linux/drivers/mtd/ubi/eba.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * The UBI Eraseblock Association (EBA) sub-system.
  23 *
  24 * This sub-system is responsible for I/O to/from logical eraseblock.
  25 *
  26 * Although in this implementation the EBA table is fully kept and managed in
  27 * RAM, which assumes poor scalability, it might be (partially) maintained on
  28 * flash in future implementations.
  29 *
  30 * The EBA sub-system implements per-logical eraseblock locking. Before
  31 * accessing a logical eraseblock it is locked for reading or writing. The
  32 * per-logical eraseblock locking is implemented by means of the lock tree. The
  33 * lock tree is an RB-tree which refers all the currently locked logical
  34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
  35 * They are indexed by (@vol_id, @lnum) pairs.
  36 *
  37 * EBA also maintains the global sequence counter which is incremented each
  38 * time a logical eraseblock is mapped to a physical eraseblock and it is
  39 * stored in the volume identifier header. This means that each VID header has
  40 * a unique sequence number. The sequence number is only increased an we assume
  41 * 64 bits is enough to never overflow.
  42 */
  43
  44#include <linux/slab.h>
  45#include <linux/crc32.h>
  46#include <linux/err.h>
  47#include "ubi.h"
  48
  49/* Number of physical eraseblocks reserved for atomic LEB change operation */
  50#define EBA_RESERVED_PEBS 1
  51
  52/**
  53 * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
  54 * @pnum: the physical eraseblock number attached to the LEB
  55 *
  56 * This structure is encoding a LEB -> PEB association. Note that the LEB
  57 * number is not stored here, because it is the index used to access the
  58 * entries table.
  59 */
  60struct ubi_eba_entry {
  61        int pnum;
  62};
  63
  64/**
  65 * struct ubi_eba_table - LEB -> PEB association information
  66 * @entries: the LEB to PEB mapping (one entry per LEB).
  67 *
  68 * This structure is private to the EBA logic and should be kept here.
  69 * It is encoding the LEB to PEB association table, and is subject to
  70 * changes.
  71 */
  72struct ubi_eba_table {
  73        struct ubi_eba_entry *entries;
  74};
  75
  76/**
  77 * next_sqnum - get next sequence number.
  78 * @ubi: UBI device description object
  79 *
  80 * This function returns next sequence number to use, which is just the current
  81 * global sequence counter value. It also increases the global sequence
  82 * counter.
  83 */
  84unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
  85{
  86        unsigned long long sqnum;
  87
  88        spin_lock(&ubi->ltree_lock);
  89        sqnum = ubi->global_sqnum++;
  90        spin_unlock(&ubi->ltree_lock);
  91
  92        return sqnum;
  93}
  94
  95/**
  96 * ubi_get_compat - get compatibility flags of a volume.
  97 * @ubi: UBI device description object
  98 * @vol_id: volume ID
  99 *
 100 * This function returns compatibility flags for an internal volume. User
 101 * volumes have no compatibility flags, so %0 is returned.
 102 */
 103static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
 104{
 105        if (vol_id == UBI_LAYOUT_VOLUME_ID)
 106                return UBI_LAYOUT_VOLUME_COMPAT;
 107        return 0;
 108}
 109
 110/**
 111 * ubi_eba_get_ldesc - get information about a LEB
 112 * @vol: volume description object
 113 * @lnum: logical eraseblock number
 114 * @ldesc: the LEB descriptor to fill
 115 *
 116 * Used to query information about a specific LEB.
 117 * It is currently only returning the physical position of the LEB, but will be
 118 * extended to provide more information.
 119 */
 120void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
 121                       struct ubi_eba_leb_desc *ldesc)
 122{
 123        ldesc->lnum = lnum;
 124        ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
 125}
 126
 127/**
 128 * ubi_eba_create_table - allocate a new EBA table and initialize it with all
 129 *                        LEBs unmapped
 130 * @vol: volume containing the EBA table to copy
 131 * @nentries: number of entries in the table
 132 *
 133 * Allocate a new EBA table and initialize it with all LEBs unmapped.
 134 * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
 135 */
 136struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
 137                                           int nentries)
 138{
 139        struct ubi_eba_table *tbl;
 140        int err = -ENOMEM;
 141        int i;
 142
 143        tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
 144        if (!tbl)
 145                return ERR_PTR(-ENOMEM);
 146
 147        tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
 148                                     GFP_KERNEL);
 149        if (!tbl->entries)
 150                goto err;
 151
 152        for (i = 0; i < nentries; i++)
 153                tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
 154
 155        return tbl;
 156
 157err:
 158        kfree(tbl->entries);
 159        kfree(tbl);
 160
 161        return ERR_PTR(err);
 162}
 163
 164/**
 165 * ubi_eba_destroy_table - destroy an EBA table
 166 * @tbl: the table to destroy
 167 *
 168 * Destroy an EBA table.
 169 */
 170void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
 171{
 172        if (!tbl)
 173                return;
 174
 175        kfree(tbl->entries);
 176        kfree(tbl);
 177}
 178
 179/**
 180 * ubi_eba_copy_table - copy the EBA table attached to vol into another table
 181 * @vol: volume containing the EBA table to copy
 182 * @dst: destination
 183 * @nentries: number of entries to copy
 184 *
 185 * Copy the EBA table stored in vol into the one pointed by dst.
 186 */
 187void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
 188                        int nentries)
 189{
 190        struct ubi_eba_table *src;
 191        int i;
 192
 193        ubi_assert(dst && vol && vol->eba_tbl);
 194
 195        src = vol->eba_tbl;
 196
 197        for (i = 0; i < nentries; i++)
 198                dst->entries[i].pnum = src->entries[i].pnum;
 199}
 200
 201/**
 202 * ubi_eba_replace_table - assign a new EBA table to a volume
 203 * @vol: volume containing the EBA table to copy
 204 * @tbl: new EBA table
 205 *
 206 * Assign a new EBA table to the volume and release the old one.
 207 */
 208void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
 209{
 210        ubi_eba_destroy_table(vol->eba_tbl);
 211        vol->eba_tbl = tbl;
 212}
 213
 214/**
 215 * ltree_lookup - look up the lock tree.
 216 * @ubi: UBI device description object
 217 * @vol_id: volume ID
 218 * @lnum: logical eraseblock number
 219 *
 220 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
 221 * object if the logical eraseblock is locked and %NULL if it is not.
