)
1905{
1906        int i, eccsize = chip->ecc.size;
1907        int eccbytes = chip->ecc.bytes;
1908        int eccsteps = chip->ecc.steps;
1909        int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1910        uint8_t *p = buf;
1911        uint8_t *oob = chip->oob_poi;
1912        unsigned int max_bitflips = 0;
1913
1914        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1915                int stat;
1916
1917                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1918                chip->read_buf(mtd, p, eccsize);
1919
1920                if (chip->ecc.prepad) {
1921                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1922                        oob += chip->ecc.prepad;
1923                }
1924
1925                chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1926                chip->read_buf(mtd, oob, eccbytes);
1927                stat = chip->ecc.correct(mtd, p, oob, NULL);
1928
1929                oob += eccbytes;
1930
1931                if (chip->ecc.postpad) {
1932                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1933                        oob += chip->ecc.postpad;
1934                }
1935
1936                if (stat == -EBADMSG &&
1937                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1938                        /* check for empty pages with bitflips */
1939                        stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1940                                                           oob - eccpadbytes,
1941                                                           eccpadbytes,
1942                                                           NULL, 0,
1943                                                           chip->ecc.strength);
1944                }
1945
1946                if (stat < 0) {
1947                        mtd->ecc_stats.failed++;
1948                } else {
1949                        mtd->ecc_stats.corrected += stat;
1950                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1951                }
1952        }
1953
1954        /* Calculate remaining oob bytes */
1955        i = mtd->oobsize - (oob - chip->oob_poi);
1956        if (i)
1957                chip->read_buf(mtd, oob, i);
1958
1959        return max_bitflips;
1960}
1961
1962/**
1963 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1964 * @mtd: mtd info structure
1965 * @oob: oob destination address
1966 * @ops: oob ops structure
1967 * @len: size of oob to transfer
1968 */
1969static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
1970                                  struct mtd_oob_ops *ops, size_t len)
1971{
1972        struct nand_chip *chip = mtd_to_nand(mtd);
1973        int ret;
1974
1975        switch (ops->mode) {
1976
1977        case MTD_OPS_PLACE_OOB:
1978        case MTD_OPS_RAW:
1979                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1980                return oob + len;
1981
1982        case MTD_OPS_AUTO_OOB:
1983                ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
1984                                                  ops->ooboffs, len);
1985                BUG_ON(ret);
1986                return oob + len;
1987
1988        default:
1989                BUG();
1990        }
1991        return NULL;
1992}
1993
1994/**
1995 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1996 * @mtd: MTD device structure
1997 * @retry_mode: the retry mode to use
1998 *
1999 * Some vendors supply a special command to shift the Vt threshold, to be used
2000 * when there are too many bitflips in a page (i.e., ECC error). After setting
2001 * a new threshold, the host should retry reading the page.
2002 */
2003static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
2004{
2005        struct nand_chip *chip = mtd_to_nand(mtd);
2006
2007        pr_debug("setting READ RETRY mode %d\n", retry_mode);
2008
2009        if (retry_mode >= chip->read_retries)
2010                return -EINVAL;
2011
2012        if (!chip->setup_read_retry)
2013                return -EOPNOTSUPP;
2014
2015        return chip->setup_read_retry(mtd, retry_mode);
2016}
2017
2018/**
2019 * nand_do_read_ops - [INTERN] Read data with ECC
2020 * @mtd: MTD device structure
2021 * @from: offset to read from
2022 * @ops: oob ops structure
2023 *
2024 * Internal function. Called with chip held.
2025 */
2026static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
2027                            struct mtd_oob_ops *ops)
2028{
2029        int chipnr, page, realpage, col, bytes, aligned, oob_required;
2030        struct nand_chip *chip = mtd_to_nand(mtd);
2031        int ret = 0;
2032        uint32_t readlen = ops->len;
2033        uint32_t oobreadlen = ops->ooblen;
2034        uint32_t max_oobsize = mtd_oobavail(mtd, ops);
2035
2036        uint8_t *bufpoi, *oob, *buf;
2037        int use_bufpoi;
2038        unsigned int max_bitflips = 0;
2039        int retry_mode = 0;
2040        bool ecc_fail = false;
2041
2042        chipnr = (int)(from >> chip->chip_shift);
2043        chip->select_chip(mtd, chipnr);
2044
2045        realpage = (int)(from >> chip->page_shift);
2046        page = realpage & chip->pagemask;
2047
2048        col = (int)(from & (mtd->writesize - 1));
2049
2050        buf = ops->datbuf;
2051        oob = ops->oobbuf;
2052        oob_required = oob ? 1 : 0;
2053
2054        while (1) {
2055                unsigned int ecc_failures = mtd->ecc_stats.failed;
2056
2057                bytes = min(mtd->writesize - col, readlen);
2058                aligned = (bytes == mtd->writesize);
2059
2060                if (!aligned)
2061                        use_bufpoi = 1;
2062                else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2063                        use_bufpoi = !virt_addr_valid(buf) ||
2064                                     !IS_ALIGNED((unsigned long)buf,
2065                                                 chip->buf_align);
2066                else
2067                        use_bufpoi = 0;
2068
2069                /* Is the current page in the buffer? */
2070                if (realpage != chip->pagebuf || oob) {
2071                        bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
2072
2073                        if (use_bufpoi && aligned)
2074                                pr_debug("%s: using read bounce buffer for buf@%p\n",
2075                                                 __func__, buf);
2076
2077read_retry:
2078                        if (nand_standard_page_accessors(&chip->ecc))
2079                                chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
2080
2081                        /*
2082                         * Now read the page into the buffer.  Absent an error,
2083                         * the read methods return max bitflips per ecc step.
2084                         */
2085                        if (unlikely(ops->mode == MTD_OPS_RAW))
2086                                ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
2087                                                              oob_required,
2088                                                              page);
2089                        else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
2090                                 !oob)
2091                                ret = chip->ecc.read_subpage(mtd, chip,
2092                                                        col, bytes, bufpoi,
2093                                                        page);
2094                        else
2095                                ret = chip->ecc.read_page(mtd, chip, bufpoi,
2096                                                          oob_required, page);
2097                        if (ret < 0) {
2098                                if (use_bufpoi)
2099                                        /* Invalidate page cache */
2100                                        chip->pagebuf = -1;
2101                                break;
2102                        }
2103
2104                        /* Transfer not aligned data */
2105                        if (use_bufpoi) {
2106                                if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
2107                                    !(mtd->ecc_stats.failed - ecc_failures) &&
2108                                    (ops->mode != MTD_OPS_RAW)) {
2109                                        chip->pagebuf = realpage;
2110                                        chip->pagebuf_bitflips = ret;
2111                                } else {
2112                                        /* Invalidate page cache */
2113                                        chip->pagebuf = -1;
2114                                }
2115                                memcpy(buf, chip->buffers->databuf + col, bytes);
2116                        }
2117
2118                        if (unlikely(oob)) {
2119                                int toread = min(oobreadlen, max_oobsize);
2120
2121                                if (toread) {
2122                                        oob = nand_transfer_oob(mtd,
2123                                                oob, ops, toread);
2124                                        oobreadlen -= toread;
2125                                }
2126                        }
2127
2128                        if (chip->options & NAND_NEED_READRDY) {
2129                                /* Apply delay or wait for ready/busy pin */
2130                                if (!chip->dev_ready)
2131                                        udelay(chip->chip_delay);
2132                                else
2133                                        nand_wait_ready(mtd);
2134                        }
2135
2136                        if (mtd->ecc_stats.failed - ecc_failures) {
2137                                if (retry_mode + 1 < chip->read_retries) {
2138                                        retry_mode++;
2139                                        ret = nand_setup_read_retry(mtd,
2140                                                        retry_mode);
2141                                        if (ret < 0)
2142                                                break;
2143
2144                                        /* Reset failures; retry */
2145                                        mtd->ecc_stats.failed = ecc_failures;
2146                                        goto read_retry;
2147                                } else {
2148                                        /* No more retry modes; real failure */
2149                                        ecc_fail = true;
2150                                }
2151                        }
2152
2153                        buf += bytes;
2154                        max_bitflips = max_t(unsigned int, max_bitflips, ret);
2155                } else {
2156                        memcpy(buf, chip->buffers->databuf + col, bytes);
2157                        buf += bytes;
2158                        max_bitflips = max_t(unsigned int, max_bitflips,
2159                                             chip->pagebuf_bitflips);
2160                }
2161
2162                readlen -= bytes;
2163
2164                /* Reset to retry mode 0 */
2165                if (retry_mode) {
2166                        ret = nand_setup_read_retry(mtd, 0);
2167                        if (ret < 0)
2168                                break;
2169                        retry_mode = 0;
2170                }
2171
2172                if (!readlen)
2173                        break;
2174
2175                /* For subsequent reads align to page boundary */
2176                col = 0;
2177                /* Increment page address */
2178                realpage++;
2179
2180                page = realpage & chip->pagemask;
2181                /* Check, if we cross a chip boundary */
2182                if (!page) {
2183                        chipnr++;
2184                        chip->select_chip(mtd, -1);
2185                        chip->select_chip(mtd, chipnr);
2186                }
2187        }
2188        chip->select_chip(mtd, -1);
2189
2190        ops->retlen = ops->len - (size_t) readlen;
2191        if (oob)
2192                ops->oobretlen = ops->ooblen - oobreadlen;
2193
2194        if (ret < 0)
2195                return ret;
2196
2197        if (ecc_fail)
2198                return -EBADMSG;
2199
2200        return max_bitflips;
2201}
2202
2203/**
2204 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
2205 * @mtd: MTD device structure
2206 * @from: offset to read from
2207 * @len: number of bytes to read
2208 * @retlen: pointer to variable to store the number of read bytes
2209 * @buf: the databuffer to put data
2210 *
2211 * Get hold of the chip and call nand_do_read.
2212 */
2213static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
2214                     size_t *retlen, uint8_t *buf)
2215{
2216        struct mtd_oob_ops ops;
2217        int ret;
2218
2219        nand_get_device(mtd, FL_READING);
2220        memset(&ops, 0, sizeof(ops));
2221        ops.len = len;
2222        ops.datbuf = buf;
2223        ops.mode = MTD_OPS_PLACE_OOB;
2224        ret = nand_do_read_ops(mtd, from, &ops);
2225        *retlen = ops.retlen;
2226        nand_release_device(mtd);
2227        return ret;
2228}
2229
2230/**
2231 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2232 * @mtd: mtd info structure
2233 * @chip: nand chip info structure
2234 * @page: page number to read
2235 */
2236int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2237{
2238        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
2239        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
2240        return 0;
2241}
2242EXPORT_SYMBOL(nand_read_oob_std);
2243
2244/**
2245 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2246 *                          with syndromes
2247 * @mtd: mtd info structure
2248 * @chip: nand chip info structure
2249 * @page: page number to read
2250 */
2251int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2252                           int page)
2253{
2254        int length = mtd->oobsize;
2255        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2256        int eccsize = chip->ecc.size;
2257        uint8_t *bufpoi = chip->oob_poi;
2258        int i, toread, sndrnd = 0, pos;
2259
2260        chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
2261        for (i = 0; i < chip->ecc.steps; i++) {
2262                if (sndrnd) {
2263                        pos = eccsize + i * (eccsize + chunk);
2264                        if (mtd->writesize > 512)
2265                                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
2266                        else
2267                                chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
2268                } else
2269                        sndrnd = 1;
2270                toread = min_t(int, length, chunk);
2271                chip->read_buf(mtd, bufpoi, toread);
2272                bufpoi += toread;
2273                length -= toread;
2274        }
2275        if (length > 0)
2276                chip->read_buf(mtd, bufpoi, length);
2277
2278        return 0;
2279}
2280EXPORT_SYMBOL(nand_read_oob_syndrome);
2281
2282/**
2283 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2284 * @mtd: mtd info structure
2285 * @chip: nand chip info structure
2286 * @page: page number to write
2287 */
2288int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2289{
2290        int status = 0;
2291        const uint8_t *buf = chip->oob_poi;
2292        int length = mtd->oobsize;
2293
2294        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
2295        chip->write_buf(mtd, buf, length);
2296        /* Send command to program the OOB data */
2297        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2298
2299        status = chip->waitfunc(mtd, chip);
2300
2301        return status & NAND_STATUS_FAIL ? -EIO : 0;
2302}
2303EXPORT_SYMBOL(nand_write_oob_std);
2304
2305/**
2306 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2307 *                           with syndrome - only for large page flash
2308 * @mtd: mtd info structure
2309 * @chip: nand chip info structure
2310 * @page: page number to write
2311 */
2312int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2313                            int page)
2314{
2315        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2316        int eccsize = chip->ecc.size, length = mtd->oobsize;
2317        int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
2318        const uint8_t *bufpoi = chip->oob_poi;
2319
2320        /*
2321         * data-ecc-data-ecc ... ecc-oob
2322         * or
2323         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2324         */
2325        if (!chip->ecc.prepad && !chip->ecc.postpad) {
2326                pos = steps * (eccsize + chunk);
2327                steps = 0;
2328        } else
2329                pos = eccsize;
2330
2331        chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2332        for (i = 0; i < steps; i++) {
2333                if (sndcmd) {
2334                        if (mtd->writesize <= 512) {
2335                                uint32_t fill = 0xFFFFFFFF;
2336
2337                                len = eccsize;
2338                                while (len > 0) {
2339                                        int num = min_t(int, len, 4);
2340                                        chip->write_buf(mtd, (uint8_t *)&fill,
2341                                                        num);
2342                                        len -= num;
2343                                }
2344                        } else {
2345                                pos = eccsize + i * (eccsize + chunk);
2346                                chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2347                        }
2348                } else
2349                        sndcmd = 1;
2350                len = min_t(int, length, chunk);
2351                chip->write_buf(mtd, bufpoi, len);
2352                bufpoi += len;
2353                length -= len;
2354        }
2355        if (length > 0)
2356                chip->write_buf(mtd, bufpoi, length);
2357
2358        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2359        status = chip->waitfunc(mtd, chip);
2360
2361        return status & NAND_STATUS_FAIL ? -EIO : 0;
2362}
2363EXPORT_SYMBOL(nand_write_oob_syndrome);
2364
2365/**
2366 * nand_do_read_oob - [INTERN] NAND read out-of-band
2367 * @mtd: MTD device structure
2368 * @from: offset to read from
2369 * @ops: oob operations description structure
2370 *
2371 * NAND read out-of-band data from the spare area.
