linux/drivers/net/ethernet/chelsio/cxgb4/sge.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/skbuff.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/if_vlan.h>
  39#include <linux/ip.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/jiffies.h>
  42#include <linux/prefetch.h>
  43#include <linux/export.h>
  44#include <net/ipv6.h>
  45#include <net/tcp.h>
  46#include <net/busy_poll.h>
  47#ifdef CONFIG_CHELSIO_T4_FCOE
  48#include <scsi/fc/fc_fcoe.h>
  49#endif /* CONFIG_CHELSIO_T4_FCOE */
  50#include "cxgb4.h"
  51#include "t4_regs.h"
  52#include "t4_values.h"
  53#include "t4_msg.h"
  54#include "t4fw_api.h"
  55#include "cxgb4_ptp.h"
  56
  57/*
  58 * Rx buffer size.  We use largish buffers if possible but settle for single
  59 * pages under memory shortage.
  60 */
  61#if PAGE_SHIFT >= 16
  62# define FL_PG_ORDER 0
  63#else
  64# define FL_PG_ORDER (16 - PAGE_SHIFT)
  65#endif
  66
  67/* RX_PULL_LEN should be <= RX_COPY_THRES */
  68#define RX_COPY_THRES    256
  69#define RX_PULL_LEN      128
  70
  71/*
  72 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
  73 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
  74 */
  75#define RX_PKT_SKB_LEN   512
  76
  77/*
  78 * Max number of Tx descriptors we clean up at a time.  Should be modest as
  79 * freeing skbs isn't cheap and it happens while holding locks.  We just need
  80 * to free packets faster than they arrive, we eventually catch up and keep
  81 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
  82 */
  83#define MAX_TX_RECLAIM 16
  84
  85/*
  86 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
  87 * allocating buffers isn't cheap either.
  88 */
  89#define MAX_RX_REFILL 16U
  90
  91/*
  92 * Period of the Rx queue check timer.  This timer is infrequent as it has
  93 * something to do only when the system experiences severe memory shortage.
  94 */
  95#define RX_QCHECK_PERIOD (HZ / 2)
  96
  97/*
  98 * Period of the Tx queue check timer.
  99 */
 100#define TX_QCHECK_PERIOD (HZ / 2)
 101
 102/*
 103 * Max number of Tx descriptors to be reclaimed by the Tx timer.
 104 */
 105#define MAX_TIMER_TX_RECLAIM 100
 106
 107/*
 108 * Timer index used when backing off due to memory shortage.
 109 */
 110#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
 111
 112/*
 113 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
 114 * This is the same as calc_tx_descs() for a TSO packet with
 115 * nr_frags == MAX_SKB_FRAGS.
 116 */
 117#define ETHTXQ_STOP_THRES \
 118        (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
 119
 120/*
 121 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
 122 * for a full sized WR.
 123 */
 124#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
 125
 126/*
 127 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
 128 * into a WR.
 129 */
 130#define MAX_IMM_TX_PKT_LEN 256
 131
 132/*
 133 * Max size of a WR sent through a control Tx queue.
 134 */
 135#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
 136
 137struct tx_sw_desc {                /* SW state per Tx descriptor */
 138        struct sk_buff *skb;
 139        struct ulptx_sgl *sgl;
 140};
 141
 142struct rx_sw_desc {                /* SW state per Rx descriptor */
 143        struct page *page;
 144        dma_addr_t dma_addr;
 145};
 146
 147/*
 148 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
 149 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
 150 * We could easily support more but there doesn't seem to be much need for
 151 * that ...
 152 */
 153#define FL_MTU_SMALL 1500
 154#define FL_MTU_LARGE 9000
 155
 156static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
 157                                          unsigned int mtu)
 158{
 159        struct sge *s = &adapter->sge;
 160
 161        return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
 162}
 163
 164#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
 165#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
 166
 167/*
 168 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
 169 * these to specify the buffer size as an index into the SGE Free List Buffer
 170 * Size register array.  We also use bit 4, when the buffer has been unmapped
 171 * for DMA, but this is of course never sent to the hardware and is only used
 172 * to prevent double unmappings.  All of the above requires that the Free List
 173 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
 174 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
 175 * Free List Buffer alignment is 32 bytes, this works out for us ...
 176 */
 177enum {
 178        RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
 179        RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
 180        RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
 181
 182        /*
 183         * XXX We shouldn't depend on being able to use these indices.
 184         * XXX Especially when some other Master PF has initialized the
 185         * XXX adapter or we use the Firmware Configuration File.  We
 186         * XXX should really search through the Host Buffer Size register
 187         * XXX array for the appropriately sized buffer indices.
 188         */
 189        RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
 190        RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
 191
 192        RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
 193        RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
 194};
 195
 196static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
 197#define MIN_NAPI_WORK  1
 198
 199static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
 200{
 201        return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
 202}
 203
 204static inline bool is_buf_mapped(const struct rx_sw_desc *d)
 205{
 206        return !(d->dma_addr & RX_UNMAPPED_BUF);
 207}
 208
 209/**
 210 *      txq_avail - return the number of available slots in a Tx queue
 211 *      @q: the Tx queue
 212 *
 213 *      Returns the number of descriptors in a Tx queue available to write new
 214 *      packets.
 215 */
 216static inline unsigned int txq_avail(const struct sge_txq *q)
 217{
 218        return q->size - 1 - q->in_use;
 219}
 220
 221/**
 222 *      fl_cap - return the capacity of a free-buffer list
 223 *      @fl: the FL
 224 *
 225 *      Returns the capacity of a free-buffer list.  The capacity is less than
 226 *      the size because one descriptor needs to be left unpopulated, otherwise
 227 *      HW will think the FL is empty.
 228 */
 229static inline unsigned int fl_cap(const struct sge_fl *fl)
 230{
 231        return fl->size - 8;   /* 1 descriptor = 8 buffers */
 232}
 233
 234/**
 235 *      fl_starving - return whether a Free List is starving.
 236 *      @adapter: pointer to the adapter
 237 *      @fl: the Free List
 238 *
 239 *      Tests specified Free List to see whether the number of buffers
 240 *      available to the hardware has falled below our "starvation"
 241 *      threshold.
 242 */
 243static inline bool fl_starving(const struct adapter *adapter,
 244                               const struct sge_fl *fl)
 245{
 246        const struct sge *s = &adapter->sge;
 247
 248        return fl->avail - fl->pend_cred <= s->fl_starve_thres;
 249}
 250
 251static int map_skb(struct device *dev, const struct sk_buff *skb,
 252                   dma_addr_t *addr)
 253{
 254        const skb_frag_t *fp, *end;
 255        const struct skb_shared_info *si;
 256
 257        *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
 258        if (dma_mapping_error(dev, *addr))
 259                goto out_err;
 260
 261        si = skb_shinfo(skb);
 262        end = &si->frags[si->nr_frags];
 263
 264        for (fp = si->frags; fp < end; fp++) {
 265                *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
 266                                           DMA_TO_DEVICE);
 267                if (dma_mapping_error(dev, *addr))
 268                        goto unwind;
 269        }
 270        return 0;
 271
 272unwind:
 273        while (fp-- > si->frags)
 274                dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
 275
 276        dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
 277out_err:
 278        return -ENOMEM;
 279}
 280
 281#ifdef CONFIG_NEED_DMA_MAP_STATE
 282static void unmap_skb(struct device *dev, const struct sk_buff *skb,
 283                      const dma_addr_t *addr)
 284{
 285        const skb_frag_t *fp, *end;
 286        const struct skb_shared_info *si;
 287
 288        dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
 289
 290        si = skb_shinfo(skb);
 291        end = &si->frags[si->nr_frags];
 292        for (fp = si->frags; fp < end; fp++)
 293                dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
 294}
 295
 296/**
 297 *      deferred_unmap_destructor - unmap a packet when it is freed
 298 *      @skb: the packet
 299 *
 300 *      This is the packet destructor used for Tx packets that need to remain
 301 *      mapped until they are freed rather than until their Tx descriptors are
 302 *      freed.
 303 */
 304static void deferred_unmap_destructor(struct sk_buff *skb)
 305{
 306        unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
 307}
 308#endif
 309
 310static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
 311                      const struct ulptx_sgl *sgl, const struct sge_txq *q)
 312{
 313        const struct ulptx_sge_pair *p;
 314        unsigned int nfrags = skb_shinfo(skb)->nr_frags;
 315
 316        if (likely(skb_headlen(skb)))
 317                dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
 318                                 DMA_TO_DEVICE);
 319        else {
 320                dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
 321                               DMA_TO_DEVICE);
 322                nfrags--;
 323        }
 324
 325        /*
 326         * the complexity below is because of the possibility of a wrap-around
 327         * in the middle of an SGL
 328         */
 329        for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
 330                if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
 331unmap:                  dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 332                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 333                        dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
 334                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 335                        p++;
 336                } else if ((u8 *)p == (u8 *)q->stat) {
 337                        p = (const struct ulptx_sge_pair *)q->desc;
 338                        goto unmap;
 339                } else if ((u8 *)p + 8 == (u8 *)q->stat) {
 340                        const __be64 *addr = (const __be64 *)q->desc;
 341
 342                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 343                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 344                        dma_unmap_page(dev, be64_to_cpu(addr[1]),
 345                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 346                        p = (const struct ulptx_sge_pair *)&addr[2];
 347                } else {
 348                        const __be64 *addr = (const __be64 *)q->desc;
 349
 350                        dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 351                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 352                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 353                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 354                        p = (const struct ulptx_sge_pair *)&addr[1];
 355                }
 356        }
 357        if (nfrags) {
 358                __be64 addr;
 359
 360                if ((u8 *)p == (u8 *)q->stat)
 361                        p = (const struct ulptx_sge_pair *)q->desc;
 362                addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
 363                                                       *(const __be64 *)q->desc;
 364                dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
 365                               DMA_TO_DEVICE);
 366        }
 367}
 368
 369/**
 370 *      free_tx_desc - reclaims Tx descriptors and their buffers
 371 *      @adapter: the adapter
 372 *      @q: the Tx queue to reclaim descriptors from
 373 *      @n: the number of descriptors to reclaim
 374 *      @unmap: whether the buffers should be unmapped for DMA
 375 *
 376 *      Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 377 *      Tx buffers.  Called with the Tx queue lock held.
 378 */
 379void free_tx_desc(struct adapter *adap, struct sge_txq *q,
 380                  unsigned int n, bool unmap)
 381{
 382        struct tx_sw_desc *d;
 383        unsigned int cidx = q->cidx;
 384        struct device *dev = adap->pdev_dev;
 385
 386        d = &q->sdesc[cidx];
 387        while (n--) {
 388                if (d->skb) {                       /* an SGL is present */
 389                        if (unmap)
 390                                unmap_sgl(dev, d->skb, d->sgl, q);
 391                        dev_consume_skb_any(d->skb);
 392                        d->skb = NULL;
 393                }
 394                ++d;
 395                if (++cidx == q->size) {
 396                        cidx = 0;
 397                        d = q->sdesc;
 398                }
 399        }
 400        q->cidx = cidx;
 401}
 402
 403/*
 404 * Return the number of reclaimable descriptors in a Tx queue.
 405 */
 406static inline int reclaimable(const struct sge_txq *q)
 407{
 408        int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx));
 409        hw_cidx -= q->cidx;
 410        return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
 411}
 412
 413/**
 414 *      reclaim_completed_tx - reclaims completed Tx descriptors
 415 *      @adap: the adapter
 416 *      @q: the Tx queue to reclaim completed descriptors from
 417 *      @unmap: whether the buffers should be unmapped for DMA
 418 *
 419 *      Reclaims Tx descriptors that the SGE has indicated it has processed,
 420 *      and frees the associated buffers if possible.  Called with the Tx
 421 *      queue locked.
 422 */
 423static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
 424                                        bool unmap)
 425{
 426        int avail = reclaimable(q);
 427
 428        if (avail) {
 429                /*
 430                 * Limit the amount of clean up work we do at a time to keep
 431                 * the Tx lock hold time O(1).
 432                 */
 433                if (avail > MAX_TX_RECLAIM)
 434                        avail = MAX_TX_RECLAIM;
 435
 436                free_tx_desc(adap, q, avail, unmap);
 437                q->in_use -= avail;
 438        }
 439}
 440
 441static inline int get_buf_size(struct adapter *adapter,
 442                               const struct rx_sw_desc *d)
 443{
 444        struct sge *s = &adapter->sge;
 445        unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
 446        int buf_size;
 447
 448        switch (rx_buf_size_idx) {
 449        case RX_SMALL_PG_BUF:
 450                buf_size = PAGE_SIZE;
 451                break;
 452
 453        case RX_LARGE_PG_BUF:
 454                buf_size = PAGE_SIZE << s->fl_pg_order;
 455                break;
 456
 457        case RX_SMALL_MTU_BUF:
 458                buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
 459                break;
 460
 461        case RX_LARGE_MTU_BUF:
 462                buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
 463                break;
 464
 465        default:
 466                BUG_ON(1);
 467        }
 468
 469        return buf_size;
 470}
 471
 472/**
 473 *      free_rx_bufs - free the Rx buffers on an SGE free list
 474 *      @adap: the adapter
 475 *      @q: the SGE free list to free buffers from
 476 *      @n: how many buffers to free
 477 *
 478 *      Release the next @n buffers on an SGE free-buffer Rx queue.   The
 479 *      buffers must be made inaccessible to HW before calling this function.
 480 */
 481static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
 482{
 483        while (n--) {
 484                struct rx_sw_desc *d = &q->sdesc[q->cidx];
 485
 486                if (is_buf_mapped(d))
 487                        dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 488                                       get_buf_size(adap, d),
 489                                       PCI_DMA_FROMDEVICE);
 490                put_page(d->page);
 491                d->page = NULL;
 492                if (++q->cidx == q->size)
 493                        q->cidx = 0;
 494                q->avail--;
 495        }
 496}
 497
 498/**
 499 *      unmap_rx_buf - unmap the current Rx buffer on an SGE free list
 500 *      @adap: the adapter
 501 *      @q: the SGE free list
 502 *
 503 *      Unmap the current buffer on an SGE free-buffer Rx queue.   The
 504 *      buffer must be made inaccessible to HW before calling this function.