 222 * @ubi->ltree_lock has to be locked.
 223 */
 224static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
 225                                            int lnum)
 226{
 227        struct rb_node *p;
 228
 229        p = ubi->ltree.rb_node;
 230        while (p) {
 231                struct ubi_ltree_entry *le;
 232
 233                le = rb_entry(p, struct ubi_ltree_entry, rb);
 234
 235                if (vol_id < le->vol_id)
 236                        p = p->rb_left;
 237                else if (vol_id > le->vol_id)
 238                        p = p->rb_right;
 239                else {
 240                        if (lnum < le->lnum)
 241                                p = p->rb_left;
 242                        else if (lnum > le->lnum)
 243                                p = p->rb_right;
 244                        else
 245                                return le;
 246                }
 247        }
 248
 249        return NULL;
 250}
 251
 252/**
 253 * ltree_add_entry - add new entry to the lock tree.
 254 * @ubi: UBI device description object
 255 * @vol_id: volume ID
 256 * @lnum: logical eraseblock number
 257 *
 258 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
 259 * lock tree. If such entry is already there, its usage counter is increased.
 260 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
 261 * failed.
 262 */
 263static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
 264                                               int vol_id, int lnum)
 265{
 266        struct ubi_ltree_entry *le, *le1, *le_free;
 267
 268        le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
 269        if (!le)
 270                return ERR_PTR(-ENOMEM);
 271
 272        le->users = 0;
 273        init_rwsem(&le->mutex);
 274        le->vol_id = vol_id;
 275        le->lnum = lnum;
 276
 277        spin_lock(&ubi->ltree_lock);
 278        le1 = ltree_lookup(ubi, vol_id, lnum);
 279
 280        if (le1) {
 281                /*
 282                 * This logical eraseblock is already locked. The newly
 283                 * allocated lock entry is not needed.
 284                 */
 285                le_free = le;
 286                le = le1;
 287        } else {
 288                struct rb_node **p, *parent = NULL;
 289
 290                /*
 291                 * No lock entry, add the newly allocated one to the
 292                 * @ubi->ltree RB-tree.
 293                 */
 294                le_free = NULL;
 295
 296                p = &ubi->ltree.rb_node;
 297                while (*p) {
 298                        parent = *p;
 299                        le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
 300
 301                        if (vol_id < le1->vol_id)
 302                                p = &(*p)->rb_left;
 303                        else if (vol_id > le1->vol_id)
 304                                p = &(*p)->rb_right;
 305                        else {
 306                                ubi_assert(lnum != le1->lnum);
 307                                if (lnum < le1->lnum)
 308                                        p = &(*p)->rb_left;
 309                                else
 310                                        p = &(*p)->rb_right;
 311                        }
 312                }
 313
 314                rb_link_node(&le->rb, parent, p);
 315                rb_insert_color(&le->rb, &ubi->ltree);
 316        }
 317        le->users += 1;
 318        spin_unlock(&ubi->ltree_lock);
 319
 320        kfree(le_free);
 321        return le;
 322}
 323
 324/**
 325 * leb_read_lock - lock logical eraseblock for reading.
 326 * @ubi: UBI device description object
 327 * @vol_id: volume ID
 328 * @lnum: logical eraseblock number
 329 *
 330 * This function locks a logical eraseblock for reading. Returns zero in case
 331 * of success and a negative error code in case of failure.
 332 */
 333static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
 334{
 335        struct ubi_ltree_entry *le;
 336
 337        le = ltree_add_entry(ubi, vol_id, lnum);
 338        if (IS_ERR(le))
 339                return PTR_ERR(le);
 340        down_read(&le->mutex);
 341        return 0;
 342}
 343
 344/**
 345 * leb_read_unlock - unlock logical eraseblock.
 346 * @ubi: UBI device description object
 347 * @vol_id: volume ID
 348 * @lnum: logical eraseblock number
 349 */
 350static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 351{
 352        struct ubi_ltree_entry *le;
 353
 354        spin_lock(&ubi->ltree_lock);
 355        le = ltree_lookup(ubi, vol_id, lnum);
 356        le->users -= 1;
 357        ubi_assert(le->users >= 0);
 358        up_read(&le->mutex);
 359        if (le->users == 0) {
 360                rb_erase(&le->rb, &ubi->ltree);
 361                kfree(le);
 362        }
 363        spin_unlock(&ubi->ltree_lock);
 364}
 365
 366/**
 367 * leb_write_lock - lock logical eraseblock for writing.
 368 * @ubi: UBI device description object
 369 * @vol_id: volume ID
 370 * @lnum: logical eraseblock number
 371 *
 372 * This function locks a logical eraseblock for writing. Returns zero in case
 373 * of success and a negative error code in case of failure.
 374 */
 375static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
 376{
 377        struct ubi_ltree_entry *le;
 378
 379        le = ltree_add_entry(ubi, vol_id, lnum);
 380        if (IS_ERR(le))
 381                return PTR_ERR(le);
 382        down_write(&le->mutex);
 383        return 0;
 384}
 385
 386/**
 387 * leb_write_lock - lock logical eraseblock for writing.
 388 * @ubi: UBI device description object
 389 * @vol_id: volume ID
 390 * @lnum: logical eraseblock number
 391 *
 392 * This function locks a logical eraseblock for writing if there is no
 393 * contention and does nothing if there is contention. Returns %0 in case of
 394 * success, %1 in case of contention, and and a negative error code in case of
 395 * failure.
 396 */
 397static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
 398{
 399        struct ubi_ltree_entry *le;
 400
 401        le = ltree_add_entry(ubi, vol_id, lnum);
 402        if (IS_ERR(le))
 403                return PTR_ERR(le);
 404        if (down_write_trylock(&le->mutex))
 405                return 0;
 406
 407        /* Contention, cancel */
 408        spin_lock(&ubi->ltree_lock);
 409        le->users -= 1;
 410        ubi_assert(le->users >= 0);
 411        if (le->users == 0) {
 412                rb_erase(&le->rb, &ubi->ltree);
 413                kfree(le);
 414        }
 415        spin_unlock(&ubi->ltree_lock);
 416
 417        return 1;
 418}
 419
 420/**
 421 * leb_write_unlock - unlock logical eraseblock.
