linux/drivers/mtd/nand/nandsim.c
<<
>>
Prefs
   1/*
   2 * NAND flash simulator.
   3 *
   4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
   5 *
   6 * Copyright (C) 2004 Nokia Corporation
   7 *
   8 * Note: NS means "NAND Simulator".
   9 * Note: Input means input TO flash chip, output means output FROM chip.
  10 *
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the
  13 * Free Software Foundation; either version 2, or (at your option) any later
  14 * version.
  15 *
  16 * This program is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
  19 * Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/types.h>
  28#include <linux/module.h>
  29#include <linux/moduleparam.h>
  30#include <linux/vmalloc.h>
  31#include <linux/math64.h>
  32#include <linux/slab.h>
  33#include <linux/errno.h>
  34#include <linux/string.h>
  35#include <linux/mtd/mtd.h>
  36#include <linux/mtd/nand.h>
  37#include <linux/mtd/nand_bch.h>
  38#include <linux/mtd/partitions.h>
  39#include <linux/delay.h>
  40#include <linux/list.h>
  41#include <linux/random.h>
  42#include <linux/sched.h>
  43#include <linux/sched/mm.h>
  44#include <linux/fs.h>
  45#include <linux/pagemap.h>
  46#include <linux/seq_file.h>
  47#include <linux/debugfs.h>
  48
  49/* Default simulator parameters values */
  50#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
  51    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
  52    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
  53    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
  54#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
  55#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
  56#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
  57#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
  58#endif
  59
  60#ifndef CONFIG_NANDSIM_ACCESS_DELAY
  61#define CONFIG_NANDSIM_ACCESS_DELAY 25
  62#endif
  63#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
  64#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
  65#endif
  66#ifndef CONFIG_NANDSIM_ERASE_DELAY
  67#define CONFIG_NANDSIM_ERASE_DELAY 2
  68#endif
  69#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
  70#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
  71#endif
  72#ifndef CONFIG_NANDSIM_INPUT_CYCLE
  73#define CONFIG_NANDSIM_INPUT_CYCLE  50
  74#endif
  75#ifndef CONFIG_NANDSIM_BUS_WIDTH
  76#define CONFIG_NANDSIM_BUS_WIDTH  8
  77#endif
  78#ifndef CONFIG_NANDSIM_DO_DELAYS
  79#define CONFIG_NANDSIM_DO_DELAYS  0
  80#endif
  81#ifndef CONFIG_NANDSIM_LOG
  82#define CONFIG_NANDSIM_LOG        0
  83#endif
  84#ifndef CONFIG_NANDSIM_DBG
  85#define CONFIG_NANDSIM_DBG        0
  86#endif
  87#ifndef CONFIG_NANDSIM_MAX_PARTS
  88#define CONFIG_NANDSIM_MAX_PARTS  32
  89#endif
  90
  91static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
  92static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
  93static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
  94static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
  95static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
  96static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
  97static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
  98static uint log            = CONFIG_NANDSIM_LOG;
  99static uint dbg            = CONFIG_NANDSIM_DBG;
 100static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
 101static unsigned int parts_num;
 102static char *badblocks = NULL;
 103static char *weakblocks = NULL;
 104static char *weakpages = NULL;
 105static unsigned int bitflips = 0;
 106static char *gravepages = NULL;
 107static unsigned int overridesize = 0;
 108static char *cache_file = NULL;
 109static unsigned int bbt;
 110static unsigned int bch;
 111static u_char id_bytes[8] = {
 112        [0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
 113        [1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
 114        [2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
 115        [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
 116        [4 ... 7] = 0xFF,
 117};
 118
 119module_param_array(id_bytes, byte, NULL, 0400);
 120module_param_named(first_id_byte, id_bytes[0], byte, 0400);
 121module_param_named(second_id_byte, id_bytes[1], byte, 0400);
 122module_param_named(third_id_byte, id_bytes[2], byte, 0400);
 123module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
 124module_param(access_delay,   uint, 0400);
 125module_param(programm_delay, uint, 0400);
 126module_param(erase_delay,    uint, 0400);
 127module_param(output_cycle,   uint, 0400);
 128module_param(input_cycle,    uint, 0400);
 129module_param(bus_width,      uint, 0400);
 130module_param(do_delays,      uint, 0400);
 131module_param(log,            uint, 0400);
 132module_param(dbg,            uint, 0400);
 133module_param_array(parts, ulong, &parts_num, 0400);
 134module_param(badblocks,      charp, 0400);
 135module_param(weakblocks,     charp, 0400);
 136module_param(weakpages,      charp, 0400);
 137module_param(bitflips,       uint, 0400);
 138module_param(gravepages,     charp, 0400);
 139module_param(overridesize,   uint, 0400);
 140module_param(cache_file,     charp, 0400);
 141module_param(bbt,            uint, 0400);
 142module_param(bch,            uint, 0400);
 143
 144MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
 145MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
 146MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
 147MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
 148MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
 149MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
 150MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
 151MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
 152MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
 153MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
 154MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
 155MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
 156MODULE_PARM_DESC(log,            "Perform logging if not zero");
 157MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
 158MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
 159/* Page and erase block positions for the following parameters are independent of any partitions */
 160MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
 161MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
 162                                 " separated by commas e.g. 113:2 means eb 113"
 163                                 " can be erased only twice before failing");
 164MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
 165                                 " separated by commas e.g. 1401:2 means page 1401"
 166                                 " can be written only twice before failing");
 167MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
 168MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
 169                                 " separated by commas e.g. 1401:2 means page 1401"
 170                                 " can be read only twice before failing");
 171MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
 172                                 "The size is specified in erase blocks and as the exponent of a power of two"
 173                                 " e.g. 5 means a size of 32 erase blocks");
 174MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
 175MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
 176MODULE_PARM_DESC(bch,            "Enable BCH ecc and set how many bits should "
 177                                 "be correctable in 512-byte blocks");
 178
 179/* The largest possible page size */
 180#define NS_LARGEST_PAGE_SIZE    4096
 181
 182/* The prefix for simulator output */
 183#define NS_OUTPUT_PREFIX "[nandsim]"
 184
 185/* Simulator's output macros (logging, debugging, warning, error) */
 186#define NS_LOG(args...) \
 187        do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
 188#define NS_DBG(args...) \
 189        do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
 190#define NS_WARN(args...) \
 191        do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
 192#define NS_ERR(args...) \
 193        do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
 194#define NS_INFO(args...) \
 195        do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
 196
 197/* Busy-wait delay macros (microseconds, milliseconds) */
 198#define NS_UDELAY(us) \
 199        do { if (do_delays) udelay(us); } while(0)
 200#define NS_MDELAY(us) \
 201        do { if (do_delays) mdelay(us); } while(0)
 202
 203/* Is the nandsim structure initialized ? */
 204#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
 205
 206/* Good operation completion status */
 207#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
 208
 209/* Operation failed completion status */
 210#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
 211
 212/* Calculate the page offset in flash RAM image by (row, column) address */
 213#define NS_RAW_OFFSET(ns) \
 214        (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
 215
 216/* Calculate the OOB offset in flash RAM image by (row, column) address */
 217#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
 218
 219/* After a command is input, the simulator goes to one of the following states */
 220#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
 221#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
 222#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
 223#define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
 224#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
 225#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
 226#define STATE_CMD_STATUS       0x00000007 /* read status */
 227#define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
 228#define STATE_CMD_READID       0x0000000A /* read ID */
 229#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
 230#define STATE_CMD_RESET        0x0000000C /* reset */
 231#define STATE_CMD_RNDOUT       0x0000000D /* random output command */
 232#define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
 233#define STATE_CMD_MASK         0x0000000F /* command states mask */
 234
 235/* After an address is input, the simulator goes to one of these states */
 236#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
 237#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
 238#define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
 239#define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
 240#define STATE_ADDR_MASK        0x00000070 /* address states mask */
 241
 242/* During data input/output the simulator is in these states */
 243#define STATE_DATAIN           0x00000100 /* waiting for data input */
 244#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
 245
 246#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
 247#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
 248#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
 249#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
 250
 251/* Previous operation is done, ready to accept new requests */
 252#define STATE_READY            0x00000000
 253
 254/* This state is used to mark that the next state isn't known yet */
 255#define STATE_UNKNOWN          0x10000000
 256
 257/* Simulator's actions bit masks */
 258#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
 259#define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
 260#define ACTION_SECERASE  0x00300000 /* erase sector */
 261#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
 262#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
 263#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
 264#define ACTION_MASK      0x00700000 /* action mask */
 265
 266#define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
 267#define NS_OPER_STATES   6  /* Maximum number of states in operation */
 268
 269#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
 270#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
 271#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
 272#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
 273#define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
 274#define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
 275#define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
 276
 277/* Remove action bits from state */
 278#define NS_STATE(x) ((x) & ~ACTION_MASK)
 279
 280/*
 281 * Maximum previous states which need to be saved. Currently saving is
 282 * only needed for page program operation with preceded read command
 283 * (which is only valid for 512-byte pages).
 284 */
 285#define NS_MAX_PREVSTATES 1
 286
 287/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
 288#define NS_MAX_HELD_PAGES 16
 289
 290struct nandsim_debug_info {
 291        struct dentry *dfs_root;
 292        struct dentry *dfs_wear_report;
 293};
 294
 295/*
 296 * A union to represent flash memory contents and flash buffer.
 297 */
 298union ns_mem {
 299        u_char *byte;    /* for byte access */
 300        uint16_t *word;  /* for 16-bit word access */
 301};
 302
 303/*
 304 * The structure which describes all the internal simulator data.