 505 *
 506 *      This is similar to @free_rx_bufs above but does not free the buffer.
 507 *      Do note that the FL still loses any further access to the buffer.
 508 */
 509static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
 510{
 511        struct rx_sw_desc *d = &q->sdesc[q->cidx];
 512
 513        if (is_buf_mapped(d))
 514                dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 515                               get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
 516        d->page = NULL;
 517        if (++q->cidx == q->size)
 518                q->cidx = 0;
 519        q->avail--;
 520}
 521
 522static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
 523{
 524        if (q->pend_cred >= 8) {
 525                u32 val = adap->params.arch.sge_fl_db;
 526
 527                if (is_t4(adap->params.chip))
 528                        val |= PIDX_V(q->pend_cred / 8);
 529                else
 530                        val |= PIDX_T5_V(q->pend_cred / 8);
 531
 532                /* Make sure all memory writes to the Free List queue are
 533                 * committed before we tell the hardware about them.
 534                 */
 535                wmb();
 536
 537                /* If we don't have access to the new User Doorbell (T5+), use
 538                 * the old doorbell mechanism; otherwise use the new BAR2
 539                 * mechanism.
 540                 */
 541                if (unlikely(q->bar2_addr == NULL)) {
 542                        t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
 543                                     val | QID_V(q->cntxt_id));
 544                } else {
 545                        writel(val | QID_V(q->bar2_qid),
 546                               q->bar2_addr + SGE_UDB_KDOORBELL);
 547
 548                        /* This Write memory Barrier will force the write to
 549                         * the User Doorbell area to be flushed.
 550                         */
 551                        wmb();
 552                }
 553                q->pend_cred &= 7;
 554        }
 555}
 556
 557static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
 558                                  dma_addr_t mapping)
 559{
 560        sd->page = pg;
 561        sd->dma_addr = mapping;      /* includes size low bits */
 562}
 563
 564/**
 565 *      refill_fl - refill an SGE Rx buffer ring
 566 *      @adap: the adapter
 567 *      @q: the ring to refill
 568 *      @n: the number of new buffers to allocate
 569 *      @gfp: the gfp flags for the allocations
 570 *
 571 *      (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 572 *      allocated with the supplied gfp flags.  The caller must assure that
 573 *      @n does not exceed the queue's capacity.  If afterwards the queue is
 574 *      found critically low mark it as starving in the bitmap of starving FLs.
 575 *
 576 *      Returns the number of buffers allocated.
 577 */
 578static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
 579                              gfp_t gfp)
 580{
 581        struct sge *s = &adap->sge;
 582        struct page *pg;
 583        dma_addr_t mapping;
 584        unsigned int cred = q->avail;
 585        __be64 *d = &q->desc[q->pidx];
 586        struct rx_sw_desc *sd = &q->sdesc[q->pidx];
 587        int node;
 588
 589#ifdef CONFIG_DEBUG_FS
 590        if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
 591                goto out;
 592#endif
 593
 594        gfp |= __GFP_NOWARN;
 595        node = dev_to_node(adap->pdev_dev);
 596
 597        if (s->fl_pg_order == 0)
 598                goto alloc_small_pages;
 599
 600        /*
 601         * Prefer large buffers
 602         */
 603        while (n) {
 604                pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
 605                if (unlikely(!pg)) {
 606                        q->large_alloc_failed++;
 607                        break;       /* fall back to single pages */
 608                }
 609
 610                mapping = dma_map_page(adap->pdev_dev, pg, 0,
 611                                       PAGE_SIZE << s->fl_pg_order,
 612                                       PCI_DMA_FROMDEVICE);
 613                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 614                        __free_pages(pg, s->fl_pg_order);
 615                        q->mapping_err++;
 616                        goto out;   /* do not try small pages for this error */
 617                }
 618                mapping |= RX_LARGE_PG_BUF;
 619                *d++ = cpu_to_be64(mapping);
 620
 621                set_rx_sw_desc(sd, pg, mapping);
 622                sd++;
 623
 624                q->avail++;
 625                if (++q->pidx == q->size) {
 626                        q->pidx = 0;
 627                        sd = q->sdesc;
 628                        d = q->desc;
 629                }
 630                n--;
 631        }
 632
 633alloc_small_pages:
 634        while (n--) {
 635                pg = alloc_pages_node(node, gfp, 0);
 636                if (unlikely(!pg)) {
 637                        q->alloc_failed++;
 638                        break;
 639                }
 640
 641                mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
 642                                       PCI_DMA_FROMDEVICE);
 643                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 644                        put_page(pg);
 645                        q->mapping_err++;
 646                        goto out;
 647                }
 648                *d++ = cpu_to_be64(mapping);
 649
 650                set_rx_sw_desc(sd, pg, mapping);
 651                sd++;
 652
 653                q->avail++;
 654                if (++q->pidx == q->size) {
 655                        q->pidx = 0;
 656                        sd = q->sdesc;
 657                        d = q->desc;
 658                }
 659        }
 660
 661out:    cred = q->avail - cred;
 662        q->pend_cred += cred;
 663        ring_fl_db(adap, q);
 664
 665        if (unlikely(fl_starving(adap, q))) {
 666                smp_wmb();
 667                q->low++;
 668                set_bit(q->cntxt_id - adap->sge.egr_start,
 669                        adap->sge.starving_fl);
 670        }
 671
 672        return cred;
 673}
 674
 675static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
 676{
 677        refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
 678                  GFP_ATOMIC);
 679}
 680
 681/**
 682 *      alloc_ring - allocate resources for an SGE descriptor ring
 683 *      @dev: the PCI device's core device
 684 *      @nelem: the number of descriptors
 685 *      @elem_size: the size of each descriptor
 686 *      @sw_size: the size of the SW state associated with each ring element
 687 *      @phys: the physical address of the allocated ring
 688 *      @metadata: address of the array holding the SW state for the ring
 689 *      @stat_size: extra space in HW ring for status information
 690 *      @node: preferred node for memory allocations
 691 *
 692 *      Allocates resources for an SGE descriptor ring, such as Tx queues,
 693 *      free buffer lists, or response queues.  Each SGE ring requires
 694 *      space for its HW descriptors plus, optionally, space for the SW state
 695 *      associated with each HW entry (the metadata).  The function returns
 696 *      three values: the virtual address for the HW ring (the return value
 697 *      of the function), the bus address of the HW ring, and the address
 698 *      of the SW ring.
 699 */
 700static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
 701                        size_t sw_size, dma_addr_t *phys, void *metadata,
 702                        size_t stat_size, int node)
 703{
 704        size_t len = nelem * elem_size + stat_size;
 705        void *s = NULL;
 706        void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
 707
 708        if (!p)
 709                return NULL;
 710        if (sw_size) {
 711                s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
 712
 713                if (!s) {
 714                        dma_free_coherent(dev, len, p, *phys);
 715                        return NULL;
 716                }
 717        }
 718        if (metadata)
 719                *(void **)metadata = s;
 720        memset(p, 0, len);
 721        return p;
 722}
 723
 724/**
 725 *      sgl_len - calculates the size of an SGL of the given capacity
 726 *      @n: the number of SGL entries
 727 *
 728 *      Calculates the number of flits needed for a scatter/gather list that
 729 *      can hold the given number of entries.
 730 */
 731static inline unsigned int sgl_len(unsigned int n)
 732{
 733        /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
 734         * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
 735         * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
 736         * repeated sequences of { Length[i], Length[i+1], Address[i],
 737         * Address[i+1] } (this ensures that all addresses are on 64-bit
 738         * boundaries).  If N is even, then Length[N+1] should be set to 0 and
 739         * Address[N+1] is omitted.
 740         *
 741         * The following calculation incorporates all of the above.  It's
 742         * somewhat hard to follow but, briefly: the "+2" accounts for the
 743         * first two flits which include the DSGL header, Length0 and
 744         * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
 745         * flits for every pair of the remaining N) +1 if (n-1) is odd; and
 746         * finally the "+((n-1)&1)" adds the one remaining flit needed if
 747         * (n-1) is odd ...
 748         */
 749        n--;
 750        return (3 * n) / 2 + (n & 1) + 2;
 751}
 752
 753/**
 754 *      flits_to_desc - returns the num of Tx descriptors for the given flits
 755 *      @n: the number of flits
 756 *
 757 *      Returns the number of Tx descriptors needed for the supplied number
 758 *      of flits.
 759 */
 760static inline unsigned int flits_to_desc(unsigned int n)
 761{
 762        BUG_ON(n > SGE_MAX_WR_LEN / 8);
 763        return DIV_ROUND_UP(n, 8);
 764}
 765
 766/**
 767 *      is_eth_imm - can an Ethernet packet be sent as immediate data?
 768 *      @skb: the packet
 769 *
 770 *      Returns whether an Ethernet packet is small enough to fit as
 771 *      immediate data. Return value corresponds to headroom required.
 772 */
 773static inline int is_eth_imm(const struct sk_buff *skb)
 774{
 775        int hdrlen = skb_shinfo(skb)->gso_size ?
 776                        sizeof(struct cpl_tx_pkt_lso_core) : 0;
 777
 778        hdrlen += sizeof(struct cpl_tx_pkt);
 779        if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
 780                return hdrlen;
 781        return 0;
 782}
 783
 784/**
 785 *      calc_tx_flits - calculate the number of flits for a packet Tx WR
 786 *      @skb: the packet
 787 *
 788 *      Returns the number of flits needed for a Tx WR for the given Ethernet
 789 *      packet, including the needed WR and CPL headers.
 790 */
 791static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
 792{
 793        unsigned int flits;
 794        int hdrlen = is_eth_imm(skb);
 795
 796        /* If the skb is small enough, we can pump it out as a work request
 797         * with only immediate data.  In that case we just have to have the
 798         * TX Packet header plus the skb data in the Work Request.
 799         */
 800
 801        if (hdrlen)
 802                return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
 803
 804        /* Otherwise, we're going to have to construct a Scatter gather list
 805         * of the skb body and fragments.  We also include the flits necessary
 806         * for the TX Packet Work Request and CPL.  We always have a firmware
 807         * Write Header (incorporated as part of the cpl_tx_pkt_lso and
 808         * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
 809         * message or, if we're doing a Large Send Offload, an LSO CPL message
 810         * with an embedded TX Packet Write CPL message.
 811         */
 812        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
 813        if (skb_shinfo(skb)->gso_size)
 814                flits += (sizeof(struct fw_eth_tx_pkt_wr) +
 815                          sizeof(struct cpl_tx_pkt_lso_core) +
 816                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 817        else
 818                flits += (sizeof(struct fw_eth_tx_pkt_wr) +
 819                          sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 820        return flits;
 821}
 822
 823/**
 824 *      calc_tx_descs - calculate the number of Tx descriptors for a packet
 825 *      @skb: the packet
 826 *
 827 *      Returns the number of Tx descriptors needed for the given Ethernet
 828 *      packet, including the needed WR and CPL headers.
 829 */
 830static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
 831{
 832        return flits_to_desc(calc_tx_flits(skb));
 833}
 834
 835/**
 836 *      write_sgl - populate a scatter/gather list for a packet
 837 *      @skb: the packet
 838 *      @q: the Tx queue we are writing into
 839 *      @sgl: starting location for writing the SGL
 840 *      @end: points right after the end of the SGL
 841 *      @start: start offset into skb main-body data to include in the SGL
 842 *      @addr: the list of bus addresses for the SGL elements
 843 *
 844 *      Generates a gather list for the buffers that make up a packet.
 845 *      The caller must provide adequate space for the SGL that will be written.
 846 *      The SGL includes all of the packet's page fragments and the data in its
 847 *      main body except for the first @start bytes.  @sgl must be 16-byte
 848 *      aligned and within a Tx descriptor with available space.  @end points
 849 *      right after the end of the SGL but does not account for any potential
 850 *      wrap around, i.e., @end > @sgl.
 851 */
 852static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
 853                      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
 854                      const dma_addr_t *addr)
 855{
 856        unsigned int i, len;
 857        struct ulptx_sge_pair *to;
 858        const struct skb_shared_info *si = skb_shinfo(skb);
 859        unsigned int nfrags = si->nr_frags;
 860        struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
 861
 862        len = skb_headlen(skb) - start;
 863        if (likely(len)) {
 864                sgl->len0 = htonl(len);
 865                sgl->addr0 = cpu_to_be64(addr[0] + start);
 866                nfrags++;
 867        } else {
 868                sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
 869                sgl->addr0 = cpu_to_be64(addr[1]);
 870        }
 871
 872        sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
 873                              ULPTX_NSGE_V(nfrags));
 874        if (likely(--nfrags == 0))
 875                return;
 876        /*
 877         * Most of the complexity below deals with the possibility we hit the
 878         * end of the queue in the middle of writing the SGL.  For this case
 879         * only we create the SGL in a temporary buffer and then copy it.
 880         */
 881        to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
 882
 883        for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
 884                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 885                to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
 886                to->addr[0] = cpu_to_be64(addr[i]);
 887                to->addr[1] = cpu_to_be64(addr[++i]);
 888        }
 889        if (nfrags) {
 890                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 891                to->len[1] = cpu_to_be32(0);
 892                to->addr[0] = cpu_to_be64(addr[i + 1]);
 893        }
 894        if (unlikely((u8 *)end > (u8 *)q->stat)) {
 895                unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
 896
 897                if (likely(part0))
 898                        memcpy(sgl->sge, buf, part0);
 899                part1 = (u8 *)end - (u8 *)q->stat;
 900                memcpy(q->desc, (u8 *)buf + part0, part1);
 901                end = (void *)q->desc + part1;
 902        }
 903        if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
 904                *end = 0;
 905}
 906
 907/* This function copies 64 byte coalesced work request to
 908 * memory mapped BAR2 space. For coalesced WR SGE fetches
 909 * data from the FIFO instead of from Host.