2372 */
2373static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2374                            struct mtd_oob_ops *ops)
2375{
2376        int page, realpage, chipnr;
2377        struct nand_chip *chip = mtd_to_nand(mtd);
2378        struct mtd_ecc_stats stats;
2379        int readlen = ops->ooblen;
2380        int len;
2381        uint8_t *buf = ops->oobbuf;
2382        int ret = 0;
2383
2384        pr_debug("%s: from = 0x%08Lx, len = %i\n",
2385                        __func__, (unsigned long long)from, readlen);
2386
2387        stats = mtd->ecc_stats;
2388
2389        len = mtd_oobavail(mtd, ops);
2390
2391        if (unlikely(ops->ooboffs >= len)) {
2392                pr_debug("%s: attempt to start read outside oob\n",
2393                                __func__);
2394                return -EINVAL;
2395        }
2396
2397        /* Do not allow reads past end of device */
2398        if (unlikely(from >= mtd->size ||
2399                     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2400                                        (from >> chip->page_shift)) * len)) {
2401                pr_debug("%s: attempt to read beyond end of device\n",
2402                                __func__);
2403                return -EINVAL;
2404        }
2405
2406        chipnr = (int)(from >> chip->chip_shift);
2407        chip->select_chip(mtd, chipnr);
2408
2409        /* Shift to get page */
2410        realpage = (int)(from >> chip->page_shift);
2411        page = realpage & chip->pagemask;
2412
2413        while (1) {
2414                if (ops->mode == MTD_OPS_RAW)
2415                        ret = chip->ecc.read_oob_raw(mtd, chip, page);
2416                else
2417                        ret = chip->ecc.read_oob(mtd, chip, page);
2418
2419                if (ret < 0)
2420                        break;
2421
2422                len = min(len, readlen);
2423                buf = nand_transfer_oob(mtd, buf, ops, len);
2424
2425                if (chip->options & NAND_NEED_READRDY) {
2426                        /* Apply delay or wait for ready/busy pin */
2427                        if (!chip->dev_ready)
2428                                udelay(chip->chip_delay);
2429                        else
2430                                nand_wait_ready(mtd);
2431                }
2432
2433                readlen -= len;
2434                if (!readlen)
2435                        break;
2436
2437                /* Increment page address */
2438                realpage++;
2439
2440                page = realpage & chip->pagemask;
2441                /* Check, if we cross a chip boundary */
2442                if (!page) {
2443                        chipnr++;
2444                        chip->select_chip(mtd, -1);
2445                        chip->select_chip(mtd, chipnr);
2446                }
2447        }
2448        chip->select_chip(mtd, -1);
2449
2450        ops->oobretlen = ops->ooblen - readlen;
2451
2452        if (ret < 0)
2453                return ret;
2454
2455        if (mtd->ecc_stats.failed - stats.failed)
2456                return -EBADMSG;
2457
2458        return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2459}
2460
2461/**
2462 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2463 * @mtd: MTD device structure
2464 * @from: offset to read from
2465 * @ops: oob operation description structure
2466 *
2467 * NAND read data and/or out-of-band data.
2468 */
2469static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2470                         struct mtd_oob_ops *ops)
2471{
2472        int ret;
2473
2474        ops->retlen = 0;
2475
2476        /* Do not allow reads past end of device */
2477        if (ops->datbuf && (from + ops->len) > mtd->size) {
2478                pr_debug("%s: attempt to read beyond end of device\n",
2479                                __func__);
2480                return -EINVAL;
2481        }
2482
2483        if (ops->mode != MTD_OPS_PLACE_OOB &&
2484            ops->mode != MTD_OPS_AUTO_OOB &&
2485            ops->mode != MTD_OPS_RAW)
2486                return -ENOTSUPP;
2487
2488        nand_get_device(mtd, FL_READING);
2489
2490        if (!ops->datbuf)
2491                ret = nand_do_read_oob(mtd, from, ops);
2492        else
2493                ret = nand_do_read_ops(mtd, from, ops);
2494
2495        nand_release_device(mtd);
2496        return ret;
2497}
2498
2499
2500/**
2501 * nand_write_page_raw - [INTERN] raw page write function
2502 * @mtd: mtd info structure
2503 * @chip: nand chip info structure
2504 * @buf: data buffer
2505 * @oob_required: must write chip->oob_poi to OOB
2506 * @page: page number to write
2507 *
2508 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2509 */
2510int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2511                        const uint8_t *buf, int oob_required, int page)
2512{
2513        chip->write_buf(mtd, buf, mtd->writesize);
2514        if (oob_required)
2515                chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2516
2517        return 0;
2518}
2519EXPORT_SYMBOL(nand_write_page_raw);
2520
2521/**
2522 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2523 * @mtd: mtd info structure
2524 * @chip: nand chip info structure
2525 * @buf: data buffer
2526 * @oob_required: must write chip->oob_poi to OOB
2527 * @page: page number to write
2528 *
2529 * We need a special oob layout and handling even when ECC isn't checked.
2530 */
2531static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2532                                        struct nand_chip *chip,
2533                                        const uint8_t *buf, int oob_required,
2534                                        int page)
2535{
2536        int eccsize = chip->ecc.size;
2537        int eccbytes = chip->ecc.bytes;
2538        uint8_t *oob = chip->oob_poi;
2539        int steps, size;
2540
2541        for (steps = chip->ecc.steps; steps > 0; steps--) {
2542                chip->write_buf(mtd, buf, eccsize);
2543                buf += eccsize;
2544
2545                if (chip->ecc.prepad) {
2546                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2547                        oob += chip->ecc.prepad;
2548                }
2549
2550                chip->write_buf(mtd, oob, eccbytes);
2551                oob += eccbytes;
2552
2553                if (chip->ecc.postpad) {
2554                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2555                        oob += chip->ecc.postpad;
2556                }
2557        }
2558
2559        size = mtd->oobsize - (oob - chip->oob_poi);
2560        if (size)
2561                chip->write_buf(mtd, oob, size);
2562
2563        return 0;
2564}
2565/**
2566 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2567 * @mtd: mtd info structure
2568 * @chip: nand chip info structure
2569 * @buf: data buffer
2570 * @oob_required: must write chip->oob_poi to OOB
2571 * @page: page number to write
2572 */
2573static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2574                                 const uint8_t *buf, int oob_required,
2575                                 int page)
2576{
2577        int i, eccsize = chip->ecc.size, ret;
2578        int eccbytes = chip->ecc.bytes;
2579        int eccsteps = chip->ecc.steps;
2580        uint8_t *ecc_calc = chip->buffers->ecccalc;
2581        const uint8_t *p = buf;
2582
2583        /* Software ECC calculation */
2584        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2585                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2586
2587        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2588                                         chip->ecc.total);
2589        if (ret)
2590                return ret;
2591
2592        return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2593}
2594
2595/**
2596 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2597 * @mtd: mtd info structure
2598 * @chip: nand chip info structure
2599 * @buf: data buffer
2600 * @oob_required: must write chip->oob_poi to OOB
2601 * @page: page number to write
2602 */
2603static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2604                                  const uint8_t *buf, int oob_required,
2605                                  int page)
2606{
2607        int i, eccsize = chip->ecc.size, ret;
2608        int eccbytes = chip->ecc.bytes;
2609        int eccsteps = chip->ecc.steps;
2610        uint8_t *ecc_calc = chip->buffers->ecccalc;
2611        const uint8_t *p = buf;
2612
2613        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2614                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2615                chip->write_buf(mtd, p, eccsize);
2616                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2617        }
2618
2619        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2620                                         chip->ecc.total);
2621        if (ret)
2622                return ret;
2623
2624        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2625
2626        return 0;
2627}
2628
2629
2630/**
2631 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2632 * @mtd:        mtd info structure
2633 * @chip:       nand chip info structure
2634 * @offset:     column address of subpage within the page
2635 * @data_len:   data length
2636 * @buf:        data buffer
2637 * @oob_required: must write chip->oob_poi to OOB
2638 * @page: page number to write
2639 */
2640static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2641                                struct nand_chip *chip, uint32_t offset,
2642                                uint32_t data_len, const uint8_t *buf,
2643                                int oob_required, int page)
2644{
2645        uint8_t *oob_buf  = chip->oob_poi;
2646        uint8_t *ecc_calc = chip->buffers->ecccalc;
2647        int ecc_size      = chip->ecc.size;
2648        int ecc_bytes     = chip->ecc.bytes;
2649        int ecc_steps     = chip->ecc.steps;
2650        uint32_t start_step = offset / ecc_size;
2651        uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2652        int oob_bytes       = mtd->oobsize / ecc_steps;
2653        int step, ret;
2654
2655        for (step = 0; step < ecc_steps; step++) {
2656                /* configure controller for WRITE access */
2657                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2658
2659                /* write data (untouched subpages already masked by 0xFF) */
2660                chip->write_buf(mtd, buf, ecc_size);
2661
2662                /* mask ECC of un-touched subpages by padding 0xFF */
2663                if ((step < start_step) || (step > end_step))
2664                        memset(ecc_calc, 0xff, ecc_bytes);
2665                else
2666                        chip->ecc.calculate(mtd, buf, ecc_calc);
2667
2668                /* mask OOB of un-touched subpages by padding 0xFF */
2669                /* if oob_required, preserve OOB metadata of written subpage */
2670                if (!oob_required || (step < start_step) || (step > end_step))
2671                        memset(oob_buf, 0xff, oob_bytes);
2672
2673                buf += ecc_size;
2674                ecc_calc += ecc_bytes;
2675                oob_buf  += oob_bytes;
2676        }
2677
2678        /* copy calculated ECC for whole page to chip->buffer->oob */
2679        /* this include masked-value(0xFF) for unwritten subpages */
2680        ecc_calc = chip->buffers->ecccalc;
2681        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2682                                         chip->ecc.total);
2683        if (ret)
2684                return ret;
2685
2686        /* write OOB buffer to NAND device */
2687        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2688
2689        return 0;
2690}
2691
2692
2693/**
2694 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2695 * @mtd: mtd info structure
2696 * @chip: nand chip info structure
2697 * @buf: data buffer
2698 * @oob_required: must write chip->oob_poi to OOB
2699 * @page: page number to write
2700 *
2701 * The hw generator calculates the error syndrome automatically. Therefore we
2702 * need a special oob layout and handling.
2703 */
2704static int nand_write_page_syndrome(struct mtd_info *mtd,
2705                                    struct nand_chip *chip,
2706                                    const uint8_t *buf, int oob_required,
2707                                    int page)
2708{
2709        int i, eccsize = chip->ecc.size;
2710        int eccbytes = chip->ecc.bytes;
2711        int eccsteps = chip->ecc.steps;
2712        const uint8_t *p = buf;
2713        uint8_t *oob = chip->oob_poi;
2714
2715        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2716
2717                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2718                chip->write_buf(mtd, p, eccsize);
2719
2720                if (chip->ecc.prepad) {
2721                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2722                        oob += chip->ecc.prepad;
2723                }
2724
2725                chip->ecc.calculate(mtd, p, oob);
2726                chip->write_buf(mtd, oob, eccbytes);
2727                oob += eccbytes;
2728
2729                if (chip->ecc.postpad) {
2730                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2731                        oob += chip->ecc.postpad;
2732                }
2733        }
2734
2735        /* Calculate remaining oob bytes */
2736        i = mtd->oobsize - (oob - chip->oob_poi);
2737        if (i)
2738                chip->write_buf(mtd, oob, i);
2739
2740        return 0;
2741}
2742
2743/**
2744 * nand_write_page - write one page
2745 * @mtd: MTD device structure
2746 * @chip: NAND chip descriptor
2747 * @offset: address offset within the page
2748 * @data_len: length of actual data to be written
2749 * @buf: the data to write
2750 * @oob_required: must write chip->oob_poi to OOB
2751 * @page: page number to write
2752 * @raw: use _raw version of write_page
2753 */
2754static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2755                uint32_t offset, int data_len, const uint8_t *buf,
2756                int oob_required, int page, int raw)
2757{
2758        int status, subpage;
2759
2760        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2761                chip->ecc.write_subpage)
2762                subpage = offset || (data_len < mtd->writesize);
2763        else
2764                subpage = 0;
2765
2766        if (nand_standard_page_accessors(&chip->ecc))
2767                chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2768
2769        if (unlikely(raw))
2770                status = chip->ecc.write_page_raw(mtd, chip, buf,
2771                                                  oob_required, page);
2772        else if (subpage)
2773                status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2774                                                 buf, oob_required, page);
2775        else
2776                status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2777                                              page);
2778
2779        if (status < 0)
2780                return status;
2781
2782        if (nand_standard_page_accessors(&chip->ecc)) {
2783                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2784
2785                status = chip->waitfunc(mtd, chip);
2786                if (status & NAND_STATUS_FAIL)
2787                        return -EIO;
2788        }
2789
2790        return 0;
2791}
2792
2793/**
2794 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2795 * @mtd: MTD device structure
2796 * @oob: oob data buffer
2797 * @len: oob data write length
2798 * @ops: oob ops structure
2799 */
2800static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2801                              struct mtd_oob_ops *ops)
2802{
2803        struct nand_chip *chip = mtd_to_nand(mtd);
2804        int ret;
2805
2806        /*
2807         * Initialise to all 0xFF, to avoid the possibility of left over OOB
2808         * data from a previous OOB read.