 422 * @ubi: UBI device description object
 423 * @vol_id: volume ID
 424 * @lnum: logical eraseblock number
 425 */
 426static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 427{
 428        struct ubi_ltree_entry *le;
 429
 430        spin_lock(&ubi->ltree_lock);
 431        le = ltree_lookup(ubi, vol_id, lnum);
 432        le->users -= 1;
 433        ubi_assert(le->users >= 0);
 434        up_write(&le->mutex);
 435        if (le->users == 0) {
 436                rb_erase(&le->rb, &ubi->ltree);
 437                kfree(le);
 438        }
 439        spin_unlock(&ubi->ltree_lock);
 440}
 441
 442/**
 443 * ubi_eba_is_mapped - check if a LEB is mapped.
 444 * @vol: volume description object
 445 * @lnum: logical eraseblock number
 446 *
 447 * This function returns true if the LEB is mapped, false otherwise.
 448 */
 449bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
 450{
 451        return vol->eba_tbl->entries[lnum].pnum >= 0;
 452}
 453
 454/**
 455 * ubi_eba_unmap_leb - un-map logical eraseblock.
 456 * @ubi: UBI device description object
 457 * @vol: volume description object
 458 * @lnum: logical eraseblock number
 459 *
 460 * This function un-maps logical eraseblock @lnum and schedules corresponding
 461 * physical eraseblock for erasure. Returns zero in case of success and a
 462 * negative error code in case of failure.
 463 */
 464int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
 465                      int lnum)
 466{
 467        int err, pnum, vol_id = vol->vol_id;
 468
 469        if (ubi->ro_mode)
 470                return -EROFS;
 471
 472        err = leb_write_lock(ubi, vol_id, lnum);
 473        if (err)
 474                return err;
 475
 476        pnum = vol->eba_tbl->entries[lnum].pnum;
 477        if (pnum < 0)
 478                /* This logical eraseblock is already unmapped */
 479                goto out_unlock;
 480
 481        dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
 482
 483        down_read(&ubi->fm_eba_sem);
 484        vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
 485        up_read(&ubi->fm_eba_sem);
 486        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
 487
 488out_unlock:
 489        leb_write_unlock(ubi, vol_id, lnum);
 490        return err;
 491}
 492
 493/**
 494 * ubi_eba_read_leb - read data.
 495 * @ubi: UBI device description object
 496 * @vol: volume description object
 497 * @lnum: logical eraseblock number
 498 * @buf: buffer to store the read data
 499 * @offset: offset from where to read
 500 * @len: how many bytes to read
 501 * @check: data CRC check flag
 502 *
 503 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
 504 * bytes. The @check flag only makes sense for static volumes and forces
 505 * eraseblock data CRC checking.
 506 *
 507 * In case of success this function returns zero. In case of a static volume,
 508 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
 509 * returned for any volume type if an ECC error was detected by the MTD device
 510 * driver. Other negative error cored may be returned in case of other errors.
 511 */
 512int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 513                     void *buf, int offset, int len, int check)
 514{
 515        int err, pnum, scrub = 0, vol_id = vol->vol_id;
 516        struct ubi_vid_io_buf *vidb;
 517        struct ubi_vid_hdr *vid_hdr;
 518        uint32_t uninitialized_var(crc);
 519
 520        err = leb_read_lock(ubi, vol_id, lnum);
 521        if (err)
 522                return err;
 523
 524        pnum = vol->eba_tbl->entries[lnum].pnum;
 525        if (pnum < 0) {
 526                /*
 527                 * The logical eraseblock is not mapped, fill the whole buffer
 528                 * with 0xFF bytes. The exception is static volumes for which
 529                 * it is an error to read unmapped logical eraseblocks.
 530                 */
 531                dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
 532                        len, offset, vol_id, lnum);
 533                leb_read_unlock(ubi, vol_id, lnum);
 534                ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
 535                memset(buf, 0xFF, len);
 536                return 0;
 537        }
 538
 539        dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
 540                len, offset, vol_id, lnum, pnum);
 541
 542        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 543                check = 0;
 544
 545retry:
 546        if (check) {
 547                vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 548                if (!vidb) {
 549                        err = -ENOMEM;
 550                        goto out_unlock;
 551                }
 552
 553                vid_hdr = ubi_get_vid_hdr(vidb);
 554
 555                err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
 556                if (err && err != UBI_IO_BITFLIPS) {
 557                        if (err > 0) {
 558                                /*
 559                                 * The header is either absent or corrupted.
 560                                 * The former case means there is a bug -
 561                                 * switch to read-only mode just in case.
 562                                 * The latter case means a real corruption - we
 563                                 * may try to recover data. FIXME: but this is
 564                                 * not implemented.
 565                                 */
 566                                if (err == UBI_IO_BAD_HDR_EBADMSG ||
 567                                    err == UBI_IO_BAD_HDR) {
 568                                        ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
 569                                                 pnum, vol_id, lnum);
 570                                        err = -EBADMSG;
 571                                } else {
 572                                        /*
 573                                         * Ending up here in the non-Fastmap case
 574                                         * is a clear bug as the VID header had to
 575                                         * be present at scan time to have it referenced.
 576                                         * With fastmap the story is more complicated.
 577                                         * Fastmap has the mapping info without the need
 578                                         * of a full scan. So the LEB could have been
 579                                         * unmapped, Fastmap cannot know this and keeps
 580                                         * the LEB referenced.
 581                                         * This is valid and works as the layer above UBI
 582                                         * has to do bookkeeping about used/referenced
 583                                         * LEBs in any case.
