linux/drivers/mtd/nand/qcom_nandc.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
   3 *
   4 * This software is licensed under the terms of the GNU General Public
   5 * License version 2, as published by the Free Software Foundation, and
   6 * may be copied, distributed, and modified under those terms.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/slab.h>
  16#include <linux/bitops.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/dmaengine.h>
  19#include <linux/module.h>
  20#include <linux/mtd/nand.h>
  21#include <linux/mtd/partitions.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/delay.h>
  25
  26/* NANDc reg offsets */
  27#define NAND_FLASH_CMD                  0x00
  28#define NAND_ADDR0                      0x04
  29#define NAND_ADDR1                      0x08
  30#define NAND_FLASH_CHIP_SELECT          0x0c
  31#define NAND_EXEC_CMD                   0x10
  32#define NAND_FLASH_STATUS               0x14
  33#define NAND_BUFFER_STATUS              0x18
  34#define NAND_DEV0_CFG0                  0x20
  35#define NAND_DEV0_CFG1                  0x24
  36#define NAND_DEV0_ECC_CFG               0x28
  37#define NAND_DEV1_ECC_CFG               0x2c
  38#define NAND_DEV1_CFG0                  0x30
  39#define NAND_DEV1_CFG1                  0x34
  40#define NAND_READ_ID                    0x40
  41#define NAND_READ_STATUS                0x44
  42#define NAND_DEV_CMD0                   0xa0
  43#define NAND_DEV_CMD1                   0xa4
  44#define NAND_DEV_CMD2                   0xa8
  45#define NAND_DEV_CMD_VLD                0xac
  46#define SFLASHC_BURST_CFG               0xe0
  47#define NAND_ERASED_CW_DETECT_CFG       0xe8
  48#define NAND_ERASED_CW_DETECT_STATUS    0xec
  49#define NAND_EBI2_ECC_BUF_CFG           0xf0
  50#define FLASH_BUF_ACC                   0x100
  51
  52#define NAND_CTRL                       0xf00
  53#define NAND_VERSION                    0xf08
  54#define NAND_READ_LOCATION_0            0xf20
  55#define NAND_READ_LOCATION_1            0xf24
  56
  57/* dummy register offsets, used by write_reg_dma */
  58#define NAND_DEV_CMD1_RESTORE           0xdead
  59#define NAND_DEV_CMD_VLD_RESTORE        0xbeef
  60
  61/* NAND_FLASH_CMD bits */
  62#define PAGE_ACC                        BIT(4)
  63#define LAST_PAGE                       BIT(5)
  64
  65/* NAND_FLASH_CHIP_SELECT bits */
  66#define NAND_DEV_SEL                    0
  67#define DM_EN                           BIT(2)
  68
  69/* NAND_FLASH_STATUS bits */
  70#define FS_OP_ERR                       BIT(4)
  71#define FS_READY_BSY_N                  BIT(5)
  72#define FS_MPU_ERR                      BIT(8)
  73#define FS_DEVICE_STS_ERR               BIT(16)
  74#define FS_DEVICE_WP                    BIT(23)
  75
  76/* NAND_BUFFER_STATUS bits */
  77#define BS_UNCORRECTABLE_BIT            BIT(8)
  78#define BS_CORRECTABLE_ERR_MSK          0x1f
  79
  80/* NAND_DEVn_CFG0 bits */
  81#define DISABLE_STATUS_AFTER_WRITE      4
  82#define CW_PER_PAGE                     6
  83#define UD_SIZE_BYTES                   9
  84#define ECC_PARITY_SIZE_BYTES_RS        19
  85#define SPARE_SIZE_BYTES                23
  86#define NUM_ADDR_CYCLES                 27
  87#define STATUS_BFR_READ                 30
  88#define SET_RD_MODE_AFTER_STATUS        31
  89
  90/* NAND_DEVn_CFG0 bits */
  91#define DEV0_CFG1_ECC_DISABLE           0
  92#define WIDE_FLASH                      1
  93#define NAND_RECOVERY_CYCLES            2
  94#define CS_ACTIVE_BSY                   5
  95#define BAD_BLOCK_BYTE_NUM              6
  96#define BAD_BLOCK_IN_SPARE_AREA         16
  97#define WR_RD_BSY_GAP                   17
  98#define ENABLE_BCH_ECC                  27
  99
 100/* NAND_DEV0_ECC_CFG bits */
 101#define ECC_CFG_ECC_DISABLE             0
 102#define ECC_SW_RESET                    1
 103#define ECC_MODE                        4
 104#define ECC_PARITY_SIZE_BYTES_BCH       8
 105#define ECC_NUM_DATA_BYTES              16
 106#define ECC_FORCE_CLK_OPEN              30
 107
 108/* NAND_DEV_CMD1 bits */
 109#define READ_ADDR                       0
 110
 111/* NAND_DEV_CMD_VLD bits */
 112#define READ_START_VLD                  0
 113
 114/* NAND_EBI2_ECC_BUF_CFG bits */
 115#define NUM_STEPS                       0
 116
 117/* NAND_ERASED_CW_DETECT_CFG bits */
 118#define ERASED_CW_ECC_MASK              1
 119#define AUTO_DETECT_RES                 0
 120#define MASK_ECC                        (1 << ERASED_CW_ECC_MASK)
 121#define RESET_ERASED_DET                (1 << AUTO_DETECT_RES)
 122#define ACTIVE_ERASED_DET               (0 << AUTO_DETECT_RES)
 123#define CLR_ERASED_PAGE_DET             (RESET_ERASED_DET | MASK_ECC)
 124#define SET_ERASED_PAGE_DET             (ACTIVE_ERASED_DET | MASK_ECC)
 125
 126/* NAND_ERASED_CW_DETECT_STATUS bits */
 127#define PAGE_ALL_ERASED                 BIT(7)
 128#define CODEWORD_ALL_ERASED             BIT(6)
 129#define PAGE_ERASED                     BIT(5)
 130#define CODEWORD_ERASED                 BIT(4)
 131#define ERASED_PAGE                     (PAGE_ALL_ERASED | PAGE_ERASED)
 132#define ERASED_CW                       (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
 133
 134/* Version Mask */
 135#define NAND_VERSION_MAJOR_MASK         0xf0000000
 136#define NAND_VERSION_MAJOR_SHIFT        28
 137#define NAND_VERSION_MINOR_MASK         0x0fff0000
 138#define NAND_VERSION_MINOR_SHIFT        16
 139
 140/* NAND OP_CMDs */
 141#define PAGE_READ                       0x2
 142#define PAGE_READ_WITH_ECC              0x3
 143#define PAGE_READ_WITH_ECC_SPARE        0x4
 144#define PROGRAM_PAGE                    0x6
 145#define PAGE_PROGRAM_WITH_ECC           0x7
 146#define PROGRAM_PAGE_SPARE              0x9
 147#define BLOCK_ERASE                     0xa
 148#define FETCH_ID                        0xb
 149#define RESET_DEVICE                    0xd
 150
 151/*
 152 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
 153 * the driver calls the chunks 'step' or 'codeword' interchangeably
 154 */
 155#define NANDC_STEP_SIZE                 512
 156
 157/*
 158 * the largest page size we support is 8K, this will have 16 steps/codewords
 159 * of 512 bytes each
 160 */
 161#define MAX_NUM_STEPS                   (SZ_8K / NANDC_STEP_SIZE)
 162
 163/* we read at most 3 registers per codeword scan */
 164#define MAX_REG_RD                      (3 * MAX_NUM_STEPS)
 165
 166/* ECC modes supported by the controller */
 167#define ECC_NONE        BIT(0)
 168#define ECC_RS_4BIT     BIT(1)
 169#define ECC_BCH_4BIT    BIT(2)
 170#define ECC_BCH_8BIT    BIT(3)
 171
 172struct desc_info {
 173        struct list_head node;
 174
 175        enum dma_data_direction dir;
 176        struct scatterlist sgl;
 177        struct dma_async_tx_descriptor *dma_desc;
 178};
 179
 180/*
 181 * holds the current register values that we want to write. acts as a contiguous
 182 * chunk of memory which we use to write the controller registers through DMA.
