linux/drivers/net/ethernet/freescale/gianfar.c
<<
>>
Prefs
   1/* drivers/net/ethernet/freescale/gianfar.c
   2 *
   3 * Gianfar Ethernet Driver
   4 * This driver is designed for the non-CPM ethernet controllers
   5 * on the 85xx and 83xx family of integrated processors
   6 * Based on 8260_io/fcc_enet.c
   7 *
   8 * Author: Andy Fleming
   9 * Maintainer: Kumar Gala
  10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  11 *
  12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  13 * Copyright 2007 MontaVista Software, Inc.
  14 *
  15 * This program is free software; you can redistribute  it and/or modify it
  16 * under  the terms of  the GNU General  Public License as published by the
  17 * Free Software Foundation;  either version 2 of the  License, or (at your
  18 * option) any later version.
  19 *
  20 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  21 *  RA 11 31 24.2
  22 *  Dec +69 19 52
  23 *  V 3.84
  24 *  B-V +1.62
  25 *
  26 *  Theory of operation
  27 *
  28 *  The driver is initialized through of_device. Configuration information
  29 *  is therefore conveyed through an OF-style device tree.
  30 *
  31 *  The Gianfar Ethernet Controller uses a ring of buffer
  32 *  descriptors.  The beginning is indicated by a register
  33 *  pointing to the physical address of the start of the ring.
  34 *  The end is determined by a "wrap" bit being set in the
  35 *  last descriptor of the ring.
  36 *
  37 *  When a packet is received, the RXF bit in the
  38 *  IEVENT register is set, triggering an interrupt when the
  39 *  corresponding bit in the IMASK register is also set (if
  40 *  interrupt coalescing is active, then the interrupt may not
  41 *  happen immediately, but will wait until either a set number
  42 *  of frames or amount of time have passed).  In NAPI, the
  43 *  interrupt handler will signal there is work to be done, and
  44 *  exit. This method will start at the last known empty
  45 *  descriptor, and process every subsequent descriptor until there
  46 *  are none left with data (NAPI will stop after a set number of
  47 *  packets to give time to other tasks, but will eventually
  48 *  process all the packets).  The data arrives inside a
  49 *  pre-allocated skb, and so after the skb is passed up to the
  50 *  stack, a new skb must be allocated, and the address field in
  51 *  the buffer descriptor must be updated to indicate this new
  52 *  skb.
  53 *
  54 *  When the kernel requests that a packet be transmitted, the
  55 *  driver starts where it left off last time, and points the
  56 *  descriptor at the buffer which was passed in.  The driver
  57 *  then informs the DMA engine that there are packets ready to
  58 *  be transmitted.  Once the controller is finished transmitting
  59 *  the packet, an interrupt may be triggered (under the same
  60 *  conditions as for reception, but depending on the TXF bit).
  61 *  The driver then cleans up the buffer.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65#define DEBUG
  66
  67#include <linux/kernel.h>
  68#include <linux/string.h>
  69#include <linux/errno.h>
  70#include <linux/unistd.h>
  71#include <linux/slab.h>
  72#include <linux/interrupt.h>
  73#include <linux/delay.h>
  74#include <linux/netdevice.h>
  75#include <linux/etherdevice.h>
  76#include <linux/skbuff.h>
  77#include <linux/if_vlan.h>
  78#include <linux/spinlock.h>
  79#include <linux/mm.h>
  80#include <linux/of_address.h>
  81#include <linux/of_irq.h>
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
  91#ifdef CONFIG_PPC
  92#include <asm/reg.h>
  93#include <asm/mpc85xx.h>
  94#endif
  95#include <asm/irq.h>
  96#include <linux/uaccess.h>
  97#include <linux/module.h>
  98#include <linux/dma-mapping.h>
  99#include <linux/crc32.h>
 100#include <linux/mii.h>
 101#include <linux/phy.h>
 102#include <linux/phy_fixed.h>
 103#include <linux/of.h>
 104#include <linux/of_net.h>
 105#include <linux/of_address.h>
 106#include <linux/of_irq.h>
 107
 108#include "gianfar.h"
 109
 110#define TX_TIMEOUT      (5*HZ)
 111
 112const char gfar_driver_version[] = "2.0";
 113
 114static int gfar_enet_open(struct net_device *dev);
 115static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 116static void gfar_reset_task(struct work_struct *work);
 117static void gfar_timeout(struct net_device *dev);
 118static int gfar_close(struct net_device *dev);
 119static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
 120                                int alloc_cnt);
 121static int gfar_set_mac_address(struct net_device *dev);
 122static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 123static irqreturn_t gfar_error(int irq, void *dev_id);
 124static irqreturn_t gfar_transmit(int irq, void *dev_id);
 125static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 126static void adjust_link(struct net_device *dev);
 127static noinline void gfar_update_link_state(struct gfar_private *priv);
 128static int init_phy(struct net_device *dev);
 129static int gfar_probe(struct platform_device *ofdev);
 130static int gfar_remove(struct platform_device *ofdev);
 131static void free_skb_resources(struct gfar_private *priv);
 132static void gfar_set_multi(struct net_device *dev);
 133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 134static void gfar_configure_serdes(struct net_device *dev);
 135static int gfar_poll_rx(struct napi_struct *napi, int budget);
 136static int gfar_poll_tx(struct napi_struct *napi, int budget);
 137static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
 138static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
 139#ifdef CONFIG_NET_POLL_CONTROLLER
 140static void gfar_netpoll(struct net_device *dev);
 141#endif
 142int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 143static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 144static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
 145static void gfar_halt_nodisable(struct gfar_private *priv);
 146static void gfar_clear_exact_match(struct net_device *dev);
 147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 148                                  const u8 *addr);
 149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 150
 151MODULE_AUTHOR("Freescale Semiconductor, Inc");
 152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 153MODULE_LICENSE("GPL");
 154
 155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 156                            dma_addr_t buf)
 157{
 158        u32 lstatus;
 159
 160        bdp->bufPtr = cpu_to_be32(buf);
 161
 162        lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 163        if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 164                lstatus |= BD_LFLAG(RXBD_WRAP);
 165
 166        gfar_wmb();
 167
 168        bdp->lstatus = cpu_to_be32(lstatus);
 169}
 170
 171static void gfar_init_bds(struct net_device *ndev)
 172{
 173        struct gfar_private *priv = netdev_priv(ndev);
 174        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 175        struct gfar_priv_tx_q *tx_queue = NULL;
 176        struct gfar_priv_rx_q *rx_queue = NULL;
 177        struct txbd8 *txbdp;