 584                                         */
 585                                        if (ubi->fast_attach) {
 586                                                err = -EBADMSG;
 587                                        } else {
 588                                                err = -EINVAL;
 589                                                ubi_ro_mode(ubi);
 590                                        }
 591                                }
 592                        }
 593                        goto out_free;
 594                } else if (err == UBI_IO_BITFLIPS)
 595                        scrub = 1;
 596
 597                ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
 598                ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
 599
 600                crc = be32_to_cpu(vid_hdr->data_crc);
 601                ubi_free_vid_buf(vidb);
 602        }
 603
 604        err = ubi_io_read_data(ubi, buf, pnum, offset, len);
 605        if (err) {
 606                if (err == UBI_IO_BITFLIPS)
 607                        scrub = 1;
 608                else if (mtd_is_eccerr(err)) {
 609                        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 610                                goto out_unlock;
 611                        scrub = 1;
 612                        if (!check) {
 613                                ubi_msg(ubi, "force data checking");
 614                                check = 1;
 615                                goto retry;
 616                        }
 617                } else
 618                        goto out_unlock;
 619        }
 620
 621        if (check) {
 622                uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
 623                if (crc1 != crc) {
 624                        ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
 625                                 crc1, crc);
 626                        err = -EBADMSG;
 627                        goto out_unlock;
 628                }
 629        }
 630
 631        if (scrub)
 632                err = ubi_wl_scrub_peb(ubi, pnum);
 633
 634        leb_read_unlock(ubi, vol_id, lnum);
 635        return err;
 636
 637out_free:
 638        ubi_free_vid_buf(vidb);
 639out_unlock:
 640        leb_read_unlock(ubi, vol_id, lnum);
 641        return err;
 642}
 643
 644/**
 645 * ubi_eba_read_leb_sg - read data into a scatter gather list.
 646 * @ubi: UBI device description object
 647 * @vol: volume description object
 648 * @lnum: logical eraseblock number
 649 * @sgl: UBI scatter gather list to store the read data
 650 * @offset: offset from where to read
 651 * @len: how many bytes to read
 652 * @check: data CRC check flag
 653 *
 654 * This function works exactly like ubi_eba_read_leb(). But instead of
 655 * storing the read data into a buffer it writes to an UBI scatter gather
 656 * list.
 657 */
 658int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
 659                        struct ubi_sgl *sgl, int lnum, int offset, int len,
 660                        int check)
 661{
 662        int to_read;
 663        int ret;
 664        struct scatterlist *sg;
 665
 666        for (;;) {
 667                ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
 668                sg = &sgl->sg[sgl->list_pos];
 669                if (len < sg->length - sgl->page_pos)
 670                        to_read = len;
 671                else
 672                        to_read = sg->length - sgl->page_pos;
 673
 674                ret = ubi_eba_read_leb(ubi, vol, lnum,
 675                                       sg_virt(sg) + sgl->page_pos, offset,
 676                                       to_read, check);
 677                if (ret < 0)
 678                        return ret;
 679
 680                offset += to_read;
 681                len -= to_read;
 682                if (!len) {
 683                        sgl->page_pos += to_read;
 684                        if (sgl->page_pos == sg->length) {
 685                                sgl->list_pos++;
 686                                sgl->page_pos = 0;
 687                        }
 688
 689                        break;
 690                }
 691
 692                sgl->list_pos++;
 693                sgl->page_pos = 0;
 694        }
 695
 696        return ret;
 697}
 698
 699/**
 700 * try_recover_peb - try to recover from write failure.
 701 * @vol: volume description object
 702 * @pnum: the physical eraseblock to recover
 703 * @lnum: logical eraseblock number
 704 * @buf: data which was not written because of the write failure
 705 * @offset: offset of the failed write
 706 * @len: how many bytes should have been written
 707 * @vidb: VID buffer
 708 * @retry: whether the caller should retry in case of failure
 709 *
 710 * This function is called in case of a write failure and moves all good data
 711 * from the potentially bad physical eraseblock to a good physical eraseblock.
 712 * This function also writes the data which was not written due to the failure.
 713 * Returns 0 in case of success, and a negative error code in case of failure.
 714 * In case of failure, the %retry parameter is set to false if this is a fatal
 715 * error (retrying won't help), and true otherwise.
 716 */
 717static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
 718                           const void *buf, int offset, int len,
 719                           struct ubi_vid_io_buf *vidb, bool *retry)
 720{
 721        struct ubi_device *ubi = vol->ubi;
 722        struct ubi_vid_hdr *vid_hdr;
 723        int new_pnum, err, vol_id = vol->vol_id, data_size;
 724        uint32_t crc;
 725
 726        *retry = false;
 727
 728        new_pnum = ubi_wl_get_peb(ubi);
 729        if (new_pnum < 0) {
 730                err = new_pnum;
 731                goto out_put;
 732        }
 733
 734        ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
 735                pnum, new_pnum);
 736
 737        err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
 738        if (err && err != UBI_IO_BITFLIPS) {
 739                if (err > 0)
 740                        err = -EIO;
 741                goto out_put;
 742        }
 743
 744        vid_hdr = ubi_get_vid_hdr(vidb);
 745        ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
 746
 747        mutex_lock(&ubi->buf_mutex);
 748        memset(ubi->peb_buf + offset, 0xFF, len);
 749
 750        /* Read everything before the area where the write failure happened */
 751        if (offset > 0) {
 752                err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
 753                if (err && err != UBI_IO_BITFLIPS)
 754                        goto out_unlock;
 755        }
 756
 757        *retry = true;
 758
 759        memcpy(ubi->peb_buf + offset, buf, len);
 760
 761        data_size = offset + len;
 762        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
 763        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 764        vid_hdr->copy_flag = 1;
 765        vid_hdr->data_size = cpu_to_be32(data_size);
 766        vid_hdr->data_crc = cpu_to_be32(crc);
 767        err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
 768        if (err)
 769                goto out_unlock;
 770
 771        err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
 772
 773out_unlock:
 774        mutex_unlock(&ubi->buf_mutex);
 775
 776        if (!err)
 777                vol->eba_tbl->entries[lnum].pnum = new_pnum;
 778
 779out_put:
 780        up_read(&ubi->fm_eba_sem);
 781
 782        if (!err) {
 783                ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 784                ubi_msg(ubi, "data was successfully recovered");
 785        } else if (new_pnum >= 0) {
 786                /*
 787                 * Bad luck? This physical eraseblock is bad too? Crud. Let's
 788                 * try to get another one.
 789                 */
 790                ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
 791                ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
 792        }
 793
 794        return err;
 795}
 796
 797/**
 798 * recover_peb - recover from write failure.
 799 * @ubi: UBI device description object
 800 * @pnum: the physical eraseblock to recover
 801 * @vol_id: volume ID
 802 * @lnum: logical eraseblock number
 803 * @buf: data which was not written because of the write failure
 804 * @offset: offset of the failed write
 805 * @len: how many bytes should have been written
 806 *
 807 * This function is called in case of a write failure and moves all good data
 808 * from the potentially bad physical eraseblock to a good physical eraseblock.
 809 * This function also writes the data which was not written due to the failure.