 305 */
 306struct nandsim {
 307        struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
 308        unsigned int nbparts;
 309
 310        uint busw;              /* flash chip bus width (8 or 16) */
 311        u_char ids[8];          /* chip's ID bytes */
 312        uint32_t options;       /* chip's characteristic bits */
 313        uint32_t state;         /* current chip state */
 314        uint32_t nxstate;       /* next expected state */
 315
 316        uint32_t *op;           /* current operation, NULL operations isn't known yet  */
 317        uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
 318        uint16_t npstates;      /* number of previous states saved */
 319        uint16_t stateidx;      /* current state index */
 320
 321        /* The simulated NAND flash pages array */
 322        union ns_mem *pages;
 323
 324        /* Slab allocator for nand pages */
 325        struct kmem_cache *nand_pages_slab;
 326
 327        /* Internal buffer of page + OOB size bytes */
 328        union ns_mem buf;
 329
 330        /* NAND flash "geometry" */
 331        struct {
 332                uint64_t totsz;     /* total flash size, bytes */
 333                uint32_t secsz;     /* flash sector (erase block) size, bytes */
 334                uint pgsz;          /* NAND flash page size, bytes */
 335                uint oobsz;         /* page OOB area size, bytes */
 336                uint64_t totszoob;  /* total flash size including OOB, bytes */
 337                uint pgszoob;       /* page size including OOB , bytes*/
 338                uint secszoob;      /* sector size including OOB, bytes */
 339                uint pgnum;         /* total number of pages */
 340                uint pgsec;         /* number of pages per sector */
 341                uint secshift;      /* bits number in sector size */
 342                uint pgshift;       /* bits number in page size */
 343                uint pgaddrbytes;   /* bytes per page address */
 344                uint secaddrbytes;  /* bytes per sector address */
 345                uint idbytes;       /* the number ID bytes that this chip outputs */
 346        } geom;
 347
 348        /* NAND flash internal registers */
 349        struct {
 350                unsigned command; /* the command register */
 351                u_char   status;  /* the status register */
 352                uint     row;     /* the page number */
 353                uint     column;  /* the offset within page */
 354                uint     count;   /* internal counter */
 355                uint     num;     /* number of bytes which must be processed */
 356                uint     off;     /* fixed page offset */
 357        } regs;
 358
 359        /* NAND flash lines state */
 360        struct {
 361                int ce;  /* chip Enable */
 362                int cle; /* command Latch Enable */
 363                int ale; /* address Latch Enable */
 364                int wp;  /* write Protect */
 365        } lines;
 366
 367        /* Fields needed when using a cache file */
 368        struct file *cfile; /* Open file */
 369        unsigned long *pages_written; /* Which pages have been written */
 370        void *file_buf;
 371        struct page *held_pages[NS_MAX_HELD_PAGES];
 372        int held_cnt;
 373
 374        struct nandsim_debug_info dbg;
 375};
 376
 377/*
 378 * Operations array. To perform any operation the simulator must pass
 379 * through the correspondent states chain.
 380 */
 381static struct nandsim_operations {
 382        uint32_t reqopts;  /* options which are required to perform the operation */
 383        uint32_t states[NS_OPER_STATES]; /* operation's states */
 384} ops[NS_OPER_NUM] = {
 385        /* Read page + OOB from the beginning */
 386        {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
 387                        STATE_DATAOUT, STATE_READY}},
 388        /* Read page + OOB from the second half */
 389        {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
 390                        STATE_DATAOUT, STATE_READY}},
 391        /* Read OOB */
 392        {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
 393                        STATE_DATAOUT, STATE_READY}},
 394        /* Program page starting from the beginning */
 395        {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
 396                        STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 397        /* Program page starting from the beginning */
 398        {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
 399                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 400        /* Program page starting from the second half */
 401        {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
 402                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 403        /* Program OOB */
 404        {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
 405                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 406        /* Erase sector */
 407        {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
 408        /* Read status */
 409        {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
 410        /* Read ID */
 411        {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
 412        /* Large page devices read page */
 413        {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
 414                               STATE_DATAOUT, STATE_READY}},
 415        /* Large page devices random page read */
 416        {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
 417                               STATE_DATAOUT, STATE_READY}},
 418};
 419
 420struct weak_block {
 421        struct list_head list;
 422        unsigned int erase_block_no;
 423        unsigned int max_erases;
 424        unsigned int erases_done;
 425};
 426
 427static LIST_HEAD(weak_blocks);
 428
 429struct weak_page {
 430        struct list_head list;
 431        unsigned int page_no;
 432        unsigned int max_writes;
 433        unsigned int writes_done;
 434};
 435
 436static LIST_HEAD(weak_pages);
 437
 438struct grave_page {
 439        struct list_head list;
 440        unsigned int page_no;
 441        unsigned int max_reads;
 442        unsigned int reads_done;
 443};
 444
 445static LIST_HEAD(grave_pages);
 446
 447static unsigned long *erase_block_wear = NULL;
 448static unsigned int wear_eb_count = 0;
 449static unsigned long total_wear = 0;
 450
 451/* MTD structure for NAND controller */
 452static struct mtd_info *nsmtd;
 453
 454static int nandsim_debugfs_show(struct seq_file *m, void *private)
 455{
 456        unsigned long wmin = -1, wmax = 0, avg;
 457        unsigned long deciles[10], decile_max[10], tot = 0;
 458        unsigned int i;
 459
 460        /* Calc wear stats */
 461        for (i = 0; i < wear_eb_count; ++i) {
 462                unsigned long wear = erase_block_wear[i];
 463                if (wear < wmin)
 464                        wmin = wear;
 465                if (wear > wmax)
 466                        wmax = wear;
 467                tot += wear;
 468        }
 469
 470        for (i = 0; i < 9; ++i) {
 471                deciles[i] = 0;
 472                decile_max[i] = (wmax * (i + 1) + 5) / 10;
 473        }
 474        deciles[9] = 0;
 475        decile_max[9] = wmax;
 476        for (i = 0; i < wear_eb_count; ++i) {
 477                int d;
 478                unsigned long wear = erase_block_wear[i];
 479                for (d = 0; d < 10; ++d)
 480                        if (wear <= decile_max[d]) {
 481                                deciles[d] += 1;
 482                                break;
 483                        }
 484        }
 485        avg = tot / wear_eb_count;
 486
 487        /* Output wear report */
 488        seq_printf(m, "Total numbers of erases:  %lu\n", tot);
 489        seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
 490        seq_printf(m, "Average number of erases: %lu\n", avg);
 491        seq_printf(m, "Maximum number of erases: %lu\n", wmax);
 492        seq_printf(m, "Minimum number of erases: %lu\n", wmin);
 493        for (i = 0; i < 10; ++i) {
 494                unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
 495                if (from > decile_max[i])
 496                        continue;
 497                seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
 498                        from,
 499                        decile_max[i],
 500                        deciles[i]);
 501        }
 502
 503        return 0;
 504}
 505
 506static int nandsim_debugfs_open(struct inode *inode, struct file *file)
 507{
 508        return single_open(file, nandsim_debugfs_show, inode->i_private);
 509}
 510
 511static const struct file_operations dfs_fops = {
 512        .open           = nandsim_debugfs_open,
 513        .read           = seq_read,
 514        .llseek         = seq_lseek,
 515        .release        = single_release,
 516};
 517
 518/**
 519 * nandsim_debugfs_create - initialize debugfs
 520 * @dev: nandsim device description object
 521 *
 522 * This function creates all debugfs files for UBI device @ubi. Returns zero in
 523 * case of success and a negative error code in case of failure.
 524 */
 525static int nandsim_debugfs_create(struct nandsim *dev)
 526{
 527        struct nandsim_debug_info *dbg = &dev->dbg;
 528        struct dentry *dent;
 529
 530        if (!IS_ENABLED(CONFIG_DEBUG_FS))
 531                return 0;
 532
 533        dent = debugfs_create_dir("nandsim", NULL);
 534        if (!dent) {
 535                NS_ERR("cannot create \"nandsim\" debugfs directory\n");
 536                return -ENODEV;
 537        }
 538        dbg->dfs_root = dent;
 539
 540        dent = debugfs_create_file("wear_report", S_IRUSR,
 541                                   dbg->dfs_root, dev, &dfs_fops);
 542        if (!dent)
 543                goto out_remove;
 544        dbg->dfs_wear_report = dent;
 545
 546        return 0;
 547
 548out_remove:
 549        debugfs_remove_recursive(dbg->dfs_root);
 550        return -ENODEV;
 551}
 552
 553/**
 554 * nandsim_debugfs_remove - destroy all debugfs files
 555 */
 556static void nandsim_debugfs_remove(struct nandsim *ns)
 557{
 558        if (IS_ENABLED(CONFIG_DEBUG_FS))
 559                debugfs_remove_recursive(ns->dbg.dfs_root);
 560}
 561
 562/*
 563 * Allocate array of page pointers, create slab allocation for an array
 564 * and initialize the array by NULL pointers.
