linux/drivers/net/ethernet/atheros/atl1e/atl1e_hw.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
   3 *
   4 * Derived from Intel e1000 driver
   5 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms of the GNU General Public License as published by the Free
   9 * Software Foundation; either version 2 of the License, or (at your option)
  10 * any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful, but WITHOUT
  13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  15 * more details.
  16 *
  17 * You should have received a copy of the GNU General Public License along with
  18 * this program; if not, write to the Free Software Foundation, Inc., 59
  19 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  20 */
  21#include <linux/pci.h>
  22#include <linux/delay.h>
  23#include <linux/mii.h>
  24#include <linux/crc32.h>
  25
  26#include "atl1e.h"
  27
  28/*
  29 * check_eeprom_exist
  30 * return 0 if eeprom exist
  31 */
  32int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
  33{
  34        u32 value;
  35
  36        value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
  37        if (value & SPI_FLASH_CTRL_EN_VPD) {
  38                value &= ~SPI_FLASH_CTRL_EN_VPD;
  39                AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
  40        }
  41        value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
  42        return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
  43}
  44
  45void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
  46{
  47        u32 value;
  48        /*
  49         * 00-0B-6A-F6-00-DC
  50         * 0:  6AF600DC 1: 000B
  51         * low dword
  52         */
  53        value = (((u32)hw->mac_addr[2]) << 24) |
  54                (((u32)hw->mac_addr[3]) << 16) |
  55                (((u32)hw->mac_addr[4]) << 8)  |
  56                (((u32)hw->mac_addr[5])) ;
  57        AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
  58        /* hight dword */
  59        value = (((u32)hw->mac_addr[0]) << 8) |
  60                (((u32)hw->mac_addr[1])) ;
  61        AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
  62}
  63
  64/*
  65 * atl1e_get_permanent_address
  66 * return 0 if get valid mac address,
  67 */
  68static int atl1e_get_permanent_address(struct atl1e_hw *hw)
  69{
  70        u32 addr[2];
  71        u32 i;
  72        u32 twsi_ctrl_data;
  73        u8  eth_addr[ETH_ALEN];
  74
  75        if (is_valid_ether_addr(hw->perm_mac_addr))
  76                return 0;
  77
  78        /* init */
  79        addr[0] = addr[1] = 0;
  80
  81        if (!atl1e_check_eeprom_exist(hw)) {
  82                /* eeprom exist */
  83                twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
  84                twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
  85                AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
  86                for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
  87                        msleep(10);
  88                        twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
  89                        if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
  90                                break;
  91                }
  92                if (i >= AT_TWSI_EEPROM_TIMEOUT)
  93                        return AT_ERR_TIMEOUT;
  94        }
  95
  96        /* maybe MAC-address is from BIOS */
  97        addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
  98        addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
  99        *(u32 *) &eth_addr[2] = swab32(addr[0]);
 100        *(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
 101
 102        if (is_valid_ether_addr(eth_addr)) {
 103                memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 104                return 0;
 105        }
 106
 107        return AT_ERR_EEPROM;
 108}
 109
 110bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
 111{
 112        return true;
 113}
 114
 115bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
 116{
 117        int i;
 118        u32 control;
 119
 120        if (offset & 3)
 121                return false; /* address do not align */
 122
 123        AT_WRITE_REG(hw, REG_VPD_DATA, 0);
 124        control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
 125        AT_WRITE_REG(hw, REG_VPD_CAP, control);
 126
 127        for (i = 0; i < 10; i++) {
 128                msleep(2);
 129                control = AT_READ_REG(hw, REG_VPD_CAP);
 130                if (control & VPD_CAP_VPD_FLAG)
 131                        break;
 132        }