 810 * Returns 0 in case of success, and a negative error code in case of failure.
 811 * This function tries %UBI_IO_RETRIES before giving up.
 812 */
 813static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
 814                       const void *buf, int offset, int len)
 815{
 816        int err, idx = vol_id2idx(ubi, vol_id), tries;
 817        struct ubi_volume *vol = ubi->volumes[idx];
 818        struct ubi_vid_io_buf *vidb;
 819
 820        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 821        if (!vidb)
 822                return -ENOMEM;
 823
 824        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
 825                bool retry;
 826
 827                err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
 828                                      &retry);
 829                if (!err || !retry)
 830                        break;
 831
 832                ubi_msg(ubi, "try again");
 833        }
 834
 835        ubi_free_vid_buf(vidb);
 836
 837        return err;
 838}
 839
 840/**
 841 * try_write_vid_and_data - try to write VID header and data to a new PEB.
 842 * @vol: volume description object
 843 * @lnum: logical eraseblock number
 844 * @vidb: the VID buffer to write
 845 * @buf: buffer containing the data
 846 * @offset: where to start writing data
 847 * @len: how many bytes should be written
 848 *
 849 * This function tries to write VID header and data belonging to logical
 850 * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
 851 * in case of success and a negative error code in case of failure.
 852 * In case of error, it is possible that something was still written to the
 853 * flash media, but may be some garbage.
 854 */
 855static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
 856                                  struct ubi_vid_io_buf *vidb, const void *buf,
 857                                  int offset, int len)
 858{
 859        struct ubi_device *ubi = vol->ubi;
 860        int pnum, opnum, err, vol_id = vol->vol_id;
 861
 862        pnum = ubi_wl_get_peb(ubi);
 863        if (pnum < 0) {
 864                err = pnum;
 865                goto out_put;
 866        }
 867
 868        opnum = vol->eba_tbl->entries[lnum].pnum;
 869
 870        dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
 871                len, offset, vol_id, lnum, pnum);
 872
 873        err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
 874        if (err) {
 875                ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
 876                         vol_id, lnum, pnum);
 877                goto out_put;
 878        }
 879
 880        if (len) {
 881                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 882                if (err) {
 883                        ubi_warn(ubi,
 884                                 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
 885                                 len, offset, vol_id, lnum, pnum);
 886                        goto out_put;
 887                }
 888        }
 889
 890        vol->eba_tbl->entries[lnum].pnum = pnum;
 891
 892out_put:
 893        up_read(&ubi->fm_eba_sem);
 894
 895        if (err && pnum >= 0)
 896                err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 897        else if (!err && opnum >= 0)
 898                err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
 899
 900        return err;
 901}
 902
 903/**
 904 * ubi_eba_write_leb - write data to dynamic volume.
 905 * @ubi: UBI device description object
 906 * @vol: volume description object
 907 * @lnum: logical eraseblock number
 908 * @buf: the data to write
 909 * @offset: offset within the logical eraseblock where to write
 910 * @len: how many bytes to write
 911 *
 912 * This function writes data to logical eraseblock @lnum of a dynamic volume
 913 * @vol. Returns zero in case of success and a negative error code in case
 914 * of failure. In case of error, it is possible that something was still
 915 * written to the flash media, but may be some garbage.
 916 * This function retries %UBI_IO_RETRIES times before giving up.
 917 */
 918int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 919                      const void *buf, int offset, int len)
 920{
 921        int err, pnum, tries, vol_id = vol->vol_id;
 922        struct ubi_vid_io_buf *vidb;
 923        struct ubi_vid_hdr *vid_hdr;
 924
 925        if (ubi->ro_mode)
 926                return -EROFS;
 927
 928        err = leb_write_lock(ubi, vol_id, lnum);
 929        if (err)
 930                return err;
 931
 932        pnum = vol->eba_tbl->entries[lnum].pnum;
 933        if (pnum >= 0) {
 934                dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
 935                        len, offset, vol_id, lnum, pnum);
 936
 937                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 938                if (err) {
 939                        ubi_warn(ubi, "failed to write data to PEB %d", pnum);
 940                        if (err == -EIO && ubi->bad_allowed)
 941                                err = recover_peb(ubi, pnum, vol_id, lnum, buf,
 942                                                  offset, len);
 943                }
 944
 945                goto out;
 946        }
 947
 948        /*
 949         * The logical eraseblock is not mapped. We have to get a free physical
 950         * eraseblock and write the volume identifier header there first.
 951         */
 952        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 953        if (!vidb) {
 954                leb_write_unlock(ubi, vol_id, lnum);
 955                return -ENOMEM;
 956        }
 957
 958        vid_hdr = ubi_get_vid_hdr(vidb);
 959
 960        vid_hdr->vol_type = UBI_VID_DYNAMIC;
 961        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 962        vid_hdr->vol_id = cpu_to_be32(vol_id);
 963        vid_hdr->lnum = cpu_to_be32(lnum);
 964        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 965        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 966
 967        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
 968                err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
 969                if (err != -EIO || !ubi->bad_allowed)
 970                        break;
 971
 972                /*
 973                 * Fortunately, this is the first write operation to this
 974                 * physical eraseblock, so just put it and request a new one.
 975                 * We assume that if this physical eraseblock went bad, the
 976                 * erase code will handle that.
 977                 */
 978                vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 979                ubi_msg(ubi, "try another PEB");
 980        }
 981
 982        ubi_free_vid_buf(vidb);
 983
 984out:
 985        if (err)
 986                ubi_ro_mode(ubi);
 987
 988        leb_write_unlock(ubi, vol_id, lnum);
 989
 990        return err;
 991}
 992
 993/**
 994 * ubi_eba_write_leb_st - write data to static volume.
 995 * @ubi: UBI device description object
 996 * @vol: volume description object
 997 * @lnum: logical eraseblock number
 998 * @buf: data to write
 999 * @len: how many bytes to write
1000 * @used_ebs: how many logical eraseblocks will this volume contain
1001 *
1002 * This function writes data to logical eraseblock @lnum of static volume
1003 * @vol. The @used_ebs argument should contain total number of logical
1004 * eraseblock in this static volume.
1005 *
1006 * When writing to the last logical eraseblock, the @len argument doesn't have
1007 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1008 * to the real data size, although the @buf buffer has to contain the
1009 * alignment. In all other cases, @len has to be aligned.