 183 */
 184struct nandc_regs {
 185        __le32 cmd;
 186        __le32 addr0;
 187        __le32 addr1;
 188        __le32 chip_sel;
 189        __le32 exec;
 190
 191        __le32 cfg0;
 192        __le32 cfg1;
 193        __le32 ecc_bch_cfg;
 194
 195        __le32 clrflashstatus;
 196        __le32 clrreadstatus;
 197
 198        __le32 cmd1;
 199        __le32 vld;
 200
 201        __le32 orig_cmd1;
 202        __le32 orig_vld;
 203
 204        __le32 ecc_buf_cfg;
 205};
 206
 207/*
 208 * NAND controller data struct
 209 *
 210 * @controller:                 base controller structure
 211 * @host_list:                  list containing all the chips attached to the
 212 *                              controller
 213 * @dev:                        parent device
 214 * @base:                       MMIO base
 215 * @base_dma:                   physical base address of controller registers
 216 * @core_clk:                   controller clock
 217 * @aon_clk:                    another controller clock
 218 *
 219 * @chan:                       dma channel
 220 * @cmd_crci:                   ADM DMA CRCI for command flow control
 221 * @data_crci:                  ADM DMA CRCI for data flow control
 222 * @desc_list:                  DMA descriptor list (list of desc_infos)
 223 *
 224 * @data_buffer:                our local DMA buffer for page read/writes,
 225 *                              used when we can't use the buffer provided
 226 *                              by upper layers directly
 227 * @buf_size/count/start:       markers for chip->read_buf/write_buf functions
 228 * @reg_read_buf:               local buffer for reading back registers via DMA
 229 * @reg_read_pos:               marker for data read in reg_read_buf
 230 *
 231 * @regs:                       a contiguous chunk of memory for DMA register
 232 *                              writes. contains the register values to be
 233 *                              written to controller
 234 * @cmd1/vld:                   some fixed controller register values
 235 * @ecc_modes:                  supported ECC modes by the current controller,
 236 *                              initialized via DT match data
 237 */
 238struct qcom_nand_controller {
 239        struct nand_hw_control controller;
 240        struct list_head host_list;
 241
 242        struct device *dev;
 243
 244        void __iomem *base;
 245        dma_addr_t base_dma;
 246
 247        struct clk *core_clk;
 248        struct clk *aon_clk;
 249
 250        struct dma_chan *chan;
 251        unsigned int cmd_crci;
 252        unsigned int data_crci;
 253        struct list_head desc_list;
 254
 255        u8              *data_buffer;
 256        int             buf_size;
 257        int             buf_count;
 258        int             buf_start;
 259
 260        __le32 *reg_read_buf;
 261        int reg_read_pos;
 262
 263        struct nandc_regs *regs;
 264
 265        u32 cmd1, vld;
 266        u32 ecc_modes;
 267};
 268
 269/*
 270 * NAND chip structure
 271 *
 272 * @chip:                       base NAND chip structure
 273 * @node:                       list node to add itself to host_list in
 274 *                              qcom_nand_controller
 275 *
 276 * @cs:                         chip select value for this chip
 277 * @cw_size:                    the number of bytes in a single step/codeword
 278 *                              of a page, consisting of all data, ecc, spare
 279 *                              and reserved bytes
 280 * @cw_data:                    the number of bytes within a codeword protected
 281 *                              by ECC
 282 * @use_ecc:                    request the controller to use ECC for the
 283 *                              upcoming read/write
 284 * @bch_enabled:                flag to tell whether BCH ECC mode is used
 285 * @ecc_bytes_hw:               ECC bytes used by controller hardware for this
 286 *                              chip
 287 * @status:                     value to be returned if NAND_CMD_STATUS command
 288 *                              is executed
 289 * @last_command:               keeps track of last command on this chip. used
 290 *                              for reading correct status
 291 *
 292 * @cfg0, cfg1, cfg0_raw..:     NANDc register configurations needed for
 293 *                              ecc/non-ecc mode for the current nand flash
 294 *                              device
 295 */
 296struct qcom_nand_host {
 297        struct nand_chip chip;
 298        struct list_head node;
 299
 300        int cs;
 301        int cw_size;
 302        int cw_data;
 303        bool use_ecc;
 304        bool bch_enabled;
 305        int ecc_bytes_hw;
 306        int spare_bytes;
 307        int bbm_size;
 308        u8 status;
 309        int last_command;
 310
 311        u32 cfg0, cfg1;
 312        u32 cfg0_raw, cfg1_raw;
 313        u32 ecc_buf_cfg;
 314        u32 ecc_bch_cfg;
 315        u32 clrflashstatus;
 316        u32 clrreadstatus;
 317};
 318
 319static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
 320{
 321        return container_of(chip, struct qcom_nand_host, chip);
 322}
 323
 324static inline struct qcom_nand_controller *
 325get_qcom_nand_controller(struct nand_chip *chip)
 326{
 327        return container_of(chip->controller, struct qcom_nand_controller,
 328                            controller);
 329}
 330
 331static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
 332{
 333        return ioread32(nandc->base + offset);
 334}
 335
 336static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
 337                               u32 val)
 338{
 339        iowrite32(val, nandc->base + offset);
 340}
 341
 342static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
 343{
 344        switch (offset) {
 345        case NAND_FLASH_CMD:
 346                return &regs->cmd;
 347        case NAND_ADDR0:
 348                return &regs->addr0;
 349        case NAND_ADDR1:
 350                return &regs->addr1;
 351        case NAND_FLASH_CHIP_SELECT:
 352                return &regs->chip_sel;
 353        case NAND_EXEC_CMD:
 354                return &regs->exec;
 355        case NAND_FLASH_STATUS:
 356                return &regs->clrflashstatus;
 357        case NAND_DEV0_CFG0:
 358                return &regs->cfg0;
 359        case NAND_DEV0_CFG1:
 360                return &regs->cfg1;
 361        case NAND_DEV0_ECC_CFG:
 362                return &regs->ecc_bch_cfg;
 363        case NAND_READ_STATUS:
 364                return &regs->clrreadstatus;
 365        case NAND_DEV_CMD1:
 366                return &regs->cmd1;
 367        case NAND_DEV_CMD1_RESTORE:
 368                return &regs->orig_cmd1;
 369        case NAND_DEV_CMD_VLD:
 370                return &regs->vld;
 371        case NAND_DEV_CMD_VLD_RESTORE:
 372                return &regs->orig_vld;
 373        case NAND_EBI2_ECC_BUF_CFG:
 374                return &regs->ecc_buf_cfg;
 375        default:
 376                return NULL;
 377        }
 378}
 379
 380static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
 381                          u32 val)
 382{
 383        struct nandc_regs *regs = nandc->regs;
 384        __le32 *reg;
 385
 386        reg = offset_to_nandc_reg(regs, offset);
 387
 388        if (reg)
 389                *reg = cpu_to_le32(val);
 390}
 391
 392/* helper to configure address register values */
 393static void set_address(struct qcom_nand_host *host, u16 column, int page)
 394{
 395        struct nand_chip *chip = &host->chip;
 396        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 397
 398        if (chip->options & NAND_BUSWIDTH_16)
 399                column >>= 1;
 400
 401        nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
 402        nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
 403}
 404
 405/*
 406 * update_rw_regs:      set up read/write register values, these will be
 407 *                      written to the NAND controller registers via DMA
 408 *
 409 * @num_cw:             number of steps for the read/write operation
 410 * @read:               read or write operation
 411 */
 412static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
 413{
 414        struct nand_chip *chip = &host->chip;
 415        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 416        u32 cmd, cfg0, cfg1, ecc_bch_cfg;
 417
 418        if (read) {
 419                if (host->use_ecc)
 420                        cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
 421                else
 422                        cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
 423        } else {
 424                        cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
 425        }
 426
 427        if (host->use_ecc) {
 428                cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
 429                                (num_cw - 1) << CW_PER_PAGE;
 430
 431                cfg1 = host->cfg1;
 432                ecc_bch_cfg = host->ecc_bch_cfg;
 433        } else {
 434                cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
 435                                (num_cw - 1) << CW_PER_PAGE;
 436
 437                cfg1 = host->cfg1_raw;
 438                ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
 439        }
 440
 441        nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
 442        nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
 443        nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
 444        nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
 445        nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
 446        nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
 447        nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
 448        nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 449}
 450
 451static int prep_dma_desc(struct qcom_nand_controller *nandc, bool read,