 133        if (control & VPD_CAP_VPD_FLAG) {
 134                *p_value = AT_READ_REG(hw, REG_VPD_DATA);
 135                return true;
 136        }
 137        return false; /* timeout */
 138}
 139
 140void atl1e_force_ps(struct atl1e_hw *hw)
 141{
 142        AT_WRITE_REGW(hw, REG_GPHY_CTRL,
 143                        GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
 144}
 145
 146/*
 147 * Reads the adapter's MAC address from the EEPROM
 148 *
 149 * hw - Struct containing variables accessed by shared code
 150 */
 151int atl1e_read_mac_addr(struct atl1e_hw *hw)
 152{
 153        int err = 0;
 154
 155        err = atl1e_get_permanent_address(hw);
 156        if (err)
 157                return AT_ERR_EEPROM;
 158        memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
 159        return 0;
 160}
 161
 162/*
 163 * atl1e_hash_mc_addr
 164 *  purpose
 165 *      set hash value for a multicast address
 166 */
 167u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
 168{
 169        u32 crc32;
 170        u32 value = 0;
 171        int i;
 172
 173        crc32 = ether_crc_le(6, mc_addr);
 174        for (i = 0; i < 32; i++)
 175                value |= (((crc32 >> i) & 1) << (31 - i));
 176
 177        return value;
 178}
 179
 180/*
 181 * Sets the bit in the multicast table corresponding to the hash value.
 182 * hw - Struct containing variables accessed by shared code
 183 * hash_value - Multicast address hash value
 184 */
 185void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
 186{
 187        u32 hash_bit, hash_reg;
 188        u32 mta;
 189
 190        /*
 191         * The HASH Table  is a register array of 2 32-bit registers.
 192         * It is treated like an array of 64 bits.  We want to set
 193         * bit BitArray[hash_value]. So we figure out what register
 194         * the bit is in, read it, OR in the new bit, then write
 195         * back the new value.  The register is determined by the
 196         * upper 7 bits of the hash value and the bit within that
 197         * register are determined by the lower 5 bits of the value.
 198         */
 199        hash_reg = (hash_value >> 31) & 0x1;
 200        hash_bit = (hash_value >> 26) & 0x1F;
 201
 202        mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
 203
 204        mta |= (1 << hash_bit);
 205
 206        AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
 207}
 208/*
 209 * Reads the value from a PHY register
 210 * hw - Struct containing variables accessed by shared code
 211 * reg_addr - address of the PHY register to read
 212 */
 213int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
 214{
 215        u32 val;
 216        int i;
 217
 218        val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
 219                MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
 220                MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
 221
 222        AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
 223
 224        wmb();
 225
 226        for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 227                udelay(2);
 228                val = AT_READ_REG(hw, REG_MDIO_CTRL);
 229                if (!(val & (MDIO_START | MDIO_BUSY)))
 230                        break;
 231                wmb();
 232        }
 233        if (!(val & (MDIO_START | MDIO_BUSY))) {
 234                *phy_data = (u16)val;
 235                return 0;
 236        }
 237
 238        return AT_ERR_PHY;
 239}
 240
 241/*
 242 * Writes a value to a PHY register
 243 * hw - Struct containing variables accessed by shared code
 244 * reg_addr - address of the PHY register to write
 245 * data - data to write to the PHY
 246 */
 247int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
 248{
 249        int i;
 250        u32 val;
 251
 252        val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
 253               (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
 254               MDIO_SUP_PREAMBLE |
 255               MDIO_START |
 256               MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
 257
 258        AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
 259        wmb();
 260
 261        for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 262                udelay(2);
 263                val = AT_READ_REG(hw, REG_MDIO_CTRL);
 264                if (!(val & (MDIO_START | MDIO_BUSY)))
 265                        break;
 266                wmb();
 267        }
 268
 269        if (!(val & (MDIO_START | MDIO_BUSY)))
 270                return 0;
 271
 272        return AT_ERR_PHY;
 273}
 274
 275/*