 910 */
 911static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
 912{
 913        int count = 8;
 914
 915        while (count) {
 916                writeq(*src, dst);
 917                src++;
 918                dst++;
 919                count--;
 920        }
 921}
 922
 923/**
 924 *      ring_tx_db - check and potentially ring a Tx queue's doorbell
 925 *      @adap: the adapter
 926 *      @q: the Tx queue
 927 *      @n: number of new descriptors to give to HW
 928 *
 929 *      Ring the doorbel for a Tx queue.
 930 */
 931static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
 932{
 933        /* Make sure that all writes to the TX Descriptors are committed
 934         * before we tell the hardware about them.
 935         */
 936        wmb();
 937
 938        /* If we don't have access to the new User Doorbell (T5+), use the old
 939         * doorbell mechanism; otherwise use the new BAR2 mechanism.
 940         */
 941        if (unlikely(q->bar2_addr == NULL)) {
 942                u32 val = PIDX_V(n);
 943                unsigned long flags;
 944
 945                /* For T4 we need to participate in the Doorbell Recovery
 946                 * mechanism.
 947                 */
 948                spin_lock_irqsave(&q->db_lock, flags);
 949                if (!q->db_disabled)
 950                        t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
 951                                     QID_V(q->cntxt_id) | val);
 952                else
 953                        q->db_pidx_inc += n;
 954                q->db_pidx = q->pidx;
 955                spin_unlock_irqrestore(&q->db_lock, flags);
 956        } else {
 957                u32 val = PIDX_T5_V(n);
 958
 959                /* T4 and later chips share the same PIDX field offset within
 960                 * the doorbell, but T5 and later shrank the field in order to
 961                 * gain a bit for Doorbell Priority.  The field was absurdly
 962                 * large in the first place (14 bits) so we just use the T5
 963                 * and later limits and warn if a Queue ID is too large.
 964                 */
 965                WARN_ON(val & DBPRIO_F);
 966
 967                /* If we're only writing a single TX Descriptor and we can use
 968                 * Inferred QID registers, we can use the Write Combining
 969                 * Gather Buffer; otherwise we use the simple doorbell.
 970                 */
 971                if (n == 1 && q->bar2_qid == 0) {
 972                        int index = (q->pidx
 973                                     ? (q->pidx - 1)
 974                                     : (q->size - 1));
 975                        u64 *wr = (u64 *)&q->desc[index];
 976
 977                        cxgb_pio_copy((u64 __iomem *)
 978                                      (q->bar2_addr + SGE_UDB_WCDOORBELL),
 979                                      wr);
 980                } else {
 981                        writel(val | QID_V(q->bar2_qid),
 982                               q->bar2_addr + SGE_UDB_KDOORBELL);
 983                }
 984
 985                /* This Write Memory Barrier will force the write to the User
 986                 * Doorbell area to be flushed.  This is needed to prevent
 987                 * writes on different CPUs for the same queue from hitting
 988                 * the adapter out of order.  This is required when some Work
 989                 * Requests take the Write Combine Gather Buffer path (user
 990                 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
 991                 * take the traditional path where we simply increment the
 992                 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
 993                 * hardware DMA read the actual Work Request.
 994                 */
 995                wmb();
 996        }
 997}
 998
 999/**
1000 *      inline_tx_skb - inline a packet's data into Tx descriptors
1001 *      @skb: the packet
1002 *      @q: the Tx queue where the packet will be inlined
1003 *      @pos: starting position in the Tx queue where to inline the packet
1004 *
1005 *      Inline a packet's contents directly into Tx descriptors, starting at
1006 *      the given position within the Tx DMA ring.
1007 *      Most of the complexity of this operation is dealing with wrap arounds
1008 *      in the middle of the packet we want to inline.
1009 */
1010static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
1011                          void *pos)
1012{
1013        u64 *p;
1014        int left = (void *)q->stat - pos;
1015
1016        if (likely(skb->len <= left)) {
1017                if (likely(!skb->data_len))
1018                        skb_copy_from_linear_data(skb, pos, skb->len);
1019                else
1020                        skb_copy_bits(skb, 0, pos, skb->len);
1021                pos += skb->len;
1022        } else {
1023                skb_copy_bits(skb, 0, pos, left);
1024                skb_copy_bits(skb, left, q->desc, skb->len - left);
1025                pos = (void *)q->desc + (skb->len - left);
1026        }
1027
1028        /* 0-pad to multiple of 16 */
1029        p = PTR_ALIGN(pos, 8);
1030        if ((uintptr_t)p & 8)
1031                *p = 0;
1032}
1033
1034static void *inline_tx_skb_header(const struct sk_buff *skb,
1035                                  const struct sge_txq *q,  void *pos,
1036                                  int length)
1037{
1038        u64 *p;
1039        int left = (void *)q->stat - pos;
1040
1041        if (likely(length <= left)) {
1042                memcpy(pos, skb->data, length);
1043                pos += length;
1044        } else {
1045                memcpy(pos, skb->data, left);
1046                memcpy(q->desc, skb->data + left, length - left);
1047                pos = (void *)q->desc + (length - left);
1048        }
1049        /* 0-pad to multiple of 16 */
1050        p = PTR_ALIGN(pos, 8);
1051        if ((uintptr_t)p & 8) {
1052                *p = 0;
1053                return p + 1;
1054        }
1055        return p;
1056}
1057
1058/*
1059 * Figure out what HW csum a packet wants and return the appropriate control
1060 * bits.
1061 */
1062static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1063{
1064        int csum_type;
1065        const struct iphdr *iph = ip_hdr(skb);
1066
1067        if (iph->version == 4) {
1068                if (iph->protocol == IPPROTO_TCP)
1069                        csum_type = TX_CSUM_TCPIP;
1070                else if (iph->protocol == IPPROTO_UDP)
1071                        csum_type = TX_CSUM_UDPIP;
1072                else {
1073nocsum:                 /*
1074                         * unknown protocol, disable HW csum
1075                         * and hope a bad packet is detected
1076                         */
1077                        return TXPKT_L4CSUM_DIS_F;
1078                }
1079        } else {
1080                /*
1081                 * this doesn't work with extension headers
1082                 */
1083                const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1084
1085                if (ip6h->nexthdr == IPPROTO_TCP)
1086                        csum_type = TX_CSUM_TCPIP6;
1087                else if (ip6h->nexthdr == IPPROTO_UDP)
1088                        csum_type = TX_CSUM_UDPIP6;
1089                else
1090                        goto nocsum;
1091        }
1092
1093        if (likely(csum_type >= TX_CSUM_TCPIP)) {
1094                u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1095                int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1096
1097                if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1098                        hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1099                else
1100                        hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1101                return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1102        } else {
1103                int start = skb_transport_offset(skb);
1104
1105                return TXPKT_CSUM_TYPE_V(csum_type) |
1106                        TXPKT_CSUM_START_V(start) |
1107                        TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1108        }
1109}
1110
1111static void eth_txq_stop(struct sge_eth_txq *q)
1112{
1113        netif_tx_stop_queue(q->txq);
1114        q->q.stops++;
1115}
1116
1117static inline void txq_advance(struct sge_txq *q, unsigned int n)
1118{
1119        q->in_use += n;
1120        q->pidx += n;
1121        if (q->pidx >= q->size)
1122                q->pidx -= q->size;
1123}
1124
1125#ifdef CONFIG_CHELSIO_T4_FCOE
1126static inline int
1127cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1128                  const struct port_info *pi, u64 *cntrl)
1129{
1130        const struct cxgb_fcoe *fcoe = &pi->fcoe;
1131
1132        if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1133                return 0;
1134
1135        if (skb->protocol != htons(ETH_P_FCOE))
1136                return 0;
1137
1138        skb_reset_mac_header(skb);
1139        skb->mac_len = sizeof(struct ethhdr);
1140
1141        skb_set_network_header(skb, skb->mac_len);
1142        skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1143
1144        if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1145                return -ENOTSUPP;
1146
1147        /* FC CRC offload */
1148        *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1149                     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1150                     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1151                     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1152                     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1153        return 0;
1154}
1155#endif /* CONFIG_CHELSIO_T4_FCOE */
1156
1157/**
1158 *      t4_eth_xmit - add a packet to an Ethernet Tx queue
1159 *      @skb: the packet
1160 *      @dev: the egress net device
1161 *
1162 *      Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1163 */
1164netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1165{
1166        u32 wr_mid, ctrl0, op;
1167        u64 cntrl, *end;
1168        int qidx, credits;
1169        unsigned int flits, ndesc;
1170        struct adapter *adap;
1171        struct sge_eth_txq *q;
1172        const struct port_info *pi;
1173        struct fw_eth_tx_pkt_wr *wr;
1174        struct cpl_tx_pkt_core *cpl;
1175        const struct skb_shared_info *ssi;
1176        dma_addr_t addr[MAX_SKB_FRAGS + 1];
1177        bool immediate = false;
1178        int len, max_pkt_len;
1179        bool ptp_enabled = is_ptp_enabled(skb, dev);
1180#ifdef CONFIG_CHELSIO_T4_FCOE
1181        int err;
1182#endif /* CONFIG_CHELSIO_T4_FCOE */
1183
1184        /*
1185         * The chip min packet length is 10 octets but play safe and reject
1186         * anything shorter than an Ethernet header.
1187         */
1188        if (unlikely(skb->len < ETH_HLEN)) {
1189out_free:       dev_kfree_skb_any(skb);
1190                return NETDEV_TX_OK;
1191        }
1192
1193        /* Discard the packet if the length is greater than mtu */
1194        max_pkt_len = ETH_HLEN + dev->mtu;
1195        if (skb_vlan_tagged(skb))
1196                max_pkt_len += VLAN_HLEN;
1197        if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1198                goto out_free;
1199
1200        pi = netdev_priv(dev);
1201        adap = pi->adapter;
1202        qidx = skb_get_queue_mapping(skb);
1203        if (ptp_enabled) {
1204                spin_lock(&adap->ptp_lock);
1205                if (!(adap->ptp_tx_skb)) {
1206                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1207                        adap->ptp_tx_skb = skb_get(skb);
1208                } else {
1209                        spin_unlock(&adap->ptp_lock);
1210                        goto out_free;
1211                }
1212                q = &adap->sge.ptptxq;
1213        } else {
1214                q = &adap->sge.ethtxq[qidx + pi->first_qset];
1215        }
1216        skb_tx_timestamp(skb);
1217
1218        reclaim_completed_tx(adap, &q->q, true);
1219        cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1220
1221#ifdef CONFIG_CHELSIO_T4_FCOE
1222        err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1223        if (unlikely(err == -ENOTSUPP)) {
1224                if (ptp_enabled)
1225                        spin_unlock(&adap->ptp_lock);
1226                goto out_free;
1227        }
1228#endif /* CONFIG_CHELSIO_T4_FCOE */
1229
1230        flits = calc_tx_flits(skb);
1231        ndesc = flits_to_desc(flits);
1232        credits = txq_avail(&q->q) - ndesc;
1233
1234        if (unlikely(credits < 0)) {
1235                eth_txq_stop(q);
1236                dev_err(adap->pdev_dev,
1237                        "%s: Tx ring %u full while queue awake!\n",
1238                        dev->name, qidx);
1239                if (ptp_enabled)
1240                        spin_unlock(&adap->ptp_lock);
1241                return NETDEV_TX_BUSY;
1242        }
1243
1244        if (is_eth_imm(skb))
1245                immediate = true;
1246
1247        if (!immediate &&
1248            unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1249                q->mapping_err++;
1250                if (ptp_enabled)
1251                        spin_unlock(&adap->ptp_lock);
1252                goto out_free;
1253        }
1254
1255        wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1256        if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1257                eth_txq_stop(q);
1258                wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1259        }
1260
1261        wr = (void *)&q->q.desc[q->q.pidx];
1262        wr->equiq_to_len16 = htonl(wr_mid);
1263        wr->r3 = cpu_to_be64(0);
1264        end = (u64 *)wr + flits;
1265
1266        len = immediate ? skb->len : 0;
1267        ssi = skb_shinfo(skb);
1268        if (ssi->gso_size) {
1269                struct cpl_tx_pkt_lso *lso = (void *)wr;
1270                bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1271                int l3hdr_len = skb_network_header_len(skb);
1272                int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1273
1274                len += sizeof(*lso);
1275                wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1276                                       FW_WR_IMMDLEN_V(len));
1277                lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1278                                        LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1279                                        LSO_IPV6_V(v6) |
1280                                        LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1281                                        LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1282                                        LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1283                lso->c.ipid_ofst = htons(0);
1284                lso->c.mss = htons(ssi->gso_size);
1285                lso->c.seqno_offset = htonl(0);
1286                if (is_t4(adap->params.chip))
1287                        lso->c.len = htonl(skb->len);
1288                else
1289                        lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1290                cpl = (void *)(lso + 1);
1291
1292                if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1293                        cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1294                else
1295                        cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1296
1297                cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1298                                           TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1299                         TXPKT_IPHDR_LEN_V(l3hdr_len);
1300                q->tso++;
1301                q->tx_cso += ssi->gso_segs;
1302        } else {
1303                len += sizeof(*cpl);
1304                if (ptp_enabled)
1305                        op = FW_PTP_TX_PKT_WR;
1306                else
1307                        op = FW_ETH_TX_PKT_WR;
1308                wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1309                                       FW_WR_IMMDLEN_V(len));
1310                cpl = (void *)(wr + 1);
1311                if (skb->ip_summed == CHECKSUM_PARTIAL) {
1312                        cntrl = hwcsum(adap->params.chip, skb) |
1313                                TXPKT_IPCSUM_DIS_F;
1314                        q->tx_cso++;
1315                }
1316        }
1317
1318        if (skb_vlan_tag_present(skb)) {
1319                q->vlan_ins++;
1320                cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1321#ifdef CONFIG_CHELSIO_T4_FCOE
1322                if (skb->protocol == htons(ETH_P_FCOE))
1323                        cntrl |= TXPKT_VLAN_V(
1324                                 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1325#endif /* CONFIG_CHELSIO_T4_FCOE */
1326        }
1327
1328        ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1329                TXPKT_PF_V(adap->pf);
1330        if (ptp_enabled)
1331                ctrl0 |= TXPKT_TSTAMP_F;
1332#ifdef CONFIG_CHELSIO_T4_DCB
1333        if (is_t4(adap->params.chip))
1334                ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1335        else
1336                ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1337#endif
1338        cpl->ctrl0 = htonl(ctrl0);
1339        cpl->pack = htons(0);
1340        cpl->len = htons(skb->len);
1341        cpl->ctrl1 = cpu_to_be64(cntrl);
1342
1343        if (immediate) {
1344                inline_tx_skb(skb, &q->q, cpl + 1);
1345                dev_consume_skb_any(skb);
1346        } else {
1347                int last_desc;
1348
1349                write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1350                          addr);
1351                skb_orphan(skb);
1352
1353                last_desc = q->q.pidx + ndesc - 1;
1354                if (last_desc >= q->q.size)
1355                        last_desc -= q->q.size;
1356                q->q.sdesc[last_desc].skb = skb;
1357                q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1358        }
1359
1360        txq_advance(&q->q, ndesc);
1361
1362        ring_tx_db(adap, &q->q, ndesc);
1363        if (ptp_enabled)
1364                spin_unlock(&adap->ptp_lock);
1365        return NETDEV_TX_OK;
1366}
1367
1368/**
1369 *      reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1370 *      @q: the SGE control Tx queue
1371 *
1372 *      This is a variant of reclaim_completed_tx() that is used for Tx queues
1373 *      that send only immediate data (presently just the control queues) and
1374 *      thus do not have any sk_buffs to release.