 178        u32 __iomem *rfbptr;
 179        int i, j;
 180
 181        for (i = 0; i < priv->num_tx_queues; i++) {
 182                tx_queue = priv->tx_queue[i];
 183                /* Initialize some variables in our dev structure */
 184                tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 185                tx_queue->dirty_tx = tx_queue->tx_bd_base;
 186                tx_queue->cur_tx = tx_queue->tx_bd_base;
 187                tx_queue->skb_curtx = 0;
 188                tx_queue->skb_dirtytx = 0;
 189
 190                /* Initialize Transmit Descriptor Ring */
 191                txbdp = tx_queue->tx_bd_base;
 192                for (j = 0; j < tx_queue->tx_ring_size; j++) {
 193                        txbdp->lstatus = 0;
 194                        txbdp->bufPtr = 0;
 195                        txbdp++;
 196                }
 197
 198                /* Set the last descriptor in the ring to indicate wrap */
 199                txbdp--;
 200                txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
 201                                            TXBD_WRAP);
 202        }
 203
 204        rfbptr = &regs->rfbptr0;
 205        for (i = 0; i < priv->num_rx_queues; i++) {
 206                rx_queue = priv->rx_queue[i];
 207
 208                rx_queue->next_to_clean = 0;
 209                rx_queue->next_to_use = 0;
 210                rx_queue->next_to_alloc = 0;
 211
 212                /* make sure next_to_clean != next_to_use after this
 213                 * by leaving at least 1 unused descriptor
 214                 */
 215                gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
 216
 217                rx_queue->rfbptr = rfbptr;
 218                rfbptr += 2;
 219        }
 220}
 221
 222static int gfar_alloc_skb_resources(struct net_device *ndev)
 223{
 224        void *vaddr;
 225        dma_addr_t addr;
 226        int i, j;
 227        struct gfar_private *priv = netdev_priv(ndev);
 228        struct device *dev = priv->dev;
 229        struct gfar_priv_tx_q *tx_queue = NULL;
 230        struct gfar_priv_rx_q *rx_queue = NULL;
 231
 232        priv->total_tx_ring_size = 0;
 233        for (i = 0; i < priv->num_tx_queues; i++)
 234                priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 235
 236        priv->total_rx_ring_size = 0;
 237        for (i = 0; i < priv->num_rx_queues; i++)
 238                priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 239
 240        /* Allocate memory for the buffer descriptors */
 241        vaddr = dma_alloc_coherent(dev,
 242                                   (priv->total_tx_ring_size *
 243                                    sizeof(struct txbd8)) +
 244                                   (priv->total_rx_ring_size *
 245                                    sizeof(struct rxbd8)),
 246                                   &addr, GFP_KERNEL);
 247        if (!vaddr)
 248                return -ENOMEM;
 249
 250        for (i = 0; i < priv->num_tx_queues; i++) {
 251                tx_queue = priv->tx_queue[i];
 252                tx_queue->tx_bd_base = vaddr;
 253                tx_queue->tx_bd_dma_base = addr;
 254                tx_queue->dev = ndev;
 255                /* enet DMA only understands physical addresses */
 256                addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 257                vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 258        }
 259
 260        /* Start the rx descriptor ring where the tx ring leaves off */
 261        for (i = 0; i < priv->num_rx_queues; i++) {
 262                rx_queue = priv->rx_queue[i];
 263                rx_queue->rx_bd_base = vaddr;
 264                rx_queue->rx_bd_dma_base = addr;
 265                rx_queue->ndev = ndev;
 266                rx_queue->dev = dev;
 267                addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 268                vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 269        }
 270
 271        /* Setup the skbuff rings */
 272        for (i = 0; i < priv->num_tx_queues; i++) {
 273                tx_queue = priv->tx_queue[i];
 274                tx_queue->tx_skbuff =
 275                        kmalloc_array(tx_queue->tx_ring_size,
 276                                      sizeof(*tx_queue->tx_skbuff),
 277                                      GFP_KERNEL);
 278                if (!tx_queue->tx_skbuff)
 279                        goto cleanup;
 280
 281                for (j = 0; j < tx_queue->tx_ring_size; j++)
 282                        tx_queue->tx_skbuff[j] = NULL;
 283        }
 284
 285        for (i = 0; i < priv->num_rx_queues; i++) {
 286                rx_queue = priv->rx_queue[i];
 287                rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
 288                                            sizeof(*rx_queue->rx_buff),
 289                                            GFP_KERNEL);
 290                if (!rx_queue->rx_buff)
 291                        goto cleanup;
 292        }
 293
 294        gfar_init_bds(ndev);
 295
 296        return 0;
 297
 298cleanup:
 299        free_skb_resources(priv);
 300        return -ENOMEM;
 301}
 302
 303static void gfar_init_tx_rx_base(struct gfar_private *priv)
 304{
 305        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 306        u32 __iomem *baddr;
 307        int i;
 308
 309        baddr = &regs->tbase0;
 310        for (i = 0; i < priv->num_tx_queues; i++) {
 311                gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 312                baddr += 2;
 313        }
 314
 315        baddr = &regs->rbase0;
 316        for (i = 0; i < priv->num_rx_queues; i++) {
 317                gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 318                baddr += 2;
 319        }
 320}
 321
 322static void gfar_init_rqprm(struct gfar_private *priv)
 323{
 324        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 325        u32 __iomem *baddr;
 326        int i;
 327
 328        baddr = &regs->rqprm0;
 329        for (i = 0; i < priv->num_rx_queues; i++) {
 330                gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 331                           (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 332                baddr++;
 333        }
 334}
 335
 336static void gfar_rx_offload_en(struct gfar_private *priv)
 337{
 338        /* set this when rx hw offload (TOE) functions are being used */
 339        priv->uses_rxfcb = 0;
 340
 341        if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 342                priv->uses_rxfcb = 1;
 343
 344        if (priv->hwts_rx_en || priv->rx_filer_enable)
 345                priv->uses_rxfcb = 1;
 346}
 347
 348static void gfar_mac_rx_config(struct gfar_private *priv)
 349{
 350        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 351        u32 rctrl = 0;
 352
 353        if (priv->rx_filer_enable) {
 354                rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 355                /* Program the RIR0 reg with the required distribution */
 356                if (priv->poll_mode == GFAR_SQ_POLLING)