 452                         int reg_off, const void *vaddr, int size,
 453                         bool flow_control)
 454{
 455        struct desc_info *desc;
 456        struct dma_async_tx_descriptor *dma_desc;
 457        struct scatterlist *sgl;
 458        struct dma_slave_config slave_conf;
 459        enum dma_transfer_direction dir_eng;
 460        int ret;
 461
 462        desc = kzalloc(sizeof(*desc), GFP_KERNEL);
 463        if (!desc)
 464                return -ENOMEM;
 465
 466        sgl = &desc->sgl;
 467
 468        sg_init_one(sgl, vaddr, size);
 469
 470        if (read) {
 471                dir_eng = DMA_DEV_TO_MEM;
 472                desc->dir = DMA_FROM_DEVICE;
 473        } else {
 474                dir_eng = DMA_MEM_TO_DEV;
 475                desc->dir = DMA_TO_DEVICE;
 476        }
 477
 478        ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
 479        if (ret == 0) {
 480                ret = -ENOMEM;
 481                goto err;
 482        }
 483
 484        memset(&slave_conf, 0x00, sizeof(slave_conf));
 485
 486        slave_conf.device_fc = flow_control;
 487        if (read) {
 488                slave_conf.src_maxburst = 16;
 489                slave_conf.src_addr = nandc->base_dma + reg_off;
 490                slave_conf.slave_id = nandc->data_crci;
 491        } else {
 492                slave_conf.dst_maxburst = 16;
 493                slave_conf.dst_addr = nandc->base_dma + reg_off;
 494                slave_conf.slave_id = nandc->cmd_crci;
 495        }
 496
 497        ret = dmaengine_slave_config(nandc->chan, &slave_conf);
 498        if (ret) {
 499                dev_err(nandc->dev, "failed to configure dma channel\n");
 500                goto err;
 501        }
 502
 503        dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
 504        if (!dma_desc) {
 505                dev_err(nandc->dev, "failed to prepare desc\n");
 506                ret = -EINVAL;
 507                goto err;
 508        }
 509
 510        desc->dma_desc = dma_desc;
 511
 512        list_add_tail(&desc->node, &nandc->desc_list);
 513
 514        return 0;
 515err:
 516        kfree(desc);
 517
 518        return ret;
 519}
 520
 521/*
 522 * read_reg_dma:        prepares a descriptor to read a given number of
 523 *                      contiguous registers to the reg_read_buf pointer
 524 *
 525 * @first:              offset of the first register in the contiguous block
 526 * @num_regs:           number of registers to read
 527 */
 528static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
 529                        int num_regs)
 530{
 531        bool flow_control = false;
 532        void *vaddr;
 533        int size;
 534
 535        if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
 536                flow_control = true;
 537
 538        size = num_regs * sizeof(u32);
 539        vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
 540        nandc->reg_read_pos += num_regs;
 541
 542        return prep_dma_desc(nandc, true, first, vaddr, size, flow_control);
 543}
 544
 545/*
 546 * write_reg_dma:       prepares a descriptor to write a given number of
 547 *                      contiguous registers
 548 *
 549 * @first:              offset of the first register in the contiguous block
 550 * @num_regs:           number of registers to write
 551 */
 552static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
 553                         int num_regs)
 554{
 555        bool flow_control = false;
 556        struct nandc_regs *regs = nandc->regs;
 557        void *vaddr;
 558        int size;
 559
 560        vaddr = offset_to_nandc_reg(regs, first);
 561
 562        if (first == NAND_FLASH_CMD)
 563                flow_control = true;
 564
 565        if (first == NAND_DEV_CMD1_RESTORE)
 566                first = NAND_DEV_CMD1;
 567
 568        if (first == NAND_DEV_CMD_VLD_RESTORE)
 569                first = NAND_DEV_CMD_VLD;
 570
 571        size = num_regs * sizeof(u32);
 572
 573        return prep_dma_desc(nandc, false, first, vaddr, size, flow_control);
 574}
 575
 576/*
 577 * read_data_dma:       prepares a DMA descriptor to transfer data from the
 578 *                      controller's internal buffer to the buffer 'vaddr'
 579 *
 580 * @reg_off:            offset within the controller's data buffer
 581 * @vaddr:              virtual address of the buffer we want to write to
 582 * @size:               DMA transaction size in bytes
 583 */
 584static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
 585                         const u8 *vaddr, int size)
 586{
 587        return prep_dma_desc(nandc, true, reg_off, vaddr, size, false);
 588}
 589
 590/*
 591 * write_data_dma:      prepares a DMA descriptor to transfer data from
 592 *                      'vaddr' to the controller's internal buffer
 593 *
 594 * @reg_off:            offset within the controller's data buffer
 595 * @vaddr:              virtual address of the buffer we want to read from
 596 * @size:               DMA transaction size in bytes
 597 */
 598static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
 599                          const u8 *vaddr, int size)
 600{
 601        return prep_dma_desc(nandc, false, reg_off, vaddr, size, false);
 602}
 603
 604/*
 605 * helper to prepare dma descriptors to configure registers needed for reading a
 606 * codeword/step in a page
 607 */
 608static void config_cw_read(struct qcom_nand_controller *nandc)
 609{
 610        write_reg_dma(nandc, NAND_FLASH_CMD, 3);
 611        write_reg_dma(nandc, NAND_DEV0_CFG0, 3);
 612        write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1);
 613
 614        write_reg_dma(nandc, NAND_EXEC_CMD, 1);
 615
 616        read_reg_dma(nandc, NAND_FLASH_STATUS, 2);
 617        read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1);
 618}
 619
 620/*
 621 * helpers to prepare dma descriptors used to configure registers needed for
 622 * writing a codeword/step in a page
 623 */
 624static void config_cw_write_pre(struct qcom_nand_controller *nandc)
 625{
 626        write_reg_dma(nandc, NAND_FLASH_CMD, 3);
 627        write_reg_dma(nandc, NAND_DEV0_CFG0, 3);
 628        write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1);
 629}
 630
 631static void config_cw_write_post(struct qcom_nand_controller *nandc)
 632{
 633        write_reg_dma(nandc, NAND_EXEC_CMD, 1);
 634
 635        read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
 636
 637        write_reg_dma(nandc, NAND_FLASH_STATUS, 1);
 638        write_reg_dma(nandc, NAND_READ_STATUS, 1);
 639}
 640
 641/*
 642 * the following functions are used within chip->cmdfunc() to perform different
 643 * NAND_CMD_* commands
 644 */
 645
 646/* sets up descriptors for NAND_CMD_PARAM */
 647static int nandc_param(struct qcom_nand_host *host)
 648{
 649        struct nand_chip *chip = &host->chip;
 650        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 651
 652        /*
 653         * NAND_CMD_PARAM is called before we know much about the FLASH chip
 654         * in use. we configure the controller to perform a raw read of 512
 655         * bytes to read onfi params
 656         */
 657        nandc_set_reg(nandc, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE);
 658        nandc_set_reg(nandc, NAND_ADDR0, 0);
 659        nandc_set_reg(nandc, NAND_ADDR1, 0);
 660        nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
 661                                        | 512 << UD_SIZE_BYTES
 662                                        | 5 << NUM_ADDR_CYCLES
 663                                        | 0 << SPARE_SIZE_BYTES);
 664        nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
 665                                        | 0 << CS_ACTIVE_BSY
 666                                        | 17 << BAD_BLOCK_BYTE_NUM
 667                                        | 1 << BAD_BLOCK_IN_SPARE_AREA
 668                                        | 2 << WR_RD_BSY_GAP
 669                                        | 0 << WIDE_FLASH
 670                                        | 1 << DEV0_CFG1_ECC_DISABLE);
 671        nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
 672
 673        /* configure CMD1 and VLD for ONFI param probing */
 674        nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
 675                      (nandc->vld & ~(1 << READ_START_VLD))
 676                      | 0 << READ_START_VLD);
 677        nandc_set_reg(nandc, NAND_DEV_CMD1,
 678                      (nandc->cmd1 & ~(0xFF << READ_ADDR))
 679                      | NAND_CMD_PARAM << READ_ADDR);
 680
 681        nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 682
 683        nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
 684        nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
 685
 686        write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1);
 687        write_reg_dma(nandc, NAND_DEV_CMD1, 1);
 688
 689        nandc->buf_count = 512;
 690        memset(nandc->data_buffer, 0xff, nandc->buf_count);
 691
 692        config_cw_read(nandc);
 693
 694        read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
 695                      nandc->buf_count);
 696
 697        /* restore CMD1 and VLD regs */
 698        write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1);
 699        write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1);
 700
 701        return 0;
 702}
 703
 704/* sets up descriptors for NAND_CMD_ERASE1 */
 705static int erase_block(struct qcom_nand_host *host, int page_addr)
 706{
 707        struct nand_chip *chip = &host->chip;
 708        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 709
 710        nandc_set_reg(nandc, NAND_FLASH_CMD,
 711                      BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
 712        nandc_set_reg(nandc, NAND_ADDR0, page_addr);
 713        nandc_set_reg(nandc, NAND_ADDR1, 0);