1375 */
1376static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1377{
1378        int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx));
1379        int reclaim = hw_cidx - q->cidx;
1380
1381        if (reclaim < 0)
1382                reclaim += q->size;
1383
1384        q->in_use -= reclaim;
1385        q->cidx = hw_cidx;
1386}
1387
1388/**
1389 *      is_imm - check whether a packet can be sent as immediate data
1390 *      @skb: the packet
1391 *
1392 *      Returns true if a packet can be sent as a WR with immediate data.
1393 */
1394static inline int is_imm(const struct sk_buff *skb)
1395{
1396        return skb->len <= MAX_CTRL_WR_LEN;
1397}
1398
1399/**
1400 *      ctrlq_check_stop - check if a control queue is full and should stop
1401 *      @q: the queue
1402 *      @wr: most recent WR written to the queue
1403 *
1404 *      Check if a control queue has become full and should be stopped.
1405 *      We clean up control queue descriptors very lazily, only when we are out.
1406 *      If the queue is still full after reclaiming any completed descriptors
1407 *      we suspend it and have the last WR wake it up.
1408 */
1409static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1410{
1411        reclaim_completed_tx_imm(&q->q);
1412        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1413                wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1414                q->q.stops++;
1415                q->full = 1;
1416        }
1417}
1418
1419/**
1420 *      ctrl_xmit - send a packet through an SGE control Tx queue
1421 *      @q: the control queue
1422 *      @skb: the packet
1423 *
1424 *      Send a packet through an SGE control Tx queue.  Packets sent through
1425 *      a control queue must fit entirely as immediate data.
1426 */
1427static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1428{
1429        unsigned int ndesc;
1430        struct fw_wr_hdr *wr;
1431
1432        if (unlikely(!is_imm(skb))) {
1433                WARN_ON(1);
1434                dev_kfree_skb(skb);
1435                return NET_XMIT_DROP;
1436        }
1437
1438        ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1439        spin_lock(&q->sendq.lock);
1440
1441        if (unlikely(q->full)) {
1442                skb->priority = ndesc;                  /* save for restart */
1443                __skb_queue_tail(&q->sendq, skb);
1444                spin_unlock(&q->sendq.lock);
1445                return NET_XMIT_CN;
1446        }
1447
1448        wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1449        inline_tx_skb(skb, &q->q, wr);
1450
1451        txq_advance(&q->q, ndesc);
1452        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1453                ctrlq_check_stop(q, wr);
1454
1455        ring_tx_db(q->adap, &q->q, ndesc);
1456        spin_unlock(&q->sendq.lock);
1457
1458        kfree_skb(skb);
1459        return NET_XMIT_SUCCESS;
1460}
1461
1462/**
1463 *      restart_ctrlq - restart a suspended control queue
1464 *      @data: the control queue to restart
1465 *
1466 *      Resumes transmission on a suspended Tx control queue.
1467 */
1468static void restart_ctrlq(unsigned long data)
1469{
1470        struct sk_buff *skb;
1471        unsigned int written = 0;
1472        struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1473
1474        spin_lock(&q->sendq.lock);
1475        reclaim_completed_tx_imm(&q->q);
1476        BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1477
1478        while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1479                struct fw_wr_hdr *wr;
1480                unsigned int ndesc = skb->priority;     /* previously saved */
1481
1482                written += ndesc;
1483                /* Write descriptors and free skbs outside the lock to limit
1484                 * wait times.  q->full is still set so new skbs will be queued.
1485                 */
1486                wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1487                txq_advance(&q->q, ndesc);
1488                spin_unlock(&q->sendq.lock);
1489
1490                inline_tx_skb(skb, &q->q, wr);
1491                kfree_skb(skb);
1492
1493                if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1494                        unsigned long old = q->q.stops;
1495
1496                        ctrlq_check_stop(q, wr);
1497                        if (q->q.stops != old) {          /* suspended anew */
1498                                spin_lock(&q->sendq.lock);
1499                                goto ringdb;
1500                        }
1501                }
1502                if (written > 16) {
1503                        ring_tx_db(q->adap, &q->q, written);
1504                        written = 0;
1505                }
1506                spin_lock(&q->sendq.lock);
1507        }
1508        q->full = 0;
1509ringdb: if (written)
1510                ring_tx_db(q->adap, &q->q, written);
1511        spin_unlock(&q->sendq.lock);
1512}
1513
1514/**
1515 *      t4_mgmt_tx - send a management message
1516 *      @adap: the adapter
1517 *      @skb: the packet containing the management message
1518 *
1519 *      Send a management message through control queue 0.
1520 */
1521int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1522{
1523        int ret;
1524
1525        local_bh_disable();
1526        ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1527        local_bh_enable();
1528        return ret;
1529}
1530
1531/**
1532 *      is_ofld_imm - check whether a packet can be sent as immediate data
1533 *      @skb: the packet
1534 *
1535 *      Returns true if a packet can be sent as an offload WR with immediate
1536 *      data.  We currently use the same limit as for Ethernet packets.
1537 */
1538static inline int is_ofld_imm(const struct sk_buff *skb)
1539{
1540        return skb->len <= MAX_IMM_TX_PKT_LEN;
1541}
1542
1543/**
1544 *      calc_tx_flits_ofld - calculate # of flits for an offload packet
1545 *      @skb: the packet
1546 *
1547 *      Returns the number of flits needed for the given offload packet.
1548 *      These packets are already fully constructed and no additional headers
1549 *      will be added.
1550 */
1551static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1552{
1553        unsigned int flits, cnt;
1554
1555        if (is_ofld_imm(skb))
1556                return DIV_ROUND_UP(skb->len, 8);
1557
1558        flits = skb_transport_offset(skb) / 8U;   /* headers */
1559        cnt = skb_shinfo(skb)->nr_frags;
1560        if (skb_tail_pointer(skb) != skb_transport_header(skb))
1561                cnt++;
1562        return flits + sgl_len(cnt);
1563}
1564
1565/**
1566 *      txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1567 *      @adap: the adapter
1568 *      @q: the queue to stop
1569 *
1570 *      Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1571 *      inability to map packets.  A periodic timer attempts to restart
1572 *      queues so marked.
1573 */
1574static void txq_stop_maperr(struct sge_uld_txq *q)
1575{
1576        q->mapping_err++;
1577        q->q.stops++;
1578        set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1579                q->adap->sge.txq_maperr);
1580}
1581
1582/**
1583 *      ofldtxq_stop - stop an offload Tx queue that has become full
1584 *      @q: the queue to stop
1585 *      @skb: the packet causing the queue to become full
1586 *
1587 *      Stops an offload Tx queue that has become full and modifies the packet
1588 *      being written to request a wakeup.
1589 */
1590static void ofldtxq_stop(struct sge_uld_txq *q, struct sk_buff *skb)
1591{
1592        struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1593
1594        wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1595        q->q.stops++;
1596        q->full = 1;
1597}
1598
1599/**
1600 *      service_ofldq - service/restart a suspended offload queue
1601 *      @q: the offload queue
1602 *
1603 *      Services an offload Tx queue by moving packets from its Pending Send
1604 *      Queue to the Hardware TX ring.  The function starts and ends with the
1605 *      Send Queue locked, but drops the lock while putting the skb at the
1606 *      head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
1607 *      allows more skbs to be added to the Send Queue by other threads.
1608 *      The packet being processed at the head of the Pending Send Queue is
1609 *      left on the queue in case we experience DMA Mapping errors, etc.
1610 *      and need to give up and restart later.
1611 *
1612 *      service_ofldq() can be thought of as a task which opportunistically
1613 *      uses other threads execution contexts.  We use the Offload Queue
1614 *      boolean "service_ofldq_running" to make sure that only one instance
1615 *      is ever running at a time ...
1616 */
1617static void service_ofldq(struct sge_uld_txq *q)
1618{
1619        u64 *pos, *before, *end;
1620        int credits;
1621        struct sk_buff *skb;
1622        struct sge_txq *txq;
1623        unsigned int left;
1624        unsigned int written = 0;
1625        unsigned int flits, ndesc;
1626
1627        /* If another thread is currently in service_ofldq() processing the
1628         * Pending Send Queue then there's nothing to do. Otherwise, flag
1629         * that we're doing the work and continue.  Examining/modifying
1630         * the Offload Queue boolean "service_ofldq_running" must be done
1631         * while holding the Pending Send Queue Lock.
1632         */
1633        if (q->service_ofldq_running)
1634                return;
1635        q->service_ofldq_running = true;
1636
1637        while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1638                /* We drop the lock while we're working with the skb at the
1639                 * head of the Pending Send Queue.  This allows more skbs to
1640                 * be added to the Pending Send Queue while we're working on
1641                 * this one.  We don't need to lock to guard the TX Ring
1642                 * updates because only one thread of execution is ever
1643                 * allowed into service_ofldq() at a time.
1644                 */
1645                spin_unlock(&q->sendq.lock);
1646
1647                reclaim_completed_tx(q->adap, &q->q, false);
1648
1649                flits = skb->priority;                /* previously saved */
1650                ndesc = flits_to_desc(flits);
1651                credits = txq_avail(&q->q) - ndesc;
1652                BUG_ON(credits < 0);
1653                if (unlikely(credits < TXQ_STOP_THRES))
1654                        ofldtxq_stop(q, skb);
1655
1656                pos = (u64 *)&q->q.desc[q->q.pidx];
1657                if (is_ofld_imm(skb))
1658                        inline_tx_skb(skb, &q->q, pos);
1659                else if (map_skb(q->adap->pdev_dev, skb,
1660                                 (dma_addr_t *)skb->head)) {
1661                        txq_stop_maperr(q);
1662                        spin_lock(&q->sendq.lock);
1663                        break;
1664                } else {
1665                        int last_desc, hdr_len = skb_transport_offset(skb);
1666
1667                        /* The WR headers  may not fit within one descriptor.
1668                         * So we need to deal with wrap-around here.
1669                         */
1670                        before = (u64 *)pos;
1671                        end = (u64 *)pos + flits;
1672                        txq = &q->q;
1673                        pos = (void *)inline_tx_skb_header(skb, &q->q,
1674                                                           (void *)pos,
1675                                                           hdr_len);
1676                        if (before > (u64 *)pos) {
1677                                left = (u8 *)end - (u8 *)txq->stat;
1678                                end = (void *)txq->desc + left;
1679                        }
1680
1681                        /* If current position is already at the end of the
1682                         * ofld queue, reset the current to point to
1683                         * start of the queue and update the end ptr as well.
1684                         */
1685                        if (pos == (u64 *)txq->stat) {
1686                                left = (u8 *)end - (u8 *)txq->stat;
1687                                end = (void *)txq->desc + left;
1688                                pos = (void *)txq->desc;
1689                        }
1690
1691                        write_sgl(skb, &q->q, (void *)pos,
1692                                  end, hdr_len,
1693                                  (dma_addr_t *)skb->head);
1694#ifdef CONFIG_NEED_DMA_MAP_STATE
1695                        skb->dev = q->adap->port[0];
1696                        skb->destructor = deferred_unmap_destructor;
1697#endif
1698                        last_desc = q->q.pidx + ndesc - 1;
1699                        if (last_desc >= q->q.size)
1700                                last_desc -= q->q.size;
1701                        q->q.sdesc[last_desc].skb = skb;
1702                }
1703
1704                txq_advance(&q->q, ndesc);
1705                written += ndesc;
1706                if (unlikely(written > 32)) {
1707                        ring_tx_db(q->adap, &q->q, written);
1708                        written = 0;
1709                }
1710
1711                /* Reacquire the Pending Send Queue Lock so we can unlink the
1712                 * skb we've just successfully transferred to the TX Ring and
1713                 * loop for the next skb which may be at the head of the
1714                 * Pending Send Queue.
1715                 */
1716                spin_lock(&q->sendq.lock);
1717                __skb_unlink(skb, &q->sendq);
1718                if (is_ofld_imm(skb))
1719                        kfree_skb(skb);
1720        }
1721        if (likely(written))
1722                ring_tx_db(q->adap, &q->q, written);
1723
1724        /*Indicate that no thread is processing the Pending Send Queue
1725         * currently.
1726         */
1727        q->service_ofldq_running = false;
1728}
1729
1730/**
1731 *      ofld_xmit - send a packet through an offload queue
1732 *      @q: the Tx offload queue
1733 *      @skb: the packet
1734 *
1735 *      Send an offload packet through an SGE offload queue.
1736 */
1737static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
1738{
1739        skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1740        spin_lock(&q->sendq.lock);
1741
1742        /* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
1743         * that results in this new skb being the only one on the queue, start
1744         * servicing it.  If there are other skbs already on the list, then
1745         * either the queue is currently being processed or it's been stopped
1746         * for some reason and it'll be restarted at a later time.  Restart
1747         * paths are triggered by events like experiencing a DMA Mapping Error
1748         * or filling the Hardware TX Ring.