 565 *
 566 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
 567 */
 568static int __init alloc_device(struct nandsim *ns)
 569{
 570        struct file *cfile;
 571        int i, err;
 572
 573        if (cache_file) {
 574                cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
 575                if (IS_ERR(cfile))
 576                        return PTR_ERR(cfile);
 577                if (!(cfile->f_mode & FMODE_CAN_READ)) {
 578                        NS_ERR("alloc_device: cache file not readable\n");
 579                        err = -EINVAL;
 580                        goto err_close;
 581                }
 582                if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
 583                        NS_ERR("alloc_device: cache file not writeable\n");
 584                        err = -EINVAL;
 585                        goto err_close;
 586                }
 587                ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
 588                                            sizeof(unsigned long));
 589                if (!ns->pages_written) {
 590                        NS_ERR("alloc_device: unable to allocate pages written array\n");
 591                        err = -ENOMEM;
 592                        goto err_close;
 593                }
 594                ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 595                if (!ns->file_buf) {
 596                        NS_ERR("alloc_device: unable to allocate file buf\n");
 597                        err = -ENOMEM;
 598                        goto err_free;
 599                }
 600                ns->cfile = cfile;
 601                return 0;
 602        }
 603
 604        ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
 605        if (!ns->pages) {
 606                NS_ERR("alloc_device: unable to allocate page array\n");
 607                return -ENOMEM;
 608        }
 609        for (i = 0; i < ns->geom.pgnum; i++) {
 610                ns->pages[i].byte = NULL;
 611        }
 612        ns->nand_pages_slab = kmem_cache_create("nandsim",
 613                                                ns->geom.pgszoob, 0, 0, NULL);
 614        if (!ns->nand_pages_slab) {
 615                NS_ERR("cache_create: unable to create kmem_cache\n");
 616                return -ENOMEM;
 617        }
 618
 619        return 0;
 620
 621err_free:
 622        vfree(ns->pages_written);
 623err_close:
 624        filp_close(cfile, NULL);
 625        return err;
 626}
 627
 628/*
 629 * Free any allocated pages, and free the array of page pointers.
 630 */
 631static void free_device(struct nandsim *ns)
 632{
 633        int i;
 634
 635        if (ns->cfile) {
 636                kfree(ns->file_buf);
 637                vfree(ns->pages_written);
 638                filp_close(ns->cfile, NULL);
 639                return;
 640        }
 641
 642        if (ns->pages) {
 643                for (i = 0; i < ns->geom.pgnum; i++) {
 644                        if (ns->pages[i].byte)
 645                                kmem_cache_free(ns->nand_pages_slab,
 646                                                ns->pages[i].byte);
 647                }
 648                kmem_cache_destroy(ns->nand_pages_slab);
 649                vfree(ns->pages);
 650        }
 651}
 652
 653static char __init *get_partition_name(int i)
 654{
 655        return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
 656}
 657
 658/*
 659 * Initialize the nandsim structure.
 660 *
 661 * RETURNS: 0 if success, -ERRNO if failure.
 662 */
 663static int __init init_nandsim(struct mtd_info *mtd)
 664{
 665        struct nand_chip *chip = mtd_to_nand(mtd);
 666        struct nandsim   *ns   = nand_get_controller_data(chip);
 667        int i, ret = 0;
 668        uint64_t remains;
 669        uint64_t next_offset;
 670
 671        if (NS_IS_INITIALIZED(ns)) {
 672                NS_ERR("init_nandsim: nandsim is already initialized\n");
 673                return -EIO;
 674        }
 675
 676        /* Force mtd to not do delays */
 677        chip->chip_delay = 0;
 678
 679        /* Initialize the NAND flash parameters */
 680        ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
 681        ns->geom.totsz    = mtd->size;
 682        ns->geom.pgsz     = mtd->writesize;
 683        ns->geom.oobsz    = mtd->oobsize;
 684        ns->geom.secsz    = mtd->erasesize;
 685        ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
 686        ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
 687        ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
 688        ns->geom.secshift = ffs(ns->geom.secsz) - 1;
 689        ns->geom.pgshift  = chip->page_shift;
 690        ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
 691        ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
 692        ns->options = 0;
 693
 694        if (ns->geom.pgsz == 512) {
 695                ns->options |= OPT_PAGE512;
 696                if (ns->busw == 8)
 697                        ns->options |= OPT_PAGE512_8BIT;
 698        } else if (ns->geom.pgsz == 2048) {
 699                ns->options |= OPT_PAGE2048;
 700        } else if (ns->geom.pgsz == 4096) {
 701                ns->options |= OPT_PAGE4096;
 702        } else {
 703                NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
 704                return -EIO;
 705        }
 706
 707        if (ns->options & OPT_SMALLPAGE) {
 708                if (ns->geom.totsz <= (32 << 20)) {
 709                        ns->geom.pgaddrbytes  = 3;
 710                        ns->geom.secaddrbytes = 2;
 711                } else {
 712                        ns->geom.pgaddrbytes  = 4;
 713                        ns->geom.secaddrbytes = 3;
 714                }
 715        } else {
 716                if (ns->geom.totsz <= (128 << 20)) {
 717                        ns->geom.pgaddrbytes  = 4;
 718                        ns->geom.secaddrbytes = 2;
 719                } else {
 720                        ns->geom.pgaddrbytes  = 5;
 721                        ns->geom.secaddrbytes = 3;
 722                }
 723        }
 724
 725        /* Fill the partition_info structure */
 726        if (parts_num > ARRAY_SIZE(ns->partitions)) {
 727                NS_ERR("too many partitions.\n");
 728                return -EINVAL;
 729        }
 730        remains = ns->geom.totsz;
 731        next_offset = 0;
 732        for (i = 0; i < parts_num; ++i) {
 733                uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
 734
 735                if (!part_sz || part_sz > remains) {
 736                        NS_ERR("bad partition size.\n");
 737                        return -EINVAL;
 738                }
 739                ns->partitions[i].name   = get_partition_name(i);
 740                if (!ns->partitions[i].name) {
 741                        NS_ERR("unable to allocate memory.\n");
 742                        return -ENOMEM;
 743                }
 744                ns->partitions[i].offset = next_offset;
 745                ns->partitions[i].size   = part_sz;
 746                next_offset += ns->partitions[i].size;
 747                remains -= ns->partitions[i].size;
 748        }
 749        ns->nbparts = parts_num;
 750        if (remains) {
 751                if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
 752                        NS_ERR("too many partitions.\n");
 753                        return -EINVAL;
 754                }
 755                ns->partitions[i].name   = get_partition_name(i);
 756                if (!ns->partitions[i].name) {
 757                        NS_ERR("unable to allocate memory.\n");
 758                        return -ENOMEM;
 759                }
 760                ns->partitions[i].offset = next_offset;
 761                ns->partitions[i].size   = remains;
 762                ns->nbparts += 1;
 763        }
 764
 765        if (ns->busw == 16)
 766                NS_WARN("16-bit flashes support wasn't tested\n");
 767
 768        printk("flash size: %llu MiB\n",
 769                        (unsigned long long)ns->geom.totsz >> 20);
 770        printk("page size: %u bytes\n",         ns->geom.pgsz);
 771        printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
 772        printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
 773        printk("pages number: %u\n",            ns->geom.pgnum);
 774        printk("pages per sector: %u\n",        ns->geom.pgsec);
 775        printk("bus width: %u\n",               ns->busw);
 776        printk("bits in sector size: %u\n",     ns->geom.secshift);
 777        printk("bits in page size: %u\n",       ns->geom.pgshift);
 778        printk("bits in OOB size: %u\n",        ffs(ns->geom.oobsz) - 1);
 779        printk("flash size with OOB: %llu KiB\n",
 780                        (unsigned long long)ns->geom.totszoob >> 10);
 781        printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
 782        printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
 783        printk("options: %#x\n",                ns->options);
 784
 785        if ((ret = alloc_device(ns)) != 0)
 786                return ret;
 787
 788        /* Allocate / initialize the internal buffer */
 789        ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 790        if (!ns->buf.byte) {
 791                NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
 792                        ns->geom.pgszoob);
 793                return -ENOMEM;
 794        }
 795        memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
 796
 797        return 0;
 798}
 799
 800/*
 801 * Free the nandsim structure.