 714        nandc_set_reg(nandc, NAND_DEV0_CFG0,
 715                      host->cfg0_raw & ~(7 << CW_PER_PAGE));
 716        nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
 717        nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 718        nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
 719        nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
 720
 721        write_reg_dma(nandc, NAND_FLASH_CMD, 3);
 722        write_reg_dma(nandc, NAND_DEV0_CFG0, 2);
 723        write_reg_dma(nandc, NAND_EXEC_CMD, 1);
 724
 725        read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
 726
 727        write_reg_dma(nandc, NAND_FLASH_STATUS, 1);
 728        write_reg_dma(nandc, NAND_READ_STATUS, 1);
 729
 730        return 0;
 731}
 732
 733/* sets up descriptors for NAND_CMD_READID */
 734static int read_id(struct qcom_nand_host *host, int column)
 735{
 736        struct nand_chip *chip = &host->chip;
 737        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 738
 739        if (column == -1)
 740                return 0;
 741
 742        nandc_set_reg(nandc, NAND_FLASH_CMD, FETCH_ID);
 743        nandc_set_reg(nandc, NAND_ADDR0, column);
 744        nandc_set_reg(nandc, NAND_ADDR1, 0);
 745        nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
 746        nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 747
 748        write_reg_dma(nandc, NAND_FLASH_CMD, 4);
 749        write_reg_dma(nandc, NAND_EXEC_CMD, 1);
 750
 751        read_reg_dma(nandc, NAND_READ_ID, 1);
 752
 753        return 0;
 754}
 755
 756/* sets up descriptors for NAND_CMD_RESET */
 757static int reset(struct qcom_nand_host *host)
 758{
 759        struct nand_chip *chip = &host->chip;
 760        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 761
 762        nandc_set_reg(nandc, NAND_FLASH_CMD, RESET_DEVICE);
 763        nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 764
 765        write_reg_dma(nandc, NAND_FLASH_CMD, 1);
 766        write_reg_dma(nandc, NAND_EXEC_CMD, 1);
 767
 768        read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
 769
 770        return 0;
 771}
 772
 773/* helpers to submit/free our list of dma descriptors */
 774static int submit_descs(struct qcom_nand_controller *nandc)
 775{
 776        struct desc_info *desc;
 777        dma_cookie_t cookie = 0;
 778
 779        list_for_each_entry(desc, &nandc->desc_list, node)
 780                cookie = dmaengine_submit(desc->dma_desc);
 781
 782        if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
 783                return -ETIMEDOUT;
 784
 785        return 0;
 786}
 787
 788static void free_descs(struct qcom_nand_controller *nandc)
 789{
 790        struct desc_info *desc, *n;
 791
 792        list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
 793                list_del(&desc->node);
 794                dma_unmap_sg(nandc->dev, &desc->sgl, 1, desc->dir);
 795                kfree(desc);
 796        }
 797}
 798
 799/* reset the register read buffer for next NAND operation */
 800static void clear_read_regs(struct qcom_nand_controller *nandc)
 801{
 802        nandc->reg_read_pos = 0;
 803        memset(nandc->reg_read_buf, 0,
 804               MAX_REG_RD * sizeof(*nandc->reg_read_buf));
 805}
 806
 807static void pre_command(struct qcom_nand_host *host, int command)
 808{
 809        struct nand_chip *chip = &host->chip;
 810        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 811
 812        nandc->buf_count = 0;
 813        nandc->buf_start = 0;
 814        host->use_ecc = false;
 815        host->last_command = command;
 816
 817        clear_read_regs(nandc);
 818}
 819
 820/*
 821 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
 822 * privately maintained status byte, this status byte can be read after
 823 * NAND_CMD_STATUS is called
 824 */
 825static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
 826{
 827        struct nand_chip *chip = &host->chip;
 828        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 829        struct nand_ecc_ctrl *ecc = &chip->ecc;
 830        int num_cw;
 831        int i;
 832
 833        num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
 834
 835        for (i = 0; i < num_cw; i++) {
 836                u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
 837
 838                if (flash_status & FS_MPU_ERR)
 839                        host->status &= ~NAND_STATUS_WP;
 840
 841                if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
 842                                                 (flash_status &
 843                                                  FS_DEVICE_STS_ERR)))
 844                        host->status |= NAND_STATUS_FAIL;
 845        }
 846}
 847
 848static void post_command(struct qcom_nand_host *host, int command)
 849{
 850        struct nand_chip *chip = &host->chip;
 851        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 852
 853        switch (command) {
 854        case NAND_CMD_READID:
 855                memcpy(nandc->data_buffer, nandc->reg_read_buf,
 856                       nandc->buf_count);
 857                break;
 858        case NAND_CMD_PAGEPROG:
 859        case NAND_CMD_ERASE1:
 860                parse_erase_write_errors(host, command);
 861                break;
 862        default:
 863                break;
 864        }
 865}
 866
 867/*
 868 * Implements chip->cmdfunc. It's  only used for a limited set of commands.
 869 * The rest of the commands wouldn't be called by upper layers. For example,
 870 * NAND_CMD_READOOB would never be called because we have our own versions
 871 * of read_oob ops for nand_ecc_ctrl.
 872 */
 873static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
 874                               int column, int page_addr)
 875{
 876        struct nand_chip *chip = mtd_to_nand(mtd);
 877        struct qcom_nand_host *host = to_qcom_nand_host(chip);
 878        struct nand_ecc_ctrl *ecc = &chip->ecc;
 879        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 880        bool wait = false;
 881        int ret = 0;
 882
 883        pre_command(host, command);
 884
 885        switch (command) {
 886        case NAND_CMD_RESET:
 887                ret = reset(host);
 888                wait = true;
 889                break;
 890
 891        case NAND_CMD_READID:
 892                nandc->buf_count = 4;
 893                ret = read_id(host, column);
 894                wait = true;
 895                break;
 896
 897        case NAND_CMD_PARAM:
 898                ret = nandc_param(host);
 899                wait = true;
 900                break;
 901
 902        case NAND_CMD_ERASE1:
 903                ret = erase_block(host, page_addr);
 904                wait = true;
 905                break;
 906
 907        case NAND_CMD_READ0:
 908                /* we read the entire page for now */
 909                WARN_ON(column != 0);
 910
 911                host->use_ecc = true;
 912                set_address(host, 0, page_addr);
 913                update_rw_regs(host, ecc->steps, true);
 914                break;
 915
 916        case NAND_CMD_SEQIN:
 917                WARN_ON(column != 0);
 918                set_address(host, 0, page_addr);
 919                break;
 920
 921        case NAND_CMD_PAGEPROG:
 922        case NAND_CMD_STATUS:
 923        case NAND_CMD_NONE:
 924        default:
 925                break;
 926        }
 927
 928        if (ret) {
 929                dev_err(nandc->dev, "failure executing command %d\n",
 930                        command);
 931                free_descs(nandc);
 932                return;
 933        }
 934
 935        if (wait) {
 936                ret = submit_descs(nandc);
 937                if (ret)
 938                        dev_err(nandc->dev,
 939                                "failure submitting descs for command %d\n",
 940                                command);
 941        }
 942
 943        free_descs(nandc);
 944
 945        post_command(host, command);
 946}
 947
 948/*
 949 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
 950 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
 951 *
 952 * when using RS ECC, the HW reports the same erros when reading an erased CW,
 953 * but it notifies that it is an erased CW by placing special characters at
 954 * certain offsets in the buffer.
 955 *
 956 * verify if the page is erased or not, and fix up the page for RS ECC by
 957 * replacing the special characters with 0xff.
 958 */
 959static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
 960{
 961        u8 empty1, empty2;
 962
 963        /*
 964         * an erased page flags an error in NAND_FLASH_STATUS, check if the page
 965         * is erased by looking for 0x54s at offsets 3 and 175 from the
 966         * beginning of each codeword
 967         */
 968
 969        empty1 = data_buf[3];
 970        empty2 = data_buf[175];
 971
 972        /*
 973         * if the erased codework markers, if they exist override them with
 974         * 0xffs
 975         */
 976        if ((empty1 == 0x54 && empty2 == 0xff) ||
 977            (empty1 == 0xff && empty2 == 0x54)) {
 978                data_buf[3] = 0xff;
 979                data_buf[175] = 0xff;
 980        }
 981
 982        /*
 983         * check if the entire chunk contains 0xffs or not. if it doesn't, then
 984         * restore the original values at the special offsets
 985         */
 986        if (memchr_inv(data_buf, 0xff, data_len)) {
 987                data_buf[3] = empty1;
 988                data_buf[175] = empty2;
 989
 990                return false;
 991        }
 992
 993        return true;
 994}
 995
 996struct read_stats {
 997        __le32 flash;
 998        __le32 buffer;
 999        __le32 erased_cw;
1000};
1001
1002/*
1003 * reads back status registers set by the controller to notify page read
1004 * errors. this is equivalent to what 'ecc->correct()' would do.