1749         */
1750        __skb_queue_tail(&q->sendq, skb);
1751        if (q->sendq.qlen == 1)
1752                service_ofldq(q);
1753
1754        spin_unlock(&q->sendq.lock);
1755        return NET_XMIT_SUCCESS;
1756}
1757
1758/**
1759 *      restart_ofldq - restart a suspended offload queue
1760 *      @data: the offload queue to restart
1761 *
1762 *      Resumes transmission on a suspended Tx offload queue.
1763 */
1764static void restart_ofldq(unsigned long data)
1765{
1766        struct sge_uld_txq *q = (struct sge_uld_txq *)data;
1767
1768        spin_lock(&q->sendq.lock);
1769        q->full = 0;            /* the queue actually is completely empty now */
1770        service_ofldq(q);
1771        spin_unlock(&q->sendq.lock);
1772}
1773
1774/**
1775 *      skb_txq - return the Tx queue an offload packet should use
1776 *      @skb: the packet
1777 *
1778 *      Returns the Tx queue an offload packet should use as indicated by bits
1779 *      1-15 in the packet's queue_mapping.
1780 */
1781static inline unsigned int skb_txq(const struct sk_buff *skb)
1782{
1783        return skb->queue_mapping >> 1;
1784}
1785
1786/**
1787 *      is_ctrl_pkt - return whether an offload packet is a control packet
1788 *      @skb: the packet
1789 *
1790 *      Returns whether an offload packet should use an OFLD or a CTRL
1791 *      Tx queue as indicated by bit 0 in the packet's queue_mapping.
1792 */
1793static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1794{
1795        return skb->queue_mapping & 1;
1796}
1797
1798static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
1799                           unsigned int tx_uld_type)
1800{
1801        struct sge_uld_txq_info *txq_info;
1802        struct sge_uld_txq *txq;
1803        unsigned int idx = skb_txq(skb);
1804
1805        if (unlikely(is_ctrl_pkt(skb))) {
1806                /* Single ctrl queue is a requirement for LE workaround path */
1807                if (adap->tids.nsftids)
1808                        idx = 0;
1809                return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1810        }
1811
1812        txq_info = adap->sge.uld_txq_info[tx_uld_type];
1813        if (unlikely(!txq_info)) {
1814                WARN_ON(true);
1815                return NET_XMIT_DROP;
1816        }
1817
1818        txq = &txq_info->uldtxq[idx];
1819        return ofld_xmit(txq, skb);
1820}
1821
1822/**
1823 *      t4_ofld_send - send an offload packet
1824 *      @adap: the adapter
1825 *      @skb: the packet
1826 *
1827 *      Sends an offload packet.  We use the packet queue_mapping to select the
1828 *      appropriate Tx queue as follows: bit 0 indicates whether the packet
1829 *      should be sent as regular or control, bits 1-15 select the queue.
1830 */
1831int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1832{
1833        int ret;
1834
1835        local_bh_disable();
1836        ret = uld_send(adap, skb, CXGB4_TX_OFLD);
1837        local_bh_enable();
1838        return ret;
1839}
1840
1841/**
1842 *      cxgb4_ofld_send - send an offload packet
1843 *      @dev: the net device
1844 *      @skb: the packet
1845 *
1846 *      Sends an offload packet.  This is an exported version of @t4_ofld_send,
1847 *      intended for ULDs.
1848 */
1849int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1850{
1851        return t4_ofld_send(netdev2adap(dev), skb);
1852}
1853EXPORT_SYMBOL(cxgb4_ofld_send);
1854
1855/**
1856 *      t4_crypto_send - send crypto packet
1857 *      @adap: the adapter
1858 *      @skb: the packet
1859 *
1860 *      Sends crypto packet.  We use the packet queue_mapping to select the
1861 *      appropriate Tx queue as follows: bit 0 indicates whether the packet
1862 *      should be sent as regular or control, bits 1-15 select the queue.
1863 */
1864static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
1865{
1866        int ret;
1867
1868        local_bh_disable();
1869        ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
1870        local_bh_enable();
1871        return ret;
1872}
1873
1874/**
1875 *      cxgb4_crypto_send - send crypto packet
1876 *      @dev: the net device
1877 *      @skb: the packet
1878 *
1879 *      Sends crypto packet.  This is an exported version of @t4_crypto_send,
1880 *      intended for ULDs.
1881 */
1882int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
1883{
1884        return t4_crypto_send(netdev2adap(dev), skb);
1885}
1886EXPORT_SYMBOL(cxgb4_crypto_send);
1887
1888static inline void copy_frags(struct sk_buff *skb,
1889                              const struct pkt_gl *gl, unsigned int offset)
1890{
1891        int i;
1892
1893        /* usually there's just one frag */
1894        __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1895                             gl->frags[0].offset + offset,
1896                             gl->frags[0].size - offset);
1897        skb_shinfo(skb)->nr_frags = gl->nfrags;
1898        for (i = 1; i < gl->nfrags; i++)
1899                __skb_fill_page_desc(skb, i, gl->frags[i].page,
1900                                     gl->frags[i].offset,
1901                                     gl->frags[i].size);
1902
1903        /* get a reference to the last page, we don't own it */
1904        get_page(gl->frags[gl->nfrags - 1].page);
1905}
1906
1907/**
1908 *      cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1909 *      @gl: the gather list
1910 *      @skb_len: size of sk_buff main body if it carries fragments
1911 *      @pull_len: amount of data to move to the sk_buff's main body
1912 *
1913 *      Builds an sk_buff from the given packet gather list.  Returns the
1914 *      sk_buff or %NULL if sk_buff allocation failed.
1915 */
1916struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1917                                   unsigned int skb_len, unsigned int pull_len)
1918{
1919        struct sk_buff *skb;
1920
1921        /*
1922         * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1923         * size, which is expected since buffers are at least PAGE_SIZEd.
1924         * In this case packets up to RX_COPY_THRES have only one fragment.
1925         */
1926        if (gl->tot_len <= RX_COPY_THRES) {
1927                skb = dev_alloc_skb(gl->tot_len);
1928                if (unlikely(!skb))
1929                        goto out;
1930                __skb_put(skb, gl->tot_len);
1931                skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1932        } else {
1933                skb = dev_alloc_skb(skb_len);
1934                if (unlikely(!skb))
1935                        goto out;
1936                __skb_put(skb, pull_len);
1937                skb_copy_to_linear_data(skb, gl->va, pull_len);
1938
1939                copy_frags(skb, gl, pull_len);
1940                skb->len = gl->tot_len;
1941                skb->data_len = skb->len - pull_len;
1942                skb->truesize += skb->data_len;
1943        }
1944out:    return skb;
1945}
1946EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1947
1948/**
1949 *      t4_pktgl_free - free a packet gather list
1950 *      @gl: the gather list
1951 *
1952 *      Releases the pages of a packet gather list.  We do not own the last
1953 *      page on the list and do not free it.
1954 */
1955static void t4_pktgl_free(const struct pkt_gl *gl)
1956{
1957        int n;
1958        const struct page_frag *p;
1959
1960        for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1961                put_page(p->page);
1962}
1963
1964/*
1965 * Process an MPS trace packet.  Give it an unused protocol number so it won't
1966 * be delivered to anyone and send it to the stack for capture.
1967 */
1968static noinline int handle_trace_pkt(struct adapter *adap,
1969                                     const struct pkt_gl *gl)
1970{
1971        struct sk_buff *skb;
1972
1973        skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1974        if (unlikely(!skb)) {
1975                t4_pktgl_free(gl);
1976                return 0;
1977        }
1978
1979        if (is_t4(adap->params.chip))
1980                __skb_pull(skb, sizeof(struct cpl_trace_pkt));
1981        else
1982                __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1983
1984        skb_reset_mac_header(skb);
1985        skb->protocol = htons(0xffff);
1986        skb->dev = adap->port[0];
1987        netif_receive_skb(skb);
1988        return 0;
1989}
1990
1991/**
1992 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
1993 * @adap: the adapter
1994 * @hwtstamps: time stamp structure to update
1995 * @sgetstamp: 60bit iqe timestamp
1996 *
1997 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
1998 * which is in Core Clock ticks into ktime_t and assign it
1999 **/
2000static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
2001                                     struct skb_shared_hwtstamps *hwtstamps,
2002                                     u64 sgetstamp)
2003{
2004        u64 ns;
2005        u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
2006
2007        ns = div_u64(tmp, adap->params.vpd.cclk);
2008
2009        memset(hwtstamps, 0, sizeof(*hwtstamps));
2010        hwtstamps->hwtstamp = ns_to_ktime(ns);
2011}
2012
2013static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
2014                   const struct cpl_rx_pkt *pkt)
2015{
2016        struct adapter *adapter = rxq->rspq.adap;
2017        struct sge *s = &adapter->sge;
2018        struct port_info *pi;
2019        int ret;
2020        struct sk_buff *skb;
2021
2022        skb = napi_get_frags(&rxq->rspq.napi);
2023        if (unlikely(!skb)) {
2024                t4_pktgl_free(gl);
2025                rxq->stats.rx_drops++;
2026                return;
2027        }
2028
2029        copy_frags(skb, gl, s->pktshift);
2030        skb->len = gl->tot_len - s->pktshift;
2031        skb->data_len = skb->len;
2032        skb->truesize += skb->data_len;
2033        skb->ip_summed = CHECKSUM_UNNECESSARY;
2034        skb_record_rx_queue(skb, rxq->rspq.idx);
2035        pi = netdev_priv(skb->dev);
2036        if (pi->rxtstamp)
2037                cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
2038                                         gl->sgetstamp);
2039        if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
2040                skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2041                             PKT_HASH_TYPE_L3);
2042
2043        if (unlikely(pkt->vlan_ex)) {
2044                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2045                rxq->stats.vlan_ex++;
2046        }
2047        ret = napi_gro_frags(&rxq->rspq.napi);
2048        if (ret == GRO_HELD)
2049                rxq->stats.lro_pkts++;
2050        else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
2051                rxq->stats.lro_merged++;
2052        rxq->stats.pkts++;
2053        rxq->stats.rx_cso++;
2054}
2055
2056enum {
2057        RX_NON_PTP_PKT = 0,
2058        RX_PTP_PKT_SUC = 1,
2059        RX_PTP_PKT_ERR = 2
2060};
2061
2062/**
2063 *     t4_systim_to_hwstamp - read hardware time stamp
2064 *     @adap: the adapter
2065 *     @skb: the packet
2066 *
2067 *     Read Time Stamp from MPS packet and insert in skb which
2068 *     is forwarded to PTP application
2069 */
2070static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
2071                                         struct sk_buff *skb)
2072{
2073        struct skb_shared_hwtstamps *hwtstamps;
2074        struct cpl_rx_mps_pkt *cpl = NULL;
2075        unsigned char *data;
2076        int offset;
2077
2078        cpl = (struct cpl_rx_mps_pkt *)skb->data;
2079        if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
2080             X_CPL_RX_MPS_PKT_TYPE_PTP))
2081                return RX_PTP_PKT_ERR;
2082
2083        data = skb->data + sizeof(*cpl);
2084        skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
2085        offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
2086        if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
2087                return RX_PTP_PKT_ERR;
2088
2089        hwtstamps = skb_hwtstamps(skb);
2090        memset(hwtstamps, 0, sizeof(*hwtstamps));
2091        hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
2092
2093        return RX_PTP_PKT_SUC;
2094}
2095
2096/**
2097 *     t4_rx_hststamp - Recv PTP Event Message
2098 *     @adap: the adapter
2099 *     @rsp: the response queue descriptor holding the RX_PKT message
2100 *     @skb: the packet
2101 *
2102 *     PTP enabled and MPS packet, read HW timestamp
2103 */
2104static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
2105                          struct sge_eth_rxq *rxq, struct sk_buff *skb)
2106{
2107        int ret;
2108
2109        if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
2110                     !is_t4(adapter->params.chip))) {
2111                ret = t4_systim_to_hwstamp(adapter, skb);
2112                if (ret == RX_PTP_PKT_ERR) {
2113                        kfree_skb(skb);
2114                        rxq->stats.rx_drops++;
2115                }
2116                return ret;
2117        }
2118        return RX_NON_PTP_PKT;
2119}
2120
2121/**
2122 *      t4_tx_hststamp - Loopback PTP Transmit Event Message
2123 *      @adap: the adapter
2124 *      @skb: the packet
2125 *      @dev: the ingress net device
2126 *
2127 *      Read hardware timestamp for the loopback PTP Tx event message
2128 */
2129static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
2130                          struct net_device *dev)
2131{
2132        struct port_info *pi = netdev_priv(dev);
2133
2134        if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
2135                cxgb4_ptp_read_hwstamp(adapter, pi);
2136                kfree_skb(skb);
2137                return 0;
2138        }
2139        return 1;
2140}
2141
2142/**
2143 *      t4_ethrx_handler - process an ingress ethernet packet
2144 *      @q: the response queue that received the packet
2145 *      @rsp: the response queue descriptor holding the RX_PKT message
2146 *      @si: the gather list of packet fragments
2147 *
2148 *      Process an ingress ethernet packet and deliver it to the stack.