 276 * atl1e_init_pcie - init PCIE module
 277 */
 278static void atl1e_init_pcie(struct atl1e_hw *hw)
 279{
 280        u32 value;
 281        /* comment 2lines below to save more power when sususpend
 282           value = LTSSM_TEST_MODE_DEF;
 283           AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
 284         */
 285
 286        /* pcie flow control mode change */
 287        value = AT_READ_REG(hw, 0x1008);
 288        value |= 0x8000;
 289        AT_WRITE_REG(hw, 0x1008, value);
 290}
 291/*
 292 * Configures PHY autoneg and flow control advertisement settings
 293 *
 294 * hw - Struct containing variables accessed by shared code
 295 */
 296static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
 297{
 298        s32 ret_val;
 299        u16 mii_autoneg_adv_reg;
 300        u16 mii_1000t_ctrl_reg;
 301
 302        if (0 != hw->mii_autoneg_adv_reg)
 303                return 0;
 304        /* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
 305        mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
 306        mii_1000t_ctrl_reg  = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
 307
 308        /*
 309         * Need to parse autoneg_advertised  and set up
 310         * the appropriate PHY registers.  First we will parse for
 311         * autoneg_advertised software override.  Since we can advertise
 312         * a plethora of combinations, we need to check each bit
 313         * individually.
 314         */
 315
 316        /*
 317         * First we clear all the 10/100 mb speed bits in the Auto-Neg
 318         * Advertisement Register (Address 4) and the 1000 mb speed bits in
 319         * the  1000Base-T control Register (Address 9).
 320         */
 321        mii_autoneg_adv_reg &= ~ADVERTISE_ALL;
 322        mii_1000t_ctrl_reg  &= ~MII_AT001_CR_1000T_SPEED_MASK;
 323
 324        /*
 325         * Need to parse MediaType and setup the
 326         * appropriate PHY registers.
 327         */
 328        switch (hw->media_type) {
 329        case MEDIA_TYPE_AUTO_SENSOR:
 330                mii_autoneg_adv_reg |= ADVERTISE_ALL;
 331                hw->autoneg_advertised = ADVERTISE_ALL;
 332                if (hw->nic_type == athr_l1e) {
 333                        mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
 334                        hw->autoneg_advertised |= ADVERTISE_1000_FULL;
 335                }
 336                break;
 337
 338        case MEDIA_TYPE_100M_FULL:
 339                mii_autoneg_adv_reg   |= ADVERTISE_100FULL;
 340                hw->autoneg_advertised = ADVERTISE_100_FULL;
 341                break;
 342
 343        case MEDIA_TYPE_100M_HALF:
 344                mii_autoneg_adv_reg   |= ADVERTISE_100_HALF;
 345                hw->autoneg_advertised = ADVERTISE_100_HALF;
 346                break;
 347
 348        case MEDIA_TYPE_10M_FULL:
 349                mii_autoneg_adv_reg   |= ADVERTISE_10_FULL;
 350                hw->autoneg_advertised = ADVERTISE_10_FULL;
 351                break;
 352
 353        default:
 354                mii_autoneg_adv_reg   |= ADVERTISE_10_HALF;
 355                hw->autoneg_advertised = ADVERTISE_10_HALF;
 356                break;
 357        }
 358
 359        /* flow control fixed to enable all */
 360        mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
 361
 362        hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
 363        hw->mii_1000t_ctrl_reg  = mii_1000t_ctrl_reg;
 364
 365        ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
 366        if (ret_val)
 367                return ret_val;
 368
 369        if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
 370                ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000,
 371                                           mii_1000t_ctrl_reg);
 372                if (ret_val)
 373                        return ret_val;
 374        }
 375
 376        return 0;
 377}
 378
 379
 380/*
 381 * Resets the PHY and make all config validate
 382 *
 383 * hw - Struct containing variables accessed by shared code
 384 *
 385 * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
 386 */
 387int atl1e_phy_commit(struct atl1e_hw *hw)
 388{
 389        struct atl1e_adapter *adapter = hw->adapter;
 390        int ret_val;
 391        u16 phy_data;
 392
 393        phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART;
 394
 395        ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
 396        if (ret_val) {
 397                u32 val;
 398                int i;
 399                /**************************************
 400                 * pcie serdes link may be down !