1010 *
1011 * It is prohibited to write more than once to logical eraseblocks of static
1012 * volumes. This function returns zero in case of success and a negative error
1013 * code in case of failure.
1014 */
1015int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1016                         int lnum, const void *buf, int len, int used_ebs)
1017{
1018        int err, tries, data_size = len, vol_id = vol->vol_id;
1019        struct ubi_vid_io_buf *vidb;
1020        struct ubi_vid_hdr *vid_hdr;
1021        uint32_t crc;
1022
1023        if (ubi->ro_mode)
1024                return -EROFS;
1025
1026        if (lnum == used_ebs - 1)
1027                /* If this is the last LEB @len may be unaligned */
1028                len = ALIGN(data_size, ubi->min_io_size);
1029        else
1030                ubi_assert(!(len & (ubi->min_io_size - 1)));
1031
1032        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1033        if (!vidb)
1034                return -ENOMEM;
1035
1036        vid_hdr = ubi_get_vid_hdr(vidb);
1037
1038        err = leb_write_lock(ubi, vol_id, lnum);
1039        if (err)
1040                goto out;
1041
1042        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1043        vid_hdr->vol_id = cpu_to_be32(vol_id);
1044        vid_hdr->lnum = cpu_to_be32(lnum);
1045        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1046        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1047
1048        crc = crc32(UBI_CRC32_INIT, buf, data_size);
1049        vid_hdr->vol_type = UBI_VID_STATIC;
1050        vid_hdr->data_size = cpu_to_be32(data_size);
1051        vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1052        vid_hdr->data_crc = cpu_to_be32(crc);
1053
1054        ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1055
1056        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1057                err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1058                if (err != -EIO || !ubi->bad_allowed)
1059                        break;
1060
1061                vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1062                ubi_msg(ubi, "try another PEB");
1063        }
1064
1065        if (err)
1066                ubi_ro_mode(ubi);
1067
1068        leb_write_unlock(ubi, vol_id, lnum);
1069
1070out:
1071        ubi_free_vid_buf(vidb);
1072
1073        return err;
1074}
1075
1076/*
1077 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1078 * @ubi: UBI device description object
1079 * @vol: volume description object
1080 * @lnum: logical eraseblock number
1081 * @buf: data to write
1082 * @len: how many bytes to write
1083 *
1084 * This function changes the contents of a logical eraseblock atomically. @buf
1085 * has to contain new logical eraseblock data, and @len - the length of the
1086 * data, which has to be aligned. This function guarantees that in case of an
1087 * unclean reboot the old contents is preserved. Returns zero in case of
1088 * success and a negative error code in case of failure.
1089 *
1090 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1091 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1092 */
1093int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1094                              int lnum, const void *buf, int len)
1095{
1096        int err, tries, vol_id = vol->vol_id;
1097        struct ubi_vid_io_buf *vidb;
1098        struct ubi_vid_hdr *vid_hdr;
1099        uint32_t crc;
1100
1101        if (ubi->ro_mode)
1102                return -EROFS;
1103
1104        if (len == 0) {
1105                /*
1106                 * Special case when data length is zero. In this case the LEB
1107                 * has to be unmapped and mapped somewhere else.
1108                 */
1109                err = ubi_eba_unmap_leb(ubi, vol, lnum);
1110                if (err)
1111                        return err;
1112                return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1113        }
1114
1115        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1116        if (!vidb)
1117                return -ENOMEM;
1118
1119        vid_hdr = ubi_get_vid_hdr(vidb);
1120
1121        mutex_lock(&ubi->alc_mutex);
1122        err = leb_write_lock(ubi, vol_id, lnum);
1123        if (err)
1124                goto out_mutex;
1125
1126        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1127        vid_hdr->vol_id = cpu_to_be32(vol_id);
1128        vid_hdr->lnum = cpu_to_be32(lnum);
1129        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1130        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1131
1132        crc = crc32(UBI_CRC32_INIT, buf, len);
1133        vid_hdr->vol_type = UBI_VID_DYNAMIC;
1134        vid_hdr->data_size = cpu_to_be32(len);
1135        vid_hdr->copy_flag = 1;
1136        vid_hdr->data_crc = cpu_to_be32(crc);
1137
1138        dbg_eba("change LEB %d:%d", vol_id, lnum);
1139
1140        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1141                err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1142                if (err != -EIO || !ubi->bad_allowed)
1143                        break;
1144
1145                vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1146                ubi_msg(ubi, "try another PEB");
1147        }
1148
1149        /*
1150         * This flash device does not admit of bad eraseblocks or
1151         * something nasty and unexpected happened. Switch to read-only
1152         * mode just in case.
1153         */
1154        if (err)
1155                ubi_ro_mode(ubi);
1156
1157        leb_write_unlock(ubi, vol_id, lnum);
1158
1159out_mutex:
1160        mutex_unlock(&ubi->alc_mutex);
1161        ubi_free_vid_buf(vidb);
1162        return err;
1163}
1164
1165/**
1166 * is_error_sane - check whether a read error is sane.
1167 * @err: code of the error happened during reading
1168 *
1169 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1170 * cannot read data from the target PEB (an error @err happened). If the error
1171 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1172 * fatal and UBI will be switched to R/O mode later.
1173 *
1174 * The idea is that we try not to switch to R/O mode if the read error is
1175 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1176 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1177 * mode, simply because we do not know what happened at the MTD level, and we
1178 * cannot handle this. E.g., the underlying driver may have become crazy, and
1179 * it is safer to switch to R/O mode to preserve the data.
1180 *
1181 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1182 * which we have just written.
1183 */
1184static int is_error_sane(int err)
1185{
1186        if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1187            err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1188                return 0;
1189        return 1;
1190}
1191
1192/**
1193 * ubi_eba_copy_leb - copy logical eraseblock.
1194 * @ubi: UBI device description object
1195 * @from: physical eraseblock number from where to copy
1196 * @to: physical eraseblock number where to copy
1197 * @vid_hdr: VID header of the @from physical eraseblock
1198 *
1199 * This function copies logical eraseblock from physical eraseblock @from to
1200 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1201 * function. Returns:
1202 *   o %0 in case of success;
1203 *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1204 *   o a negative error code in case of failure.