2149 */
2150int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
2151                     const struct pkt_gl *si)
2152{
2153        bool csum_ok;
2154        struct sk_buff *skb;
2155        const struct cpl_rx_pkt *pkt;
2156        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2157        struct adapter *adapter = q->adap;
2158        struct sge *s = &q->adap->sge;
2159        int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
2160                            CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
2161        u16 err_vec;
2162        struct port_info *pi;
2163        int ret = 0;
2164
2165        if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
2166                return handle_trace_pkt(q->adap, si);
2167
2168        pkt = (const struct cpl_rx_pkt *)rsp;
2169        /* Compressed error vector is enabled for T6 only */
2170        if (q->adap->params.tp.rx_pkt_encap)
2171                err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
2172        else
2173                err_vec = be16_to_cpu(pkt->err_vec);
2174
2175        csum_ok = pkt->csum_calc && !err_vec &&
2176                  (q->netdev->features & NETIF_F_RXCSUM);
2177        if ((pkt->l2info & htonl(RXF_TCP_F)) &&
2178            (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
2179                do_gro(rxq, si, pkt);
2180                return 0;
2181        }
2182
2183        skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
2184        if (unlikely(!skb)) {
2185                t4_pktgl_free(si);
2186                rxq->stats.rx_drops++;
2187                return 0;
2188        }
2189        pi = netdev_priv(q->netdev);
2190
2191        /* Handle PTP Event Rx packet */
2192        if (unlikely(pi->ptp_enable)) {
2193                ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
2194                if (ret == RX_PTP_PKT_ERR)
2195                        return 0;
2196        }
2197        if (likely(!ret))
2198                __skb_pull(skb, s->pktshift); /* remove ethernet header pad */
2199
2200        /* Handle the PTP Event Tx Loopback packet */
2201        if (unlikely(pi->ptp_enable && !ret &&
2202                     (pkt->l2info & htonl(RXF_UDP_F)) &&
2203                     cxgb4_ptp_is_ptp_rx(skb))) {
2204                if (!t4_tx_hststamp(adapter, skb, q->netdev))
2205                        return 0;
2206        }
2207
2208        skb->protocol = eth_type_trans(skb, q->netdev);
2209        skb_record_rx_queue(skb, q->idx);
2210        if (skb->dev->features & NETIF_F_RXHASH)
2211                skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2212                             PKT_HASH_TYPE_L3);
2213
2214        rxq->stats.pkts++;
2215
2216        if (pi->rxtstamp)
2217                cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
2218                                         si->sgetstamp);
2219        if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
2220                if (!pkt->ip_frag) {
2221                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2222                        rxq->stats.rx_cso++;
2223                } else if (pkt->l2info & htonl(RXF_IP_F)) {
2224                        __sum16 c = (__force __sum16)pkt->csum;
2225                        skb->csum = csum_unfold(c);
2226                        skb->ip_summed = CHECKSUM_COMPLETE;
2227                        rxq->stats.rx_cso++;
2228                }
2229        } else {
2230                skb_checksum_none_assert(skb);
2231#ifdef CONFIG_CHELSIO_T4_FCOE
2232#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
2233                          RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
2234
2235                if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
2236                        if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
2237                            (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
2238                                if (q->adap->params.tp.rx_pkt_encap)
2239                                        csum_ok = err_vec &
2240                                                  T6_COMPR_RXERR_SUM_F;
2241                                else
2242                                        csum_ok = err_vec & RXERR_CSUM_F;
2243                                if (!csum_ok)
2244                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2245                        }
2246                }
2247
2248#undef CPL_RX_PKT_FLAGS
2249#endif /* CONFIG_CHELSIO_T4_FCOE */
2250        }
2251
2252        if (unlikely(pkt->vlan_ex)) {
2253                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2254                rxq->stats.vlan_ex++;
2255        }
2256        skb_mark_napi_id(skb, &q->napi);
2257        netif_receive_skb(skb);
2258        return 0;
2259}
2260
2261/**
2262 *      restore_rx_bufs - put back a packet's Rx buffers
2263 *      @si: the packet gather list
2264 *      @q: the SGE free list
2265 *      @frags: number of FL buffers to restore
2266 *
2267 *      Puts back on an FL the Rx buffers associated with @si.  The buffers
2268 *      have already been unmapped and are left unmapped, we mark them so to
2269 *      prevent further unmapping attempts.
2270 *
2271 *      This function undoes a series of @unmap_rx_buf calls when we find out
2272 *      that the current packet can't be processed right away afterall and we
2273 *      need to come back to it later.  This is a very rare event and there's
2274 *      no effort to make this particularly efficient.
2275 */
2276static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
2277                            int frags)
2278{
2279        struct rx_sw_desc *d;
2280
2281        while (frags--) {
2282                if (q->cidx == 0)
2283                        q->cidx = q->size - 1;
2284                else
2285                        q->cidx--;
2286                d = &q->sdesc[q->cidx];
2287                d->page = si->frags[frags].page;
2288                d->dma_addr |= RX_UNMAPPED_BUF;
2289                q->avail++;
2290        }
2291}
2292
2293/**
2294 *      is_new_response - check if a response is newly written
2295 *      @r: the response descriptor
2296 *      @q: the response queue
2297 *
2298 *      Returns true if a response descriptor contains a yet unprocessed
2299 *      response.
2300 */
2301static inline bool is_new_response(const struct rsp_ctrl *r,
2302                                   const struct sge_rspq *q)
2303{
2304        return (r->type_gen >> RSPD_GEN_S) == q->gen;
2305}
2306
2307/**
2308 *      rspq_next - advance to the next entry in a response queue
2309 *      @q: the queue
2310 *
2311 *      Updates the state of a response queue to advance it to the next entry.
2312 */
2313static inline void rspq_next(struct sge_rspq *q)
2314{
2315        q->cur_desc = (void *)q->cur_desc + q->iqe_len;
2316        if (unlikely(++q->cidx == q->size)) {
2317                q->cidx = 0;
2318                q->gen ^= 1;
2319                q->cur_desc = q->desc;
2320        }
2321}
2322
2323/**
2324 *      process_responses - process responses from an SGE response queue
2325 *      @q: the ingress queue to process
2326 *      @budget: how many responses can be processed in this round
2327 *
2328 *      Process responses from an SGE response queue up to the supplied budget.
2329 *      Responses include received packets as well as control messages from FW
2330 *      or HW.
2331 *
2332 *      Additionally choose the interrupt holdoff time for the next interrupt
2333 *      on this queue.  If the system is under memory shortage use a fairly
2334 *      long delay to help recovery.
2335 */
2336static int process_responses(struct sge_rspq *q, int budget)
2337{
2338        int ret, rsp_type;
2339        int budget_left = budget;
2340        const struct rsp_ctrl *rc;
2341        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2342        struct adapter *adapter = q->adap;
2343        struct sge *s = &adapter->sge;
2344
2345        while (likely(budget_left)) {
2346                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2347                if (!is_new_response(rc, q)) {
2348                        if (q->flush_handler)
2349                                q->flush_handler(q);
2350                        break;
2351                }
2352
2353                dma_rmb();
2354                rsp_type = RSPD_TYPE_G(rc->type_gen);
2355                if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
2356                        struct page_frag *fp;
2357                        struct pkt_gl si;
2358                        const struct rx_sw_desc *rsd;
2359                        u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
2360
2361                        if (len & RSPD_NEWBUF_F) {
2362                                if (likely(q->offset > 0)) {
2363                                        free_rx_bufs(q->adap, &rxq->fl, 1);
2364                                        q->offset = 0;
2365                                }
2366                                len = RSPD_LEN_G(len);
2367                        }
2368                        si.tot_len = len;
2369
2370                        /* gather packet fragments */
2371                        for (frags = 0, fp = si.frags; ; frags++, fp++) {
2372                                rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2373                                bufsz = get_buf_size(adapter, rsd);
2374                                fp->page = rsd->page;
2375                                fp->offset = q->offset;
2376                                fp->size = min(bufsz, len);
2377                                len -= fp->size;
2378                                if (!len)
2379                                        break;
2380                                unmap_rx_buf(q->adap, &rxq->fl);
2381                        }
2382
2383                        si.sgetstamp = SGE_TIMESTAMP_G(
2384                                        be64_to_cpu(rc->last_flit));
2385                        /*
2386                         * Last buffer remains mapped so explicitly make it
2387                         * coherent for CPU access.
2388                         */
2389                        dma_sync_single_for_cpu(q->adap->pdev_dev,
2390                                                get_buf_addr(rsd),
2391                                                fp->size, DMA_FROM_DEVICE);
2392
2393                        si.va = page_address(si.frags[0].page) +
2394                                si.frags[0].offset;
2395                        prefetch(si.va);
2396
2397                        si.nfrags = frags + 1;
2398                        ret = q->handler(q, q->cur_desc, &si);
2399                        if (likely(ret == 0))
2400                                q->offset += ALIGN(fp->size, s->fl_align);
2401                        else
2402                                restore_rx_bufs(&si, &rxq->fl, frags);
2403                } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
2404                        ret = q->handler(q, q->cur_desc, NULL);
2405                } else {
2406                        ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
2407                }
2408
2409                if (unlikely(ret)) {
2410                        /* couldn't process descriptor, back off for recovery */
2411                        q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
2412                        break;
2413                }
2414
2415                rspq_next(q);
2416                budget_left--;
2417        }
2418
2419        if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
2420                __refill_fl(q->adap, &rxq->fl);
2421        return budget - budget_left;
2422}
2423
2424/**
2425 *      napi_rx_handler - the NAPI handler for Rx processing
2426 *      @napi: the napi instance
2427 *      @budget: how many packets we can process in this round
2428 *
2429 *      Handler for new data events when using NAPI.  This does not need any
2430 *      locking or protection from interrupts as data interrupts are off at
2431 *      this point and other adapter interrupts do not interfere (the latter
2432 *      in not a concern at all with MSI-X as non-data interrupts then have
2433 *      a separate handler).
2434 */
2435static int napi_rx_handler(struct napi_struct *napi, int budget)
2436{
2437        unsigned int params;
2438        struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2439        int work_done;
2440        u32 val;
2441
2442        work_done = process_responses(q, budget);
2443        if (likely(work_done < budget)) {
2444                int timer_index;
2445
2446                napi_complete_done(napi, work_done);
2447                timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
2448
2449                if (q->adaptive_rx) {
2450                        if (work_done > max(timer_pkt_quota[timer_index],
2451                                            MIN_NAPI_WORK))
2452                                timer_index = (timer_index + 1);
2453                        else
2454                                timer_index = timer_index - 1;
2455
2456                        timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2457                        q->next_intr_params =
2458                                        QINTR_TIMER_IDX_V(timer_index) |
2459                                        QINTR_CNT_EN_V(0);
2460                        params = q->next_intr_params;
2461                } else {
2462                        params = q->next_intr_params;
2463                        q->next_intr_params = q->intr_params;
2464                }
2465        } else
2466                params = QINTR_TIMER_IDX_V(7);
2467
2468        val = CIDXINC_V(work_done) | SEINTARM_V(params);
2469
2470        /* If we don't have access to the new User GTS (T5+), use the old
2471         * doorbell mechanism; otherwise use the new BAR2 mechanism.
2472         */
2473        if (unlikely(q->bar2_addr == NULL)) {
2474                t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2475                             val | INGRESSQID_V((u32)q->cntxt_id));
2476        } else {
2477                writel(val | INGRESSQID_V(q->bar2_qid),
2478                       q->bar2_addr + SGE_UDB_GTS);
2479                wmb();
2480        }
2481        return work_done;
2482}
2483
2484/*
2485 * The MSI-X interrupt handler for an SGE response queue.
2486 */
2487irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2488{
2489        struct sge_rspq *q = cookie;
2490
2491        napi_schedule(&q->napi);
2492        return IRQ_HANDLED;
2493}
2494
2495/*
2496 * Process the indirect interrupt entries in the interrupt queue and kick off
2497 * NAPI for each queue that has generated an entry.
2498 */
2499static unsigned int process_intrq(struct adapter *adap)
2500{
2501        unsigned int credits;
2502        const struct rsp_ctrl *rc;
2503        struct sge_rspq *q = &adap->sge.intrq;
2504        u32 val;
2505
2506        spin_lock(&adap->sge.intrq_lock);
2507        for (credits = 0; ; credits++) {
2508                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2509                if (!is_new_response(rc, q))
2510                        break;
2511
2512                dma_rmb();
2513                if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
2514                        unsigned int qid = ntohl(rc->pldbuflen_qid);
2515
2516                        qid -= adap->sge.ingr_start;
2517                        napi_schedule(&adap->sge.ingr_map[qid]->napi);
2518                }
2519
2520                rspq_next(q);
2521        }
2522
2523        val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2524
2525        /* If we don't have access to the new User GTS (T5+), use the old
2526         * doorbell mechanism; otherwise use the new BAR2 mechanism.
2527         */
2528        if (unlikely(q->bar2_addr == NULL)) {
2529                t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2530                             val | INGRESSQID_V(q->cntxt_id));
2531        } else {
2532                writel(val | INGRESSQID_V(q->bar2_qid),
2533                       q->bar2_addr + SGE_UDB_GTS);
2534                wmb();
2535        }
2536        spin_unlock(&adap->sge.intrq_lock);
2537        return credits;
2538}
2539
2540/*
2541 * The MSI interrupt handler, which handles data events from SGE response queues
2542 * as well as error and other async events as they all use the same MSI vector.
2543 */
2544static irqreturn_t t4_intr_msi(int irq, void *cookie)
2545{
2546        struct adapter *adap = cookie;
2547
2548        if (adap->flags & MASTER_PF)
2549                t4_slow_intr_handler(adap);
2550        process_intrq(adap);
2551        return IRQ_HANDLED;
2552}
2553
2554/*
2555 * Interrupt handler for legacy INTx interrupts.
2556 * Handles data events from SGE response queues as well as error and other
2557 * async events as they all use the same interrupt line.
2558 */
2559static irqreturn_t t4_intr_intx(int irq, void *cookie)
2560{
2561        struct adapter *adap = cookie;
2562
2563        t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2564        if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
2565            process_intrq(adap))
2566                return IRQ_HANDLED;
2567        return IRQ_NONE;             /* probably shared interrupt */
2568}
2569
2570/**
2571 *      t4_intr_handler - select the top-level interrupt handler
2572 *      @adap: the adapter
2573 *
2574 *      Selects the top-level interrupt handler based on the type of interrupts
2575 *      (MSI-X, MSI, or INTx).