 401                 **************************************/
 402                for (i = 0; i < 25; i++) {
 403                        msleep(1);
 404                        val = AT_READ_REG(hw, REG_MDIO_CTRL);
 405                        if (!(val & (MDIO_START | MDIO_BUSY)))
 406                                break;
 407                }
 408
 409                if (0 != (val & (MDIO_START | MDIO_BUSY))) {
 410                        netdev_err(adapter->netdev,
 411                                   "pcie linkdown at least for 25ms\n");
 412                        return ret_val;
 413                }
 414
 415                netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i);
 416        }
 417        return 0;
 418}
 419
 420int atl1e_phy_init(struct atl1e_hw *hw)
 421{
 422        struct atl1e_adapter *adapter = hw->adapter;
 423        s32 ret_val;
 424        u16 phy_val;
 425
 426        if (hw->phy_configured) {
 427                if (hw->re_autoneg) {
 428                        hw->re_autoneg = false;
 429                        return atl1e_restart_autoneg(hw);
 430                }
 431                return 0;
 432        }
 433
 434        /* RESET GPHY Core */
 435        AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
 436        msleep(2);
 437        AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
 438                      GPHY_CTRL_EXT_RESET);
 439        msleep(2);
 440
 441        /* patches */
 442        /* p1. eable hibernation mode */
 443        ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
 444        if (ret_val)
 445                return ret_val;
 446        ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
 447        if (ret_val)
 448                return ret_val;
 449        /* p2. set Class A/B for all modes */
 450        ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
 451        if (ret_val)
 452                return ret_val;
 453        phy_val = 0x02ef;
 454        /* remove Class AB */
 455        /* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
 456        ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
 457        if (ret_val)
 458                return ret_val;
 459        /* p3. 10B ??? */
 460        ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
 461        if (ret_val)
 462                return ret_val;
 463        ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
 464        if (ret_val)
 465                return ret_val;
 466        /* p4. 1000T power */
 467        ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
 468        if (ret_val)
 469                return ret_val;
 470        ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
 471        if (ret_val)
 472                return ret_val;
 473
 474        ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
 475        if (ret_val)
 476                return ret_val;
 477        ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
 478        if (ret_val)
 479                return ret_val;
 480
 481        msleep(1);
 482
 483        /*Enable PHY LinkChange Interrupt */
 484        ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
 485        if (ret_val) {
 486                netdev_err(adapter->netdev,
 487                           "Error enable PHY linkChange Interrupt\n");
 488                return ret_val;
 489        }
 490        /* setup AutoNeg parameters */
 491        ret_val = atl1e_phy_setup_autoneg_adv(hw);
 492        if (ret_val) {
 493                netdev_err(adapter->netdev,
 494                           "Error Setting up Auto-Negotiation\n");
 495                return ret_val;
 496        }
 497        /* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
 498        netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n");
 499        ret_val = atl1e_phy_commit(hw);
 500        if (ret_val) {
 501                netdev_err(adapter->netdev, "Error resetting the phy\n");
 502                return ret_val;
 503        }
 504
 505        hw->phy_configured = true;
 506
 507        return 0;
 508}
 509
 510/*
 511 * Reset the transmit and receive units; mask and clear all interrupts.