2809         */
2810        memset(chip->oob_poi, 0xff, mtd->oobsize);
2811
2812        switch (ops->mode) {
2813
2814        case MTD_OPS_PLACE_OOB:
2815        case MTD_OPS_RAW:
2816                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2817                return oob + len;
2818
2819        case MTD_OPS_AUTO_OOB:
2820                ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
2821                                                  ops->ooboffs, len);
2822                BUG_ON(ret);
2823                return oob + len;
2824
2825        default:
2826                BUG();
2827        }
2828        return NULL;
2829}
2830
2831#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2832
2833/**
2834 * nand_do_write_ops - [INTERN] NAND write with ECC
2835 * @mtd: MTD device structure
2836 * @to: offset to write to
2837 * @ops: oob operations description structure
2838 *
2839 * NAND write with ECC.
2840 */
2841static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2842                             struct mtd_oob_ops *ops)
2843{
2844        int chipnr, realpage, page, blockmask, column;
2845        struct nand_chip *chip = mtd_to_nand(mtd);
2846        uint32_t writelen = ops->len;
2847
2848        uint32_t oobwritelen = ops->ooblen;
2849        uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2850
2851        uint8_t *oob = ops->oobbuf;
2852        uint8_t *buf = ops->datbuf;
2853        int ret;
2854        int oob_required = oob ? 1 : 0;
2855
2856        ops->retlen = 0;
2857        if (!writelen)
2858                return 0;
2859
2860        /* Reject writes, which are not page aligned */
2861        if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2862                pr_notice("%s: attempt to write non page aligned data\n",
2863                           __func__);
2864                return -EINVAL;
2865        }
2866
2867        column = to & (mtd->writesize - 1);
2868
2869        chipnr = (int)(to >> chip->chip_shift);
2870        chip->select_chip(mtd, chipnr);
2871
2872        /* Check, if it is write protected */
2873        if (nand_check_wp(mtd)) {
2874                ret = -EIO;
2875                goto err_out;
2876        }
2877
2878        realpage = (int)(to >> chip->page_shift);
2879        page = realpage & chip->pagemask;
2880        blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2881
2882        /* Invalidate the page cache, when we write to the cached page */
2883        if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2884            ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2885                chip->pagebuf = -1;
2886
2887        /* Don't allow multipage oob writes with offset */
2888        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2889                ret = -EINVAL;
2890                goto err_out;
2891        }
2892
2893        while (1) {
2894                int bytes = mtd->writesize;
2895                uint8_t *wbuf = buf;
2896                int use_bufpoi;
2897                int part_pagewr = (column || writelen < mtd->writesize);
2898
2899                if (part_pagewr)
2900                        use_bufpoi = 1;
2901                else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2902                        use_bufpoi = !virt_addr_valid(buf) ||
2903                                     !IS_ALIGNED((unsigned long)buf,
2904                                                 chip->buf_align);
2905                else
2906                        use_bufpoi = 0;
2907
2908                /* Partial page write?, or need to use bounce buffer */
2909                if (use_bufpoi) {
2910                        pr_debug("%s: using write bounce buffer for buf@%p\n",
2911                                         __func__, buf);
2912                        if (part_pagewr)
2913                                bytes = min_t(int, bytes - column, writelen);
2914                        chip->pagebuf = -1;
2915                        memset(chip->buffers->databuf, 0xff, mtd->writesize);
2916                        memcpy(&chip->buffers->databuf[column], buf, bytes);
2917                        wbuf = chip->buffers->databuf;
2918                }
2919
2920                if (unlikely(oob)) {
2921                        size_t len = min(oobwritelen, oobmaxlen);
2922                        oob = nand_fill_oob(mtd, oob, len, ops);
2923                        oobwritelen -= len;
2924                } else {
2925                        /* We still need to erase leftover OOB data */
2926                        memset(chip->oob_poi, 0xff, mtd->oobsize);
2927                }
2928
2929                ret = nand_write_page(mtd, chip, column, bytes, wbuf,
2930                                      oob_required, page,
2931                                      (ops->mode == MTD_OPS_RAW));
2932                if (ret)
2933                        break;
2934
2935                writelen -= bytes;
2936                if (!writelen)
2937                        break;
2938
2939                column = 0;
2940                buf += bytes;
2941                realpage++;
2942
2943                page = realpage & chip->pagemask;
2944                /* Check, if we cross a chip boundary */
2945                if (!page) {
2946                        chipnr++;
2947                        chip->select_chip(mtd, -1);
2948                        chip->select_chip(mtd, chipnr);
2949                }
2950        }
2951
2952        ops->retlen = ops->len - writelen;
2953        if (unlikely(oob))
2954                ops->oobretlen = ops->ooblen;
2955
2956err_out:
2957        chip->select_chip(mtd, -1);
2958        return ret;
2959}
2960
2961/**
2962 * panic_nand_write - [MTD Interface] NAND write with ECC
2963 * @mtd: MTD device structure
2964 * @to: offset to write to
2965 * @len: number of bytes to write
2966 * @retlen: pointer to variable to store the number of written bytes
2967 * @buf: the data to write
2968 *
2969 * NAND write with ECC. Used when performing writes in interrupt context, this
2970 * may for example be called by mtdoops when writing an oops while in panic.
2971 */
2972static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2973                            size_t *retlen, const uint8_t *buf)
2974{
2975        struct nand_chip *chip = mtd_to_nand(mtd);
2976        struct mtd_oob_ops ops;
2977        int ret;
2978
2979        /* Wait for the device to get ready */
2980        panic_nand_wait(mtd, chip, 400);
2981
2982        /* Grab the device */
2983        panic_nand_get_device(chip, mtd, FL_WRITING);
2984
2985        memset(&ops, 0, sizeof(ops));
2986        ops.len = len;
2987        ops.datbuf = (uint8_t *)buf;
2988        ops.mode = MTD_OPS_PLACE_OOB;
2989
2990        ret = nand_do_write_ops(mtd, to, &ops);
2991
2992        *retlen = ops.retlen;
2993        return ret;
2994}
2995
2996/**
2997 * nand_write - [MTD Interface] NAND write with ECC
2998 * @mtd: MTD device structure
2999 * @to: offset to write to
3000 * @len: number of bytes to write
3001 * @retlen: pointer to variable to store the number of written bytes
3002 * @buf: the data to write
3003 *
3004 * NAND write with ECC.
3005 */
3006static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
3007                          size_t *retlen, const uint8_t *buf)
3008{
3009        struct mtd_oob_ops ops;
3010        int ret;
3011
3012        nand_get_device(mtd, FL_WRITING);
3013        memset(&ops, 0, sizeof(ops));
3014        ops.len = len;
3015        ops.datbuf = (uint8_t *)buf;
3016        ops.mode = MTD_OPS_PLACE_OOB;
3017        ret = nand_do_write_ops(mtd, to, &ops);
3018        *retlen = ops.retlen;
3019        nand_release_device(mtd);
3020        return ret;
3021}
3022
3023/**
3024 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
3025 * @mtd: MTD device structure
3026 * @to: offset to write to
3027 * @ops: oob operation description structure
3028 *
3029 * NAND write out-of-band.
3030 */
3031static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
3032                             struct mtd_oob_ops *ops)
3033{
3034        int chipnr, page, status, len;
3035        struct nand_chip *chip = mtd_to_nand(mtd);
3036
3037        pr_debug("%s: to = 0x%08x, len = %i\n",
3038                         __func__, (unsigned int)to, (int)ops->ooblen);
3039
3040        len = mtd_oobavail(mtd, ops);
3041
3042        /* Do not allow write past end of page */
3043        if ((ops->ooboffs + ops->ooblen) > len) {
3044                pr_debug("%s: attempt to write past end of page\n",
3045                                __func__);
3046                return -EINVAL;
3047        }
3048
3049        if (unlikely(ops->ooboffs >= len)) {
3050                pr_debug("%s: attempt to start write outside oob\n",
3051                                __func__);
3052                return -EINVAL;
3053        }
3054
3055        /* Do not allow write past end of device */
3056        if (unlikely(to >= mtd->size ||
3057                     ops->ooboffs + ops->ooblen >
3058                        ((mtd->size >> chip->page_shift) -
3059                         (to >> chip->page_shift)) * len)) {
3060                pr_debug("%s: attempt to write beyond end of device\n",
3061                                __func__);
3062                return -EINVAL;
3063        }
3064
3065        chipnr = (int)(to >> chip->chip_shift);
3066
3067        /*
3068         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
3069         * of my DiskOnChip 2000 test units) will clear the whole data page too
3070         * if we don't do this. I have no clue why, but I seem to have 'fixed'
3071         * it in the doc2000 driver in August 1999.  dwmw2.
3072         */
3073        nand_reset(chip, chipnr);
3074
3075        chip->select_chip(mtd, chipnr);
3076
3077        /* Shift to get page */
3078        page = (int)(to >> chip->page_shift);
3079
3080        /* Check, if it is write protected */
3081        if (nand_check_wp(mtd)) {
3082                chip->select_chip(mtd, -1);
3083                return -EROFS;
3084        }
3085
3086        /* Invalidate the page cache, if we write to the cached page */
3087        if (page == chip->pagebuf)
3088                chip->pagebuf = -1;
3089
3090        nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
3091
3092        if (ops->mode == MTD_OPS_RAW)
3093                status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
3094        else
3095                status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
3096
3097        chip->select_chip(mtd, -1);
3098
3099        if (status)
3100                return status;
3101
3102        ops->oobretlen = ops->ooblen;
3103
3104        return 0;
3105}
3106
3107/**
3108 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
3109 * @mtd: MTD device structure
3110 * @to: offset to write to
3111 * @ops: oob operation description structure
3112 */
3113static int nand_write_oob(struct mtd_info *mtd, loff_t to,
3114                          struct mtd_oob_ops *ops)
3115{
3116        int ret = -ENOTSUPP;
3117
3118        ops->retlen = 0;
3119
3120        /* Do not allow writes past end of device */
3121        if (ops->datbuf && (to + ops->len) > mtd->size) {
3122                pr_debug("%s: attempt to write beyond end of device\n",
3123                                __func__);
3124                return -EINVAL;
3125        }
3126
3127        nand_get_device(mtd, FL_WRITING);
3128
3129        switch (ops->mode) {
3130        case MTD_OPS_PLACE_OOB:
3131        case MTD_OPS_AUTO_OOB:
3132        case MTD_OPS_RAW:
3133                break;
3134
3135        default:
3136                goto out;
3137        }
3138
3139        if (!ops->datbuf)
3140                ret = nand_do_write_oob(mtd, to, ops);
3141        else
3142                ret = nand_do_write_ops(mtd, to, ops);
3143
3144out:
3145        nand_release_device(mtd);
3146        return ret;
3147}
3148
3149/**
3150 * single_erase - [GENERIC] NAND standard block erase command function
3151 * @mtd: MTD device structure
3152 * @page: the page address of the block which will be erased
3153 *
3154 * Standard erase command for NAND chips. Returns NAND status.
3155 */
3156static int single_erase(struct mtd_info *mtd, int page)
3157{
3158        struct nand_chip *chip = mtd_to_nand(mtd);
3159        /* Send commands to erase a block */
3160        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
3161        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
3162
3163        return chip->waitfunc(mtd, chip);
3164}
3165
3166/**
3167 * nand_erase - [MTD Interface] erase block(s)
3168 * @mtd: MTD device structure
3169 * @instr: erase instruction
3170 *
3171 * Erase one ore more blocks.
3172 */
3173static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
3174{
3175        return nand_erase_nand(mtd, instr, 0);
3176}
3177
3178/**
3179 * nand_erase_nand - [INTERN] erase block(s)
3180 * @mtd: MTD device structure
3181 * @instr: erase instruction
3182 * @allowbbt: allow erasing the bbt area
3183 *
3184 * Erase one ore more blocks.