2576 */
2577irq_handler_t t4_intr_handler(struct adapter *adap)
2578{
2579        if (adap->flags & USING_MSIX)
2580                return t4_sge_intr_msix;
2581        if (adap->flags & USING_MSI)
2582                return t4_intr_msi;
2583        return t4_intr_intx;
2584}
2585
2586static void sge_rx_timer_cb(unsigned long data)
2587{
2588        unsigned long m;
2589        unsigned int i;
2590        struct adapter *adap = (struct adapter *)data;
2591        struct sge *s = &adap->sge;
2592
2593        for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2594                for (m = s->starving_fl[i]; m; m &= m - 1) {
2595                        struct sge_eth_rxq *rxq;
2596                        unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2597                        struct sge_fl *fl = s->egr_map[id];
2598
2599                        clear_bit(id, s->starving_fl);
2600                        smp_mb__after_atomic();
2601
2602                        if (fl_starving(adap, fl)) {
2603                                rxq = container_of(fl, struct sge_eth_rxq, fl);
2604                                if (napi_reschedule(&rxq->rspq.napi))
2605                                        fl->starving++;
2606                                else
2607                                        set_bit(id, s->starving_fl);
2608                        }
2609                }
2610        /* The remainder of the SGE RX Timer Callback routine is dedicated to
2611         * global Master PF activities like checking for chip ingress stalls,
2612         * etc.
2613         */
2614        if (!(adap->flags & MASTER_PF))
2615                goto done;
2616
2617        t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
2618
2619done:
2620        mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2621}
2622
2623static void sge_tx_timer_cb(unsigned long data)
2624{
2625        unsigned long m;
2626        unsigned int i, budget;
2627        struct adapter *adap = (struct adapter *)data;
2628        struct sge *s = &adap->sge;
2629
2630        for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2631                for (m = s->txq_maperr[i]; m; m &= m - 1) {
2632                        unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2633                        struct sge_uld_txq *txq = s->egr_map[id];
2634
2635                        clear_bit(id, s->txq_maperr);
2636                        tasklet_schedule(&txq->qresume_tsk);
2637                }
2638
2639        if (!is_t4(adap->params.chip)) {
2640                struct sge_eth_txq *q = &s->ptptxq;
2641                int avail;
2642
2643                spin_lock(&adap->ptp_lock);
2644                avail = reclaimable(&q->q);
2645
2646                if (avail) {
2647                        free_tx_desc(adap, &q->q, avail, false);
2648                        q->q.in_use -= avail;
2649                }
2650                spin_unlock(&adap->ptp_lock);
2651        }
2652
2653        budget = MAX_TIMER_TX_RECLAIM;
2654        i = s->ethtxq_rover;
2655        do {
2656                struct sge_eth_txq *q = &s->ethtxq[i];
2657
2658                if (q->q.in_use &&
2659                    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2660                    __netif_tx_trylock(q->txq)) {
2661                        int avail = reclaimable(&q->q);
2662
2663                        if (avail) {
2664                                if (avail > budget)
2665                                        avail = budget;
2666
2667                                free_tx_desc(adap, &q->q, avail, true);
2668                                q->q.in_use -= avail;
2669                                budget -= avail;
2670                        }
2671                        __netif_tx_unlock(q->txq);
2672                }
2673
2674                if (++i >= s->ethqsets)
2675                        i = 0;
2676        } while (budget && i != s->ethtxq_rover);
2677        s->ethtxq_rover = i;
2678        mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2679}
2680
2681/**
2682 *      bar2_address - return the BAR2 address for an SGE Queue's Registers
2683 *      @adapter: the adapter
2684 *      @qid: the SGE Queue ID
2685 *      @qtype: the SGE Queue Type (Egress or Ingress)
2686 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2687 *
2688 *      Returns the BAR2 address for the SGE Queue Registers associated with
2689 *      @qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2690 *      returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2691 *      Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2692 *      Registers are supported (e.g. the Write Combining Doorbell Buffer).
2693 */
2694static void __iomem *bar2_address(struct adapter *adapter,
2695                                  unsigned int qid,
2696                                  enum t4_bar2_qtype qtype,
2697                                  unsigned int *pbar2_qid)
2698{
2699        u64 bar2_qoffset;
2700        int ret;
2701
2702        ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
2703                                &bar2_qoffset, pbar2_qid);
2704        if (ret)
2705                return NULL;
2706
2707        return adapter->bar2 + bar2_qoffset;
2708}
2709
2710/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
2711 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
2712 */
2713int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2714                     struct net_device *dev, int intr_idx,
2715                     struct sge_fl *fl, rspq_handler_t hnd,
2716                     rspq_flush_handler_t flush_hnd, int cong)
2717{
2718        int ret, flsz = 0;
2719        struct fw_iq_cmd c;
2720        struct sge *s = &adap->sge;
2721        struct port_info *pi = netdev_priv(dev);
2722        int relaxed = !(adap->flags & ROOT_NO_RELAXED_ORDERING);
2723
2724        /* Size needs to be multiple of 16, including status entry. */
2725        iq->size = roundup(iq->size, 16);
2726
2727        iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2728                              &iq->phys_addr, NULL, 0,
2729                              dev_to_node(adap->pdev_dev));
2730        if (!iq->desc)
2731                return -ENOMEM;
2732
2733        memset(&c, 0, sizeof(c));
2734        c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2735                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2736                            FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
2737        c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2738                                 FW_LEN16(c));
2739        c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2740                FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2741                FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
2742                FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
2743                FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2744                                                        -intr_idx - 1));
2745        c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2746                FW_IQ_CMD_IQGTSMODE_F |
2747                FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2748                FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2749        c.iqsize = htons(iq->size);
2750        c.iqaddr = cpu_to_be64(iq->phys_addr);
2751        if (cong >= 0)
2752                c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
2753
2754        if (fl) {
2755                enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2756
2757                /* Allocate the ring for the hardware free list (with space
2758                 * for its status page) along with the associated software
2759                 * descriptor ring.  The free list size needs to be a multiple
2760                 * of the Egress Queue Unit and at least 2 Egress Units larger
2761                 * than the SGE's Egress Congrestion Threshold
2762                 * (fl_starve_thres - 1).
2763                 */
2764                if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
2765                        fl->size = s->fl_starve_thres - 1 + 2 * 8;
2766                fl->size = roundup(fl->size, 8);
2767                fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2768                                      sizeof(struct rx_sw_desc), &fl->addr,
2769                                      &fl->sdesc, s->stat_len,
2770                                      dev_to_node(adap->pdev_dev));
2771                if (!fl->desc)
2772                        goto fl_nomem;
2773
2774                flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2775                c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
2776                                             FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
2777                                             FW_IQ_CMD_FL0DATARO_V(relaxed) |
2778                                             FW_IQ_CMD_FL0PADEN_F);
2779                if (cong >= 0)
2780                        c.iqns_to_fl0congen |=
2781                                htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
2782                                      FW_IQ_CMD_FL0CONGCIF_F |
2783                                      FW_IQ_CMD_FL0CONGEN_F);
2784                /* In T6, for egress queue type FL there is internal overhead
2785                 * of 16B for header going into FLM module.  Hence the maximum
2786                 * allowed burst size is 448 bytes.  For T4/T5, the hardware
2787                 * doesn't coalesce fetch requests if more than 64 bytes of
2788                 * Free List pointers are provided, so we use a 128-byte Fetch
2789                 * Burst Minimum there (T6 implements coalescing so we can use
2790                 * the smaller 64-byte value there).
2791                 */
2792                c.fl0dcaen_to_fl0cidxfthresh =
2793                        htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
2794                                                   FETCHBURSTMIN_128B_X :
2795                                                   FETCHBURSTMIN_64B_X) |
2796                              FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
2797                                                   FETCHBURSTMAX_512B_X :
2798                                                   FETCHBURSTMAX_256B_X));
2799                c.fl0size = htons(flsz);
2800                c.fl0addr = cpu_to_be64(fl->addr);
2801        }
2802
2803        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2804        if (ret)
2805                goto err;
2806
2807        netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2808        iq->cur_desc = iq->desc;
2809        iq->cidx = 0;
2810        iq->gen = 1;
2811        iq->next_intr_params = iq->intr_params;
2812        iq->cntxt_id = ntohs(c.iqid);
2813        iq->abs_id = ntohs(c.physiqid);
2814        iq->bar2_addr = bar2_address(adap,
2815                                     iq->cntxt_id,
2816                                     T4_BAR2_QTYPE_INGRESS,
2817                                     &iq->bar2_qid);
2818        iq->size--;                           /* subtract status entry */
2819        iq->netdev = dev;
2820        iq->handler = hnd;
2821        iq->flush_handler = flush_hnd;
2822
2823        memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
2824        skb_queue_head_init(&iq->lro_mgr.lroq);
2825
2826        /* set offset to -1 to distinguish ingress queues without FL */
2827        iq->offset = fl ? 0 : -1;
2828
2829        adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2830
2831        if (fl) {
2832                fl->cntxt_id = ntohs(c.fl0id);
2833                fl->avail = fl->pend_cred = 0;
2834                fl->pidx = fl->cidx = 0;
2835                fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2836                adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2837
2838                /* Note, we must initialize the BAR2 Free List User Doorbell
2839                 * information before refilling the Free List!
2840                 */
2841                fl->bar2_addr = bar2_address(adap,
2842                                             fl->cntxt_id,
2843                                             T4_BAR2_QTYPE_EGRESS,
2844                                             &fl->bar2_qid);
2845                refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2846        }
2847
2848        /* For T5 and later we attempt to set up the Congestion Manager values
2849         * of the new RX Ethernet Queue.  This should really be handled by
2850         * firmware because it's more complex than any host driver wants to
2851         * get involved with and it's different per chip and this is almost
2852         * certainly wrong.  Firmware would be wrong as well, but it would be
2853         * a lot easier to fix in one place ...  For now we do something very
2854         * simple (and hopefully less wrong).
2855         */
2856        if (!is_t4(adap->params.chip) && cong >= 0) {
2857                u32 param, val, ch_map = 0;
2858                int i;
2859                u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
2860
2861                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
2862                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2863                         FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
2864                if (cong == 0) {
2865                        val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
2866                } else {
2867                        val =
2868                            CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
2869                        for (i = 0; i < 4; i++) {
2870                                if (cong & (1 << i))
2871                                        ch_map |= 1 << (i << cng_ch_bits_log);
2872                        }
2873                        val |= CONMCTXT_CNGCHMAP_V(ch_map);
2874                }
2875                ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
2876                                    &param, &val);
2877                if (ret)
2878                        dev_warn(adap->pdev_dev, "Failed to set Congestion"
2879                                 " Manager Context for Ingress Queue %d: %d\n",
2880                                 iq->cntxt_id, -ret);
2881        }
2882
2883        return 0;
2884
2885fl_nomem:
2886        ret = -ENOMEM;
2887err:
2888        if (iq->desc) {
2889                dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2890                                  iq->desc, iq->phys_addr);
2891                iq->desc = NULL;
2892        }
2893        if (fl && fl->desc) {
2894                kfree(fl->sdesc);
2895                fl->sdesc = NULL;
2896                dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2897                                  fl->desc, fl->addr);
2898                fl->desc = NULL;
2899        }
2900        return ret;
2901}
2902
2903static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2904{
2905        q->cntxt_id = id;
2906        q->bar2_addr = bar2_address(adap,
2907                                    q->cntxt_id,
2908                                    T4_BAR2_QTYPE_EGRESS,
2909                                    &q->bar2_qid);
2910        q->in_use = 0;
2911        q->cidx = q->pidx = 0;
2912        q->stops = q->restarts = 0;
2913        q->stat = (void *)&q->desc[q->size];
2914        spin_lock_init(&q->db_lock);
2915        adap->sge.egr_map[id - adap->sge.egr_start] = q;
2916}
2917
2918int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2919                         struct net_device *dev, struct netdev_queue *netdevq,
2920                         unsigned int iqid)
2921{
2922        int ret, nentries;
2923        struct fw_eq_eth_cmd c;
2924        struct sge *s = &adap->sge;
2925        struct port_info *pi = netdev_priv(dev);
2926
2927        /* Add status entries */
2928        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2929
2930        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2931                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2932                        &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2933                        netdev_queue_numa_node_read(netdevq));
2934        if (!txq->q.desc)
2935                return -ENOMEM;
2936
2937        memset(&c, 0, sizeof(c));
2938        c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
2939                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2940                            FW_EQ_ETH_CMD_PFN_V(adap->pf) |
2941                            FW_EQ_ETH_CMD_VFN_V(0));
2942        c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
2943                                 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
2944        c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2945                           FW_EQ_ETH_CMD_VIID_V(pi->viid));
2946        c.fetchszm_to_iqid =
2947                htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2948                      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
2949                      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
2950        c.dcaen_to_eqsize =
2951                htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2952                      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2953                      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2954                      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2955        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2956
2957        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2958        if (ret) {
2959                kfree(txq->q.sdesc);
2960                txq->q.sdesc = NULL;
2961                dma_free_coherent(adap->pdev_dev,
2962                                  nentries * sizeof(struct tx_desc),
2963                                  txq->q.desc, txq->q.phys_addr);
2964                txq->q.desc = NULL;
2965                return ret;
2966        }
2967
2968        txq->q.q_type = CXGB4_TXQ_ETH;
2969        init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
2970        txq->txq = netdevq;
2971        txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2972        txq->mapping_err = 0;
2973        return 0;
2974}
2975
2976int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2977                          struct net_device *dev, unsigned int iqid,
2978                          unsigned int cmplqid)
2979{
2980        int ret, nentries;
2981        struct fw_eq_ctrl_cmd c;
2982        struct sge *s = &adap->sge;
2983        struct port_info *pi = netdev_priv(dev);
2984
2985        /* Add status entries */
2986        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2987
2988        txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2989                                 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2990                                 NULL, 0, dev_to_node(adap->pdev_dev));
2991        if (!txq->q.desc)
2992                return -ENOMEM;
2993
2994        c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
2995                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2996                            FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
2997                            FW_EQ_CTRL_CMD_VFN_V(0));
2998        c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
2999                                 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
3000        c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
3001        c.physeqid_pkd = htonl(0);
3002        c.fetchszm_to_iqid =
3003                htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3004                      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
3005                      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
3006        c.dcaen_to_eqsize =
3007                htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3008                      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3009                      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3010                      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
3011        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3012
3013        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3014        if (ret) {
3015                dma_free_coherent(adap->pdev_dev,
3016                                  nentries * sizeof(struct tx_desc),
3017                                  txq->q.desc, txq->q.phys_addr);
3018                txq->q.desc = NULL;
3019                return ret;
3020        }
3021
3022        txq->q.q_type = CXGB4_TXQ_CTRL;
3023        init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
3024        txq->adap = adap;
3025        skb_queue_head_init(&txq->sendq);
3026        tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
3027        txq->full = 0;
3028        return 0;
3029}
3030
3031int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
3032                        unsigned int cmplqid)
3033{
3034        u32 param, val;
3035
3036        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3037                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
3038                 FW_PARAMS_PARAM_YZ_V(eqid));
3039        val = cmplqid;
3040        return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
3041}
3042
3043int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
3044                         struct net_device *dev, unsigned int iqid,
3045                         unsigned int uld_type)
3046{
3047        int ret, nentries;
3048        struct fw_eq_ofld_cmd c;
3049        struct sge *s = &adap->sge;
3050        struct port_info *pi = netdev_priv(dev);
3051        int cmd = FW_EQ_OFLD_CMD;
3052
3053        /* Add status entries */
3054        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3055
3056        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3057                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3058                        &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3059                        NUMA_NO_NODE);
3060        if (!txq->q.desc)
3061                return -ENOMEM;
3062
3063        memset(&c, 0, sizeof(c));
3064        if (unlikely(uld_type == CXGB4_TX_CRYPTO))
3065                cmd = FW_EQ_CTRL_CMD;
3066        c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
3067                            FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3068                            FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
3069                            FW_EQ_OFLD_CMD_VFN_V(0));
3070        c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
3071                                 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
3072        c.fetchszm_to_iqid =
3073                htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3074                      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
3075                      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
3076        c.dcaen_to_eqsize =
3077                htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3078                      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3079                      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3080                      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
3081        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3082
3083        ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3084        if (ret) {
3085                kfree(txq->q.sdesc);
3086                txq->q.sdesc = NULL;
3087                dma_free_coherent(adap->pdev_dev,
3088                                  nentries * sizeof(struct tx_desc),
3089                                  txq->q.desc, txq->q.phys_addr);
3090                txq->q.desc = NULL;
3091                return ret;
3092        }
3093
3094        txq->q.q_type = CXGB4_TXQ_ULD;
3095        init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
3096        txq->adap = adap;
3097        skb_queue_head_init(&txq->sendq);
3098        tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
3099        txq->full = 0;
3100        txq->mapping_err = 0;
3101        return 0;
3102}
3103
3104void free_txq(struct adapter *adap, struct sge_txq *q)
3105{
3106        struct sge *s = &adap->sge;
3107
3108        dma_free_coherent(adap->pdev_dev,
3109                          q->size * sizeof(struct tx_desc) + s->stat_len,
3110                          q->desc, q->phys_addr);
3111        q->cntxt_id = 0;
3112        q->sdesc = NULL;
3113        q->desc = NULL;
3114}
3115
3116void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
3117                  struct sge_fl *fl)
3118{
3119        struct sge *s = &adap->sge;
3120        unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
3121
3122        adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
3123        t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3124                   rq->cntxt_id, fl_id, 0xffff);
3125        dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
3126                          rq->desc, rq->phys_addr);
3127        netif_napi_del(&rq->napi);
3128        rq->netdev = NULL;
3129        rq->cntxt_id = rq->abs_id = 0;
3130        rq->desc = NULL;
3131
3132        if (fl) {
3133                free_rx_bufs(adap, fl, fl->avail);
3134                dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
3135                                  fl->desc, fl->addr);
3136                kfree(fl->sdesc);
3137                fl->sdesc = NULL;
3138                fl->cntxt_id = 0;
3139                fl->desc = NULL;
3140        }
3141}
3142
3143/**
3144 *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
3145 *      @adap: the adapter
3146 *      @n: number of queues
3147 *      @q: pointer to first queue
3148 *
3149 *      Release the resources of a consecutive block of offload Rx queues.