 357                        gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 358                else /* GFAR_MQ_POLLING */
 359                        gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 360        }
 361
 362        /* Restore PROMISC mode */
 363        if (priv->ndev->flags & IFF_PROMISC)
 364                rctrl |= RCTRL_PROM;
 365
 366        if (priv->ndev->features & NETIF_F_RXCSUM)
 367                rctrl |= RCTRL_CHECKSUMMING;
 368
 369        if (priv->extended_hash)
 370                rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 371
 372        if (priv->padding) {
 373                rctrl &= ~RCTRL_PAL_MASK;
 374                rctrl |= RCTRL_PADDING(priv->padding);
 375        }
 376
 377        /* Enable HW time stamping if requested from user space */
 378        if (priv->hwts_rx_en)
 379                rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 380
 381        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 382                rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 383
 384        /* Clear the LFC bit */
 385        gfar_write(&regs->rctrl, rctrl);
 386        /* Init flow control threshold values */
 387        gfar_init_rqprm(priv);
 388        gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 389        rctrl |= RCTRL_LFC;
 390
 391        /* Init rctrl based on our settings */
 392        gfar_write(&regs->rctrl, rctrl);
 393}
 394
 395static void gfar_mac_tx_config(struct gfar_private *priv)
 396{
 397        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 398        u32 tctrl = 0;
 399
 400        if (priv->ndev->features & NETIF_F_IP_CSUM)
 401                tctrl |= TCTRL_INIT_CSUM;
 402
 403        if (priv->prio_sched_en)
 404                tctrl |= TCTRL_TXSCHED_PRIO;
 405        else {
 406                tctrl |= TCTRL_TXSCHED_WRRS;
 407                gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 408                gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 409        }
 410
 411        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 412                tctrl |= TCTRL_VLINS;
 413
 414        gfar_write(&regs->tctrl, tctrl);
 415}
 416
 417static void gfar_configure_coalescing(struct gfar_private *priv,
 418                               unsigned long tx_mask, unsigned long rx_mask)
 419{
 420        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 421        u32 __iomem *baddr;
 422
 423        if (priv->mode == MQ_MG_MODE) {
 424                int i = 0;
 425
 426                baddr = &regs->txic0;
 427                for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 428                        gfar_write(baddr + i, 0);
 429                        if (likely(priv->tx_queue[i]->txcoalescing))
 430                                gfar_write(baddr + i, priv->tx_queue[i]->txic);
 431                }
 432
 433                baddr = &regs->rxic0;
 434                for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 435                        gfar_write(baddr + i, 0);
 436                        if (likely(priv->rx_queue[i]->rxcoalescing))
 437                                gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 438                }
 439        } else {
 440                /* Backward compatible case -- even if we enable
 441                 * multiple queues, there's only single reg to program
 442                 */
 443                gfar_write(&regs->txic, 0);
 444                if (likely(priv->tx_queue[0]->txcoalescing))
 445                        gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 446
 447                gfar_write(&regs->rxic, 0);
 448                if (unlikely(priv->rx_queue[0]->rxcoalescing))
 449                        gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 450        }
 451}
 452
 453void gfar_configure_coalescing_all(struct gfar_private *priv)
 454{
 455        gfar_configure_coalescing(priv, 0xFF, 0xFF);
 456}
 457
 458static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 459{
 460        struct gfar_private *priv = netdev_priv(dev);
 461        unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 462        unsigned long tx_packets = 0, tx_bytes = 0;
 463        int i;
 464
 465        for (i = 0; i < priv->num_rx_queues; i++) {
 466                rx_packets += priv->rx_queue[i]->stats.rx_packets;
 467                rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 468                rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 469        }
 470
 471        dev->stats.rx_packets = rx_packets;
 472        dev->stats.rx_bytes   = rx_bytes;
 473        dev->stats.rx_dropped = rx_dropped;
 474
 475        for (i = 0; i < priv->num_tx_queues; i++) {
 476                tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 477                tx_packets += priv->tx_queue[i]->stats.tx_packets;
 478        }
 479
 480        dev->stats.tx_bytes   = tx_bytes;
 481        dev->stats.tx_packets = tx_packets;
 482
 483        return &dev->stats;
 484}
 485
 486static int gfar_set_mac_addr(struct net_device *dev, void *p)
 487{
 488        eth_mac_addr(dev, p);
 489
 490        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 491
 492        return 0;
 493}
 494
 495static const struct net_device_ops gfar_netdev_ops = {
 496        .ndo_open = gfar_enet_open,
 497        .ndo_start_xmit = gfar_start_xmit,
 498        .ndo_stop = gfar_close,
 499        .ndo_change_mtu = gfar_change_mtu,
 500        .ndo_set_features = gfar_set_features,
 501        .ndo_set_rx_mode = gfar_set_multi,
 502        .ndo_tx_timeout = gfar_timeout,
 503        .ndo_do_ioctl = gfar_ioctl,
 504        .ndo_get_stats = gfar_get_stats,
 505        .ndo_set_mac_address = gfar_set_mac_addr,
 506        .ndo_validate_addr = eth_validate_addr,
 507#ifdef CONFIG_NET_POLL_CONTROLLER
 508        .ndo_poll_controller = gfar_netpoll,
 509#endif
 510};
 511
 512static void gfar_ints_disable(struct gfar_private *priv)
 513{
 514        int i;
 515        for (i = 0; i < priv->num_grps; i++) {
 516                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 517                /* Clear IEVENT */
 518                gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 519
 520                /* Initialize IMASK */
 521                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 522        }
 523}
 524
 525static void gfar_ints_enable(struct gfar_private *priv)
 526{
 527        int i;
 528        for (i = 0; i < priv->num_grps; i++) {
 529                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 530                /* Unmask the interrupts we look for */
 531                gfar_write(&regs->imask, IMASK_DEFAULT);
 532        }
 533}
 534
 535static int gfar_alloc_tx_queues(struct gfar_private *priv)
 536{
 537        int i;
 538
 539        for (i = 0; i < priv->num_tx_queues; i++) {
 540                priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 541                                            GFP_KERNEL);
 542                if (!priv->tx_queue[i])
 543                        return -ENOMEM;