3185 */
3186int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
3187                    int allowbbt)
3188{
3189        int page, status, pages_per_block, ret, chipnr;
3190        struct nand_chip *chip = mtd_to_nand(mtd);
3191        loff_t len;
3192
3193        pr_debug("%s: start = 0x%012llx, len = %llu\n",
3194                        __func__, (unsigned long long)instr->addr,
3195                        (unsigned long long)instr->len);
3196
3197        if (check_offs_len(mtd, instr->addr, instr->len))
3198                return -EINVAL;
3199
3200        /* Grab the lock and see if the device is available */
3201        nand_get_device(mtd, FL_ERASING);
3202
3203        /* Shift to get first page */
3204        page = (int)(instr->addr >> chip->page_shift);
3205        chipnr = (int)(instr->addr >> chip->chip_shift);
3206
3207        /* Calculate pages in each block */
3208        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
3209
3210        /* Select the NAND device */
3211        chip->select_chip(mtd, chipnr);
3212
3213        /* Check, if it is write protected */
3214        if (nand_check_wp(mtd)) {
3215                pr_debug("%s: device is write protected!\n",
3216                                __func__);
3217                instr->state = MTD_ERASE_FAILED;
3218                goto erase_exit;
3219        }
3220
3221        /* Loop through the pages */
3222        len = instr->len;
3223
3224        instr->state = MTD_ERASING;
3225
3226        while (len) {
3227                /* Check if we have a bad block, we do not erase bad blocks! */
3228                if (nand_block_checkbad(mtd, ((loff_t) page) <<
3229                                        chip->page_shift, allowbbt)) {
3230                        pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
3231                                    __func__, page);
3232                        instr->state = MTD_ERASE_FAILED;
3233                        goto erase_exit;
3234                }
3235
3236                /*
3237                 * Invalidate the page cache, if we erase the block which
3238                 * contains the current cached page.
3239                 */
3240                if (page <= chip->pagebuf && chip->pagebuf <
3241                    (page + pages_per_block))
3242                        chip->pagebuf = -1;
3243
3244                status = chip->erase(mtd, page & chip->pagemask);
3245
3246                /* See if block erase succeeded */
3247                if (status & NAND_STATUS_FAIL) {
3248                        pr_debug("%s: failed erase, page 0x%08x\n",
3249                                        __func__, page);
3250                        instr->state = MTD_ERASE_FAILED;
3251                        instr->fail_addr =
3252                                ((loff_t)page << chip->page_shift);
3253                        goto erase_exit;
3254                }
3255
3256                /* Increment page address and decrement length */
3257                len -= (1ULL << chip->phys_erase_shift);
3258                page += pages_per_block;
3259
3260                /* Check, if we cross a chip boundary */
3261                if (len && !(page & chip->pagemask)) {
3262                        chipnr++;
3263                        chip->select_chip(mtd, -1);
3264                        chip->select_chip(mtd, chipnr);
3265                }
3266        }
3267        instr->state = MTD_ERASE_DONE;
3268
3269erase_exit:
3270
3271        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
3272
3273        /* Deselect and wake up anyone waiting on the device */
3274        chip->select_chip(mtd, -1);
3275        nand_release_device(mtd);
3276
3277        /* Do call back function */
3278        if (!ret)
3279                mtd_erase_callback(instr);
3280
3281        /* Return more or less happy */
3282        return ret;
3283}
3284
3285/**
3286 * nand_sync - [MTD Interface] sync
3287 * @mtd: MTD device structure
3288 *
3289 * Sync is actually a wait for chip ready function.
3290 */
3291static void nand_sync(struct mtd_info *mtd)
3292{
3293        pr_debug("%s: called\n", __func__);
3294
3295        /* Grab the lock and see if the device is available */
3296        nand_get_device(mtd, FL_SYNCING);
3297        /* Release it and go back */
3298        nand_release_device(mtd);
3299}
3300
3301/**
3302 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3303 * @mtd: MTD device structure
3304 * @offs: offset relative to mtd start
3305 */
3306static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3307{
3308        struct nand_chip *chip = mtd_to_nand(mtd);
3309        int chipnr = (int)(offs >> chip->chip_shift);
3310        int ret;
3311
3312        /* Select the NAND device */
3313        nand_get_device(mtd, FL_READING);
3314        chip->select_chip(mtd, chipnr);
3315
3316        ret = nand_block_checkbad(mtd, offs, 0);
3317
3318        chip->select_chip(mtd, -1);
3319        nand_release_device(mtd);
3320
3321        return ret;
3322}
3323
3324/**
3325 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3326 * @mtd: MTD device structure
3327 * @ofs: offset relative to mtd start
3328 */
3329static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3330{
3331        int ret;
3332
3333        ret = nand_block_isbad(mtd, ofs);
3334        if (ret) {
3335                /* If it was bad already, return success and do nothing */
3336                if (ret > 0)
3337                        return 0;
3338                return ret;
3339        }
3340
3341        return nand_block_markbad_lowlevel(mtd, ofs);
3342}
3343
3344/**
3345 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
3346 * @mtd: MTD device structure
3347 * @ofs: offset relative to mtd start
3348 * @len: length of mtd
3349 */
3350static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
3351{
3352        struct nand_chip *chip = mtd_to_nand(mtd);
3353        u32 part_start_block;
3354        u32 part_end_block;
3355        u32 part_start_die;
3356        u32 part_end_die;
3357
3358        /*
3359         * max_bb_per_die and blocks_per_die used to determine
3360         * the maximum bad block count.
3361         */
3362        if (!chip->max_bb_per_die || !chip->blocks_per_die)
3363                return -ENOTSUPP;
3364
3365        /* Get the start and end of the partition in erase blocks. */
3366        part_start_block = mtd_div_by_eb(ofs, mtd);
3367        part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
3368
3369        /* Get the start and end LUNs of the partition. */
3370        part_start_die = part_start_block / chip->blocks_per_die;
3371        part_end_die = part_end_block / chip->blocks_per_die;
3372
3373        /*
3374         * Look up the bad blocks per unit and multiply by the number of units
3375         * that the partition spans.
3376         */
3377        return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
3378}
3379
3380/**
3381 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3382 * @mtd: MTD device structure
3383 * @chip: nand chip info structure
3384 * @addr: feature address.
3385 * @subfeature_param: the subfeature parameters, a four bytes array.
3386 */
3387static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3388                        int addr, uint8_t *subfeature_param)
3389{
3390        int status;
3391        int i;
3392
3393        if (!chip->onfi_version ||
3394            !(le16_to_cpu(chip->onfi_params.opt_cmd)
3395              & ONFI_OPT_CMD_SET_GET_FEATURES))
3396                return -EINVAL;
3397
3398        chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3399        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3400                chip->write_byte(mtd, subfeature_param[i]);
3401
3402        status = chip->waitfunc(mtd, chip);
3403        if (status & NAND_STATUS_FAIL)
3404                return -EIO;
3405        return 0;
3406}
3407
3408/**
3409 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3410 * @mtd: MTD device structure
3411 * @chip: nand chip info structure
3412 * @addr: feature address.
3413 * @subfeature_param: the subfeature parameters, a four bytes array.
3414 */
3415static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3416                        int addr, uint8_t *subfeature_param)
3417{
3418        int i;
3419
3420        if (!chip->onfi_version ||
3421            !(le16_to_cpu(chip->onfi_params.opt_cmd)
3422              & ONFI_OPT_CMD_SET_GET_FEATURES))
3423                return -EINVAL;
3424
3425        chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3426        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3427                *subfeature_param++ = chip->read_byte(mtd);
3428        return 0;
3429}
3430
3431/**
3432 * nand_onfi_get_set_features_notsupp - set/get features stub returning
3433 *                                      -ENOTSUPP
3434 * @mtd: MTD device structure
3435 * @chip: nand chip info structure
3436 * @addr: feature address.
3437 * @subfeature_param: the subfeature parameters, a four bytes array.
3438 *
3439 * Should be used by NAND controller drivers that do not support the SET/GET
3440 * FEATURES operations.
3441 */
3442int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
3443                                       struct nand_chip *chip, int addr,
3444                                       u8 *subfeature_param)
3445{
3446        return -ENOTSUPP;
3447}
3448EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp);
3449
3450/**
3451 * nand_suspend - [MTD Interface] Suspend the NAND flash
3452 * @mtd: MTD device structure
3453 */
3454static int nand_suspend(struct mtd_info *mtd)
3455{
3456        return nand_get_device(mtd, FL_PM_SUSPENDED);
3457}
3458
3459/**
3460 * nand_resume - [MTD Interface] Resume the NAND flash
3461 * @mtd: MTD device structure
3462 */
3463static void nand_resume(struct mtd_info *mtd)
3464{
3465        struct nand_chip *chip = mtd_to_nand(mtd);
3466
3467        if (chip->state == FL_PM_SUSPENDED)
3468                nand_release_device(mtd);
3469        else
3470                pr_err("%s called for a chip which is not in suspended state\n",
3471                        __func__);
3472}
3473
3474/**
3475 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3476 *                 prevent further operations
3477 * @mtd: MTD device structure
3478 */
3479static void nand_shutdown(struct mtd_info *mtd)
3480{
3481        nand_get_device(mtd, FL_PM_SUSPENDED);
3482}
3483
3484/* Set default functions */
3485static void nand_set_defaults(struct nand_chip *chip)
3486{
3487        unsigned int busw = chip->options & NAND_BUSWIDTH_16;
3488
3489        /* check for proper chip_delay setup, set 20us if not */
3490        if (!chip->chip_delay)
3491                chip->chip_delay = 20;
3492
3493        /* check, if a user supplied command function given */
3494        if (chip->cmdfunc == NULL)
3495                chip->cmdfunc = nand_command;
3496
3497        /* check, if a user supplied wait function given */
3498        if (chip->waitfunc == NULL)
3499                chip->waitfunc = nand_wait;
3500
3501        if (!chip->select_chip)
3502                chip->select_chip = nand_select_chip;
3503
3504        /* set for ONFI nand */
3505        if (!chip->onfi_set_features)
3506                chip->onfi_set_features = nand_onfi_set_features;
3507        if (!chip->onfi_get_features)
3508                chip->onfi_get_features = nand_onfi_get_features;
3509
3510        /* If called twice, pointers that depend on busw may need to be reset */
3511        if (!chip->read_byte || chip->read_byte == nand_read_byte)
3512                chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3513        if (!chip->read_word)
3514                chip->read_word = nand_read_word;
3515        if (!chip->block_bad)
3516                chip->block_bad = nand_block_bad;
3517        if (!chip->block_markbad)
3518                chip->block_markbad = nand_default_block_markbad;
3519        if (!chip->write_buf || chip->write_buf == nand_write_buf)
3520                chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3521        if (!chip->write_byte || chip->write_byte == nand_write_byte)
3522                chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3523        if (!chip->read_buf || chip->read_buf == nand_read_buf)
3524                chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3525        if (!chip->scan_bbt)
3526                chip->scan_bbt = nand_default_bbt;
3527
3528        if (!chip->controller) {
3529                chip->controller = &chip->hwcontrol;
3530                nand_hw_control_init(chip->controller);
3531        }
3532
3533        if (!chip->buf_align)
3534                chip->buf_align = 1;
3535}
3536
3537/* Sanitize ONFI strings so we can safely print them */
3538static void sanitize_string(uint8_t *s, size_t len)
3539{
3540        ssize_t i;
3541
3542        /* Null terminate */
3543        s[len - 1] = 0;
3544
3545        /* Remove non printable chars */
3546        for (i = 0; i < len - 1; i++) {
3547                if (s[i] < ' ' || s[i] > 127)
3548                        s[i] = '?';
3549        }
3550
3551        /* Remove trailing spaces */
3552        strim(s);
3553}
3554
3555static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3556{
3557        int i;
3558        while (len--) {
3559                crc ^= *p++ << 8;
3560                for (i = 0; i < 8; i++)
3561                        crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3562        }
3563
3564        return crc;
3565}
3566
3567/* Parse the Extended Parameter Page. */
3568static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
3569                                            struct nand_onfi_params *p)
3570{
3571        struct mtd_info *mtd = nand_to_mtd(chip);
3572        struct onfi_ext_param_page *ep;
3573        struct onfi_ext_section *s;
3574        struct onfi_ext_ecc_info *ecc;
3575        uint8_t *cursor;
3576        int ret = -EINVAL;
3577        int len;
3578        int i;
3579
3580        len = le16_to_cpu(p->ext_param_page_length) * 16;
3581        ep = kmalloc(len, GFP_KERNEL);
3582        if (!ep)
3583                return -ENOMEM;
3584
3585        /* Send our own NAND_CMD_PARAM. */
3586        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3587
3588        /* Use the Change Read Column command to skip the ONFI param pages. */
3589        chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3590                        sizeof(*p) * p->num_of_param_pages , -1);
3591
3592        /* Read out the Extended Parameter Page. */
3593        chip->read_buf(mtd, (uint8_t *)ep, len);
3594        if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3595                != le16_to_cpu(ep->crc))) {
3596                pr_debug("fail in the CRC.\n");
3597                goto ext_out;
3598        }
3599
3600        /*
3601         * Check the signature.
3602         * Do not strictly follow the ONFI spec, maybe changed in future.