 802 */
 803static void free_nandsim(struct nandsim *ns)
 804{
 805        kfree(ns->buf.byte);
 806        free_device(ns);
 807
 808        return;
 809}
 810
 811static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
 812{
 813        char *w;
 814        int zero_ok;
 815        unsigned int erase_block_no;
 816        loff_t offset;
 817
 818        if (!badblocks)
 819                return 0;
 820        w = badblocks;
 821        do {
 822                zero_ok = (*w == '0' ? 1 : 0);
 823                erase_block_no = simple_strtoul(w, &w, 0);
 824                if (!zero_ok && !erase_block_no) {
 825                        NS_ERR("invalid badblocks.\n");
 826                        return -EINVAL;
 827                }
 828                offset = (loff_t)erase_block_no * ns->geom.secsz;
 829                if (mtd_block_markbad(mtd, offset)) {
 830                        NS_ERR("invalid badblocks.\n");
 831                        return -EINVAL;
 832                }
 833                if (*w == ',')
 834                        w += 1;
 835        } while (*w);
 836        return 0;
 837}
 838
 839static int parse_weakblocks(void)
 840{
 841        char *w;
 842        int zero_ok;
 843        unsigned int erase_block_no;
 844        unsigned int max_erases;
 845        struct weak_block *wb;
 846
 847        if (!weakblocks)
 848                return 0;
 849        w = weakblocks;
 850        do {
 851                zero_ok = (*w == '0' ? 1 : 0);
 852                erase_block_no = simple_strtoul(w, &w, 0);
 853                if (!zero_ok && !erase_block_no) {
 854                        NS_ERR("invalid weakblocks.\n");
 855                        return -EINVAL;
 856                }
 857                max_erases = 3;
 858                if (*w == ':') {
 859                        w += 1;
 860                        max_erases = simple_strtoul(w, &w, 0);
 861                }
 862                if (*w == ',')
 863                        w += 1;
 864                wb = kzalloc(sizeof(*wb), GFP_KERNEL);
 865                if (!wb) {
 866                        NS_ERR("unable to allocate memory.\n");
 867                        return -ENOMEM;
 868                }
 869                wb->erase_block_no = erase_block_no;
 870                wb->max_erases = max_erases;
 871                list_add(&wb->list, &weak_blocks);
 872        } while (*w);
 873        return 0;
 874}
 875
 876static int erase_error(unsigned int erase_block_no)
 877{
 878        struct weak_block *wb;
 879
 880        list_for_each_entry(wb, &weak_blocks, list)
 881                if (wb->erase_block_no == erase_block_no) {
 882                        if (wb->erases_done >= wb->max_erases)
 883                                return 1;
 884                        wb->erases_done += 1;
 885                        return 0;
 886                }
 887        return 0;
 888}
 889
 890static int parse_weakpages(void)
 891{
 892        char *w;
 893        int zero_ok;
 894        unsigned int page_no;
 895        unsigned int max_writes;
 896        struct weak_page *wp;
 897
 898        if (!weakpages)
 899                return 0;
 900        w = weakpages;
 901        do {
 902                zero_ok = (*w == '0' ? 1 : 0);
 903                page_no = simple_strtoul(w, &w, 0);
 904                if (!zero_ok && !page_no) {
 905                        NS_ERR("invalid weakpages.\n");
 906                        return -EINVAL;
 907                }
 908                max_writes = 3;
 909                if (*w == ':') {
 910                        w += 1;
 911                        max_writes = simple_strtoul(w, &w, 0);
 912                }
 913                if (*w == ',')
 914                        w += 1;
 915                wp = kzalloc(sizeof(*wp), GFP_KERNEL);
 916                if (!wp) {
 917                        NS_ERR("unable to allocate memory.\n");
 918                        return -ENOMEM;
 919                }
 920                wp->page_no = page_no;
 921                wp->max_writes = max_writes;
 922                list_add(&wp->list, &weak_pages);
 923        } while (*w);
 924        return 0;
 925}
 926
 927static int write_error(unsigned int page_no)
 928{
 929        struct weak_page *wp;
 930
 931        list_for_each_entry(wp, &weak_pages, list)
 932                if (wp->page_no == page_no) {
 933                        if (wp->writes_done >= wp->max_writes)
 934                                return 1;
 935                        wp->writes_done += 1;
 936                        return 0;
 937                }
 938        return 0;
 939}
 940
 941static int parse_gravepages(void)
 942{
 943        char *g;
 944        int zero_ok;
 945        unsigned int page_no;
 946        unsigned int max_reads;
 947        struct grave_page *gp;
 948
 949        if (!gravepages)
 950                return 0;
 951        g = gravepages;
 952        do {
 953                zero_ok = (*g == '0' ? 1 : 0);
 954                page_no = simple_strtoul(g, &g, 0);
 955                if (!zero_ok && !page_no) {
 956                        NS_ERR("invalid gravepagess.\n");
 957                        return -EINVAL;
 958                }
 959                max_reads = 3;
 960                if (*g == ':') {
 961                        g += 1;
 962                        max_reads = simple_strtoul(g, &g, 0);
 963                }
 964                if (*g == ',')
 965                        g += 1;
 966                gp = kzalloc(sizeof(*gp), GFP_KERNEL);
 967                if (!gp) {
 968                        NS_ERR("unable to allocate memory.\n");
 969                        return -ENOMEM;
 970                }
 971                gp->page_no = page_no;
 972                gp->max_reads = max_reads;
 973                list_add(&gp->list, &grave_pages);
 974        } while (*g);
 975        return 0;
 976}
 977
 978static int read_error(unsigned int page_no)
 979{
 980        struct grave_page *gp;
 981
 982        list_for_each_entry(gp, &grave_pages, list)
 983                if (gp->page_no == page_no) {
 984                        if (gp->reads_done >= gp->max_reads)
 985                                return 1;
 986                        gp->reads_done += 1;
 987                        return 0;
 988                }
 989        return 0;
 990}
 991
 992static void free_lists(void)
 993{
 994        struct list_head *pos, *n;
 995        list_for_each_safe(pos, n, &weak_blocks) {
 996                list_del(pos);
 997                kfree(list_entry(pos, struct weak_block, list));
 998        }
 999        list_for_each_safe(pos, n, &weak_pages) {
1000                list_del(pos);
1001                kfree(list_entry(pos, struct weak_page, list));
1002        }
1003        list_for_each_safe(pos, n, &grave_pages) {
1004                list_del(pos);
1005                kfree(list_entry(pos, struct grave_page, list));
1006        }
1007        kfree(erase_block_wear);
1008}
1009
1010static int setup_wear_reporting(struct mtd_info *mtd)
1011{
1012        size_t mem;
1013
1014        wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1015        mem = wear_eb_count * sizeof(unsigned long);
1016        if (mem / sizeof(unsigned long) != wear_eb_count) {
1017                NS_ERR("Too many erase blocks for wear reporting\n");
1018                return -ENOMEM;
1019        }
1020        erase_block_wear = kzalloc(mem, GFP_KERNEL);
1021        if (!erase_block_wear) {
1022                NS_ERR("Too many erase blocks for wear reporting\n");
1023                return -ENOMEM;
1024        }
1025        return 0;
1026}
1027
1028static void update_wear(unsigned int erase_block_no)
1029{
1030        if (!erase_block_wear)
1031                return;
1032        total_wear += 1;
1033        /*
1034         * TODO: Notify this through a debugfs entry,
1035         * instead of showing an error message.
1036         */
1037        if (total_wear == 0)
1038                NS_ERR("Erase counter total overflow\n");
1039        erase_block_wear[erase_block_no] += 1;
1040        if (erase_block_wear[erase_block_no] == 0)
1041                NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1042}
1043
1044/*
1045 * Returns the string representation of 'state' state.
1046 */
1047static char *get_state_name(uint32_t state)
1048{
1049        switch (NS_STATE(state)) {
1050                case STATE_CMD_READ0:
1051                        return "STATE_CMD_READ0";
1052                case STATE_CMD_READ1:
1053                        return "STATE_CMD_READ1";
1054                case STATE_CMD_PAGEPROG:
1055                        return "STATE_CMD_PAGEPROG";
1056                case STATE_CMD_READOOB:
1057                        return "STATE_CMD_READOOB";
1058                case STATE_CMD_READSTART:
1059                        return "STATE_CMD_READSTART";
1060                case STATE_CMD_ERASE1:
1061                        return "STATE_CMD_ERASE1";
1062                case STATE_CMD_STATUS:
1063                        return "STATE_CMD_STATUS";
1064                case STATE_CMD_SEQIN:
1065                        return "STATE_CMD_SEQIN";
1066                case STATE_CMD_READID:
1067                        return "STATE_CMD_READID";
1068                case STATE_CMD_ERASE2:
1069                        return "STATE_CMD_ERASE2";
1070                case STATE_CMD_RESET:
1071                        return "STATE_CMD_RESET";
1072                case STATE_CMD_RNDOUT:
1073                        return "STATE_CMD_RNDOUT";
1074                case STATE_CMD_RNDOUTSTART:
1075                        return "STATE_CMD_RNDOUTSTART";
1076                case STATE_ADDR_PAGE:
1077                        return "STATE_ADDR_PAGE";
1078                case STATE_ADDR_SEC:
1079                        return "STATE_ADDR_SEC";
1080                case STATE_ADDR_ZERO:
1081                        return "STATE_ADDR_ZERO";
1082                case STATE_ADDR_COLUMN:
1083                        return "STATE_ADDR_COLUMN";
1084                case STATE_DATAIN:
1085                        return "STATE_DATAIN";
1086                case STATE_DATAOUT:
1087                        return "STATE_DATAOUT";
1088                case STATE_DATAOUT_ID:
1089                        return "STATE_DATAOUT_ID";
1090                case STATE_DATAOUT_STATUS:
1091                        return "STATE_DATAOUT_STATUS";
1092                case STATE_READY:
1093                        return "STATE_READY";
1094                case STATE_UNKNOWN:
1095                        return "STATE_UNKNOWN";
1096        }
1097
1098        NS_ERR("get_state_name: unknown state, BUG\n");
1099        return NULL;
1100}
1101
1102/*
1103 * Check if command is valid.
1104 *
1105 * RETURNS: 1 if wrong command, 0 if right.
1106 */
1107static int check_command(int cmd)
1108{
1109        switch (cmd) {
1110
1111        case NAND_CMD_READ0:
1112        case NAND_CMD_READ1:
1113        case NAND_CMD_READSTART:
1114        case NAND_CMD_PAGEPROG:
1115        case NAND_CMD_READOOB:
1116        case NAND_CMD_ERASE1:
1117        case NAND_CMD_STATUS:
1118        case NAND_CMD_SEQIN:
1119        case NAND_CMD_READID:
1120        case NAND_CMD_ERASE2:
1121        case NAND_CMD_RESET:
1122        case NAND_CMD_RNDOUT:
1123        case NAND_CMD_RNDOUTSTART:
1124                return 0;
1125
1126        default:
1127                return 1;
1128        }
1129}
1130
1131/*
1132 * Returns state after command is accepted by command number.