 544
 545                priv->tx_queue[i]->tx_skbuff = NULL;
 546                priv->tx_queue[i]->qindex = i;
 547                priv->tx_queue[i]->dev = priv->ndev;
 548                spin_lock_init(&(priv->tx_queue[i]->txlock));
 549        }
 550        return 0;
 551}
 552
 553static int gfar_alloc_rx_queues(struct gfar_private *priv)
 554{
 555        int i;
 556
 557        for (i = 0; i < priv->num_rx_queues; i++) {
 558                priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 559                                            GFP_KERNEL);
 560                if (!priv->rx_queue[i])
 561                        return -ENOMEM;
 562
 563                priv->rx_queue[i]->qindex = i;
 564                priv->rx_queue[i]->ndev = priv->ndev;
 565        }
 566        return 0;
 567}
 568
 569static void gfar_free_tx_queues(struct gfar_private *priv)
 570{
 571        int i;
 572
 573        for (i = 0; i < priv->num_tx_queues; i++)
 574                kfree(priv->tx_queue[i]);
 575}
 576
 577static void gfar_free_rx_queues(struct gfar_private *priv)
 578{
 579        int i;
 580
 581        for (i = 0; i < priv->num_rx_queues; i++)
 582                kfree(priv->rx_queue[i]);
 583}
 584
 585static void unmap_group_regs(struct gfar_private *priv)
 586{
 587        int i;
 588
 589        for (i = 0; i < MAXGROUPS; i++)
 590                if (priv->gfargrp[i].regs)
 591                        iounmap(priv->gfargrp[i].regs);
 592}
 593
 594static void free_gfar_dev(struct gfar_private *priv)
 595{
 596        int i, j;
 597
 598        for (i = 0; i < priv->num_grps; i++)
 599                for (j = 0; j < GFAR_NUM_IRQS; j++) {
 600                        kfree(priv->gfargrp[i].irqinfo[j]);
 601                        priv->gfargrp[i].irqinfo[j] = NULL;
 602                }
 603
 604        free_netdev(priv->ndev);
 605}
 606
 607static void disable_napi(struct gfar_private *priv)
 608{
 609        int i;
 610
 611        for (i = 0; i < priv->num_grps; i++) {
 612                napi_disable(&priv->gfargrp[i].napi_rx);
 613                napi_disable(&priv->gfargrp[i].napi_tx);
 614        }
 615}
 616
 617static void enable_napi(struct gfar_private *priv)
 618{
 619        int i;
 620
 621        for (i = 0; i < priv->num_grps; i++) {
 622                napi_enable(&priv->gfargrp[i].napi_rx);
 623                napi_enable(&priv->gfargrp[i].napi_tx);
 624        }
 625}
 626
 627static int gfar_parse_group(struct device_node *np,
 628                            struct gfar_private *priv, const char *model)
 629{
 630        struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 631        int i;
 632
 633        for (i = 0; i < GFAR_NUM_IRQS; i++) {
 634                grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 635                                          GFP_KERNEL);
 636                if (!grp->irqinfo[i])
 637                        return -ENOMEM;
 638        }
 639
 640        grp->regs = of_iomap(np, 0);
 641        if (!grp->regs)
 642                return -ENOMEM;
 643
 644        gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 645
 646        /* If we aren't the FEC we have multiple interrupts */
 647        if (model && strcasecmp(model, "FEC")) {
 648                gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 649                gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 650                if (!gfar_irq(grp, TX)->irq ||
 651                    !gfar_irq(grp, RX)->irq ||
 652                    !gfar_irq(grp, ER)->irq)
 653                        return -EINVAL;
 654        }
 655
 656        grp->priv = priv;
 657        spin_lock_init(&grp->grplock);
 658        if (priv->mode == MQ_MG_MODE) {
 659                u32 rxq_mask, txq_mask;
 660                int ret;
 661
 662                grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 663                grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 664
 665                ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 666                if (!ret) {
 667                        grp->rx_bit_map = rxq_mask ?
 668                        rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 669                }
 670
 671                ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 672                if (!ret) {
 673                        grp->tx_bit_map = txq_mask ?
 674                        txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 675                }
 676
 677                if (priv->poll_mode == GFAR_SQ_POLLING) {
 678                        /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 679                        grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 680                        grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 681                }
 682        } else {
 683                grp->rx_bit_map = 0xFF;
 684                grp->tx_bit_map = 0xFF;
 685        }
 686
 687        /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 688         * right to left, so we need to revert the 8 bits to get the q index
 689         */
 690        grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 691        grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 692
 693        /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 694         * also assign queues to groups
 695         */
 696        for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 697                if (!grp->rx_queue)
 698                        grp->rx_queue = priv->rx_queue[i];
 699                grp->num_rx_queues++;
 700                grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 701                priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 702                priv->rx_queue[i]->grp = grp;
 703        }
 704
 705        for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 706                if (!grp->tx_queue)
 707                        grp->tx_queue = priv->tx_queue[i];
 708                grp->num_tx_queues++;
 709                grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 710                priv->tqueue |= (TQUEUE_EN0 >> i);
 711                priv->tx_queue[i]->grp = grp;
 712        }
 713
 714        priv->num_grps++;
 715
 716        return 0;
 717}
 718
 719static int gfar_of_group_count(struct device_node *np)
 720{
 721        struct device_node *child;
 722        int num = 0;
 723
 724        for_each_available_child_of_node(np, child)
 725                if (!of_node_cmp(child->name, "queue-group"))
 726                        num++;
 727
 728        return num;
 729}
 730
 731static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 732{
 733        const char *model;
 734        const char *ctype;
 735        const void *mac_addr;
 736        int err = 0, i;
 737        struct net_device *dev = NULL;
 738        struct gfar_private *priv = NULL;
 739        struct device_node *np = ofdev->dev.of_node;
 740        struct device_node *child = NULL;
 741        u32 stash_len = 0;
 742        u32 stash_idx = 0;
 743        unsigned int num_tx_qs, num_rx_qs;