3603         */
3604        if (strncmp(ep->sig, "EPPS", 4)) {
3605                pr_debug("The signature is invalid.\n");
3606                goto ext_out;
3607        }
3608
3609        /* find the ECC section. */
3610        cursor = (uint8_t *)(ep + 1);
3611        for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3612                s = ep->sections + i;
3613                if (s->type == ONFI_SECTION_TYPE_2)
3614                        break;
3615                cursor += s->length * 16;
3616        }
3617        if (i == ONFI_EXT_SECTION_MAX) {
3618                pr_debug("We can not find the ECC section.\n");
3619                goto ext_out;
3620        }
3621
3622        /* get the info we want. */
3623        ecc = (struct onfi_ext_ecc_info *)cursor;
3624
3625        if (!ecc->codeword_size) {
3626                pr_debug("Invalid codeword size\n");
3627                goto ext_out;
3628        }
3629
3630        chip->ecc_strength_ds = ecc->ecc_bits;
3631        chip->ecc_step_ds = 1 << ecc->codeword_size;
3632        ret = 0;
3633
3634ext_out:
3635        kfree(ep);
3636        return ret;
3637}
3638
3639/*
3640 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3641 */
3642static int nand_flash_detect_onfi(struct nand_chip *chip)
3643{
3644        struct mtd_info *mtd = nand_to_mtd(chip);
3645        struct nand_onfi_params *p = &chip->onfi_params;
3646        int i, j;
3647        int val;
3648
3649        /* Try ONFI for unknown chip or LP */
3650        chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3651        if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3652                chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3653                return 0;
3654
3655        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3656        for (i = 0; i < 3; i++) {
3657                for (j = 0; j < sizeof(*p); j++)
3658                        ((uint8_t *)p)[j] = chip->read_byte(mtd);
3659                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3660                                le16_to_cpu(p->crc)) {
3661                        break;
3662                }
3663        }
3664
3665        if (i == 3) {
3666                pr_err("Could not find valid ONFI parameter page; aborting\n");
3667                return 0;
3668        }
3669
3670        /* Check version */
3671        val = le16_to_cpu(p->revision);
3672        if (val & (1 << 5))
3673                chip->onfi_version = 23;
3674        else if (val & (1 << 4))
3675                chip->onfi_version = 22;
3676        else if (val & (1 << 3))
3677                chip->onfi_version = 21;
3678        else if (val & (1 << 2))
3679                chip->onfi_version = 20;
3680        else if (val & (1 << 1))
3681                chip->onfi_version = 10;
3682
3683        if (!chip->onfi_version) {
3684                pr_info("unsupported ONFI version: %d\n", val);
3685                return 0;
3686        }
3687
3688        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3689        sanitize_string(p->model, sizeof(p->model));
3690        if (!mtd->name)
3691                mtd->name = p->model;
3692
3693        mtd->writesize = le32_to_cpu(p->byte_per_page);
3694
3695        /*
3696         * pages_per_block and blocks_per_lun may not be a power-of-2 size
3697         * (don't ask me who thought of this...). MTD assumes that these
3698         * dimensions will be power-of-2, so just truncate the remaining area.
3699         */
3700        mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3701        mtd->erasesize *= mtd->writesize;
3702
3703        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3704
3705        /* See erasesize comment */
3706        chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3707        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3708        chip->bits_per_cell = p->bits_per_cell;
3709
3710        chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
3711        chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
3712
3713        if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3714                chip->options |= NAND_BUSWIDTH_16;
3715
3716        if (p->ecc_bits != 0xff) {
3717                chip->ecc_strength_ds = p->ecc_bits;
3718                chip->ecc_step_ds = 512;
3719        } else if (chip->onfi_version >= 21 &&
3720                (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3721
3722                /*
3723                 * The nand_flash_detect_ext_param_page() uses the
3724                 * Change Read Column command which maybe not supported
3725                 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3726                 * now. We do not replace user supplied command function.
3727                 */
3728                if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3729                        chip->cmdfunc = nand_command_lp;
3730
3731                /* The Extended Parameter Page is supported since ONFI 2.1. */
3732                if (nand_flash_detect_ext_param_page(chip, p))
3733                        pr_warn("Failed to detect ONFI extended param page\n");
3734        } else {
3735                pr_warn("Could not retrieve ONFI ECC requirements\n");
3736        }
3737
3738        return 1;
3739}
3740
3741/*
3742 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3743 */
3744static int nand_flash_detect_jedec(struct nand_chip *chip)
3745{
3746        struct mtd_info *mtd = nand_to_mtd(chip);
3747        struct nand_jedec_params *p = &chip->jedec_params;
3748        struct jedec_ecc_info *ecc;
3749        int val;
3750        int i, j;
3751
3752        /* Try JEDEC for unknown chip or LP */
3753        chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3754        if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3755                chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3756                chip->read_byte(mtd) != 'C')
3757                return 0;
3758
3759        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3760        for (i = 0; i < 3; i++) {
3761                for (j = 0; j < sizeof(*p); j++)
3762                        ((uint8_t *)p)[j] = chip->read_byte(mtd);
3763
3764                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3765                                le16_to_cpu(p->crc))
3766                        break;
3767        }
3768
3769        if (i == 3) {
3770                pr_err("Could not find valid JEDEC parameter page; aborting\n");
3771                return 0;
3772        }
3773
3774        /* Check version */
3775        val = le16_to_cpu(p->revision);
3776        if (val & (1 << 2))
3777                chip->jedec_version = 10;
3778        else if (val & (1 << 1))
3779                chip->jedec_version = 1; /* vendor specific version */
3780
3781        if (!chip->jedec_version) {
3782                pr_info("unsupported JEDEC version: %d\n", val);
3783                return 0;
3784        }
3785
3786        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3787        sanitize_string(p->model, sizeof(p->model));
3788        if (!mtd->name)
3789                mtd->name = p->model;
3790
3791        mtd->writesize = le32_to_cpu(p->byte_per_page);
3792
3793        /* Please reference to the comment for nand_flash_detect_onfi. */
3794        mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3795        mtd->erasesize *= mtd->writesize;
3796
3797        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3798
3799        /* Please reference to the comment for nand_flash_detect_onfi. */
3800        chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3801        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3802        chip->bits_per_cell = p->bits_per_cell;
3803
3804        if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3805                chip->options |= NAND_BUSWIDTH_16;
3806
3807        /* ECC info */
3808        ecc = &p->ecc_info[0];
3809
3810        if (ecc->codeword_size >= 9) {
3811                chip->ecc_strength_ds = ecc->ecc_bits;
3812                chip->ecc_step_ds = 1 << ecc->codeword_size;
3813        } else {
3814                pr_warn("Invalid codeword size\n");
3815        }
3816
3817        return 1;
3818}
3819
3820/*
3821 * nand_id_has_period - Check if an ID string has a given wraparound period
3822 * @id_data: the ID string
3823 * @arrlen: the length of the @id_data array
3824 * @period: the period of repitition
3825 *
3826 * Check if an ID string is repeated within a given sequence of bytes at
3827 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3828 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3829 * if the repetition has a period of @period; otherwise, returns zero.
3830 */
3831static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3832{
3833        int i, j;
3834        for (i = 0; i < period; i++)
3835                for (j = i + period; j < arrlen; j += period)
3836                        if (id_data[i] != id_data[j])
3837                                return 0;
3838        return 1;
3839}
3840
3841/*
3842 * nand_id_len - Get the length of an ID string returned by CMD_READID
3843 * @id_data: the ID string
3844 * @arrlen: the length of the @id_data array
3845
3846 * Returns the length of the ID string, according to known wraparound/trailing
3847 * zero patterns. If no pattern exists, returns the length of the array.
3848 */
3849static int nand_id_len(u8 *id_data, int arrlen)
3850{
3851        int last_nonzero, period;
3852
3853        /* Find last non-zero byte */
3854        for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3855                if (id_data[last_nonzero])
3856                        break;
3857
3858        /* All zeros */
3859        if (last_nonzero < 0)
3860                return 0;
3861
3862        /* Calculate wraparound period */
3863        for (period = 1; period < arrlen; period++)
3864                if (nand_id_has_period(id_data, arrlen, period))
3865                        break;
3866
3867        /* There's a repeated pattern */
3868        if (period < arrlen)
3869                return period;
3870
3871        /* There are trailing zeros */
3872        if (last_nonzero < arrlen - 1)
3873                return last_nonzero + 1;
3874
3875        /* No pattern detected */
3876        return arrlen;
3877}
3878
3879/* Extract the bits of per cell from the 3rd byte of the extended ID */
3880static int nand_get_bits_per_cell(u8 cellinfo)
3881{
3882        int bits;
3883
3884        bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3885        bits >>= NAND_CI_CELLTYPE_SHIFT;
3886        return bits + 1;
3887}
3888
3889/*
3890 * Many new NAND share similar device ID codes, which represent the size of the
3891 * chip. The rest of the parameters must be decoded according to generic or
3892 * manufacturer-specific "extended ID" decoding patterns.
3893 */
3894void nand_decode_ext_id(struct nand_chip *chip)
3895{
3896        struct mtd_info *mtd = nand_to_mtd(chip);
3897        int extid;
3898        u8 *id_data = chip->id.data;
3899        /* The 3rd id byte holds MLC / multichip data */
3900        chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3901        /* The 4th id byte is the important one */
3902        extid = id_data[3];
3903
3904        /* Calc pagesize */
3905        mtd->writesize = 1024 << (extid & 0x03);
3906        extid >>= 2;
3907        /* Calc oobsize */
3908        mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
3909        extid >>= 2;
3910        /* Calc blocksize. Blocksize is multiples of 64KiB */
3911        mtd->erasesize = (64 * 1024) << (extid & 0x03);
3912        extid >>= 2;
3913        /* Get buswidth information */
3914        if (extid & 0x1)
3915                chip->options |= NAND_BUSWIDTH_16;
3916}
3917EXPORT_SYMBOL_GPL(nand_decode_ext_id);
3918
3919/*
3920 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3921 * decodes a matching ID table entry and assigns the MTD size parameters for
3922 * the chip.
3923 */
3924static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
3925{
3926        struct mtd_info *mtd = nand_to_mtd(chip);
3927
3928        mtd->erasesize = type->erasesize;
3929        mtd->writesize = type->pagesize;
3930        mtd->oobsize = mtd->writesize / 32;
3931
3932        /* All legacy ID NAND are small-page, SLC */
3933        chip->bits_per_cell = 1;
3934}
3935
3936/*
3937 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3938 * heuristic patterns using various detected parameters (e.g., manufacturer,
3939 * page size, cell-type information).
3940 */
3941static void nand_decode_bbm_options(struct nand_chip *chip)
3942{
3943        struct mtd_info *mtd = nand_to_mtd(chip);
3944
3945        /* Set the bad block position */
3946        if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3947                chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3948        else
3949                chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3950}
3951
3952static inline bool is_full_id_nand(struct nand_flash_dev *type)
3953{
3954        return type->id_len;
3955}
3956
3957static bool find_full_id_nand(struct nand_chip *chip,
3958                              struct nand_flash_dev *type)
3959{
3960        struct mtd_info *mtd = nand_to_mtd(chip);
3961        u8 *id_data = chip->id.data;
3962
3963        if (!strncmp(type->id, id_data, type->id_len)) {
3964                mtd->writesize = type->pagesize;
3965                mtd->erasesize = type->erasesize;
3966                mtd->oobsize = type->oobsize;
3967
3968                chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3969                chip->chipsize = (uint64_t)type->chipsize << 20;
3970                chip->options |= type->options;
3971                chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3972                chip->ecc_step_ds = NAND_ECC_STEP(type);
3973                chip->onfi_timing_mode_default =
3974                                        type->onfi_timing_mode_default;
3975
3976                if (!mtd->name)
3977                        mtd->name = type->name;
3978
3979                return true;
3980        }
3981        return false;
3982}
3983
3984/*
3985 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
3986 * compliant and does not have a full-id or legacy-id entry in the nand_ids
3987 * table.
3988 */
3989static void nand_manufacturer_detect(struct nand_chip *chip)
3990{
3991        /*
3992         * Try manufacturer detection if available and use
3993         * nand_decode_ext_id() otherwise.
3994         */
3995        if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
3996            chip->manufacturer.desc->ops->detect)
3997                chip->manufacturer.desc->ops->detect(chip);
3998        else
3999                nand_decode_ext_id(chip);
4000}
4001
4002/*
4003 * Manufacturer initialization. This function is called for all NANDs including
4004 * ONFI and JEDEC compliant ones.
4005 * Manufacturer drivers should put all their specific initialization code in
4006 * their ->init() hook.
4007 */
4008static int nand_manufacturer_init(struct nand_chip *chip)
4009{
4010        if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4011            !chip->manufacturer.desc->ops->init)
4012                return 0;
4013
4014        return chip->manufacturer.desc->ops->init(chip);
4015}
4016
4017/*
4018 * Manufacturer cleanup. This function is called for all NANDs including
4019 * ONFI and JEDEC compliant ones.
4020 * Manufacturer drivers should put all their specific cleanup code in their
4021 * ->cleanup() hook.
4022 */
4023static void nand_manufacturer_cleanup(struct nand_chip *chip)
4024{
4025        /* Release manufacturer private data */
4026        if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4027            chip->manufacturer.desc->ops->cleanup)
4028                chip->manufacturer.desc->ops->cleanup(chip);
4029}
4030
4031/*
4032 * Get the flash and manufacturer id and lookup if the type is supported.