1005 */
1006static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1007                             u8 *oob_buf)
1008{
1009        struct nand_chip *chip = &host->chip;
1010        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1011        struct mtd_info *mtd = nand_to_mtd(chip);
1012        struct nand_ecc_ctrl *ecc = &chip->ecc;
1013        unsigned int max_bitflips = 0;
1014        struct read_stats *buf;
1015        int i;
1016
1017        buf = (struct read_stats *)nandc->reg_read_buf;
1018
1019        for (i = 0; i < ecc->steps; i++, buf++) {
1020                u32 flash, buffer, erased_cw;
1021                int data_len, oob_len;
1022
1023                if (i == (ecc->steps - 1)) {
1024                        data_len = ecc->size - ((ecc->steps - 1) << 2);
1025                        oob_len = ecc->steps << 2;
1026                } else {
1027                        data_len = host->cw_data;
1028                        oob_len = 0;
1029                }
1030
1031                flash = le32_to_cpu(buf->flash);
1032                buffer = le32_to_cpu(buf->buffer);
1033                erased_cw = le32_to_cpu(buf->erased_cw);
1034
1035                if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1036                        bool erased;
1037
1038                        /* ignore erased codeword errors */
1039                        if (host->bch_enabled) {
1040                                erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1041                                         true : false;
1042                        } else {
1043                                erased = erased_chunk_check_and_fixup(data_buf,
1044                                                                      data_len);
1045                        }
1046
1047                        if (erased) {
1048                                data_buf += data_len;
1049                                if (oob_buf)
1050                                        oob_buf += oob_len + ecc->bytes;
1051                                continue;
1052                        }
1053
1054                        if (buffer & BS_UNCORRECTABLE_BIT) {
1055                                int ret, ecclen, extraooblen;
1056                                void *eccbuf;
1057
1058                                eccbuf = oob_buf ? oob_buf + oob_len : NULL;
1059                                ecclen = oob_buf ? host->ecc_bytes_hw : 0;
1060                                extraooblen = oob_buf ? oob_len : 0;
1061
1062                                /*
1063                                 * make sure it isn't an erased page reported
1064                                 * as not-erased by HW because of a few bitflips
1065                                 */
1066                                ret = nand_check_erased_ecc_chunk(data_buf,
1067                                        data_len, eccbuf, ecclen, oob_buf,
1068                                        extraooblen, ecc->strength);
1069                                if (ret < 0) {
1070                                        mtd->ecc_stats.failed++;
1071                                } else {
1072                                        mtd->ecc_stats.corrected += ret;
1073                                        max_bitflips =
1074                                                max_t(unsigned int, max_bitflips, ret);
1075                                }
1076                        }
1077                } else {
1078                        unsigned int stat;
1079
1080                        stat = buffer & BS_CORRECTABLE_ERR_MSK;
1081                        mtd->ecc_stats.corrected += stat;
1082                        max_bitflips = max(max_bitflips, stat);
1083                }
1084
1085                data_buf += data_len;
1086                if (oob_buf)
1087                        oob_buf += oob_len + ecc->bytes;
1088        }
1089
1090        return max_bitflips;
1091}
1092
1093/*
1094 * helper to perform the actual page read operation, used by ecc->read_page(),
1095 * ecc->read_oob()
1096 */
1097static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1098                         u8 *oob_buf)
1099{
1100        struct nand_chip *chip = &host->chip;
1101        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1102        struct nand_ecc_ctrl *ecc = &chip->ecc;
1103        int i, ret;
1104
1105        /* queue cmd descs for each codeword */
1106        for (i = 0; i < ecc->steps; i++) {
1107                int data_size, oob_size;
1108
1109                if (i == (ecc->steps - 1)) {
1110                        data_size = ecc->size - ((ecc->steps - 1) << 2);
1111                        oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1112                                   host->spare_bytes;
1113                } else {
1114                        data_size = host->cw_data;
1115                        oob_size = host->ecc_bytes_hw + host->spare_bytes;
1116                }
1117
1118                config_cw_read(nandc);
1119
1120                if (data_buf)
1121                        read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1122                                      data_size);
1123
1124                /*
1125                 * when ecc is enabled, the controller doesn't read the real
1126                 * or dummy bad block markers in each chunk. To maintain a
1127                 * consistent layout across RAW and ECC reads, we just
1128                 * leave the real/dummy BBM offsets empty (i.e, filled with
1129                 * 0xffs)
1130                 */
1131                if (oob_buf) {
1132                        int j;
1133
1134                        for (j = 0; j < host->bbm_size; j++)
1135                                *oob_buf++ = 0xff;
1136
1137                        read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1138                                      oob_buf, oob_size);
1139                }
1140
1141                if (data_buf)
1142                        data_buf += data_size;
1143                if (oob_buf)
1144                        oob_buf += oob_size;
1145        }
1146
1147        ret = submit_descs(nandc);
1148        if (ret)
1149                dev_err(nandc->dev, "failure to read page/oob\n");
1150
1151        free_descs(nandc);
1152
1153        return ret;
1154}
1155
1156/*
1157 * a helper that copies the last step/codeword of a page (containing free oob)
1158 * into our local buffer
1159 */
1160static int copy_last_cw(struct qcom_nand_host *host, int page)
1161{
1162        struct nand_chip *chip = &host->chip;
1163        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1164        struct nand_ecc_ctrl *ecc = &chip->ecc;
1165        int size;
1166        int ret;
1167
1168        clear_read_regs(nandc);
1169
1170        size = host->use_ecc ? host->cw_data : host->cw_size;
1171
1172        /* prepare a clean read buffer */
1173        memset(nandc->data_buffer, 0xff, size);
1174
1175        set_address(host, host->cw_size * (ecc->steps - 1), page);
1176        update_rw_regs(host, 1, true);
1177
1178        config_cw_read(nandc);
1179
1180        read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size);
1181
1182        ret = submit_descs(nandc);
1183        if (ret)
1184                dev_err(nandc->dev, "failed to copy last codeword\n");
1185
1186        free_descs(nandc);
1187
1188        return ret;
1189}
1190
1191/* implements ecc->read_page() */
1192static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1193                                uint8_t *buf, int oob_required, int page)
1194{
1195        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1196        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1197        u8 *data_buf, *oob_buf = NULL;
1198        int ret;
1199
1200        data_buf = buf;
1201        oob_buf = oob_required ? chip->oob_poi : NULL;
1202
1203        ret = read_page_ecc(host, data_buf, oob_buf);
1204        if (ret) {
1205                dev_err(nandc->dev, "failure to read page\n");
1206                return ret;
1207        }
1208
1209        return parse_read_errors(host, data_buf, oob_buf);
1210}
1211
1212/* implements ecc->read_page_raw() */
1213static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1214                                    struct nand_chip *chip, uint8_t *buf,
1215                                    int oob_required, int page)
1216{
1217        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1218        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1219        u8 *data_buf, *oob_buf;
1220        struct nand_ecc_ctrl *ecc = &chip->ecc;
1221        int i, ret;
1222
1223        data_buf = buf;
1224        oob_buf = chip->oob_poi;
1225
1226        host->use_ecc = false;
1227        update_rw_regs(host, ecc->steps, true);
1228
1229        for (i = 0; i < ecc->steps; i++) {
1230                int data_size1, data_size2, oob_size1, oob_size2;
1231                int reg_off = FLASH_BUF_ACC;
1232
1233                data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1234                oob_size1 = host->bbm_size;
1235
1236                if (i == (ecc->steps - 1)) {
1237                        data_size2 = ecc->size - data_size1 -
1238                                     ((ecc->steps - 1) << 2);
1239                        oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1240                                    host->spare_bytes;
1241                } else {
1242                        data_size2 = host->cw_data - data_size1;
1243                        oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1244                }
1245
1246                config_cw_read(nandc);
1247
1248                read_data_dma(nandc, reg_off, data_buf, data_size1);
1249                reg_off += data_size1;
1250                data_buf += data_size1;
1251
1252                read_data_dma(nandc, reg_off, oob_buf, oob_size1);
1253                reg_off += oob_size1;
1254                oob_buf += oob_size1;
1255
1256                read_data_dma(nandc, reg_off, data_buf, data_size2);
1257                reg_off += data_size2;
1258                data_buf += data_size2;
1259
1260                read_data_dma(nandc, reg_off, oob_buf, oob_size2);
1261                oob_buf += oob_size2;
1262        }
1263
1264        ret = submit_descs(nandc);
1265        if (ret)
1266                dev_err(nandc->dev, "failure to read raw page\n");
1267
1268        free_descs(nandc);
1269
1270        return 0;
1271}
1272
1273/* implements ecc->read_oob() */
1274static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1275                               int page)
1276{
1277        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1278        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1279        struct nand_ecc_ctrl *ecc = &chip->ecc;
1280        int ret;
1281
1282        clear_read_regs(nandc);
1283
1284        host->use_ecc = true;
1285        set_address(host, 0, page);
1286        update_rw_regs(host, ecc->steps, true);
1287
1288        ret = read_page_ecc(host, NULL, chip->oob_poi);
1289        if (ret)
1290                dev_err(nandc->dev, "failure to read oob\n");
1291
1292        return ret;
1293}
1294
1295/* implements ecc->write_page() */
1296static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1297                                 const uint8_t *buf, int oob_required, int page)
1298{
1299        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1300        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1301        struct nand_ecc_ctrl *ecc = &chip->ecc;
1302        u8 *data_buf, *oob_buf;
1303        int i, ret;
1304
1305        clear_read_regs(nandc);
1306
1307        data_buf = (u8 *)buf;
1308        oob_buf = chip->oob_poi;
1309
1310        host->use_ecc = true;
1311        update_rw_regs(host, ecc->steps, false);
1312
1313        for (i = 0; i < ecc->steps; i++) {
1314                int data_size, oob_size;
1315
1316                if (i == (ecc->steps - 1)) {
1317                        data_size = ecc->size - ((ecc->steps - 1) << 2);
1318                        oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1319                                   host->spare_bytes;
1320                } else {
1321                        data_size = host->cw_data;
1322                        oob_size = ecc->bytes;
1323                }
1324
1325                config_cw_write_pre(nandc);
1326
1327                write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size);
1328
1329                /*
1330                 * when ECC is enabled, we don't really need to write anything
1331                 * to oob for the first n - 1 codewords since these oob regions
1332                 * just contain ECC bytes that's written by the controller
1333                 * itself. For the last codeword, we skip the bbm positions and
1334                 * write to the free oob area.