 744        unsigned short mode, poll_mode;
 745
 746        if (!np)
 747                return -ENODEV;
 748
 749        if (of_device_is_compatible(np, "fsl,etsec2")) {
 750                mode = MQ_MG_MODE;
 751                poll_mode = GFAR_SQ_POLLING;
 752        } else {
 753                mode = SQ_SG_MODE;
 754                poll_mode = GFAR_SQ_POLLING;
 755        }
 756
 757        if (mode == SQ_SG_MODE) {
 758                num_tx_qs = 1;
 759                num_rx_qs = 1;
 760        } else { /* MQ_MG_MODE */
 761                /* get the actual number of supported groups */
 762                unsigned int num_grps = gfar_of_group_count(np);
 763
 764                if (num_grps == 0 || num_grps > MAXGROUPS) {
 765                        dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 766                                num_grps);
 767                        pr_err("Cannot do alloc_etherdev, aborting\n");
 768                        return -EINVAL;
 769                }
 770
 771                if (poll_mode == GFAR_SQ_POLLING) {
 772                        num_tx_qs = num_grps; /* one txq per int group */
 773                        num_rx_qs = num_grps; /* one rxq per int group */
 774                } else { /* GFAR_MQ_POLLING */
 775                        u32 tx_queues, rx_queues;
 776                        int ret;
 777
 778                        /* parse the num of HW tx and rx queues */
 779                        ret = of_property_read_u32(np, "fsl,num_tx_queues",
 780                                                   &tx_queues);
 781                        num_tx_qs = ret ? 1 : tx_queues;
 782
 783                        ret = of_property_read_u32(np, "fsl,num_rx_queues",
 784                                                   &rx_queues);
 785                        num_rx_qs = ret ? 1 : rx_queues;
 786                }
 787        }
 788
 789        if (num_tx_qs > MAX_TX_QS) {
 790                pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 791                       num_tx_qs, MAX_TX_QS);
 792                pr_err("Cannot do alloc_etherdev, aborting\n");
 793                return -EINVAL;
 794        }
 795
 796        if (num_rx_qs > MAX_RX_QS) {
 797                pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 798                       num_rx_qs, MAX_RX_QS);
 799                pr_err("Cannot do alloc_etherdev, aborting\n");
 800                return -EINVAL;
 801        }
 802
 803        *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 804        dev = *pdev;
 805        if (NULL == dev)
 806                return -ENOMEM;
 807
 808        priv = netdev_priv(dev);
 809        priv->ndev = dev;
 810
 811        priv->mode = mode;
 812        priv->poll_mode = poll_mode;
 813
 814        priv->num_tx_queues = num_tx_qs;
 815        netif_set_real_num_rx_queues(dev, num_rx_qs);
 816        priv->num_rx_queues = num_rx_qs;
 817
 818        err = gfar_alloc_tx_queues(priv);
 819        if (err)
 820                goto tx_alloc_failed;
 821
 822        err = gfar_alloc_rx_queues(priv);
 823        if (err)
 824                goto rx_alloc_failed;
 825
 826        err = of_property_read_string(np, "model", &model);
 827        if (err) {
 828                pr_err("Device model property missing, aborting\n");
 829                goto rx_alloc_failed;
 830        }
 831
 832        /* Init Rx queue filer rule set linked list */
 833        INIT_LIST_HEAD(&priv->rx_list.list);
 834        priv->rx_list.count = 0;
 835        mutex_init(&priv->rx_queue_access);
 836
 837        for (i = 0; i < MAXGROUPS; i++)
 838                priv->gfargrp[i].regs = NULL;
 839
 840        /* Parse and initialize group specific information */
 841        if (priv->mode == MQ_MG_MODE) {
 842                for_each_available_child_of_node(np, child) {
 843                        if (of_node_cmp(child->name, "queue-group"))
 844                                continue;
 845
 846                        err = gfar_parse_group(child, priv, model);
 847                        if (err)
 848                                goto err_grp_init;
 849                }
 850        } else { /* SQ_SG_MODE */
 851                err = gfar_parse_group(np, priv, model);
 852                if (err)
 853                        goto err_grp_init;
 854        }
 855
 856        if (of_property_read_bool(np, "bd-stash")) {
 857                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 858                priv->bd_stash_en = 1;
 859        }
 860
 861        err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 862
 863        if (err == 0)
 864                priv->rx_stash_size = stash_len;
 865
 866        err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 867
 868        if (err == 0)
 869                priv->rx_stash_index = stash_idx;
 870
 871        if (stash_len || stash_idx)
 872                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 873
 874        mac_addr = of_get_mac_address(np);
 875
 876        if (mac_addr)
 877                memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 878
 879        if (model && !strcasecmp(model, "TSEC"))
 880                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 881                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 882                                     FSL_GIANFAR_DEV_HAS_RMON |
 883                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 884
 885        if (model && !strcasecmp(model, "eTSEC"))
 886                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 887                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 888                                     FSL_GIANFAR_DEV_HAS_RMON |
 889                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 890                                     FSL_GIANFAR_DEV_HAS_CSUM |
 891                                     FSL_GIANFAR_DEV_HAS_VLAN |
 892                                     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 893                                     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 894                                     FSL_GIANFAR_DEV_HAS_TIMER |
 895                                     FSL_GIANFAR_DEV_HAS_RX_FILER;
 896
 897        err = of_property_read_string(np, "phy-connection-type", &ctype);
 898
 899        /* We only care about rgmii-id.  The rest are autodetected */
 900        if (err == 0 && !strcmp(ctype, "rgmii-id"))
 901                priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 902        else
 903                priv->interface = PHY_INTERFACE_MODE_MII;
 904
 905        if (of_find_property(np, "fsl,magic-packet", NULL))
 906                priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 907
 908        if (of_get_property(np, "fsl,wake-on-filer", NULL))
 909                priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 910
 911        priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 912
 913        /* In the case of a fixed PHY, the DT node associated
 914         * to the PHY is the Ethernet MAC DT node.