4033 */
4034static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4035{
4036        const struct nand_manufacturer *manufacturer;
4037        struct mtd_info *mtd = nand_to_mtd(chip);
4038        int busw;
4039        int i, ret;
4040        u8 *id_data = chip->id.data;
4041        u8 maf_id, dev_id;
4042
4043        /*
4044         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4045         * after power-up.
4046         */
4047        nand_reset(chip, 0);
4048
4049        /* Select the device */
4050        chip->select_chip(mtd, 0);
4051
4052        /* Send the command for reading device ID */
4053        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4054
4055        /* Read manufacturer and device IDs */
4056        maf_id = chip->read_byte(mtd);
4057        dev_id = chip->read_byte(mtd);
4058
4059        /*
4060         * Try again to make sure, as some systems the bus-hold or other
4061         * interface concerns can cause random data which looks like a
4062         * possibly credible NAND flash to appear. If the two results do
4063         * not match, ignore the device completely.
4064         */
4065
4066        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4067
4068        /* Read entire ID string */
4069        for (i = 0; i < 8; i++)
4070                id_data[i] = chip->read_byte(mtd);
4071
4072        if (id_data[0] != maf_id || id_data[1] != dev_id) {
4073                pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4074                        maf_id, dev_id, id_data[0], id_data[1]);
4075                return -ENODEV;
4076        }
4077
4078        chip->id.len = nand_id_len(id_data, 8);
4079
4080        /* Try to identify manufacturer */
4081        manufacturer = nand_get_manufacturer(maf_id);
4082        chip->manufacturer.desc = manufacturer;
4083
4084        if (!type)
4085                type = nand_flash_ids;
4086
4087        /*
4088         * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4089         * override it.
4090         * This is required to make sure initial NAND bus width set by the
4091         * NAND controller driver is coherent with the real NAND bus width
4092         * (extracted by auto-detection code).
4093         */
4094        busw = chip->options & NAND_BUSWIDTH_16;
4095
4096        /*
4097         * The flag is only set (never cleared), reset it to its default value
4098         * before starting auto-detection.
4099         */
4100        chip->options &= ~NAND_BUSWIDTH_16;
4101
4102        for (; type->name != NULL; type++) {
4103                if (is_full_id_nand(type)) {
4104                        if (find_full_id_nand(chip, type))
4105                                goto ident_done;
4106                } else if (dev_id == type->dev_id) {
4107                        break;
4108                }
4109        }
4110
4111        chip->onfi_version = 0;
4112        if (!type->name || !type->pagesize) {
4113                /* Check if the chip is ONFI compliant */
4114                if (nand_flash_detect_onfi(chip))
4115                        goto ident_done;
4116
4117                /* Check if the chip is JEDEC compliant */
4118                if (nand_flash_detect_jedec(chip))
4119                        goto ident_done;
4120        }
4121
4122        if (!type->name)
4123                return -ENODEV;
4124
4125        if (!mtd->name)
4126                mtd->name = type->name;
4127
4128        chip->chipsize = (uint64_t)type->chipsize << 20;
4129
4130        if (!type->pagesize)
4131                nand_manufacturer_detect(chip);
4132        else
4133                nand_decode_id(chip, type);
4134
4135        /* Get chip options */
4136        chip->options |= type->options;
4137
4138ident_done:
4139
4140        if (chip->options & NAND_BUSWIDTH_AUTO) {
4141                WARN_ON(busw & NAND_BUSWIDTH_16);
4142                nand_set_defaults(chip);
4143        } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4144                /*
4145                 * Check, if buswidth is correct. Hardware drivers should set
4146                 * chip correct!
4147                 */
4148                pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4149                        maf_id, dev_id);
4150                pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4151                        mtd->name);
4152                pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4153                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4154                return -EINVAL;
4155        }
4156
4157        nand_decode_bbm_options(chip);
4158
4159        /* Calculate the address shift from the page size */
4160        chip->page_shift = ffs(mtd->writesize) - 1;
4161        /* Convert chipsize to number of pages per chip -1 */
4162        chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4163
4164        chip->bbt_erase_shift = chip->phys_erase_shift =
4165                ffs(mtd->erasesize) - 1;
4166        if (chip->chipsize & 0xffffffff)
4167                chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4168        else {
4169                chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
4170                chip->chip_shift += 32 - 1;
4171        }
4172
4173        chip->badblockbits = 8;
4174        chip->erase = single_erase;
4175
4176        /* Do not replace user supplied command function! */
4177        if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
4178                chip->cmdfunc = nand_command_lp;
4179
4180        ret = nand_manufacturer_init(chip);
4181        if (ret)
4182                return ret;
4183
4184        pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4185                maf_id, dev_id);
4186
4187        if (chip->onfi_version)
4188                pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4189                        chip->onfi_params.model);
4190        else if (chip->jedec_version)
4191                pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4192                        chip->jedec_params.model);
4193        else
4194                pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4195                        type->name);
4196
4197        pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4198                (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4199                mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4200        return 0;
4201}
4202
4203static const char * const nand_ecc_modes[] = {
4204        [NAND_ECC_NONE]         = "none",
4205        [NAND_ECC_SOFT]         = "soft",
4206        [NAND_ECC_HW]           = "hw",
4207        [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
4208        [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
4209        [NAND_ECC_ON_DIE]       = "on-die",
4210};
4211
4212static int of_get_nand_ecc_mode(struct device_node *np)
4213{
4214        const char *pm;
4215        int err, i;
4216
4217        err = of_property_read_string(np, "nand-ecc-mode", &pm);
4218        if (err < 0)
4219                return err;
4220
4221        for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4222                if (!strcasecmp(pm, nand_ecc_modes[i]))
4223                        return i;
4224
4225        /*
4226         * For backward compatibility we support few obsoleted values that don't
4227         * have their mappings into nand_ecc_modes_t anymore (they were merged
4228         * with other enums).
4229         */
4230        if (!strcasecmp(pm, "soft_bch"))
4231                return NAND_ECC_SOFT;
4232
4233        return -ENODEV;
4234}
4235
4236static const char * const nand_ecc_algos[] = {
4237        [NAND_ECC_HAMMING]      = "hamming",
4238        [NAND_ECC_BCH]          = "bch",
4239};
4240
4241static int of_get_nand_ecc_algo(struct device_node *np)
4242{
4243        const char *pm;
4244        int err, i;
4245
4246        err = of_property_read_string(np, "nand-ecc-algo", &pm);
4247        if (!err) {
4248                for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4249                        if (!strcasecmp(pm, nand_ecc_algos[i]))
4250                                return i;
4251                return -ENODEV;
4252        }
4253
4254        /*
4255         * For backward compatibility we also read "nand-ecc-mode" checking
4256         * for some obsoleted values that were specifying ECC algorithm.
4257         */
4258        err = of_property_read_string(np, "nand-ecc-mode", &pm);
4259        if (err < 0)
4260                return err;
4261
4262        if (!strcasecmp(pm, "soft"))
4263                return NAND_ECC_HAMMING;
4264        else if (!strcasecmp(pm, "soft_bch"))
4265                return NAND_ECC_BCH;
4266
4267        return -ENODEV;
4268}
4269
4270static int of_get_nand_ecc_step_size(struct device_node *np)
4271{
4272        int ret;
4273        u32 val;
4274
4275        ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4276        return ret ? ret : val;
4277}
4278
4279static int of_get_nand_ecc_strength(struct device_node *np)
4280{
4281        int ret;
4282        u32 val;
4283
4284        ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4285        return ret ? ret : val;
4286}
4287
4288static int of_get_nand_bus_width(struct device_node *np)
4289{
4290        u32 val;
4291
4292        if (of_property_read_u32(np, "nand-bus-width", &val))
4293                return 8;
4294
4295        switch (val) {
4296        case 8:
4297        case 16:
4298                return val;
4299        default:
4300                return -EIO;
4301        }
4302}
4303
4304static bool of_get_nand_on_flash_bbt(struct device_node *np)
4305{
4306        return of_property_read_bool(np, "nand-on-flash-bbt");
4307}
4308
4309static int nand_dt_init(struct nand_chip *chip)
4310{
4311        struct device_node *dn = nand_get_flash_node(chip);
4312        int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4313
4314        if (!dn)
4315                return 0;
4316
4317        if (of_get_nand_bus_width(dn) == 16)
4318                chip->options |= NAND_BUSWIDTH_16;
4319
4320        if (of_get_nand_on_flash_bbt(dn))
4321                chip->bbt_options |= NAND_BBT_USE_FLASH;
4322
4323        ecc_mode = of_get_nand_ecc_mode(dn);
4324        ecc_algo = of_get_nand_ecc_algo(dn);
4325        ecc_strength = of_get_nand_ecc_strength(dn);
4326        ecc_step = of_get_nand_ecc_step_size(dn);
4327
4328        if (ecc_mode >= 0)
4329                chip->ecc.mode = ecc_mode;
4330
4331        if (ecc_algo >= 0)
4332                chip->ecc.algo = ecc_algo;
4333
4334        if (ecc_strength >= 0)
4335                chip->ecc.strength = ecc_strength;
4336
4337        if (ecc_step > 0)
4338                chip->ecc.size = ecc_step;
4339
4340        if (of_property_read_bool(dn, "nand-ecc-maximize"))
4341                chip->ecc.options |= NAND_ECC_MAXIMIZE;
4342
4343        return 0;
4344}
4345
4346/**
4347 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4348 * @mtd: MTD device structure
4349 * @maxchips: number of chips to scan for
4350 * @table: alternative NAND ID table
4351 *
4352 * This is the first phase of the normal nand_scan() function. It reads the
4353 * flash ID and sets up MTD fields accordingly.
4354 *
4355 */
4356int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4357                    struct nand_flash_dev *table)
4358{
4359        int i, nand_maf_id, nand_dev_id;
4360        struct nand_chip *chip = mtd_to_nand(mtd);
4361        int ret;
4362
4363        ret = nand_dt_init(chip);
4364        if (ret)
4365                return ret;
4366
4367        if (!mtd->name && mtd->dev.parent)
4368                mtd->name = dev_name(mtd->dev.parent);
4369
4370        if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
4371                /*
4372                 * Default functions assigned for chip_select() and
4373                 * cmdfunc() both expect cmd_ctrl() to be populated,
4374                 * so we need to check that that's the case
4375                 */
4376                pr_err("chip.cmd_ctrl() callback is not provided");
4377                return -EINVAL;
4378        }
4379        /* Set the default functions */
4380        nand_set_defaults(chip);
4381
4382        /* Read the flash type */
4383        ret = nand_detect(chip, table);
4384        if (ret) {
4385                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4386                        pr_warn("No NAND device found\n");
4387                chip->select_chip(mtd, -1);
4388                return ret;
4389        }
4390
4391        /* Initialize the ->data_interface field. */
4392        ret = nand_init_data_interface(chip);
4393        if (ret)
4394                goto err_nand_init;
4395
4396        /*
4397         * Setup the data interface correctly on the chip and controller side.
4398         * This explicit call to nand_setup_data_interface() is only required
4399         * for the first die, because nand_reset() has been called before
4400         * ->data_interface and ->default_onfi_timing_mode were set.
4401         * For the other dies, nand_reset() will automatically switch to the
4402         * best mode for us.
4403         */
4404        ret = nand_setup_data_interface(chip, 0);
4405        if (ret)
4406                goto err_nand_init;
4407
4408        nand_maf_id = chip->id.data[0];
4409        nand_dev_id = chip->id.data[1];
4410
4411        chip->select_chip(mtd, -1);
4412
4413        /* Check for a chip array */
4414        for (i = 1; i < maxchips; i++) {
4415                /* See comment in nand_get_flash_type for reset */
4416                nand_reset(chip, i);
4417
4418                chip->select_chip(mtd, i);
4419                /* Send the command for reading device ID */
4420                chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4421                /* Read manufacturer and device IDs */
4422                if (nand_maf_id != chip->read_byte(mtd) ||
4423                    nand_dev_id != chip->read_byte(mtd)) {
4424                        chip->select_chip(mtd, -1);
4425                        break;
4426                }
4427                chip->select_chip(mtd, -1);
4428        }
4429        if (i > 1)
4430                pr_info("%d chips detected\n", i);
4431
4432        /* Store the number of chips and calc total size for mtd */
4433        chip->numchips = i;
4434        mtd->size = i * chip->chipsize;
4435
4436        return 0;
4437
4438err_nand_init:
4439        /* Free manufacturer priv data. */
4440        nand_manufacturer_cleanup(chip);
4441
4442        return ret;
4443}
4444EXPORT_SYMBOL(nand_scan_ident);
4445
4446static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
4447{
4448        struct nand_chip *chip = mtd_to_nand(mtd);
4449        struct nand_ecc_ctrl *ecc = &chip->ecc;
4450
4451        if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
4452                return -EINVAL;
4453
4454        switch (ecc->algo) {
4455        case NAND_ECC_HAMMING:
4456                ecc->calculate = nand_calculate_ecc;
4457                ecc->correct = nand_correct_data;
4458                ecc->read_page = nand_read_page_swecc;
4459                ecc->read_subpage = nand_read_subpage;
4460                ecc->write_page = nand_write_page_swecc;
4461                ecc->read_page_raw = nand_read_page_raw;
4462                ecc->write_page_raw = nand_write_page_raw;
4463                ecc->read_oob = nand_read_oob_std;
4464                ecc->write_oob = nand_write_oob_std;
4465                if (!ecc->size)
4466                        ecc->size = 256;
4467                ecc->bytes = 3;
4468                ecc->strength = 1;
4469                return 0;
4470        case NAND_ECC_BCH:
4471                if (!mtd_nand_has_bch()) {
4472                        WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4473                        return -EINVAL;
4474                }
4475                ecc->calculate = nand_bch_calculate_ecc;
4476                ecc->correct = nand_bch_correct_data;
4477                ecc->read_page = nand_read_page_swecc;
4478                ecc->read_subpage = nand_read_subpage;
4479                ecc->write_page = nand_write_page_swecc;
4480                ecc->read_page_raw = nand_read_page_raw;
4481                ecc->write_page_raw = nand_write_page_raw;
4482                ecc->read_oob = nand_read_oob_std;
4483                ecc->write_oob = nand_write_oob_std;
4484
4485                /*
4486                * Board driver should supply ecc.size and ecc.strength
4487                * values to select how many bits are correctable.