1205 */
1206int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1207                     struct ubi_vid_io_buf *vidb)
1208{
1209        int err, vol_id, lnum, data_size, aldata_size, idx;
1210        struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1211        struct ubi_volume *vol;
1212        uint32_t crc;
1213
1214        ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1215
1216        vol_id = be32_to_cpu(vid_hdr->vol_id);
1217        lnum = be32_to_cpu(vid_hdr->lnum);
1218
1219        dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1220
1221        if (vid_hdr->vol_type == UBI_VID_STATIC) {
1222                data_size = be32_to_cpu(vid_hdr->data_size);
1223                aldata_size = ALIGN(data_size, ubi->min_io_size);
1224        } else
1225                data_size = aldata_size =
1226                            ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1227
1228        idx = vol_id2idx(ubi, vol_id);
1229        spin_lock(&ubi->volumes_lock);
1230        /*
1231         * Note, we may race with volume deletion, which means that the volume
1232         * this logical eraseblock belongs to might be being deleted. Since the
1233         * volume deletion un-maps all the volume's logical eraseblocks, it will
1234         * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1235         */
1236        vol = ubi->volumes[idx];
1237        spin_unlock(&ubi->volumes_lock);
1238        if (!vol) {
1239                /* No need to do further work, cancel */
1240                dbg_wl("volume %d is being removed, cancel", vol_id);
1241                return MOVE_CANCEL_RACE;
1242        }
1243
1244        /*
1245         * We do not want anybody to write to this logical eraseblock while we
1246         * are moving it, so lock it.
1247         *
1248         * Note, we are using non-waiting locking here, because we cannot sleep
1249         * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1250         * unmapping the LEB which is mapped to the PEB we are going to move
1251         * (@from). This task locks the LEB and goes sleep in the
1252         * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1253         * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1254         * LEB is already locked, we just do not move it and return
1255         * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1256         * we do not know the reasons of the contention - it may be just a
1257         * normal I/O on this LEB, so we want to re-try.
1258         */
1259        err = leb_write_trylock(ubi, vol_id, lnum);
1260        if (err) {
1261                dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1262                return MOVE_RETRY;
1263        }
1264
1265        /*
1266         * The LEB might have been put meanwhile, and the task which put it is
1267         * probably waiting on @ubi->move_mutex. No need to continue the work,
1268         * cancel it.
1269         */
1270        if (vol->eba_tbl->entries[lnum].pnum != from) {
1271                dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1272                       vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1273                err = MOVE_CANCEL_RACE;
1274                goto out_unlock_leb;
1275        }
1276
1277        /*
1278         * OK, now the LEB is locked and we can safely start moving it. Since
1279         * this function utilizes the @ubi->peb_buf buffer which is shared
1280         * with some other functions - we lock the buffer by taking the
1281         * @ubi->buf_mutex.
1282         */
1283        mutex_lock(&ubi->buf_mutex);
1284        dbg_wl("read %d bytes of data", aldata_size);
1285        err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1286        if (err && err != UBI_IO_BITFLIPS) {
1287                ubi_warn(ubi, "error %d while reading data from PEB %d",
1288                         err, from);
1289                err = MOVE_SOURCE_RD_ERR;
1290                goto out_unlock_buf;
1291        }
1292
1293        /*
1294         * Now we have got to calculate how much data we have to copy. In
1295         * case of a static volume it is fairly easy - the VID header contains
1296         * the data size. In case of a dynamic volume it is more difficult - we
1297         * have to read the contents, cut 0xFF bytes from the end and copy only
1298         * the first part. We must do this to avoid writing 0xFF bytes as it
1299         * may have some side-effects. And not only this. It is important not
1300         * to include those 0xFFs to CRC because later the they may be filled
1301         * by data.
1302         */
1303        if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1304                aldata_size = data_size =
1305                        ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1306
1307        cond_resched();
1308        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1309        cond_resched();
1310
1311        /*
1312         * It may turn out to be that the whole @from physical eraseblock
1313         * contains only 0xFF bytes. Then we have to only write the VID header
1314         * and do not write any data. This also means we should not set
1315         * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1316         */
1317        if (data_size > 0) {
1318                vid_hdr->copy_flag = 1;
1319                vid_hdr->data_size = cpu_to_be32(data_size);
1320                vid_hdr->data_crc = cpu_to_be32(crc);
1321        }
1322        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1323
1324        err = ubi_io_write_vid_hdr(ubi, to, vidb);
1325        if (err) {
1326                if (err == -EIO)
1327                        err = MOVE_TARGET_WR_ERR;
1328                goto out_unlock_buf;
1329        }
1330
1331        cond_resched();
1332
1333        /* Read the VID header back and check if it was written correctly */
1334        err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1335        if (err) {
1336                if (err != UBI_IO_BITFLIPS) {
1337                        ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1338                                 err, to);
1339                        if (is_error_sane(err))
1340                                err = MOVE_TARGET_RD_ERR;
1341                } else
1342                        err = MOVE_TARGET_BITFLIPS;
1343                goto out_unlock_buf;
1344        }
1345
1346        if (data_size > 0) {
1347                err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1348                if (err) {
1349                        if (err == -EIO)
1350                                err = MOVE_TARGET_WR_ERR;
1351                        goto out_unlock_buf;
1352                }
1353
1354                cond_resched();
1355        }
1356
1357        ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1358        vol->eba_tbl->entries[lnum].pnum = to;
1359
1360out_unlock_buf:
1361        mutex_unlock(&ubi->buf_mutex);
1362out_unlock_leb:
1363        leb_write_unlock(ubi, vol_id, lnum);
1364        return err;
1365}
1366
1367/**
1368 * print_rsvd_warning - warn about not having enough reserved PEBs.
1369 * @ubi: UBI device description object
1370 *
1371 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1372 * cannot reserve enough PEBs for bad block handling. This function makes a
1373 * decision whether we have to print a warning or not. The algorithm is as
1374 * follows:
1375 *   o if this is a new UBI image, then just print the warning
1376 *   o if this is an UBI image which has already been used for some time, print
1377 *     a warning only if we can reserve less than 10% of the expected amount of
1378 *     the reserved PEB.
1379 *
1380 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1381 * of PEBs becomes smaller, which is normal and we do not want to scare users
1382 * with a warning every time they attach the MTD device. This was an issue
1383 * reported by real users.
1384 */
1385static void print_rsvd_warning(struct ubi_device *ubi,
1386                               struct ubi_attach_info *ai)
1387{
1388        /*
1389         * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1390         * large number to distinguish between newly flashed and used images.