1335                 */
1336                if (i == (ecc->steps - 1)) {
1337                        oob_buf += host->bbm_size;
1338
1339                        write_data_dma(nandc, FLASH_BUF_ACC + data_size,
1340                                       oob_buf, oob_size);
1341                }
1342
1343                config_cw_write_post(nandc);
1344
1345                data_buf += data_size;
1346                oob_buf += oob_size;
1347        }
1348
1349        ret = submit_descs(nandc);
1350        if (ret)
1351                dev_err(nandc->dev, "failure to write page\n");
1352
1353        free_descs(nandc);
1354
1355        return ret;
1356}
1357
1358/* implements ecc->write_page_raw() */
1359static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
1360                                     struct nand_chip *chip, const uint8_t *buf,
1361                                     int oob_required, int page)
1362{
1363        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1364        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1365        struct nand_ecc_ctrl *ecc = &chip->ecc;
1366        u8 *data_buf, *oob_buf;
1367        int i, ret;
1368
1369        clear_read_regs(nandc);
1370
1371        data_buf = (u8 *)buf;
1372        oob_buf = chip->oob_poi;
1373
1374        host->use_ecc = false;
1375        update_rw_regs(host, ecc->steps, false);
1376
1377        for (i = 0; i < ecc->steps; i++) {
1378                int data_size1, data_size2, oob_size1, oob_size2;
1379                int reg_off = FLASH_BUF_ACC;
1380
1381                data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1382                oob_size1 = host->bbm_size;
1383
1384                if (i == (ecc->steps - 1)) {
1385                        data_size2 = ecc->size - data_size1 -
1386                                     ((ecc->steps - 1) << 2);
1387                        oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1388                                    host->spare_bytes;
1389                } else {
1390                        data_size2 = host->cw_data - data_size1;
1391                        oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1392                }
1393
1394                config_cw_write_pre(nandc);
1395
1396                write_data_dma(nandc, reg_off, data_buf, data_size1);
1397                reg_off += data_size1;
1398                data_buf += data_size1;
1399
1400                write_data_dma(nandc, reg_off, oob_buf, oob_size1);
1401                reg_off += oob_size1;
1402                oob_buf += oob_size1;
1403
1404                write_data_dma(nandc, reg_off, data_buf, data_size2);
1405                reg_off += data_size2;
1406                data_buf += data_size2;
1407
1408                write_data_dma(nandc, reg_off, oob_buf, oob_size2);
1409                oob_buf += oob_size2;
1410
1411                config_cw_write_post(nandc);
1412        }
1413
1414        ret = submit_descs(nandc);
1415        if (ret)
1416                dev_err(nandc->dev, "failure to write raw page\n");
1417
1418        free_descs(nandc);
1419
1420        return ret;
1421}
1422
1423/*
1424 * implements ecc->write_oob()
1425 *
1426 * the NAND controller cannot write only data or only oob within a codeword,
1427 * since ecc is calculated for the combined codeword. we first copy the
1428 * entire contents for the last codeword(data + oob), replace the old oob
1429 * with the new one in chip->oob_poi, and then write the entire codeword.
1430 * this read-copy-write operation results in a slight performance loss.
1431 */
1432static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1433                                int page)
1434{
1435        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1436        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1437        struct nand_ecc_ctrl *ecc = &chip->ecc;
1438        u8 *oob = chip->oob_poi;
1439        int data_size, oob_size;
1440        int ret, status = 0;
1441
1442        host->use_ecc = true;
1443
1444        ret = copy_last_cw(host, page);
1445        if (ret)
1446                return ret;
1447
1448        clear_read_regs(nandc);
1449
1450        /* calculate the data and oob size for the last codeword/step */
1451        data_size = ecc->size - ((ecc->steps - 1) << 2);
1452        oob_size = mtd->oobavail;
1453
1454        /* override new oob content to last codeword */
1455        mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
1456                                    0, mtd->oobavail);
1457
1458        set_address(host, host->cw_size * (ecc->steps - 1), page);
1459        update_rw_regs(host, 1, false);
1460
1461        config_cw_write_pre(nandc);
1462        write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1463                       data_size + oob_size);
1464        config_cw_write_post(nandc);
1465
1466        ret = submit_descs(nandc);
1467
1468        free_descs(nandc);
1469
1470        if (ret) {
1471                dev_err(nandc->dev, "failure to write oob\n");
1472                return -EIO;
1473        }
1474
1475        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1476
1477        status = chip->waitfunc(mtd, chip);
1478
1479        return status & NAND_STATUS_FAIL ? -EIO : 0;
1480}
1481
1482static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
1483{
1484        struct nand_chip *chip = mtd_to_nand(mtd);
1485        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1486        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1487        struct nand_ecc_ctrl *ecc = &chip->ecc;
1488        int page, ret, bbpos, bad = 0;
1489        u32 flash_status;
1490
1491        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1492
1493        /*
1494         * configure registers for a raw sub page read, the address is set to
1495         * the beginning of the last codeword, we don't care about reading ecc
1496         * portion of oob. we just want the first few bytes from this codeword
1497         * that contains the BBM
1498         */
1499        host->use_ecc = false;
1500
1501        ret = copy_last_cw(host, page);
1502        if (ret)
1503                goto err;
1504
1505        flash_status = le32_to_cpu(nandc->reg_read_buf[0]);
1506
1507        if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) {
1508                dev_warn(nandc->dev, "error when trying to read BBM\n");
1509                goto err;
1510        }
1511
1512        bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
1513
1514        bad = nandc->data_buffer[bbpos] != 0xff;
1515
1516        if (chip->options & NAND_BUSWIDTH_16)
1517                bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
1518err:
1519        return bad;
1520}
1521
1522static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
1523{
1524        struct nand_chip *chip = mtd_to_nand(mtd);
1525        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1526        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1527        struct nand_ecc_ctrl *ecc = &chip->ecc;
1528        int page, ret, status = 0;
1529
1530        clear_read_regs(nandc);
1531
1532        /*
1533         * to mark the BBM as bad, we flash the entire last codeword with 0s.
1534         * we don't care about the rest of the content in the codeword since
1535         * we aren't going to use this block again
1536         */
1537        memset(nandc->data_buffer, 0x00, host->cw_size);
1538
1539        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1540
1541        /* prepare write */
1542        host->use_ecc = false;
1543        set_address(host, host->cw_size * (ecc->steps - 1), page);
1544        update_rw_regs(host, 1, false);
1545
1546        config_cw_write_pre(nandc);
1547        write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, host->cw_size);
1548        config_cw_write_post(nandc);
1549
1550        ret = submit_descs(nandc);
1551
1552        free_descs(nandc);
1553
1554        if (ret) {
1555                dev_err(nandc->dev, "failure to update BBM\n");
1556                return -EIO;
1557        }
1558
1559        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1560
1561        status = chip->waitfunc(mtd, chip);
1562
1563        return status & NAND_STATUS_FAIL ? -EIO : 0;
1564}
1565
1566/*
1567 * the three functions below implement chip->read_byte(), chip->read_buf()
1568 * and chip->write_buf() respectively. these aren't used for
1569 * reading/writing page data, they are used for smaller data like reading
1570 * id, status etc
1571 */
1572static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
1573{
1574        struct nand_chip *chip = mtd_to_nand(mtd);
1575        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1576        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1577        u8 *buf = nandc->data_buffer;
1578        u8 ret = 0x0;
1579
1580        if (host->last_command == NAND_CMD_STATUS) {
1581                ret = host->status;
1582
1583                host->status = NAND_STATUS_READY | NAND_STATUS_WP;
1584
1585                return ret;
1586        }
1587
1588        if (nandc->buf_start < nandc->buf_count)
1589                ret = buf[nandc->buf_start++];
1590
1591        return ret;
1592}
1593
1594static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1595{
1596        struct nand_chip *chip = mtd_to_nand(mtd);
1597        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1598        int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
1599
1600        memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
1601        nandc->buf_start += real_len;
1602}
1603
1604static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1605                                 int len)
1606{
1607        struct nand_chip *chip = mtd_to_nand(mtd);
1608        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1609        int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
1610
1611        memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
1612
1613        nandc->buf_start += real_len;
1614}
1615
1616/* we support only one external chip for now */
1617static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
1618{
1619        struct nand_chip *chip = mtd_to_nand(mtd);
1620        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1621
1622        if (chipnr <= 0)
1623                return;
1624
1625        dev_warn(nandc->dev, "invalid chip select\n");
1626}
1627
1628/*
1629 * NAND controller page layout info
1630 *
1631 * Layout with ECC enabled:
1632 *
1633 * |----------------------|  |---------------------------------|
1634 * |           xx.......yy|  |             *********xx.......yy|
1635 * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
1636 * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
1637 * |           xx.......yy|  |             *********xx.......yy|
1638 * |----------------------|  |---------------------------------|
1639 *     codeword 1,2..n-1                  codeword n
1640 *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
1641 *
1642 * n = Number of codewords in the page
1643 * . = ECC bytes
1644 * * = Spare/free bytes
1645 * x = Unused byte(s)
1646 * y = Reserved byte(s)
1647 *
1648 * 2K page: n = 4, spare = 16 bytes
1649 * 4K page: n = 8, spare = 32 bytes
1650 * 8K page: n = 16, spare = 64 bytes
1651 *
1652 * the qcom nand controller operates at a sub page/codeword level. each
1653 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
1654 * the number of ECC bytes vary based on the ECC strength and the bus width.
1655 *
1656 * the first n - 1 codewords contains 516 bytes of user data, the remaining
1657 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
1658 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
1659 *
1660 * When we access a page with ECC enabled, the reserved bytes(s) are not
1661 * accessible at all. When reading, we fill up these unreadable positions
1662 * with 0xffs. When writing, the controller skips writing the inaccessible
1663 * bytes.