 915         */
 916        if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 917                err = of_phy_register_fixed_link(np);
 918                if (err)
 919                        goto err_grp_init;
 920
 921                priv->phy_node = of_node_get(np);
 922        }
 923
 924        /* Find the TBI PHY.  If it's not there, we don't support SGMII */
 925        priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 926
 927        return 0;
 928
 929err_grp_init:
 930        unmap_group_regs(priv);
 931rx_alloc_failed:
 932        gfar_free_rx_queues(priv);
 933tx_alloc_failed:
 934        gfar_free_tx_queues(priv);
 935        free_gfar_dev(priv);
 936        return err;
 937}
 938
 939static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
 940{
 941        struct hwtstamp_config config;
 942        struct gfar_private *priv = netdev_priv(netdev);
 943
 944        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 945                return -EFAULT;
 946
 947        /* reserved for future extensions */
 948        if (config.flags)
 949                return -EINVAL;
 950
 951        switch (config.tx_type) {
 952        case HWTSTAMP_TX_OFF:
 953                priv->hwts_tx_en = 0;
 954                break;
 955        case HWTSTAMP_TX_ON:
 956                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 957                        return -ERANGE;
 958                priv->hwts_tx_en = 1;
 959                break;
 960        default:
 961                return -ERANGE;
 962        }
 963
 964        switch (config.rx_filter) {
 965        case HWTSTAMP_FILTER_NONE:
 966                if (priv->hwts_rx_en) {
 967                        priv->hwts_rx_en = 0;
 968                        reset_gfar(netdev);
 969                }
 970                break;
 971        default:
 972                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 973                        return -ERANGE;
 974                if (!priv->hwts_rx_en) {
 975                        priv->hwts_rx_en = 1;
 976                        reset_gfar(netdev);
 977                }
 978                config.rx_filter = HWTSTAMP_FILTER_ALL;
 979                break;
 980        }
 981
 982        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 983                -EFAULT : 0;
 984}
 985
 986static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
 987{
 988        struct hwtstamp_config config;
 989        struct gfar_private *priv = netdev_priv(netdev);
 990
 991        config.flags = 0;
 992        config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 993        config.rx_filter = (priv->hwts_rx_en ?
 994                            HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 995
 996        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 997                -EFAULT : 0;
 998}
 999
1000static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001{
1002        struct phy_device *phydev = dev->phydev;
1003
1004        if (!netif_running(dev))
1005                return -EINVAL;
1006
1007        if (cmd == SIOCSHWTSTAMP)
1008                return gfar_hwtstamp_set(dev, rq);
1009        if (cmd == SIOCGHWTSTAMP)
1010                return gfar_hwtstamp_get(dev, rq);
1011
1012        if (!phydev)
1013                return -ENODEV;
1014
1015        return phy_mii_ioctl(phydev, rq, cmd);
1016}
1017
1018static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019                                   u32 class)
1020{
1021        u32 rqfpr = FPR_FILER_MASK;
1022        u32 rqfcr = 0x0;
1023
1024        rqfar--;
1025        rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026        priv->ftp_rqfpr[rqfar] = rqfpr;
1027        priv->ftp_rqfcr[rqfar] = rqfcr;
1028        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030        rqfar--;
1031        rqfcr = RQFCR_CMP_NOMATCH;
1032        priv->ftp_rqfpr[rqfar] = rqfpr;
1033        priv->ftp_rqfcr[rqfar] = rqfcr;
1034        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036        rqfar--;
1037        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038        rqfpr = class;
1039        priv->ftp_rqfcr[rqfar] = rqfcr;
1040        priv->ftp_rqfpr[rqfar] = rqfpr;
1041        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043        rqfar--;
1044        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045        rqfpr = class;
1046        priv->ftp_rqfcr[rqfar] = rqfcr;
1047        priv->ftp_rqfpr[rqfar] = rqfpr;
1048        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050        return rqfar;
1051}
1052
1053static void gfar_init_filer_table(struct gfar_private *priv)
1054{
1055        int i = 0x0;
1056        u32 rqfar = MAX_FILER_IDX;
1057        u32 rqfcr = 0x0;
1058        u32 rqfpr = FPR_FILER_MASK;
1059
1060        /* Default rule */
1061        rqfcr = RQFCR_CMP_MATCH;
1062        priv->ftp_rqfcr[rqfar] = rqfcr;
1063        priv->ftp_rqfpr[rqfar] = rqfpr;
1064        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073        /* cur_filer_idx indicated the first non-masked rule */
1074        priv->cur_filer_idx = rqfar;
1075
1076        /* Rest are masked rules */
1077        rqfcr = RQFCR_CMP_NOMATCH;
1078        for (i = 0; i < rqfar; i++) {
1079                priv->ftp_rqfcr[i] = rqfcr;
1080                priv->ftp_rqfpr[i] = rqfpr;
1081                gfar_write_filer(priv, i, rqfcr, rqfpr);
1082        }
1083}
1084
1085#ifdef CONFIG_PPC
1086static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087{
1088        unsigned int pvr = mfspr(SPRN_PVR);
1089        unsigned int svr = mfspr(SPRN_SVR);
1090        unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091        unsigned int rev = svr & 0xffff;
1092
1093        /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094        if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096                priv->errata |= GFAR_ERRATA_74;
1097
1098        /* MPC8313 and MPC837x all rev */
1099        if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101                priv->errata |= GFAR_ERRATA_76;
1102
1103        /* MPC8313 Rev < 2.0 */
1104        if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105                priv->errata |= GFAR_ERRATA_12;
1106}
1107
1108static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109{
1110        unsigned int svr = mfspr(SPRN_SVR);
1111
1112        if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113                priv->errata |= GFAR_ERRATA_12;
1114        /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115        if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116            ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117            ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118                priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119}
1120#endif
1121
1122static void gfar_detect_errata(struct gfar_private *priv)
1123{
1124        struct device *dev = &priv->ofdev->dev;
1125
1126        /* no plans to fix */
1127        priv->errata |= GFAR_ERRATA_A002;
1128
1129#ifdef CONFIG_PPC
1130        if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131                __gfar_detect_errata_85xx(priv);
1132        else /* non-mpc85xx parts, i.e. e300 core based */
1133                __gfar_detect_errata_83xx(priv);
1134#endif
1135
1136        if (priv->errata)
1137                dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138                         priv->errata);
1139}
1140
1141void gfar_mac_reset(struct gfar_private *priv)
1142{
1143        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144        u32 tempval;
1145
1146        /* Reset MAC layer */
1147        gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149        /* We need to delay at least 3 TX clocks */
1150        udelay(3);
1151
1152        /* the soft reset bit is not self-resetting, so we need to
1153         * clear it before resuming normal operation
1154         */
1155        gfar_write(&regs->maccfg1, 0);
1156
1157        udelay(3);
1158
1159        gfar_rx_offload_en(priv);
1160
1161        /* Initialize the max receive frame/buffer lengths */
1162        gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163        gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165        /* Initialize the Minimum Frame Length Register */
1166        gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168        /* Initialize MACCFG2. */
1169        tempval = MACCFG2_INIT_SETTINGS;
1170
1171        /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172         * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173         * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174         */
1175        if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176                tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178        gfar_write(&regs->maccfg2, tempval);
1179
1180        /* Clear mac addr hash registers */
1181        gfar_write(&regs->igaddr0, 0);
1182        gfar_write(&regs->igaddr1, 0);
1183        gfar_write(&regs->igaddr2, 0);
1184        gfar_write(&regs->igaddr3, 0);
1185        gfar_write(&regs->igaddr4, 0);
1186        gfar_write(&regs->igaddr5, 0);
1187        gfar_write(&regs->igaddr6, 0);
1188        gfar_write(&regs->igaddr7, 0);
1189
1190        gfar_write(&regs->gaddr0, 0);
1191        gfar_write(&regs->gaddr1, 0);
1192        gfar_write(&regs->gaddr2, 0);
1193        gfar_write(&regs->gaddr3, 0);
1194        gfar_write(&regs->gaddr4, 0);
1195        gfar_write(&regs->gaddr5, 0);
1196        gfar_write(&regs->gaddr6, 0);
1197        gfar_write(&regs->gaddr7, 0);
1198
1199        if (priv->extended_hash)
1200                gfar_clear_exact_match(priv->ndev);
1201
1202        gfar_mac_rx_config(priv);
1203
1204        gfar_mac_tx_config(priv);
1205
1206        gfar_set_mac_address(priv->ndev);
1207
1208        gfar_set_multi(priv->ndev);
1209
1210        /* clear ievent and imask before configuring coalescing */
1211        gfar_ints_disable(priv);
1212
1213        /* Configure the coalescing support */
1214        gfar_configure_coalescing_all(priv);
1215}
1216
1217static void gfar_hw_init(struct gfar_private *priv)
1218{
1219        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220        u32 attrs;
1221
1222        /* Stop the DMA engine now, in case it was running before
1223         * (The firmware could have used it, and left it running).