4488                * Otherwise, default to 4 bits for large page devices.
4489                */
4490                if (!ecc->size && (mtd->oobsize >= 64)) {
4491                        ecc->size = 512;
4492                        ecc->strength = 4;
4493                }
4494
4495                /*
4496                 * if no ecc placement scheme was provided pickup the default
4497                 * large page one.
4498                 */
4499                if (!mtd->ooblayout) {
4500                        /* handle large page devices only */
4501                        if (mtd->oobsize < 64) {
4502                                WARN(1, "OOB layout is required when using software BCH on small pages\n");
4503                                return -EINVAL;
4504                        }
4505
4506                        mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4507
4508                }
4509
4510                /*
4511                 * We can only maximize ECC config when the default layout is
4512                 * used, otherwise we don't know how many bytes can really be
4513                 * used.
4514                 */
4515                if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
4516                    ecc->options & NAND_ECC_MAXIMIZE) {
4517                        int steps, bytes;
4518
4519                        /* Always prefer 1k blocks over 512bytes ones */
4520                        ecc->size = 1024;
4521                        steps = mtd->writesize / ecc->size;
4522
4523                        /* Reserve 2 bytes for the BBM */
4524                        bytes = (mtd->oobsize - 2) / steps;
4525                        ecc->strength = bytes * 8 / fls(8 * ecc->size);
4526                }
4527
4528                /* See nand_bch_init() for details. */
4529                ecc->bytes = 0;
4530                ecc->priv = nand_bch_init(mtd);
4531                if (!ecc->priv) {
4532                        WARN(1, "BCH ECC initialization failed!\n");
4533                        return -EINVAL;
4534                }
4535                return 0;
4536        default:
4537                WARN(1, "Unsupported ECC algorithm!\n");
4538                return -EINVAL;
4539        }
4540}
4541
4542/**
4543 * nand_check_ecc_caps - check the sanity of preset ECC settings
4544 * @chip: nand chip info structure
4545 * @caps: ECC caps info structure
4546 * @oobavail: OOB size that the ECC engine can use
4547 *
4548 * When ECC step size and strength are already set, check if they are supported
4549 * by the controller and the calculated ECC bytes fit within the chip's OOB.
4550 * On success, the calculated ECC bytes is set.
4551 */
4552int nand_check_ecc_caps(struct nand_chip *chip,
4553                        const struct nand_ecc_caps *caps, int oobavail)
4554{
4555        struct mtd_info *mtd = nand_to_mtd(chip);
4556        const struct nand_ecc_step_info *stepinfo;
4557        int preset_step = chip->ecc.size;
4558        int preset_strength = chip->ecc.strength;
4559        int nsteps, ecc_bytes;
4560        int i, j;
4561
4562        if (WARN_ON(oobavail < 0))
4563                return -EINVAL;
4564
4565        if (!preset_step || !preset_strength)
4566                return -ENODATA;
4567
4568        nsteps = mtd->writesize / preset_step;
4569
4570        for (i = 0; i < caps->nstepinfos; i++) {
4571                stepinfo = &caps->stepinfos[i];
4572
4573                if (stepinfo->stepsize != preset_step)
4574                        continue;
4575
4576                for (j = 0; j < stepinfo->nstrengths; j++) {
4577                        if (stepinfo->strengths[j] != preset_strength)
4578                                continue;
4579
4580                        ecc_bytes = caps->calc_ecc_bytes(preset_step,
4581                                                         preset_strength);
4582                        if (WARN_ON_ONCE(ecc_bytes < 0))
4583                                return ecc_bytes;
4584
4585                        if (ecc_bytes * nsteps > oobavail) {
4586                                pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
4587                                       preset_step, preset_strength);
4588                                return -ENOSPC;
4589                        }
4590
4591                        chip->ecc.bytes = ecc_bytes;
4592
4593                        return 0;
4594                }
4595        }
4596
4597        pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
4598               preset_step, preset_strength);
4599
4600        return -ENOTSUPP;
4601}
4602EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
4603
4604/**
4605 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
4606 * @chip: nand chip info structure
4607 * @caps: ECC engine caps info structure
4608 * @oobavail: OOB size that the ECC engine can use
4609 *
4610 * If a chip's ECC requirement is provided, try to meet it with the least
4611 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
4612 * On success, the chosen ECC settings are set.
4613 */
4614int nand_match_ecc_req(struct nand_chip *chip,
4615                       const struct nand_ecc_caps *caps, int oobavail)
4616{
4617        struct mtd_info *mtd = nand_to_mtd(chip);
4618        const struct nand_ecc_step_info *stepinfo;
4619        int req_step = chip->ecc_step_ds;
4620        int req_strength = chip->ecc_strength_ds;
4621        int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
4622        int best_step, best_strength, best_ecc_bytes;
4623        int best_ecc_bytes_total = INT_MAX;
4624        int i, j;
4625
4626        if (WARN_ON(oobavail < 0))
4627                return -EINVAL;
4628
4629        /* No information provided by the NAND chip */
4630        if (!req_step || !req_strength)
4631                return -ENOTSUPP;
4632
4633        /* number of correctable bits the chip requires in a page */
4634        req_corr = mtd->writesize / req_step * req_strength;
4635
4636        for (i = 0; i < caps->nstepinfos; i++) {
4637                stepinfo = &caps->stepinfos[i];
4638                step_size = stepinfo->stepsize;
4639
4640                for (j = 0; j < stepinfo->nstrengths; j++) {
4641                        strength = stepinfo->strengths[j];
4642
4643                        /*
4644                         * If both step size and strength are smaller than the
4645                         * chip's requirement, it is not easy to compare the
4646                         * resulted reliability.
4647                         */
4648                        if (step_size < req_step && strength < req_strength)
4649                                continue;
4650
4651                        if (mtd->writesize % step_size)
4652                                continue;
4653
4654                        nsteps = mtd->writesize / step_size;
4655
4656                        ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4657                        if (WARN_ON_ONCE(ecc_bytes < 0))
4658                                continue;
4659                        ecc_bytes_total = ecc_bytes * nsteps;
4660
4661                        if (ecc_bytes_total > oobavail ||
4662                            strength * nsteps < req_corr)
4663                                continue;
4664
4665                        /*
4666                         * We assume the best is to meet the chip's requrement
4667                         * with the least number of ECC bytes.
4668                         */
4669                        if (ecc_bytes_total < best_ecc_bytes_total) {
4670                                best_ecc_bytes_total = ecc_bytes_total;
4671                                best_step = step_size;
4672                                best_strength = strength;
4673                                best_ecc_bytes = ecc_bytes;
4674                        }
4675                }
4676        }
4677
4678        if (best_ecc_bytes_total == INT_MAX)
4679                return -ENOTSUPP;
4680
4681        chip->ecc.size = best_step;
4682        chip->ecc.strength = best_strength;
4683        chip->ecc.bytes = best_ecc_bytes;
4684
4685        return 0;
4686}
4687EXPORT_SYMBOL_GPL(nand_match_ecc_req);
4688
4689/**
4690 * nand_maximize_ecc - choose the max ECC strength available
4691 * @chip: nand chip info structure
4692 * @caps: ECC engine caps info structure
4693 * @oobavail: OOB size that the ECC engine can use
4694 *
4695 * Choose the max ECC strength that is supported on the controller, and can fit
4696 * within the chip's OOB.  On success, the chosen ECC settings are set.
4697 */
4698int nand_maximize_ecc(struct nand_chip *chip,
4699                      const struct nand_ecc_caps *caps, int oobavail)
4700{
4701        struct mtd_info *mtd = nand_to_mtd(chip);
4702        const struct nand_ecc_step_info *stepinfo;
4703        int step_size, strength, nsteps, ecc_bytes, corr;
4704        int best_corr = 0;
4705        int best_step = 0;
4706        int best_strength, best_ecc_bytes;
4707        int i, j;
4708
4709        if (WARN_ON(oobavail < 0))
4710                return -EINVAL;
4711
4712        for (i = 0; i < caps->nstepinfos; i++) {
4713                stepinfo = &caps->stepinfos[i];
4714                step_size = stepinfo->stepsize;
4715
4716                /* If chip->ecc.size is already set, respect it */
4717                if (chip->ecc.size && step_size != chip->ecc.size)
4718                        continue;
4719
4720                for (j = 0; j < stepinfo->nstrengths; j++) {
4721                        strength = stepinfo->strengths[j];
4722
4723                        if (mtd->writesize % step_size)
4724                                continue;
4725
4726                        nsteps = mtd->writesize / step_size;
4727
4728                        ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4729                        if (WARN_ON_ONCE(ecc_bytes < 0))
4730                                continue;
4731
4732                        if (ecc_bytes * nsteps > oobavail)
4733                                continue;
4734
4735                        corr = strength * nsteps;
4736
4737                        /*
4738                         * If the number of correctable bits is the same,
4739                         * bigger step_size has more reliability.
4740                         */
4741                        if (corr > best_corr ||
4742                            (corr == best_corr && step_size > best_step)) {
4743                                best_corr = corr;
4744                                best_step = step_size;
4745                                best_strength = strength;
4746                                best_ecc_bytes = ecc_bytes;
4747                        }
4748                }
4749        }
4750
4751        if (!best_corr)
4752                return -ENOTSUPP;
4753
4754        chip->ecc.size = best_step;
4755        chip->ecc.strength = best_strength;
4756        chip->ecc.bytes = best_ecc_bytes;
4757
4758        return 0;
4759}
4760EXPORT_SYMBOL_GPL(nand_maximize_ecc);
4761
4762/*
4763 * Check if the chip configuration meet the datasheet requirements.
4764
4765 * If our configuration corrects A bits per B bytes and the minimum
4766 * required correction level is X bits per Y bytes, then we must ensure
4767 * both of the following are true:
4768 *
4769 * (1) A / B >= X / Y
4770 * (2) A >= X
4771 *
4772 * Requirement (1) ensures we can correct for the required bitflip density.
4773 * Requirement (2) ensures we can correct even when all bitflips are clumped
4774 * in the same sector.
4775 */
4776static bool nand_ecc_strength_good(struct mtd_info *mtd)
4777{
4778        struct nand_chip *chip = mtd_to_nand(mtd);
4779        struct nand_ecc_ctrl *ecc = &chip->ecc;
4780        int corr, ds_corr;
4781
4782        if (ecc->size == 0 || chip->ecc_step_ds == 0)
4783                /* Not enough information */
4784                return true;
4785
4786        /*
4787         * We get the number of corrected bits per page to compare
4788         * the correction density.
4789         */
4790        corr = (mtd->writesize * ecc->strength) / ecc->size;
4791        ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4792
4793        return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4794}
4795
4796static bool invalid_ecc_page_accessors(struct nand_chip *chip)
4797{
4798        struct nand_ecc_ctrl *ecc = &chip->ecc;
4799
4800        if (nand_standard_page_accessors(ecc))
4801                return false;
4802
4803        /*
4804         * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
4805         * controller driver implements all the page accessors because
4806         * default helpers are not suitable when the core does not
4807         * send the READ0/PAGEPROG commands.
4808         */
4809        return (!ecc->read_page || !ecc->write_page ||
4810                !ecc->read_page_raw || !ecc->write_page_raw ||
4811                (NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
4812                (NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
4813                 ecc->hwctl && ecc->calculate));
4814}
4815
4816/**
4817 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4818 * @mtd: MTD device structure
4819 *
4820 * This is the second phase of the normal nand_scan() function. It fills out
4821 * all the uninitialized function pointers with the defaults and scans for a
4822 * bad block table if appropriate.