1664 *
1665 * Layout with ECC disabled:
1666 *
1667 * |------------------------------|  |---------------------------------------|
1668 * |         yy          xx.......|  |         bb          *********xx.......|
1669 * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
1670 * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
1671 * |         yy          xx.......|  |         bb          *********xx.......|
1672 * |------------------------------|  |---------------------------------------|
1673 *         codeword 1,2..n-1                        codeword n
1674 *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
1675 *
1676 * n = Number of codewords in the page
1677 * . = ECC bytes
1678 * * = Spare/free bytes
1679 * x = Unused byte(s)
1680 * y = Dummy Bad Bock byte(s)
1681 * b = Real Bad Block byte(s)
1682 * size1/size2 = function of codeword size and 'n'
1683 *
1684 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
1685 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
1686 * Block Markers. In the last codeword, this position contains the real BBM
1687 *
1688 * In order to have a consistent layout between RAW and ECC modes, we assume
1689 * the following OOB layout arrangement:
1690 *
1691 * |-----------|  |--------------------|
1692 * |yyxx.......|  |bb*********xx.......|
1693 * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
1694 * |yyxx.......|  |bb*********xx.......|
1695 * |yyxx.......|  |bb*********xx.......|
1696 * |-----------|  |--------------------|
1697 *  first n - 1       nth OOB region
1698 *  OOB regions
1699 *
1700 * n = Number of codewords in the page
1701 * . = ECC bytes
1702 * * = FREE OOB bytes
1703 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
1704 * x = Unused byte(s)
1705 * b = Real bad block byte(s) (inaccessible when ECC enabled)
1706 *
1707 * This layout is read as is when ECC is disabled. When ECC is enabled, the
1708 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
1709 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
1710 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
1711 * the sum of the three).
1712 */
1713static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
1714                                   struct mtd_oob_region *oobregion)
1715{
1716        struct nand_chip *chip = mtd_to_nand(mtd);
1717        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1718        struct nand_ecc_ctrl *ecc = &chip->ecc;
1719
1720        if (section > 1)
1721                return -ERANGE;
1722
1723        if (!section) {
1724                oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
1725                                    host->bbm_size;
1726                oobregion->offset = 0;
1727        } else {
1728                oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
1729                oobregion->offset = mtd->oobsize - oobregion->length;
1730        }
1731
1732        return 0;
1733}
1734
1735static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
1736                                     struct mtd_oob_region *oobregion)
1737{
1738        struct nand_chip *chip = mtd_to_nand(mtd);
1739        struct qcom_nand_host *host = to_qcom_nand_host(chip);
1740        struct nand_ecc_ctrl *ecc = &chip->ecc;
1741
1742        if (section)
1743                return -ERANGE;
1744
1745        oobregion->length = ecc->steps * 4;
1746        oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
1747
1748        return 0;
1749}
1750
1751static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
1752        .ecc = qcom_nand_ooblayout_ecc,
1753        .free = qcom_nand_ooblayout_free,
1754};
1755
1756static int qcom_nand_host_setup(struct qcom_nand_host *host)
1757{
1758        struct nand_chip *chip = &host->chip;
1759        struct mtd_info *mtd = nand_to_mtd(chip);
1760        struct nand_ecc_ctrl *ecc = &chip->ecc;
1761        struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1762        int cwperpage, bad_block_byte;
1763        bool wide_bus;
1764        int ecc_mode = 1;
1765
1766        /*
1767         * the controller requires each step consists of 512 bytes of data.
1768         * bail out if DT has populated a wrong step size.
1769         */
1770        if (ecc->size != NANDC_STEP_SIZE) {
1771                dev_err(nandc->dev, "invalid ecc size\n");
1772                return -EINVAL;
1773        }
1774
1775        wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
1776
1777        if (ecc->strength >= 8) {
1778                /* 8 bit ECC defaults to BCH ECC on all platforms */
1779                host->bch_enabled = true;
1780                ecc_mode = 1;
1781
1782                if (wide_bus) {
1783                        host->ecc_bytes_hw = 14;
1784                        host->spare_bytes = 0;
1785                        host->bbm_size = 2;
1786                } else {
1787                        host->ecc_bytes_hw = 13;
1788                        host->spare_bytes = 2;
1789                        host->bbm_size = 1;
1790                }
1791        } else {
1792                /*
1793                 * if the controller supports BCH for 4 bit ECC, the controller
1794                 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
1795                 * always 10 bytes
1796                 */
1797                if (nandc->ecc_modes & ECC_BCH_4BIT) {
1798                        /* BCH */
1799                        host->bch_enabled = true;
1800                        ecc_mode = 0;
1801
1802                        if (wide_bus) {
1803                                host->ecc_bytes_hw = 8;
1804                                host->spare_bytes = 2;
1805                                host->bbm_size = 2;
1806                        } else {
1807                                host->ecc_bytes_hw = 7;
1808                                host->spare_bytes = 4;
1809                                host->bbm_size = 1;
1810                        }
1811                } else {
1812                        /* RS */
1813                        host->ecc_bytes_hw = 10;
1814
1815                        if (wide_bus) {
1816                                host->spare_bytes = 0;
1817                                host->bbm_size = 2;
1818                        } else {
1819                                host->spare_bytes = 1;
1820                                host->bbm_size = 1;
1821                        }
1822                }
1823        }
1824
1825        /*
1826         * we consider ecc->bytes as the sum of all the non-data content in a
1827         * step. It gives us a clean representation of the oob area (even if
1828         * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
1829         * ECC and 12 bytes for 4 bit ECC
1830         */
1831        ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
1832
1833        ecc->read_page          = qcom_nandc_read_page;
1834        ecc->read_page_raw      = qcom_nandc_read_page_raw;
1835        ecc->read_oob           = qcom_nandc_read_oob;
1836        ecc->write_page         = qcom_nandc_write_page;
1837        ecc->write_page_raw     = qcom_nandc_write_page_raw;
1838        ecc->write_oob          = qcom_nandc_write_oob;
1839
1840        ecc->mode = NAND_ECC_HW;
1841
1842        mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
1843
1844        cwperpage = mtd->writesize / ecc->size;
1845
1846        /*
1847         * DATA_UD_BYTES varies based on whether the read/write command protects
1848         * spare data with ECC too. We protect spare data by default, so we set
1849         * it to main + spare data, which are 512 and 4 bytes respectively.
1850         */
1851        host->cw_data = 516;
1852
1853        /*
1854         * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
1855         * for 8 bit ECC
1856         */
1857        host->cw_size = host->cw_data + ecc->bytes;
1858
1859        if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) {
1860                dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n");
1861                return -EINVAL;
1862        }
1863
1864        bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
1865
1866        host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
1867                                | host->cw_data << UD_SIZE_BYTES
1868                                | 0 << DISABLE_STATUS_AFTER_WRITE
1869                                | 5 << NUM_ADDR_CYCLES
1870                                | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
1871                                | 0 << STATUS_BFR_READ
1872                                | 1 << SET_RD_MODE_AFTER_STATUS
1873                                | host->spare_bytes << SPARE_SIZE_BYTES;
1874
1875        host->cfg1 = 7 << NAND_RECOVERY_CYCLES
1876                                | 0 <<  CS_ACTIVE_BSY
1877                                | bad_block_byte << BAD_BLOCK_BYTE_NUM
1878                                | 0 << BAD_BLOCK_IN_SPARE_AREA
1879                                | 2 << WR_RD_BSY_GAP
1880                                | wide_bus << WIDE_FLASH
1881                                | host->bch_enabled << ENABLE_BCH_ECC;
1882
1883        host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
1884                                | host->cw_size << UD_SIZE_BYTES
1885                                | 5 << NUM_ADDR_CYCLES
1886                                | 0 << SPARE_SIZE_BYTES;
1887
1888        host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
1889                                | 0 << CS_ACTIVE_BSY
1890                                | 17 << BAD_BLOCK_BYTE_NUM
1891                                | 1 << BAD_BLOCK_IN_SPARE_AREA
1892                                | 2 << WR_RD_BSY_GAP
1893                                | wide_bus << WIDE_FLASH
1894                                | 1 << DEV0_CFG1_ECC_DISABLE;
1895
1896        host->ecc_bch_cfg = host->bch_enabled << ECC_CFG_ECC_DISABLE
1897                                | 0 << ECC_SW_RESET
1898                                | host->cw_data << ECC_NUM_DATA_BYTES
1899                                | 1 << ECC_FORCE_CLK_OPEN
1900                                | ecc_mode << ECC_MODE
1901                                | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
1902
1903        host->ecc_buf_cfg = 0x203 << NUM_STEPS;
1904
1905        host->clrflashstatus = FS_READY_BSY_N;
1906        host->clrreadstatus = 0xc0;
1907
1908        dev_dbg(nandc->dev,
1909                "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
1910                host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