1224         */
1225        gfar_halt(priv);
1226
1227        gfar_mac_reset(priv);
1228
1229        /* Zero out the rmon mib registers if it has them */
1230        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231                memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233                /* Mask off the CAM interrupts */
1234                gfar_write(&regs->rmon.cam1, 0xffffffff);
1235                gfar_write(&regs->rmon.cam2, 0xffffffff);
1236        }
1237
1238        /* Initialize ECNTRL */
1239        gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241        /* Set the extraction length and index */
1242        attrs = ATTRELI_EL(priv->rx_stash_size) |
1243                ATTRELI_EI(priv->rx_stash_index);
1244
1245        gfar_write(&regs->attreli, attrs);
1246
1247        /* Start with defaults, and add stashing
1248         * depending on driver parameters
1249         */
1250        attrs = ATTR_INIT_SETTINGS;
1251
1252        if (priv->bd_stash_en)
1253                attrs |= ATTR_BDSTASH;
1254
1255        if (priv->rx_stash_size != 0)
1256                attrs |= ATTR_BUFSTASH;
1257
1258        gfar_write(&regs->attr, attrs);
1259
1260        /* FIFO configs */
1261        gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262        gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263        gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265        /* Program the interrupt steering regs, only for MG devices */
1266        if (priv->num_grps > 1)
1267                gfar_write_isrg(priv);
1268}
1269
1270static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271{
1272        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275                priv->extended_hash = 1;
1276                priv->hash_width = 9;
1277
1278                priv->hash_regs[0] = &regs->igaddr0;
1279                priv->hash_regs[1] = &regs->igaddr1;
1280                priv->hash_regs[2] = &regs->igaddr2;
1281                priv->hash_regs[3] = &regs->igaddr3;
1282                priv->hash_regs[4] = &regs->igaddr4;
1283                priv->hash_regs[5] = &regs->igaddr5;
1284                priv->hash_regs[6] = &regs->igaddr6;
1285                priv->hash_regs[7] = &regs->igaddr7;
1286                priv->hash_regs[8] = &regs->gaddr0;
1287                priv->hash_regs[9] = &regs->gaddr1;
1288                priv->hash_regs[10] = &regs->gaddr2;
1289                priv->hash_regs[11] = &regs->gaddr3;
1290                priv->hash_regs[12] = &regs->gaddr4;
1291                priv->hash_regs[13] = &regs->gaddr5;
1292                priv->hash_regs[14] = &regs->gaddr6;
1293                priv->hash_regs[15] = &regs->gaddr7;
1294
1295        } else {
1296                priv->extended_hash = 0;
1297                priv->hash_width = 8;
1298
1299                priv->hash_regs[0] = &regs->gaddr0;
1300                priv->hash_regs[1] = &regs->gaddr1;
1301                priv->hash_regs[2] = &regs->gaddr2;
1302                priv->hash_regs[3] = &regs->gaddr3;
1303                priv->hash_regs[4] = &regs->gaddr4;
1304                priv->hash_regs[5] = &regs->gaddr5;
1305                priv->hash_regs[6] = &regs->gaddr6;
1306                priv->hash_regs[7] = &regs->gaddr7;
1307        }
1308}
1309
1310/* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313static int gfar_probe(struct platform_device *ofdev)
1314{
1315        struct device_node *np = ofdev->dev.of_node;
1316        struct net_device *dev = NULL;
1317        struct gfar_private *priv = NULL;
1318        int err = 0, i;
1319
1320        err = gfar_of_init(ofdev, &dev);
1321
1322        if (err)
1323                return err;
1324
1325        priv = netdev_priv(dev);
1326        priv->ndev = dev;
1327        priv->ofdev = ofdev;
1328        priv->dev = &ofdev->dev;
1329        SET_NETDEV_DEV(dev, &ofdev->dev);
1330
1331        INIT_WORK(&priv->reset_task, gfar_reset_task);
1332
1333        platform_set_drvdata(ofdev, priv);
1334
1335        gfar_detect_errata(priv);
1336
1337        /* Set the dev->base_addr to the gfar reg region */
1338        dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1339
1340        /* Fill in the dev structure */
1341        dev->watchdog_timeo = TX_TIMEOUT;
1342        /* MTU range: 50 - 9586 */
1343        dev->mtu = 1500;
1344        dev->min_mtu = 50;
1345        dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1346        dev->netdev_ops = &gfar_netdev_ops;
1347        dev->ethtool_ops = &gfar_ethtool_ops;
1348
1349        /* Register for napi ...We are registering NAPI for each grp */
1350        for (i = 0; i < priv->num_grps; i++) {
1351                if (priv->poll_mode == GFAR_SQ_POLLING) {
1352                        netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1353                                       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1354                        netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1355                                       gfar_poll_tx_sq, 2);
1356                } else {
1357                        netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1358                                       gfar_poll_rx, GFAR_DEV_WEIGHT);
1359                        netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1360                                       gfar_poll_tx, 2);
1361                }
1362        }
1363
1364        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1365                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1366                                   NETIF_F_RXCSUM;
1367                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1368                                 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1369        }
1370
1371        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1372                dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1373                                    NETIF_F_HW_VLAN_CTAG_RX;
1374                dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1375        }
1376
1377        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1378
1379        gfar_init_addr_hash_table(priv);
1380
1381        /* Insert receive time stamps into padding alignment bytes */
1382        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383                priv->padding = 8;
1384
1385        if (dev->features & NETIF_F_IP_CSUM ||
1386            priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1387                dev->needed_headroom = GMAC_FCB_LEN;
1388
1389        /* Initializing some of the rx/tx queue level parameters */
1390        for (i = 0; i < priv->num_tx_queues; i++) {