4823 */
4824int nand_scan_tail(struct mtd_info *mtd)
4825{
4826        struct nand_chip *chip = mtd_to_nand(mtd);
4827        struct nand_ecc_ctrl *ecc = &chip->ecc;
4828        struct nand_buffers *nbuf = NULL;
4829        int ret;
4830
4831        /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4832        if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4833                   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
4834                ret = -EINVAL;
4835                goto err_ident;
4836        }
4837
4838        if (invalid_ecc_page_accessors(chip)) {
4839                pr_err("Invalid ECC page accessors setup\n");
4840                ret = -EINVAL;
4841                goto err_ident;
4842        }
4843
4844        if (!(chip->options & NAND_OWN_BUFFERS)) {
4845                nbuf = kzalloc(sizeof(*nbuf), GFP_KERNEL);
4846                if (!nbuf) {
4847                        ret = -ENOMEM;
4848                        goto err_ident;
4849                }
4850
4851                nbuf->ecccalc = kmalloc(mtd->oobsize, GFP_KERNEL);
4852                if (!nbuf->ecccalc) {
4853                        ret = -ENOMEM;
4854                        goto err_free;
4855                }
4856
4857                nbuf->ecccode = kmalloc(mtd->oobsize, GFP_KERNEL);
4858                if (!nbuf->ecccode) {
4859                        ret = -ENOMEM;
4860                        goto err_free;
4861                }
4862
4863                nbuf->databuf = kmalloc(mtd->writesize + mtd->oobsize,
4864                                        GFP_KERNEL);
4865                if (!nbuf->databuf) {
4866                        ret = -ENOMEM;
4867                        goto err_free;
4868                }
4869
4870                chip->buffers = nbuf;
4871        } else {
4872                if (!chip->buffers) {
4873                        ret = -ENOMEM;
4874                        goto err_ident;
4875                }
4876        }
4877
4878        /* Set the internal oob buffer location, just after the page data */
4879        chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4880
4881        /*
4882         * If no default placement scheme is given, select an appropriate one.
4883         */
4884        if (!mtd->ooblayout &&
4885            !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
4886                switch (mtd->oobsize) {
4887                case 8:
4888                case 16:
4889                        mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
4890                        break;
4891                case 64:
4892                case 128:
4893                        mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
4894                        break;
4895                default:
4896                        WARN(1, "No oob scheme defined for oobsize %d\n",
4897                                mtd->oobsize);
4898                        ret = -EINVAL;
4899                        goto err_free;
4900                }
4901        }
4902
4903        /*
4904         * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4905         * selected and we have 256 byte pagesize fallback to software ECC
4906         */
4907
4908        switch (ecc->mode) {
4909        case NAND_ECC_HW_OOB_FIRST:
4910                /* Similar to NAND_ECC_HW, but a separate read_page handle */
4911                if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4912                        WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4913                        ret = -EINVAL;
4914                        goto err_free;
4915                }
4916                if (!ecc->read_page)
4917                        ecc->read_page = nand_read_page_hwecc_oob_first;
4918
4919        case NAND_ECC_HW:
4920                /* Use standard hwecc read page function? */
4921                if (!ecc->read_page)
4922                        ecc->read_page = nand_read_page_hwecc;
4923                if (!ecc->write_page)
4924                        ecc->write_page = nand_write_page_hwecc;
4925                if (!ecc->read_page_raw)
4926                        ecc->read_page_raw = nand_read_page_raw;
4927                if (!ecc->write_page_raw)
4928                        ecc->write_page_raw = nand_write_page_raw;
4929                if (!ecc->read_oob)
4930                        ecc->read_oob = nand_read_oob_std;
4931                if (!ecc->write_oob)
4932                        ecc->write_oob = nand_write_oob_std;
4933                if (!ecc->read_subpage)
4934                        ecc->read_subpage = nand_read_subpage;
4935                if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4936                        ecc->write_subpage = nand_write_subpage_hwecc;
4937
4938        case NAND_ECC_HW_SYNDROME:
4939                if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4940                    (!ecc->read_page ||
4941                     ecc->read_page == nand_read_page_hwecc ||
4942                     !ecc->write_page ||
4943                     ecc->write_page == nand_write_page_hwecc)) {
4944                        WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4945                        ret = -EINVAL;
4946                        goto err_free;
4947                }
4948                /* Use standard syndrome read/write page function? */
4949                if (!ecc->read_page)
4950                        ecc->read_page = nand_read_page_syndrome;
4951                if (!ecc->write_page)
4952                        ecc->write_page = nand_write_page_syndrome;
4953                if (!ecc->read_page_raw)
4954                        ecc->read_page_raw = nand_read_page_raw_syndrome;
4955                if (!ecc->write_page_raw)
4956                        ecc->write_page_raw = nand_write_page_raw_syndrome;
4957                if (!ecc->read_oob)
4958                        ecc->read_oob = nand_read_oob_syndrome;
4959                if (!ecc->write_oob)
4960                        ecc->write_oob = nand_write_oob_syndrome;
4961
4962                if (mtd->writesize >= ecc->size) {
4963                        if (!ecc->strength) {
4964                                WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
4965                                ret = -EINVAL;
4966                                goto err_free;
4967                        }
4968                        break;
4969                }
4970                pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4971                        ecc->size, mtd->writesize);
4972                ecc->mode = NAND_ECC_SOFT;
4973                ecc->algo = NAND_ECC_HAMMING;
4974
4975        case NAND_ECC_SOFT:
4976                ret = nand_set_ecc_soft_ops(mtd);
4977                if (ret) {
4978                        ret = -EINVAL;
4979                        goto err_free;
4980                }
4981                break;
4982
4983        case NAND_ECC_ON_DIE:
4984                if (!ecc->read_page || !ecc->write_page) {
4985                        WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
4986                        ret = -EINVAL;
4987                        goto err_free;
4988                }
4989                if (!ecc->read_oob)
4990                        ecc->read_oob = nand_read_oob_std;
4991                if (!ecc->write_oob)
4992                        ecc->write_oob = nand_write_oob_std;
4993                break;
4994
4995        case NAND_ECC_NONE:
4996                pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4997                ecc->read_page = nand_read_page_raw;
4998                ecc->write_page = nand_write_page_raw;
4999                ecc->read_oob = nand_read_oob_std;
5000                ecc->read_page_raw = nand_read_page_raw;
5001                ecc->write_page_raw = nand_write_page_raw;
5002                ecc->write_oob = nand_write_oob_std;
5003                ecc->size = mtd->writesize;
5004                ecc->bytes = 0;
5005                ecc->strength = 0;
5006                break;
5007
5008        default:
5009                WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5010                ret = -EINVAL;
5011                goto err_free;
5012        }
5013
5014        /* For many systems, the standard OOB write also works for raw */
5015        if (!ecc->read_oob_raw)
5016                ecc->read_oob_raw = ecc->read_oob;
5017        if (!ecc->write_oob_raw)
5018                ecc->write_oob_raw = ecc->write_oob;
5019
5020        /* propagate ecc info to mtd_info */
5021        mtd->ecc_strength = ecc->strength;
5022        mtd->ecc_step_size = ecc->size;
5023
5024        /*
5025         * Set the number of read / write steps for one page depending on ECC
5026         * mode.
5027         */
5028        ecc->steps = mtd->writesize / ecc->size;
5029        if (ecc->steps * ecc->size != mtd->writesize) {
5030                WARN(1, "Invalid ECC parameters\n");
5031                ret = -EINVAL;
5032                goto err_free;
5033        }
5034        ecc->total = ecc->steps * ecc->bytes;
5035        if (ecc->total > mtd->oobsize) {
5036                WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5037                ret = -EINVAL;
5038                goto err_free;
5039        }
5040
5041        /*
5042         * The number of bytes available for a client to place data into
5043         * the out of band area.
5044         */
5045        ret = mtd_ooblayout_count_freebytes(mtd);
5046        if (ret < 0)
5047                ret = 0;
5048
5049        mtd->oobavail = ret;
5050
5051        /* ECC sanity check: warn if it's too weak */
5052        if (!nand_ecc_strength_good(mtd))
5053                pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
5054                        mtd->name);
5055
5056        /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5057        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5058                switch (ecc->steps) {
5059                case 2:
5060                        mtd->subpage_sft = 1;
5061                        break;
5062                case 4:
5063                case 8:
5064                case 16:
5065                        mtd->subpage_sft = 2;
5066                        break;
5067                }
5068        }
5069        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5070
5071        /* Initialize state */
5072        chip->state = FL_READY;
5073
5074        /* Invalidate the pagebuffer reference */
5075        chip->pagebuf = -1;
5076
5077        /* Large page NAND with SOFT_ECC should support subpage reads */
5078        switch (ecc->mode) {
5079        case NAND_ECC_SOFT:
5080                if (chip->page_shift > 9)
5081                        chip->options |= NAND_SUBPAGE_READ;
5082                break;
5083
5084        default:
5085                break;
5086        }
5087
5088        /* Fill in remaining MTD driver data */
5089        mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
5090        mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
5091                                                MTD_CAP_NANDFLASH;
5092        mtd->_erase = nand_erase;
5093        mtd->_point = NULL;
5094        mtd->_unpoint = NULL;
5095        mtd->_read = nand_read;
5096        mtd->_write = nand_write;
5097        mtd->_panic_write = panic_nand_write;
5098        mtd->_read_oob = nand_read_oob;
5099        mtd->_write_oob = nand_write_oob;
5100        mtd->_sync = nand_sync;
5101        mtd->_lock = NULL;
5102        mtd->_unlock = NULL;
5103        mtd->_suspend = nand_suspend;
5104        mtd->_resume = nand_resume;
5105        mtd->_reboot = nand_shutdown;
5106        mtd->_block_isreserved = nand_block_isreserved;
5107        mtd->_block_isbad = nand_block_isbad;
5108        mtd->_block_markbad = nand_block_markbad;
5109        mtd->_max_bad_blocks = nand_max_bad_blocks;
5110        mtd->writebufsize = mtd->writesize;
5111
5112        /*
5113         * Initialize bitflip_threshold to its default prior scan_bbt() call.
5114         * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5115         * properly set.
5116         */
5117        if (!mtd->bitflip_threshold)
5118                mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5119
5120        /* Check, if we should skip the bad block table scan */
5121        if (chip->options & NAND_SKIP_BBTSCAN)
5122                return 0;
5123
5124        /* Build bad block table */
5125        ret = chip->scan_bbt(mtd);
5126        if (ret)
5127                goto err_free;
5128        return 0;
5129
5130err_free:
5131        if (nbuf) {
5132                kfree(nbuf->databuf);
5133                kfree(nbuf->ecccode);
5134                kfree(nbuf->ecccalc);
5135                kfree(nbuf);
5136        }
5137
5138err_ident:
5139        /* Clean up nand_scan_ident(). */
5140
5141        /* Free manufacturer priv data. */
5142        nand_manufacturer_cleanup(chip);
5143
5144        return ret;
5145}
5146EXPORT_SYMBOL(nand_scan_tail);
5147
5148/*
5149 * is_module_text_address() isn't exported, and it's mostly a pointless
5150 * test if this is a module _anyway_ -- they'd have to try _really_ hard
5151 * to call us from in-kernel code if the core NAND support is modular.
5152 */
5153#ifdef MODULE
5154#define caller_is_module() (1)
5155#else
5156#define caller_is_module() \
5157        is_module_text_address((unsigned long)__builtin_return_address(0))
5158#endif
5159
5160/**
5161 * nand_scan - [NAND Interface] Scan for the NAND device
5162 * @mtd: MTD device structure
5163 * @maxchips: number of chips to scan for
5164 *
5165 * This fills out all the uninitialized function pointers with the defaults.
5166 * The flash ID is read and the mtd/chip structures are filled with the
5167 * appropriate values.
5168 */
5169int nand_scan(struct mtd_info *mtd, int maxchips)
5170{
5171        int ret;
5172
5173        ret = nand_scan_ident(mtd, maxchips, NULL);
5174        if (!ret)
5175                ret = nand_scan_tail(mtd);
5176        return ret;
5177}
5178EXPORT_SYMBOL(nand_scan);
5179
5180/**
5181 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
5182 * @chip: NAND chip object
5183 */
5184void nand_cleanup(struct nand_chip *chip)
5185{
5186        if (chip->ecc.mode == NAND_ECC_SOFT &&
5187            chip->ecc.algo == NAND_ECC_BCH)
5188                nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
5189
5190        nand_release_data_interface(chip);
5191
5192        /* Free bad block table memory */
5193        kfree(chip->bbt);
5194        if (!(chip->options & NAND_OWN_BUFFERS) && chip->buffers) {
5195                kfree(chip->buffers->databuf);
5196                kfree(chip->buffers->ecccode);
5197                kfree(chip->buffers->ecccalc);
5198                kfree(chip->buffers);
5199        }
5200
5201        /* Free bad block descriptor memory */
5202        if (chip->badblock_pattern && chip->badblock_pattern->options
5203                        & NAND_BBT_DYNAMICSTRUCT)
5204                kfree(chip->badblock_pattern);
5205
5206        /* Free manufacturer priv data. */
5207        nand_manufacturer_cleanup(chip);
5208}
5209EXPORT_SYMBOL_GPL(nand_cleanup);
5210
5211/**
5212 * nand_release - [NAND Interface] Unregister the MTD device and free resources
5213 *                held by the NAND device
5214 * @mtd: MTD device structure
5215 */
5216void nand_release(struct mtd_info *mtd)
5217{
5218        mtd_device_unregister(mtd);
5219        nand_cleanup(mtd_to_nand(mtd));
5220}
5221EXPORT_SYMBOL_GPL(nand_release);
5222
5223MODULE_LICENSE("GPL");
5224MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5225MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5226MODULE_DESCRIPTION("Generic NAND flash driver code");
5227