1133 */
1134static uint32_t get_state_by_command(unsigned command)
1135{
1136        switch (command) {
1137                case NAND_CMD_READ0:
1138                        return STATE_CMD_READ0;
1139                case NAND_CMD_READ1:
1140                        return STATE_CMD_READ1;
1141                case NAND_CMD_PAGEPROG:
1142                        return STATE_CMD_PAGEPROG;
1143                case NAND_CMD_READSTART:
1144                        return STATE_CMD_READSTART;
1145                case NAND_CMD_READOOB:
1146                        return STATE_CMD_READOOB;
1147                case NAND_CMD_ERASE1:
1148                        return STATE_CMD_ERASE1;
1149                case NAND_CMD_STATUS:
1150                        return STATE_CMD_STATUS;
1151                case NAND_CMD_SEQIN:
1152                        return STATE_CMD_SEQIN;
1153                case NAND_CMD_READID:
1154                        return STATE_CMD_READID;
1155                case NAND_CMD_ERASE2:
1156                        return STATE_CMD_ERASE2;
1157                case NAND_CMD_RESET:
1158                        return STATE_CMD_RESET;
1159                case NAND_CMD_RNDOUT:
1160                        return STATE_CMD_RNDOUT;
1161                case NAND_CMD_RNDOUTSTART:
1162                        return STATE_CMD_RNDOUTSTART;
1163        }
1164
1165        NS_ERR("get_state_by_command: unknown command, BUG\n");
1166        return 0;
1167}
1168
1169/*
1170 * Move an address byte to the correspondent internal register.
1171 */
1172static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1173{
1174        uint byte = (uint)bt;
1175
1176        if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1177                ns->regs.column |= (byte << 8 * ns->regs.count);
1178        else {
1179                ns->regs.row |= (byte << 8 * (ns->regs.count -
1180                                                ns->geom.pgaddrbytes +
1181                                                ns->geom.secaddrbytes));
1182        }
1183
1184        return;
1185}
1186
1187/*
1188 * Switch to STATE_READY state.
1189 */
1190static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1191{
1192        NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1193
1194        ns->state       = STATE_READY;
1195        ns->nxstate     = STATE_UNKNOWN;
1196        ns->op          = NULL;
1197        ns->npstates    = 0;
1198        ns->stateidx    = 0;
1199        ns->regs.num    = 0;
1200        ns->regs.count  = 0;
1201        ns->regs.off    = 0;
1202        ns->regs.row    = 0;
1203        ns->regs.column = 0;
1204        ns->regs.status = status;
1205}
1206
1207/*
1208 * If the operation isn't known yet, try to find it in the global array
1209 * of supported operations.
1210 *
1211 * Operation can be unknown because of the following.
1212 *   1. New command was accepted and this is the first call to find the
1213 *      correspondent states chain. In this case ns->npstates = 0;
1214 *   2. There are several operations which begin with the same command(s)
1215 *      (for example program from the second half and read from the
1216 *      second half operations both begin with the READ1 command). In this
1217 *      case the ns->pstates[] array contains previous states.
1218 *
1219 * Thus, the function tries to find operation containing the following
1220 * states (if the 'flag' parameter is 0):
1221 *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1222 *
1223 * If (one and only one) matching operation is found, it is accepted (
1224 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1225 * zeroed).
1226 *
1227 * If there are several matches, the current state is pushed to the
1228 * ns->pstates.
1229 *
1230 * The operation can be unknown only while commands are input to the chip.
1231 * As soon as address command is accepted, the operation must be known.
1232 * In such situation the function is called with 'flag' != 0, and the
1233 * operation is searched using the following pattern:
1234 *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1235 *
1236 * It is supposed that this pattern must either match one operation or
1237 * none. There can't be ambiguity in that case.
1238 *
1239 * If no matches found, the function does the following:
1240 *   1. if there are saved states present, try to ignore them and search
1241 *      again only using the last command. If nothing was found, switch
1242 *      to the STATE_READY state.
1243 *   2. if there are no saved states, switch to the STATE_READY state.
1244 *
1245 * RETURNS: -2 - no matched operations found.
1246 *          -1 - several matches.
1247 *           0 - operation is found.
1248 */
1249static int find_operation(struct nandsim *ns, uint32_t flag)
1250{
1251        int opsfound = 0;
1252        int i, j, idx = 0;
1253
1254        for (i = 0; i < NS_OPER_NUM; i++) {
1255
1256                int found = 1;
1257
1258                if (!(ns->options & ops[i].reqopts))
1259                        /* Ignore operations we can't perform */
1260                        continue;
1261
1262                if (flag) {
1263                        if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1264                                continue;
1265                } else {
1266                        if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1267                                continue;
1268                }
1269
1270                for (j = 0; j < ns->npstates; j++)
1271                        if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1272                                && (ns->options & ops[idx].reqopts)) {
1273                                found = 0;
1274                                break;
1275                        }
1276
1277                if (found) {
1278                        idx = i;
1279                        opsfound += 1;
1280                }
1281        }
1282
1283        if (opsfound == 1) {
1284                /* Exact match */
1285                ns->op = &ops[idx].states[0];
1286                if (flag) {
1287                        /*
1288                         * In this case the find_operation function was
1289                         * called when address has just began input. But it isn't
1290                         * yet fully input and the current state must
1291                         * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1292                         * state must be the next state (ns->nxstate).
1293                         */
1294                        ns->stateidx = ns->npstates - 1;
1295                } else {
1296                        ns->stateidx = ns->npstates;
1297                }
1298                ns->npstates = 0;
1299                ns->state = ns->op[ns->stateidx];
1300                ns->nxstate = ns->op[ns->stateidx + 1];
1301                NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1302                                idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1303                return 0;
1304        }
1305
1306        if (opsfound == 0) {
1307                /* Nothing was found. Try to ignore previous commands (if any) and search again */
1308                if (ns->npstates != 0) {
1309                        NS_DBG("find_operation: no operation found, try again with state %s\n",
1310                                        get_state_name(ns->state));
1311                        ns->npstates = 0;
1312                        return find_operation(ns, 0);
1313
1314                }
1315                NS_DBG("find_operation: no operations found\n");
1316                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1317                return -2;
1318        }
1319
1320        if (flag) {
1321                /* This shouldn't happen */
1322                NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1323                return -2;
1324        }
1325
1326        NS_DBG("find_operation: there is still ambiguity\n");
1327
1328        ns->pstates[ns->npstates++] = ns->state;
1329
1330        return -1;
1331}
1332
1333static void put_pages(struct nandsim *ns)
1334{
1335        int i;
1336
1337        for (i = 0; i < ns->held_cnt; i++)
1338                put_page(ns->held_pages[i]);
1339}
1340
1341/* Get page cache pages in advance to provide NOFS memory allocation */
1342static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1343{
1344        pgoff_t index, start_index, end_index;
1345        struct page *page;
1346        struct address_space *mapping = file->f_mapping;
1347
1348        start_index = pos >> PAGE_SHIFT;
1349        end_index = (pos + count - 1) >> PAGE_SHIFT;
1350        if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1351                return -EINVAL;
1352        ns->held_cnt = 0;
1353        for (index = start_index; index <= end_index; index++) {
1354                page = find_get_page(mapping, index);
1355                if (page == NULL) {
1356                        page = find_or_create_page(mapping, index, GFP_NOFS);
1357                        if (page == NULL) {
1358                                write_inode_now(mapping->host, 1);
1359                                page = find_or_create_page(mapping, index, GFP_NOFS);
1360                        }
1361                        if (page == NULL) {
1362                                put_pages(ns);
1363                                return -ENOMEM;
1364                        }
1365                        unlock_page(page);
1366                }
1367                ns->held_pages[ns->held_cnt++] = page;
1368        }
1369        return 0;
1370}
1371
1372static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1373{
1374        ssize_t tx;
1375        int err;
1376        unsigned int noreclaim_flag;
1377
1378        err = get_pages(ns, file, count, pos);
1379        if (err)
1380                return err;
1381        noreclaim_flag = memalloc_noreclaim_save();
1382        tx = kernel_read(file, pos, buf, count);
1383        memalloc_noreclaim_restore(noreclaim_flag);
1384        put_pages(ns);
1385        return tx;
1386}
1387
1388static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1389{
1390        ssize_t tx;
1391        int err;
1392        unsigned int noreclaim_flag;
1393
1394        err = get_pages(ns, file, count, pos);
1395        if (err)
1396                return err;
1397        noreclaim_flag = memalloc_noreclaim_save();
1398        tx = kernel_write(file, buf, count, pos);
1399        memalloc_noreclaim_restore(noreclaim_flag);
1400        put_pages(ns);
1401        return tx;
1402}
1403
1404/*
1405 * Returns a pointer to the current page.
1406 */
1407static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1408{
1409        return &(ns->pages[ns->regs.row]);
1410}
1411
1412/*
1413 * Retuns a pointer to the current byte, within the current page.
1414 */
1415static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1416{
1417        return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1418}
1419
1420static int do_read_error(struct nandsim *ns, int num)
1421{
1422        unsigned int page_no = ns->regs.row;
1423
1424        if (read_error(page_no)) {
1425                prandom_bytes(ns->buf.byte, num);
1426                NS_WARN("simulating read error in page %u\n", page_no);
1427                return 1;
1428        }
1429        return 0;
1430}
1431
1432static void do_bit_flips(struct nandsim *ns, int num)
1433{
1434        if (bitflips && prandom_u32() < (1 << 22)) {
1435                int flips = 1;
1436                if (bitflips > 1)
1437                        flips = (prandom_u32() % (int) bitflips) + 1;
1438                while (flips--) {
1439                        int pos = prandom_u32() % (num * 8);
1440                        ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1441                        NS_WARN("read_page: flipping bit %d in page %d "
1442                                "reading from %d ecc: corrected=%u failed=%u\n",
1443                                pos, ns->regs.row, ns->regs.column + ns->regs.off,
1444                                nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1445                }
1446        }
1447}
1448
1449/*
1450 * Fill the NAND buffer with data read from the specified page.