1911                host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
1912                cwperpage);
1913
1914        return 0;
1915}
1916
1917static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
1918{
1919        int ret;
1920
1921        ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
1922        if (ret) {
1923                dev_err(nandc->dev, "failed to set DMA mask\n");
1924                return ret;
1925        }
1926
1927        /*
1928         * we use the internal buffer for reading ONFI params, reading small
1929         * data like ID and status, and preforming read-copy-write operations
1930         * when writing to a codeword partially. 532 is the maximum possible
1931         * size of a codeword for our nand controller
1932         */
1933        nandc->buf_size = 532;
1934
1935        nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
1936                                        GFP_KERNEL);
1937        if (!nandc->data_buffer)
1938                return -ENOMEM;
1939
1940        nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
1941                                        GFP_KERNEL);
1942        if (!nandc->regs)
1943                return -ENOMEM;
1944
1945        nandc->reg_read_buf = devm_kzalloc(nandc->dev,
1946                                MAX_REG_RD * sizeof(*nandc->reg_read_buf),
1947                                GFP_KERNEL);
1948        if (!nandc->reg_read_buf)
1949                return -ENOMEM;
1950
1951        nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
1952        if (!nandc->chan) {
1953                dev_err(nandc->dev, "failed to request slave channel\n");
1954                return -ENODEV;
1955        }
1956
1957        INIT_LIST_HEAD(&nandc->desc_list);
1958        INIT_LIST_HEAD(&nandc->host_list);
1959
1960        nand_hw_control_init(&nandc->controller);
1961
1962        return 0;
1963}
1964
1965static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
1966{
1967        dma_release_channel(nandc->chan);
1968}
1969
1970/* one time setup of a few nand controller registers */
1971static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
1972{
1973        /* kill onenand */
1974        nandc_write(nandc, SFLASHC_BURST_CFG, 0);
1975
1976        /* enable ADM DMA */
1977        nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
1978
1979        /* save the original values of these registers */
1980        nandc->cmd1 = nandc_read(nandc, NAND_DEV_CMD1);
1981        nandc->vld = nandc_read(nandc, NAND_DEV_CMD_VLD);
1982
1983        return 0;
1984}
1985
1986static int qcom_nand_host_init(struct qcom_nand_controller *nandc,
1987                               struct qcom_nand_host *host,
1988                               struct device_node *dn)
1989{
1990        struct nand_chip *chip = &host->chip;
1991        struct mtd_info *mtd = nand_to_mtd(chip);
1992        struct device *dev = nandc->dev;
1993        int ret;
1994
1995        ret = of_property_read_u32(dn, "reg", &host->cs);
1996        if (ret) {
1997                dev_err(dev, "can't get chip-select\n");
1998                return -ENXIO;
1999        }
2000
2001        nand_set_flash_node(chip, dn);
2002        mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2003        mtd->owner = THIS_MODULE;
2004        mtd->dev.parent = dev;
2005
2006        chip->cmdfunc           = qcom_nandc_command;
2007        chip->select_chip       = qcom_nandc_select_chip;
2008        chip->read_byte         = qcom_nandc_read_byte;
2009        chip->read_buf          = qcom_nandc_read_buf;
2010        chip->write_buf         = qcom_nandc_write_buf;
2011        chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
2012        chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
2013
2014        /*
2015         * the bad block marker is readable only when we read the last codeword
2016         * of a page with ECC disabled. currently, the nand_base and nand_bbt
2017         * helpers don't allow us to read BB from a nand chip with ECC
2018         * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2019         * and block_markbad helpers until we permanently switch to using
2020         * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2021         */
2022        chip->block_bad         = qcom_nandc_block_bad;
2023        chip->block_markbad     = qcom_nandc_block_markbad;
2024
2025        chip->controller = &nandc->controller;
2026        chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2027                         NAND_SKIP_BBTSCAN;
2028
2029        /* set up initial status value */
2030        host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2031
2032        ret = nand_scan_ident(mtd, 1, NULL);
2033        if (ret)
2034                return ret;
2035
2036        ret = qcom_nand_host_setup(host);
2037        if (ret)
2038                return ret;
2039
2040        ret = nand_scan_tail(mtd);
2041        if (ret)
2042                return ret;
2043
2044        return mtd_device_register(mtd, NULL, 0);
2045}
2046
2047/* parse custom DT properties here */
2048static int qcom_nandc_parse_dt(struct platform_device *pdev)
2049{
2050        struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2051        struct device_node *np = nandc->dev->of_node;
2052        int ret;
2053
2054        ret = of_property_read_u32(np, "qcom,cmd-crci", &nandc->cmd_crci);
2055        if (ret) {
2056                dev_err(nandc->dev, "command CRCI unspecified\n");
2057                return ret;
2058        }
2059
2060        ret = of_property_read_u32(np, "qcom,data-crci", &nandc->data_crci);
2061        if (ret) {
2062                dev_err(nandc->dev, "data CRCI unspecified\n");
2063                return ret;
2064        }
2065
2066        return 0;
2067}
2068
2069static int qcom_nandc_probe(struct platform_device *pdev)
2070{
2071        struct qcom_nand_controller *nandc;
2072        struct qcom_nand_host *host;
2073        const void *dev_data;
2074        struct device *dev = &pdev->dev;
2075        struct device_node *dn = dev->of_node, *child;
2076        struct resource *res;
2077        int ret;
2078
2079        nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2080        if (!nandc)
2081                return -ENOMEM;
2082
2083        platform_set_drvdata(pdev, nandc);
2084        nandc->dev = dev;
2085
2086        dev_data = of_device_get_match_data(dev);
2087        if (!dev_data) {
2088                dev_err(&pdev->dev, "failed to get device data\n");
2089                return -ENODEV;
2090        }
2091
2092        nandc->ecc_modes = (unsigned long)dev_data;
2093
2094        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2095        nandc->base = devm_ioremap_resource(dev, res);
2096        if (IS_ERR(nandc->base))
2097                return PTR_ERR(nandc->base);
2098
2099        nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start);
2100
2101        nandc->core_clk = devm_clk_get(dev, "core");
2102        if (IS_ERR(nandc->core_clk))
2103                return PTR_ERR(nandc->core_clk);
2104
2105        nandc->aon_clk = devm_clk_get(dev, "aon");
2106        if (IS_ERR(nandc->aon_clk))
2107                return PTR_ERR(nandc->aon_clk);
2108
2109        ret = qcom_nandc_parse_dt(pdev);
2110        if (ret)
2111                return ret;
2112
2113        ret = qcom_nandc_alloc(nandc);
2114        if (ret)
2115                return ret;
2116
2117        ret = clk_prepare_enable(nandc->core_clk);
2118        if (ret)
2119                goto err_core_clk;
2120
2121        ret = clk_prepare_enable(nandc->aon_clk);
2122        if (ret)
2123                goto err_aon_clk;
2124
2125        ret = qcom_nandc_setup(nandc);
2126        if (ret)
2127                goto err_setup;
2128
2129        for_each_available_child_of_node(dn, child) {
2130                if (of_device_is_compatible(child, "qcom,nandcs")) {
2131                        host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2132                        if (!host) {
2133                                of_node_put(child);
2134                                ret = -ENOMEM;
2135                                goto err_cs_init;
2136                        }
2137
2138                        ret = qcom_nand_host_init(nandc, host, child);
2139                        if (ret) {
2140                                devm_kfree(dev, host);
2141                                continue;
2142                        }
2143
2144                        list_add_tail(&host->node, &nandc->host_list);
2145                }
2146        }
2147
2148        if (list_empty(&nandc->host_list)) {
2149                ret = -ENODEV;
2150                goto err_cs_init;
2151        }
2152
2153        return 0;
2154
2155err_cs_init:
2156        list_for_each_entry(host, &nandc->host_list, node)
2157                nand_release(nand_to_mtd(&host->chip));
2158err_setup:
2159        clk_disable_unprepare(nandc->aon_clk);
2160err_aon_clk:
2161        clk_disable_unprepare(nandc->core_clk);
2162err_core_clk:
2163        qcom_nandc_unalloc(nandc);
2164
2165        return ret;
2166}
2167
2168static int qcom_nandc_remove(struct platform_device *pdev)
2169{
2170        struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2171        struct qcom_nand_host *host;
2172
2173        list_for_each_entry(host, &nandc->host_list, node)
2174                nand_release(nand_to_mtd(&host->chip));
2175
2176        qcom_nandc_unalloc(nandc);
2177
2178        clk_disable_unprepare(nandc->aon_clk);
2179        clk_disable_unprepare(nandc->core_clk);
2180
2181        return 0;
2182}
2183
2184#define EBI2_NANDC_ECC_MODES    (ECC_RS_4BIT | ECC_BCH_8BIT)
2185
2186/*
2187 * data will hold a struct pointer containing more differences once we support
2188 * more controller variants
2189 */
2190static const struct of_device_id qcom_nandc_of_match[] = {
2191        {       .compatible = "qcom,ipq806x-nand",
2192                .data = (void *)EBI2_NANDC_ECC_MODES,
2193        },
2194        {}
2195};
2196MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
2197
2198static struct platform_driver qcom_nandc_driver = {
2199        .driver = {
2200                .name = "qcom-nandc",
2201                .of_match_table = qcom_nandc_of_match,
2202        },
2203        .probe   = qcom_nandc_probe,
2204        .remove  = qcom_nandc_remove,
2205};
2206module_platform_driver(qcom_nandc_driver);
2207
2208MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
2209MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
2210MODULE_LICENSE("GPL v2");
2211