3150 */
3151void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
3152{
3153        for ( ; n; n--, q++)
3154                if (q->rspq.desc)
3155                        free_rspq_fl(adap, &q->rspq,
3156                                     q->fl.size ? &q->fl : NULL);
3157}
3158
3159/**
3160 *      t4_free_sge_resources - free SGE resources
3161 *      @adap: the adapter
3162 *
3163 *      Frees resources used by the SGE queue sets.
3164 */
3165void t4_free_sge_resources(struct adapter *adap)
3166{
3167        int i;
3168        struct sge_eth_rxq *eq;
3169        struct sge_eth_txq *etq;
3170
3171        /* stop all Rx queues in order to start them draining */
3172        for (i = 0; i < adap->sge.ethqsets; i++) {
3173                eq = &adap->sge.ethrxq[i];
3174                if (eq->rspq.desc)
3175                        t4_iq_stop(adap, adap->mbox, adap->pf, 0,
3176                                   FW_IQ_TYPE_FL_INT_CAP,
3177                                   eq->rspq.cntxt_id,
3178                                   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
3179                                   0xffff);
3180        }
3181
3182        /* clean up Ethernet Tx/Rx queues */
3183        for (i = 0; i < adap->sge.ethqsets; i++) {
3184                eq = &adap->sge.ethrxq[i];
3185                if (eq->rspq.desc)
3186                        free_rspq_fl(adap, &eq->rspq,
3187                                     eq->fl.size ? &eq->fl : NULL);
3188
3189                etq = &adap->sge.ethtxq[i];
3190                if (etq->q.desc) {
3191                        t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3192                                       etq->q.cntxt_id);
3193                        __netif_tx_lock_bh(etq->txq);
3194                        free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3195                        __netif_tx_unlock_bh(etq->txq);
3196                        kfree(etq->q.sdesc);
3197                        free_txq(adap, &etq->q);
3198                }
3199        }
3200
3201        /* clean up control Tx queues */
3202        for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
3203                struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
3204
3205                if (cq->q.desc) {
3206                        tasklet_kill(&cq->qresume_tsk);
3207                        t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
3208                                        cq->q.cntxt_id);
3209                        __skb_queue_purge(&cq->sendq);
3210                        free_txq(adap, &cq->q);
3211                }
3212        }
3213
3214        if (adap->sge.fw_evtq.desc)
3215                free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
3216
3217        if (adap->sge.intrq.desc)
3218                free_rspq_fl(adap, &adap->sge.intrq, NULL);
3219
3220        if (!is_t4(adap->params.chip)) {
3221                etq = &adap->sge.ptptxq;
3222                if (etq->q.desc) {
3223                        t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3224                                       etq->q.cntxt_id);
3225                        spin_lock_bh(&adap->ptp_lock);
3226                        free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3227                        spin_unlock_bh(&adap->ptp_lock);
3228                        kfree(etq->q.sdesc);
3229                        free_txq(adap, &etq->q);
3230                }
3231        }
3232
3233        /* clear the reverse egress queue map */
3234        memset(adap->sge.egr_map, 0,
3235               adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
3236}
3237
3238void t4_sge_start(struct adapter *adap)
3239{
3240        adap->sge.ethtxq_rover = 0;
3241        mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
3242        mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
3243}
3244
3245/**
3246 *      t4_sge_stop - disable SGE operation
3247 *      @adap: the adapter
3248 *
3249 *      Stop tasklets and timers associated with the DMA engine.  Note that
3250 *      this is effective only if measures have been taken to disable any HW
3251 *      events that may restart them.
3252 */
3253void t4_sge_stop(struct adapter *adap)
3254{
3255        int i;
3256        struct sge *s = &adap->sge;
3257
3258        if (in_interrupt())  /* actions below require waiting */
3259                return;
3260
3261        if (s->rx_timer.function)
3262                del_timer_sync(&s->rx_timer);
3263        if (s->tx_timer.function)
3264                del_timer_sync(&s->tx_timer);
3265
3266        if (is_offload(adap)) {
3267                struct sge_uld_txq_info *txq_info;
3268
3269                txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3270                if (txq_info) {
3271                        struct sge_uld_txq *txq = txq_info->uldtxq;
3272
3273                        for_each_ofldtxq(&adap->sge, i) {
3274                                if (txq->q.desc)
3275                                        tasklet_kill(&txq->qresume_tsk);
3276                        }
3277                }
3278        }
3279
3280        if (is_pci_uld(adap)) {
3281                struct sge_uld_txq_info *txq_info;
3282
3283                txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
3284                if (txq_info) {
3285                        struct sge_uld_txq *txq = txq_info->uldtxq;
3286
3287                        for_each_ofldtxq(&adap->sge, i) {
3288                                if (txq->q.desc)
3289                                        tasklet_kill(&txq->qresume_tsk);
3290                        }
3291                }
3292        }
3293
3294        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
3295                struct sge_ctrl_txq *cq = &s->ctrlq[i];
3296
3297                if (cq->q.desc)
3298                        tasklet_kill(&cq->qresume_tsk);
3299        }
3300}
3301
3302/**
3303 *      t4_sge_init_soft - grab core SGE values needed by SGE code
3304 *      @adap: the adapter
3305 *
3306 *      We need to grab the SGE operating parameters that we need to have
3307 *      in order to do our job and make sure we can live with them.
3308 */
3309
3310static int t4_sge_init_soft(struct adapter *adap)
3311{
3312        struct sge *s = &adap->sge;
3313        u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
3314        u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
3315        u32 ingress_rx_threshold;
3316
3317        /*
3318         * Verify that CPL messages are going to the Ingress Queue for
3319         * process_responses() and that only packet data is going to the
3320         * Free Lists.
3321         */
3322        if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
3323            RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
3324                dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
3325                return -EINVAL;
3326        }
3327
3328        /*
3329         * Validate the Host Buffer Register Array indices that we want to
3330         * use ...
3331         *
3332         * XXX Note that we should really read through the Host Buffer Size
3333         * XXX register array and find the indices of the Buffer Sizes which
3334         * XXX meet our needs!
3335         */
3336        #define READ_FL_BUF(x) \
3337                t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
3338
3339        fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
3340        fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
3341        fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
3342        fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
3343
3344        /* We only bother using the Large Page logic if the Large Page Buffer
3345         * is larger than our Page Size Buffer.
3346         */
3347        if (fl_large_pg <= fl_small_pg)
3348                fl_large_pg = 0;
3349
3350        #undef READ_FL_BUF
3351
3352        /* The Page Size Buffer must be exactly equal to our Page Size and the
3353         * Large Page Size Buffer should be 0 (per above) or a power of 2.
3354         */
3355        if (fl_small_pg != PAGE_SIZE ||
3356            (fl_large_pg & (fl_large_pg-1)) != 0) {
3357                dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
3358                        fl_small_pg, fl_large_pg);
3359                return -EINVAL;
3360        }
3361        if (fl_large_pg)
3362                s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
3363
3364        if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
3365            fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
3366                dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
3367                        fl_small_mtu, fl_large_mtu);
3368                return -EINVAL;
3369        }
3370
3371        /*
3372         * Retrieve our RX interrupt holdoff timer values and counter
3373         * threshold values from the SGE parameters.
3374         */
3375        timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
3376        timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
3377        timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
3378        s->timer_val[0] = core_ticks_to_us(adap,
3379                TIMERVALUE0_G(timer_value_0_and_1));
3380        s->timer_val[1] = core_ticks_to_us(adap,
3381                TIMERVALUE1_G(timer_value_0_and_1));
3382        s->timer_val[2] = core_ticks_to_us(adap,
3383                TIMERVALUE2_G(timer_value_2_and_3));
3384        s->timer_val[3] = core_ticks_to_us(adap,
3385                TIMERVALUE3_G(timer_value_2_and_3));
3386        s->timer_val[4] = core_ticks_to_us(adap,
3387                TIMERVALUE4_G(timer_value_4_and_5));
3388        s->timer_val[5] = core_ticks_to_us(adap,
3389                TIMERVALUE5_G(timer_value_4_and_5));
3390
3391        ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
3392        s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
3393        s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
3394        s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
3395        s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
3396
3397        return 0;
3398}
3399
3400/**
3401 *     t4_sge_init - initialize SGE
3402 *     @adap: the adapter
3403 *
3404 *     Perform low-level SGE code initialization needed every time after a
3405 *     chip reset.
3406 */
3407int t4_sge_init(struct adapter *adap)
3408{
3409        struct sge *s = &adap->sge;
3410        u32 sge_control, sge_conm_ctrl;
3411        int ret, egress_threshold;
3412
3413        /*
3414         * Ingress Padding Boundary and Egress Status Page Size are set up by
3415         * t4_fixup_host_params().
3416         */
3417        sge_control = t4_read_reg(adap, SGE_CONTROL_A);
3418        s->pktshift = PKTSHIFT_G(sge_control);
3419        s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3420
3421        s->fl_align = t4_fl_pkt_align(adap);
3422        ret = t4_sge_init_soft(adap);
3423        if (ret < 0)
3424                return ret;
3425
3426        /*
3427         * A FL with <= fl_starve_thres buffers is starving and a periodic
3428         * timer will attempt to refill it.  This needs to be larger than the
3429         * SGE's Egress Congestion Threshold.  If it isn't, then we can get
3430         * stuck waiting for new packets while the SGE is waiting for us to
3431         * give it more Free List entries.  (Note that the SGE's Egress
3432         * Congestion Threshold is in units of 2 Free List pointers.) For T4,
3433         * there was only a single field to control this.  For T5 there's the
3434         * original field which now only applies to Unpacked Mode Free List
3435         * buffers and a new field which only applies to Packed Mode Free List
3436         * buffers.
3437         */
3438        sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3439        switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
3440        case CHELSIO_T4:
3441                egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3442                break;
3443        case CHELSIO_T5:
3444                egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3445                break;
3446        case CHELSIO_T6:
3447                egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3448                break;
3449        default:
3450                dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
3451                        CHELSIO_CHIP_VERSION(adap->params.chip));
3452                return -EINVAL;
3453        }
3454        s->fl_starve_thres = 2*egress_threshold + 1;
3455
3456        t4_idma_monitor_init(adap, &s->idma_monitor);
3457
3458        /* Set up timers used for recuring callbacks to process RX and TX
3459         * administrative tasks.
3460         */
3461        setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
3462        setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
3463
3464        spin_lock_init(&s->intrq_lock);
3465
3466        return 0;
3467}
3468