1451 */
1452static void read_page(struct nandsim *ns, int num)
1453{
1454        union ns_mem *mypage;
1455
1456        if (ns->cfile) {
1457                if (!test_bit(ns->regs.row, ns->pages_written)) {
1458                        NS_DBG("read_page: page %d not written\n", ns->regs.row);
1459                        memset(ns->buf.byte, 0xFF, num);
1460                } else {
1461                        loff_t pos;
1462                        ssize_t tx;
1463
1464                        NS_DBG("read_page: page %d written, reading from %d\n",
1465                                ns->regs.row, ns->regs.column + ns->regs.off);
1466                        if (do_read_error(ns, num))
1467                                return;
1468                        pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1469                        tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1470                        if (tx != num) {
1471                                NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1472                                return;
1473                        }
1474                        do_bit_flips(ns, num);
1475                }
1476                return;
1477        }
1478
1479        mypage = NS_GET_PAGE(ns);
1480        if (mypage->byte == NULL) {
1481                NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1482                memset(ns->buf.byte, 0xFF, num);
1483        } else {
1484                NS_DBG("read_page: page %d allocated, reading from %d\n",
1485                        ns->regs.row, ns->regs.column + ns->regs.off);
1486                if (do_read_error(ns, num))
1487                        return;
1488                memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1489                do_bit_flips(ns, num);
1490        }
1491}
1492
1493/*
1494 * Erase all pages in the specified sector.
1495 */
1496static void erase_sector(struct nandsim *ns)
1497{
1498        union ns_mem *mypage;
1499        int i;
1500
1501        if (ns->cfile) {
1502                for (i = 0; i < ns->geom.pgsec; i++)
1503                        if (__test_and_clear_bit(ns->regs.row + i,
1504                                                 ns->pages_written)) {
1505                                NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1506                        }
1507                return;
1508        }
1509
1510        mypage = NS_GET_PAGE(ns);
1511        for (i = 0; i < ns->geom.pgsec; i++) {
1512                if (mypage->byte != NULL) {
1513                        NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1514                        kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1515                        mypage->byte = NULL;
1516                }
1517                mypage++;
1518        }
1519}
1520
1521/*
1522 * Program the specified page with the contents from the NAND buffer.
1523 */
1524static int prog_page(struct nandsim *ns, int num)
1525{
1526        int i;
1527        union ns_mem *mypage;
1528        u_char *pg_off;
1529
1530        if (ns->cfile) {
1531                loff_t off;
1532                ssize_t tx;
1533                int all;
1534
1535                NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1536                pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1537                off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1538                if (!test_bit(ns->regs.row, ns->pages_written)) {
1539                        all = 1;
1540                        memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1541                } else {
1542                        all = 0;
1543                        tx = read_file(ns, ns->cfile, pg_off, num, off);
1544                        if (tx != num) {
1545                                NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1546                                return -1;
1547                        }
1548                }
1549                for (i = 0; i < num; i++)
1550                        pg_off[i] &= ns->buf.byte[i];
1551                if (all) {
1552                        loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1553                        tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1554                        if (tx != ns->geom.pgszoob) {
1555                                NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1556                                return -1;
1557                        }
1558                        __set_bit(ns->regs.row, ns->pages_written);
1559                } else {
1560                        tx = write_file(ns, ns->cfile, pg_off, num, off);
1561                        if (tx != num) {
1562                                NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1563                                return -1;
1564                        }
1565                }
1566                return 0;
1567        }
1568
1569        mypage = NS_GET_PAGE(ns);
1570        if (mypage->byte == NULL) {
1571                NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1572                /*
1573                 * We allocate memory with GFP_NOFS because a flash FS may
1574                 * utilize this. If it is holding an FS lock, then gets here,
1575                 * then kernel memory alloc runs writeback which goes to the FS
1576                 * again and deadlocks. This was seen in practice.
1577                 */
1578                mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1579                if (mypage->byte == NULL) {
1580                        NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1581                        return -1;
1582                }
1583                memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1584        }
1585
1586        pg_off = NS_PAGE_BYTE_OFF(ns);
1587        for (i = 0; i < num; i++)
1588                pg_off[i] &= ns->buf.byte[i];
1589
1590        return 0;
1591}
1592
1593/*
1594 * If state has any action bit, perform this action.
1595 *
1596 * RETURNS: 0 if success, -1 if error.
1597 */
1598static int do_state_action(struct nandsim *ns, uint32_t action)
1599{
1600        int num;
1601        int busdiv = ns->busw == 8 ? 1 : 2;
1602        unsigned int erase_block_no, page_no;
1603
1604        action &= ACTION_MASK;
1605
1606        /* Check that page address input is correct */
1607        if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1608                NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1609                return -1;
1610        }
1611
1612        switch (action) {
1613
1614        case ACTION_CPY:
1615                /*
1616                 * Copy page data to the internal buffer.
1617                 */
1618
1619                /* Column shouldn't be very large */
1620                if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1621                        NS_ERR("do_state_action: column number is too large\n");
1622                        break;
1623                }
1624                num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1625                read_page(ns, num);
1626
1627                NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1628                        num, NS_RAW_OFFSET(ns) + ns->regs.off);
1629
1630                if (ns->regs.off == 0)
1631                        NS_LOG("read page %d\n", ns->regs.row);
1632                else if (ns->regs.off < ns->geom.pgsz)
1633                        NS_LOG("read page %d (second half)\n", ns->regs.row);
1634                else
1635                        NS_LOG("read OOB of page %d\n", ns->regs.row);
1636
1637                NS_UDELAY(access_delay);
1638                NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1639
1640                break;
1641
1642        case ACTION_SECERASE:
1643                /*
1644                 * Erase sector.
1645                 */
1646
1647                if (ns->lines.wp) {
1648                        NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1649                        return -1;
1650                }
1651
1652                if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1653                        || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1654                        NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1655                        return -1;
1656                }
1657
1658                ns->regs.row = (ns->regs.row <<
1659                                8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1660                ns->regs.column = 0;
1661
1662                erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1663
1664                NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1665                                ns->regs.row, NS_RAW_OFFSET(ns));
1666                NS_LOG("erase sector %u\n", erase_block_no);
1667
1668                erase_sector(ns);
1669
1670                NS_MDELAY(erase_delay);
1671
1672                if (erase_block_wear)
1673                        update_wear(erase_block_no);
1674
1675                if (erase_error(erase_block_no)) {
1676                        NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1677                        return -1;
1678                }
1679
1680                break;
1681
1682        case ACTION_PRGPAGE:
1683                /*
1684                 * Program page - move internal buffer data to the page.
1685                 */
1686
1687                if (ns->lines.wp) {
1688                        NS_WARN("do_state_action: device is write-protected, programm\n");
1689                        return -1;
1690                }
1691
1692                num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1693                if (num != ns->regs.count) {
1694                        NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1695                                        ns->regs.count, num);
1696                        return -1;
1697                }
1698
1699                if (prog_page(ns, num) == -1)
1700                        return -1;
1701
1702                page_no = ns->regs.row;
1703
1704                NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1705                        num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1706                NS_LOG("programm page %d\n", ns->regs.row);
1707
1708                NS_UDELAY(programm_delay);
1709                NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1710
1711                if (write_error(page_no)) {
1712                        NS_WARN("simulating write failure in page %u\n", page_no);
1713                        return -1;
1714                }
1715
1716                break;
1717
1718        case ACTION_ZEROOFF:
1719                NS_DBG("do_state_action: set internal offset to 0\n");
1720                ns->regs.off = 0;
1721                break;
1722
1723        case ACTION_HALFOFF:
1724                if (!(ns->options & OPT_PAGE512_8BIT)) {
1725                        NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1726                                "byte page size 8x chips\n");
1727                        return -1;
1728                }
1729                NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1730                ns->regs.off = ns->geom.pgsz/2;
1731                break;
1732
1733        case ACTION_OOBOFF:
1734                NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1735                ns->regs.off = ns->geom.pgsz;
1736                break;
1737
1738        default:
1739                NS_DBG("do_state_action: BUG! unknown action\n");
1740        }
1741
1742        return 0;
1743}
1744
1745/*
1746 * Switch simulator's state.
1747 */
1748static void switch_state(struct nandsim *ns)
1749{
1750        if (ns->op) {
1751                /*
1752                 * The current operation have already been identified.
1753                 * Just follow the states chain.
1754                 */
1755
1756                ns->stateidx += 1;
1757                ns->state = ns->nxstate;
1758                ns->nxstate = ns->op[ns->stateidx + 1];
1759
1760                NS_DBG("switch_state: operation is known, switch to the next state, "
1761                        "state: %s, nxstate: %s\n",
1762                        get_state_name(ns->state), get_state_name(ns->nxstate));
1763
1764                /* See, whether we need to do some action */
1765                if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1766                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1767                        return;
1768                }
1769
1770        } else {
1771                /*
1772                 * We don't yet know which operation we perform.
1773                 * Try to identify it.
1774                 */
1775
1776                /*
1777                 *  The only event causing the switch_state function to
1778                 *  be called with yet unknown operation is new command.