1391         */
1392        if (ai->max_sqnum > (1 << 18)) {
1393                int min = ubi->beb_rsvd_level / 10;
1394
1395                if (!min)
1396                        min = 1;
1397                if (ubi->beb_rsvd_pebs > min)
1398                        return;
1399        }
1400
1401        ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1402                 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1403        if (ubi->corr_peb_count)
1404                ubi_warn(ubi, "%d PEBs are corrupted and not used",
1405                         ubi->corr_peb_count);
1406}
1407
1408/**
1409 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1410 * @ubi: UBI device description object
1411 * @ai_fastmap: UBI attach info object created by fastmap
1412 * @ai_scan: UBI attach info object created by scanning
1413 *
1414 * Returns < 0 in case of an internal error, 0 otherwise.
1415 * If a bad EBA table entry was found it will be printed out and
1416 * ubi_assert() triggers.
1417 */
1418int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1419                   struct ubi_attach_info *ai_scan)
1420{
1421        int i, j, num_volumes, ret = 0;
1422        int **scan_eba, **fm_eba;
1423        struct ubi_ainf_volume *av;
1424        struct ubi_volume *vol;
1425        struct ubi_ainf_peb *aeb;
1426        struct rb_node *rb;
1427
1428        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1429
1430        scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1431        if (!scan_eba)
1432                return -ENOMEM;
1433
1434        fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1435        if (!fm_eba) {
1436                kfree(scan_eba);
1437                return -ENOMEM;
1438        }
1439
1440        for (i = 0; i < num_volumes; i++) {
1441                vol = ubi->volumes[i];
1442                if (!vol)
1443                        continue;
1444
1445                scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1446                                      GFP_KERNEL);
1447                if (!scan_eba[i]) {
1448                        ret = -ENOMEM;
1449                        goto out_free;
1450                }
1451
1452                fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1453                                    GFP_KERNEL);
1454                if (!fm_eba[i]) {
1455                        ret = -ENOMEM;
1456                        goto out_free;
1457                }
1458
1459                for (j = 0; j < vol->reserved_pebs; j++)
1460                        scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1461
1462                av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1463                if (!av)
1464                        continue;
1465
1466                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1467                        scan_eba[i][aeb->lnum] = aeb->pnum;
1468
1469                av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1470                if (!av)
1471                        continue;
1472
1473                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1474                        fm_eba[i][aeb->lnum] = aeb->pnum;
1475
1476                for (j = 0; j < vol->reserved_pebs; j++) {
1477                        if (scan_eba[i][j] != fm_eba[i][j]) {
1478                                if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1479                                        fm_eba[i][j] == UBI_LEB_UNMAPPED)
1480                                        continue;
1481
1482                                ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1483                                        vol->vol_id, j, fm_eba[i][j],
1484                                        scan_eba[i][j]);
1485                                ubi_assert(0);
1486                        }
1487                }
1488        }
1489
1490out_free:
1491        for (i = 0; i < num_volumes; i++) {
1492                if (!ubi->volumes[i])
1493                        continue;
1494
1495                kfree(scan_eba[i]);
1496                kfree(fm_eba[i]);
1497        }
1498
1499        kfree(scan_eba);
1500        kfree(fm_eba);
1501        return ret;
1502}
1503
1504/**
1505 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1506 * @ubi: UBI device description object
1507 * @ai: attaching information
1508 *
1509 * This function returns zero in case of success and a negative error code in
1510 * case of failure.
1511 */
1512int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1513{
1514        int i, err, num_volumes;
1515        struct ubi_ainf_volume *av;
1516        struct ubi_volume *vol;
1517        struct ubi_ainf_peb *aeb;
1518        struct rb_node *rb;
1519
1520        dbg_eba("initialize EBA sub-system");
1521
1522        spin_lock_init(&ubi->ltree_lock);
1523        mutex_init(&ubi->alc_mutex);
1524        ubi->ltree = RB_ROOT;
1525
1526        ubi->global_sqnum = ai->max_sqnum + 1;
1527        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1528
1529        for (i = 0; i < num_volumes; i++) {
1530                struct ubi_eba_table *tbl;
1531
1532                vol = ubi->volumes[i];
1533                if (!vol)
1534                        continue;
1535
1536                cond_resched();
1537
1538                tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1539                if (IS_ERR(tbl)) {
1540                        err = PTR_ERR(tbl);
1541                        goto out_free;
1542                }
1543
1544                ubi_eba_replace_table(vol, tbl);
1545
1546                av = ubi_find_av(ai, idx2vol_id(ubi, i));
1547                if (!av)
1548                        continue;
1549
1550                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1551                        if (aeb->lnum >= vol->reserved_pebs) {
1552                                /*
1553                                 * This may happen in case of an unclean reboot
1554                                 * during re-size.
1555                                 */
1556                                ubi_move_aeb_to_list(av, aeb, &ai->erase);
1557                        } else {
1558                                struct ubi_eba_entry *entry;
1559
1560                                entry = &vol->eba_tbl->entries[aeb->lnum];
1561                                entry->pnum = aeb->pnum;
1562                        }
1563                }
1564        }
1565
1566        if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1567                ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1568                        ubi->avail_pebs, EBA_RESERVED_PEBS);
1569                if (ubi->corr_peb_count)
1570                        ubi_err(ubi, "%d PEBs are corrupted and not used",
1571                                ubi->corr_peb_count);
1572                err = -ENOSPC;
1573                goto out_free;
1574        }
1575        ubi->avail_pebs -= EBA_RESERVED_PEBS;
1576        ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1577
1578        if (ubi->bad_allowed) {
1579                ubi_calculate_reserved(ubi);
1580
1581                if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1582                        /* No enough free physical eraseblocks */
1583                        ubi->beb_rsvd_pebs = ubi->avail_pebs;
1584                        print_rsvd_warning(ubi, ai);
1585                } else
1586                        ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1587
1588                ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1589                ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1590        }
1591
1592        dbg_eba("EBA sub-system is initialized");
1593        return 0;
1594
1595out_free:
1596        for (i = 0; i < num_volumes; i++) {
1597                if (!ubi->volumes[i])
1598                        continue;
1599                ubi_eba_replace_table(ubi->volumes[i], NULL);
1600        }
1601        return err;
1602}
1603