 512 * hw - Struct containing variables accessed by shared code
 513 * return : 0  or  idle status (if error)
 514 */
 515int atl1e_reset_hw(struct atl1e_hw *hw)
 516{
 517        struct atl1e_adapter *adapter = hw->adapter;
 518        struct pci_dev *pdev = adapter->pdev;
 519
 520        u32 idle_status_data = 0;
 521        u16 pci_cfg_cmd_word = 0;
 522        int timeout = 0;
 523
 524        /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
 525        pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
 526        if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
 527                                CMD_MEMORY_SPACE | CMD_BUS_MASTER))
 528                        != (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
 529                pci_cfg_cmd_word |= (CMD_IO_SPACE |
 530                                     CMD_MEMORY_SPACE | CMD_BUS_MASTER);
 531                pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
 532        }
 533
 534        /*
 535         * Issue Soft Reset to the MAC.  This will reset the chip's
 536         * transmit, receive, DMA.  It will not effect
 537         * the current PCI configuration.  The global reset bit is self-
 538         * clearing, and should clear within a microsecond.
 539         */
 540        AT_WRITE_REG(hw, REG_MASTER_CTRL,
 541                        MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
 542        wmb();
 543        msleep(1);
 544
 545        /* Wait at least 10ms for All module to be Idle */
 546        for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
 547                idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
 548                if (idle_status_data == 0)
 549                        break;
 550                msleep(1);
 551                cpu_relax();
 552        }
 553
 554        if (timeout >= AT_HW_MAX_IDLE_DELAY) {
 555                netdev_err(adapter->netdev,
 556                           "MAC state machine can't be idle since disabled for 10ms second\n");
 557                return AT_ERR_TIMEOUT;
 558        }
 559
 560        return 0;
 561}
 562
 563
 564/*
 565 * Performs basic configuration of the adapter.
 566 *
 567 * hw - Struct containing variables accessed by shared code
 568 * Assumes that the controller has previously been reset and is in a
 569 * post-reset uninitialized state. Initializes multicast table,
 570 * and  Calls routines to setup link
 571 * Leaves the transmit and receive units disabled and uninitialized.
 572 */
 573int atl1e_init_hw(struct atl1e_hw *hw)
 574{
 575        s32 ret_val = 0;
 576
 577        atl1e_init_pcie(hw);
 578
 579        /* Zero out the Multicast HASH table */
 580        /* clear the old settings from the multicast hash table */
 581        AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
 582        AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
 583
 584        ret_val = atl1e_phy_init(hw);
 585
 586        return ret_val;
 587}
 588
 589/*
 590 * Detects the current speed and duplex settings of the hardware.
 591 *
 592 * hw - Struct containing variables accessed by shared code
 593 * speed - Speed of the connection
 594 * duplex - Duplex setting of the connection
 595 */
 596int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
 597{
 598        int err;
 599        u16 phy_data;
 600
 601        /* Read   PHY Specific Status Register (17) */
 602        err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
 603        if (err)
 604                return err;
 605
 606        if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
 607                return AT_ERR_PHY_RES;
 608
 609        switch (phy_data & MII_AT001_PSSR_SPEED) {
 610        case MII_AT001_PSSR_1000MBS:
 611                *speed = SPEED_1000;
 612                break;
 613        case MII_AT001_PSSR_100MBS:
 614                *speed = SPEED_100;
 615                break;
 616        case MII_AT001_PSSR_10MBS:
 617                *speed = SPEED_10;
 618                break;
 619        default:
 620                return AT_ERR_PHY_SPEED;
 621        }
 622
 623        if (phy_data & MII_AT001_PSSR_DPLX)
 624                *duplex = FULL_DUPLEX;
 625        else
 626                *duplex = HALF_DUPLEX;
 627
 628        return 0;
 629}
 630
 631int atl1e_restart_autoneg(struct atl1e_hw *hw)
 632{
 633        int err = 0;
 634
 635        err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
 636        if (err)
 637                return err;
 638
 639        if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
 640                err = atl1e_write_phy_reg(hw, MII_CTRL1000,
 641                                       hw->mii_1000t_ctrl_reg);
 642                if (err)
 643                        return err;
 644        }
 645
 646        err = atl1e_write_phy_reg(hw, MII_BMCR,
 647                        BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART);
 648        return err;
 649}
 650
 651