1779                 */
1780                ns->state = get_state_by_command(ns->regs.command);
1781
1782                NS_DBG("switch_state: operation is unknown, try to find it\n");
1783
1784                if (find_operation(ns, 0) != 0)
1785                        return;
1786
1787                if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1788                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1789                        return;
1790                }
1791        }
1792
1793        /* For 16x devices column means the page offset in words */
1794        if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1795                NS_DBG("switch_state: double the column number for 16x device\n");
1796                ns->regs.column <<= 1;
1797        }
1798
1799        if (NS_STATE(ns->nxstate) == STATE_READY) {
1800                /*
1801                 * The current state is the last. Return to STATE_READY
1802                 */
1803
1804                u_char status = NS_STATUS_OK(ns);
1805
1806                /* In case of data states, see if all bytes were input/output */
1807                if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1808                        && ns->regs.count != ns->regs.num) {
1809                        NS_WARN("switch_state: not all bytes were processed, %d left\n",
1810                                        ns->regs.num - ns->regs.count);
1811                        status = NS_STATUS_FAILED(ns);
1812                }
1813
1814                NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1815
1816                switch_to_ready_state(ns, status);
1817
1818                return;
1819        } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1820                /*
1821                 * If the next state is data input/output, switch to it now
1822                 */
1823
1824                ns->state      = ns->nxstate;
1825                ns->nxstate    = ns->op[++ns->stateidx + 1];
1826                ns->regs.num   = ns->regs.count = 0;
1827
1828                NS_DBG("switch_state: the next state is data I/O, switch, "
1829                        "state: %s, nxstate: %s\n",
1830                        get_state_name(ns->state), get_state_name(ns->nxstate));
1831
1832                /*
1833                 * Set the internal register to the count of bytes which
1834                 * are expected to be input or output
1835                 */
1836                switch (NS_STATE(ns->state)) {
1837                        case STATE_DATAIN:
1838                        case STATE_DATAOUT:
1839                                ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1840                                break;
1841
1842                        case STATE_DATAOUT_ID:
1843                                ns->regs.num = ns->geom.idbytes;
1844                                break;
1845
1846                        case STATE_DATAOUT_STATUS:
1847                                ns->regs.count = ns->regs.num = 0;
1848                                break;
1849
1850                        default:
1851                                NS_ERR("switch_state: BUG! unknown data state\n");
1852                }
1853
1854        } else if (ns->nxstate & STATE_ADDR_MASK) {
1855                /*
1856                 * If the next state is address input, set the internal
1857                 * register to the number of expected address bytes
1858                 */
1859
1860                ns->regs.count = 0;
1861
1862                switch (NS_STATE(ns->nxstate)) {
1863                        case STATE_ADDR_PAGE:
1864                                ns->regs.num = ns->geom.pgaddrbytes;
1865
1866                                break;
1867                        case STATE_ADDR_SEC:
1868                                ns->regs.num = ns->geom.secaddrbytes;
1869                                break;
1870
1871                        case STATE_ADDR_ZERO:
1872                                ns->regs.num = 1;
1873                                break;
1874
1875                        case STATE_ADDR_COLUMN:
1876                                /* Column address is always 2 bytes */
1877                                ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1878                                break;
1879
1880                        default:
1881                                NS_ERR("switch_state: BUG! unknown address state\n");
1882                }
1883        } else {
1884                /*
1885                 * Just reset internal counters.
1886                 */
1887
1888                ns->regs.num = 0;
1889                ns->regs.count = 0;
1890        }
1891}
1892
1893static u_char ns_nand_read_byte(struct mtd_info *mtd)
1894{
1895        struct nand_chip *chip = mtd_to_nand(mtd);
1896        struct nandsim *ns = nand_get_controller_data(chip);
1897        u_char outb = 0x00;
1898
1899        /* Sanity and correctness checks */
1900        if (!ns->lines.ce) {
1901                NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1902                return outb;
1903        }
1904        if (ns->lines.ale || ns->lines.cle) {
1905                NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1906                return outb;
1907        }
1908        if (!(ns->state & STATE_DATAOUT_MASK)) {
1909                NS_WARN("read_byte: unexpected data output cycle, state is %s "
1910                        "return %#x\n", get_state_name(ns->state), (uint)outb);
1911                return outb;
1912        }
1913
1914        /* Status register may be read as many times as it is wanted */
1915        if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1916                NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1917                return ns->regs.status;
1918        }
1919
1920        /* Check if there is any data in the internal buffer which may be read */
1921        if (ns->regs.count == ns->regs.num) {
1922                NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1923                return outb;
1924        }
1925
1926        switch (NS_STATE(ns->state)) {
1927                case STATE_DATAOUT:
1928                        if (ns->busw == 8) {
1929                                outb = ns->buf.byte[ns->regs.count];
1930                                ns->regs.count += 1;
1931                        } else {
1932                                outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1933                                ns->regs.count += 2;
1934                        }
1935                        break;
1936                case STATE_DATAOUT_ID:
1937                        NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1938                        outb = ns->ids[ns->regs.count];
1939                        ns->regs.count += 1;
1940                        break;
1941                default:
1942                        BUG();
1943        }
1944
1945        if (ns->regs.count == ns->regs.num) {
1946                NS_DBG("read_byte: all bytes were read\n");
1947
1948                if (NS_STATE(ns->nxstate) == STATE_READY)
1949                        switch_state(ns);
1950        }
1951
1952        return outb;
1953}
1954
1955static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1956{
1957        struct nand_chip *chip = mtd_to_nand(mtd);
1958        struct nandsim *ns = nand_get_controller_data(chip);
1959
1960        /* Sanity and correctness checks */
1961        if (!ns->lines.ce) {
1962                NS_ERR("write_byte: chip is disabled, ignore write\n");
1963                return;
1964        }
1965        if (ns->lines.ale && ns->lines.cle) {
1966                NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1967                return;
1968        }
1969
1970        if (ns->lines.cle == 1) {
1971                /*
1972                 * The byte written is a command.
1973                 */
1974
1975                if (byte == NAND_CMD_RESET) {
1976                        NS_LOG("reset chip\n");
1977                        switch_to_ready_state(ns, NS_STATUS_OK(ns));
1978                        return;
1979                }
1980
1981                /* Check that the command byte is correct */
1982                if (check_command(byte)) {
1983                        NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1984                        return;
1985                }
1986
1987                if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1988                        || NS_STATE(ns->state) == STATE_DATAOUT) {
1989                        int row = ns->regs.row;
1990
1991                        switch_state(ns);
1992                        if (byte == NAND_CMD_RNDOUT)
1993                                ns->regs.row = row;
1994                }
1995
1996                /* Check if chip is expecting command */
1997                if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1998                        /* Do not warn if only 2 id bytes are read */
1999                        if (!(ns->regs.command == NAND_CMD_READID &&
2000                            NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2001                                /*
2002                                 * We are in situation when something else (not command)
2003                                 * was expected but command was input. In this case ignore
2004                                 * previous command(s)/state(s) and accept the last one.
2005                                 */
2006                                NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2007                                        "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2008                        }
2009                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2010                }
2011
2012                NS_DBG("command byte corresponding to %s state accepted\n",
2013                        get_state_name(get_state_by_command(byte)));
2014                ns->regs.command = byte;
2015                switch_state(ns);
2016
2017        } else if (ns->lines.ale == 1) {
2018                /*
2019                 * The byte written is an address.
2020                 */
2021
2022                if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2023
2024                        NS_DBG("write_byte: operation isn't known yet, identify it\n");
2025
2026                        if (find_operation(ns, 1) < 0)
2027                                return;
2028
2029                        if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2030                                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2031                                return;
2032                        }
2033
2034                        ns->regs.count = 0;
2035                        switch (NS_STATE(ns->nxstate)) {
2036                                case STATE_ADDR_PAGE:
2037                                        ns->regs.num = ns->geom.pgaddrbytes;
2038                                        break;
2039                                case STATE_ADDR_SEC:
2040                                        ns->regs.num = ns->geom.secaddrbytes;
2041                                        break;
2042                                case STATE_ADDR_ZERO:
2043                                        ns->regs.num = 1;
2044                                        break;
2045                                default:
2046                                        BUG();
2047                        }
2048                }
2049
2050                /* Check that chip is expecting address */
2051                if (!(ns->nxstate & STATE_ADDR_MASK)) {
2052                        NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2053                                "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2054                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2055                        return;
2056                }
2057
2058                /* Check if this is expected byte */
2059                if (ns->regs.count == ns->regs.num) {
2060                        NS_ERR("write_byte: no more address bytes expected\n");
2061                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2062                        return;
2063                }
2064
2065                accept_addr_byte(ns, byte);
2066
2067                ns->regs.count += 1;
2068
2069                NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2070                                (uint)byte, ns->regs.count, ns->regs.num);
2071
2072                if (ns->regs.count == ns->regs.num) {
2073                        NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2074                        switch_state(ns);
2075                }
2076
2077        } else {
2078                /*
2079                 * The byte written is an input data.
2080                 */
2081
2082                /* Check that chip is expecting data input */
2083                if (!(ns->state & STATE_DATAIN_MASK)) {
2084                        NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2085                                "switch to %s\n", (uint)byte,
2086                                get_state_name(ns->state), get_state_name(STATE_READY));
2087                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2088                        return;
2089                }
2090
2091                /* Check if this is expected byte */
2092                if (ns->regs.count == ns->regs.num) {
2093                        NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2094                                        ns->regs.num);
2095                        return;
2096                }
2097
2098                if (ns->busw == 8) {
2099                        ns->buf.byte[ns->regs.count] = byte;
2100                        ns->regs.count += 1;
2101                } else {
2102                        ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2103                        ns->regs.count += 2;
2104                }
2105        }
2106
2107        return;
2108}
2109
2110static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2111{
2112        struct nand_chip *chip = mtd_to_nand(mtd);
2113        struct nandsim *ns = nand_get_controller_data(chip);
2114
2115        ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2116        ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2117        ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2118
2119        if (cmd != NAND_CMD_NONE)
2120                ns_nand_write_byte(mtd, cmd);
2121}
2122
2123static int ns_device_ready(struct mtd_info *mtd)
2124{
2125        NS_DBG("device_ready\n");
2126        return 1;
2127}
2128
2129static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2130{
2131        struct nand_chip *chip = mtd_to_nand(mtd);
2132
2133        NS_DBG("read_word\n");
2134
2135        return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2136}
2137
2138static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2139{
2140        struct nand_chip *chip = mtd_to_nand(mtd);
2141        struct nandsim *ns = nand_get_controller_data(chip);
2142
2143        /* Check that chip is expecting data input */
2144        if (!(ns->state & STATE_DATAIN_MASK)) {
2145                NS_ERR("write_buf: data input isn't expected, state is %s, "
2146                        "switch to STATE_READY\n", get_state_name(ns->state));
2147                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2148                return;
2149        }
2150
2151        /* Check if these are expected bytes */
2152        if (ns->regs.count + len > ns->regs.num) {
2153                NS_ERR("write_buf: too many input bytes\n");
2154                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2155                return;
2156        }
2157
2158        memcpy(ns->buf.byte + ns->regs.count, buf, len);
2159        ns->regs.count += len;
2160
2161        if (ns->regs.count == ns->regs.num) {
2162                NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2163        }
2164}
2165
2166static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2167{
2168        struct nand_chip *chip = mtd_to_nand(mtd);
2169        struct nandsim *ns = nand_get_controller_data(chip);
2170
2171        /* Sanity and correctness checks */
2172        if (!ns->lines.ce) {
2173                NS_ERR("read_buf: chip is disabled\n");
2174                return;
2175        }
2176        if (ns->lines.ale || ns->lines.cle) {
2177                NS_ERR("read_buf: ALE or CLE pin is high\n");
2178                return;
2179        }
2180        if (!(ns->state & STATE_DATAOUT_MASK)) {
2181                NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2182                        get_state_name(ns->state));
2183                return;
2184        }
2185
2186        if (NS_STATE(ns->state) != STATE_DATAOUT) {
2187                int i;
2188
2189                for (i = 0; i < len; i++)
2190                        buf[i] = mtd_to_nand(mtd)->read_byte(mtd);
2191
2192                return;
2193        }
2194
2195        /* Check if these are expected bytes */
2196        if (ns->regs.count + len > ns->regs.num) {
2197                NS_ERR("read_buf: too many bytes to read\n");
2198                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2199                return;
2200        }
2201
2202        memcpy(buf, ns->buf.byte + ns->regs.count, len);
2203        ns->regs.count += len;
2204
2205        if (ns->regs.count == ns->regs.num) {
2206                if (NS_STATE(ns->nxstate) == STATE_READY)
2207                        switch_state(ns);
2208        }
2209
2210        return;
2211}
2212
2213/*
2214 * Module initialization function
2215 */
2216static int __init ns_init_module(void)
2217{
2218        struct nand_chip *chip;
2219        struct nandsim *nand;
2220        int retval = -ENOMEM, i;
2221
2222        if (bus_width != 8 && bus_width != 16) {
2223                NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2224                return -EINVAL;
2225        }
2226
2227        /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2228        chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim),
2229                       GFP_KERNEL);
2230        if (!chip) {
2231                NS_ERR("unable to allocate core structures.\n");
2232                return -ENOMEM;
2233        }
2234        nsmtd       = nand_to_mtd(chip);
2235        nand        = (struct nandsim *)(chip + 1);
2236        nand_set_controller_data(chip, (void *)nand);
2237
2238        /*
2239         * Register simulator's callbacks.
2240         */
2241        chip->cmd_ctrl   = ns_hwcontrol;
2242        chip->read_byte  = ns_nand_read_byte;
2243        chip->dev_ready  = ns_device_ready;
2244        chip->write_buf  = ns_nand_write_buf;
2245        chip->read_buf   = ns_nand_read_buf;
2246        chip->read_word  = ns_nand_read_word;
2247        chip->ecc.mode   = NAND_ECC_SOFT;
2248        chip->ecc.algo   = NAND_ECC_HAMMING;
2249        /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2250        /* and 'badblocks' parameters to work */
2251        chip->options   |= NAND_SKIP_BBTSCAN;
2252
2253        switch (bbt) {
2254        case 2:
2255                 chip->bbt_options |= NAND_BBT_NO_OOB;
2256        case 1:
2257                 chip->bbt_options |= NAND_BBT_USE_FLASH;
2258        case 0:
2259                break;
2260        default:
2261                NS_ERR("bbt has to be 0..2\n");
2262                retval = -EINVAL;
2263                goto error;
2264        }
2265        /*
2266         * Perform minimum nandsim structure initialization to handle
2267         * the initial ID read command correctly
2268         */
2269        if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2270                nand->geom.idbytes = 8;
2271        else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2272                nand->geom.idbytes = 6;
2273        else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2274                nand->geom.idbytes = 4;
2275        else
2276                nand->geom.idbytes = 2;
2277        nand->regs.status = NS_STATUS_OK(nand);
2278        nand->nxstate = STATE_UNKNOWN;
2279        nand->options |= OPT_PAGE512; /* temporary value */
2280        memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2281        if (bus_width == 16) {
2282                nand->busw = 16;
2283                chip->options |= NAND_BUSWIDTH_16;
2284        }
2285
2286        nsmtd->owner = THIS_MODULE;
2287
2288        if ((retval = parse_weakblocks()) != 0)
2289                goto error;
2290
2291        if ((retval = parse_weakpages()) != 0)
2292                goto error;
2293
2294        if ((retval = parse_gravepages()) != 0)
2295                goto error;
2296
2297        retval = nand_scan_ident(nsmtd, 1, NULL);
2298        if (retval) {
2299                NS_ERR("cannot scan NAND Simulator device\n");
2300                goto error;
2301        }
2302
2303        if (bch) {
2304                unsigned int eccsteps, eccbytes;
2305                if (!mtd_nand_has_bch()) {
2306                        NS_ERR("BCH ECC support is disabled\n");
2307                        retval = -EINVAL;
2308                        goto error;
2309                }
2310                /* use 512-byte ecc blocks */
2311                eccsteps = nsmtd->writesize/512;
2312                eccbytes = (bch*13+7)/8;
2313                /* do not bother supporting small page devices */
2314                if ((nsmtd->oobsize < 64) || !eccsteps) {
2315                        NS_ERR("bch not available on small page devices\n");
2316                        retval = -EINVAL;
2317                        goto error;
2318                }
2319                if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2320                        NS_ERR("invalid bch value %u\n", bch);
2321                        retval = -EINVAL;
2322                        goto error;
2323                }
2324                chip->ecc.mode = NAND_ECC_SOFT;
2325                chip->ecc.algo = NAND_ECC_BCH;
2326                chip->ecc.size = 512;
2327                chip->ecc.strength = bch;
2328                chip->ecc.bytes = eccbytes;
2329                NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2330        }
2331
2332        retval = nand_scan_tail(nsmtd);
2333        if (retval) {
2334                NS_ERR("can't register NAND Simulator\n");
2335                goto error;
2336        }
2337
2338        if (overridesize) {
2339                uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2340                if (new_size >> overridesize != nsmtd->erasesize) {
2341                        NS_ERR("overridesize is too big\n");
2342                        retval = -EINVAL;
2343                        goto err_exit;
2344                }
2345                /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2346                nsmtd->size = new_size;
2347                chip->chipsize = new_size;
2348                chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2349                chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2350        }
2351
2352        if ((retval = setup_wear_reporting(nsmtd)) != 0)
2353                goto err_exit;
2354
2355        if ((retval = nandsim_debugfs_create(nand)) != 0)
2356                goto err_exit;
2357
2358        if ((retval = init_nandsim(nsmtd)) != 0)
2359                goto err_exit;
2360
2361        if ((retval = chip->scan_bbt(nsmtd)) != 0)
2362                goto err_exit;
2363
2364        if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2365                goto err_exit;
2366
2367        /* Register NAND partitions */
2368        retval = mtd_device_register(nsmtd, &nand->partitions[0],
2369                                     nand->nbparts);
2370        if (retval != 0)
2371                goto err_exit;
2372
2373        return 0;
2374
2375err_exit:
2376        nandsim_debugfs_remove(nand);
2377        free_nandsim(nand);
2378        nand_release(nsmtd);
2379        for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2380                kfree(nand->partitions[i].name);
2381error:
2382        kfree(chip);
2383        free_lists();
2384
2385        return retval;
2386}
2387
2388module_init(ns_init_module);
2389
2390/*
2391 * Module clean-up function
2392 */
2393static void __exit ns_cleanup_module(void)
2394{
2395        struct nand_chip *chip = mtd_to_nand(nsmtd);
2396        struct nandsim *ns = nand_get_controller_data(chip);
2397        int i;
2398
2399        nandsim_debugfs_remove(ns);
2400        free_nandsim(ns);    /* Free nandsim private resources */
2401        nand_release(nsmtd); /* Unregister driver */
2402        for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2403                kfree(ns->partitions[i].name);
2404        kfree(mtd_to_nand(nsmtd));        /* Free other structures */
2405        free_lists();
2406}
2407
2408module_exit(ns_cleanup_module);
2409
2410MODULE_LICENSE ("GPL");
2411MODULE_AUTHOR ("Artem B. Bityuckiy");
2412MODULE_DESCRIPTION ("The NAND flash simulator");
2413