1391                priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1392                priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1393                priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1394                priv->tx_queue[i]->txic = DEFAULT_TXIC;
1395        }
1396
1397        for (i = 0; i < priv->num_rx_queues; i++) {
1398                priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1399                priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1400                priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1401        }
1402
1403        /* Always enable rx filer if available */
1404        priv->rx_filer_enable =
1405            (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1406        /* Enable most messages by default */
1407        priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1408        /* use pritority h/w tx queue scheduling for single queue devices */
1409        if (priv->num_tx_queues == 1)
1410                priv->prio_sched_en = 1;
1411
1412        set_bit(GFAR_DOWN, &priv->state);
1413
1414        gfar_hw_init(priv);
1415
1416        /* Carrier starts down, phylib will bring it up */
1417        netif_carrier_off(dev);
1418
1419        err = register_netdev(dev);
1420
1421        if (err) {
1422                pr_err("%s: Cannot register net device, aborting\n", dev->name);
1423                goto register_fail;
1424        }
1425
1426        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1427                priv->wol_supported |= GFAR_WOL_MAGIC;
1428
1429        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1430            priv->rx_filer_enable)
1431                priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1432
1433        device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1434
1435        /* fill out IRQ number and name fields */
1436        for (i = 0; i < priv->num_grps; i++) {
1437                struct gfar_priv_grp *grp = &priv->gfargrp[i];
1438                if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1439                        sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1440                                dev->name, "_g", '0' + i, "_tx");
1441                        sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1442                                dev->name, "_g", '0' + i, "_rx");
1443                        sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1444                                dev->name, "_g", '0' + i, "_er");
1445                } else
1446                        strcpy(gfar_irq(grp, TX)->name, dev->name);
1447        }
1448
1449        /* Initialize the filer table */
1450        gfar_init_filer_table(priv);
1451
1452        /* Print out the device info */
1453        netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1454
1455        /* Even more device info helps when determining which kernel
1456         * provided which set of benchmarks.
1457         */
1458        netdev_info(dev, "Running with NAPI enabled\n");
1459        for (i = 0; i < priv->num_rx_queues; i++)
1460                netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1461                            i, priv->rx_queue[i]->rx_ring_size);
1462        for (i = 0; i < priv->num_tx_queues; i++)
1463                netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1464                            i, priv->tx_queue[i]->tx_ring_size);
1465
1466        return 0;
1467
1468register_fail:
1469        if (of_phy_is_fixed_link(np))
1470                of_phy_deregister_fixed_link(np);
1471        unmap_group_regs(priv);
1472        gfar_free_rx_queues(priv);
1473        gfar_free_tx_queues(priv);
1474        of_node_put(priv->phy_node);
1475        of_node_put(priv->tbi_node);
1476        free_gfar_dev(priv);
1477        return err;
1478}
1479
1480static int gfar_remove(struct platform_device *ofdev)
1481{
1482        struct gfar_private *priv = platform_get_drvdata(ofdev);
1483        struct device_node *np = ofdev->dev.of_node;
1484
1485        of_node_put(priv->phy_node);
1486        of_node_put(priv->tbi_node);
1487
1488        unregister_netdev(priv->ndev);
1489
1490        if (of_phy_is_fixed_link(np))
1491                of_phy_deregister_fixed_link(np);
1492
1493        unmap_group_regs(priv);
1494        gfar_free_rx_queues(priv);
1495        gfar_free_tx_queues(priv);
1496        free_gfar_dev(priv);
1497
1498        return 0;
1499}
1500
1501#ifdef CONFIG_PM
1502
1503static void __gfar_filer_disable(struct gfar_private *priv)
1504{
1505        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1506        u32 temp;
1507
1508        temp = gfar_read(&regs->rctrl);
1509        temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1510        gfar_write(&regs->rctrl, temp);
1511}
1512
1513static void __gfar_filer_enable(struct gfar_private *priv)
1514{
1515        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1516        u32 temp;
1517
1518        temp = gfar_read(&regs->rctrl);
1519        temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1520        gfar_write(&regs->rctrl, temp);
1521}
1522
1523/* Filer rules implementing wol capabilities */
1524static void gfar_filer_config_wol(struct gfar_private *priv)
1525{
1526        unsigned int i;
1527        u32 rqfcr;
1528
1529        __gfar_filer_disable(priv);
1530
1531        /* clear the filer table, reject any packet by default */
1532        rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1533        for (i = 0; i <= MAX_FILER_IDX; i++)
1534                gfar_write_filer(priv, i, rqfcr, 0);
1535
1536        i = 0;
1537        if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1538                /* unicast packet, accept it */
1539                struct net_device *ndev = priv->ndev;
1540                /* get the default rx queue index */
1541                u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1542                u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1543                                    (ndev->dev_addr[1] << 8) |
1544                                     ndev->dev_addr[2];
1545
1546                rqfcr = (qindex << 10) | RQFCR_AND |
1547                        RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1548
1549                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1550
1551                dest_mac_addr = (ndev->dev_addr[3] << 16) |
1552                                (ndev->dev_addr[4] << 8) |
1553                                 ndev->dev_addr[5];
1554                rqfcr = (qindex << 10) | RQFCR_GPI |
1555                        RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1556                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1557        }
1558
1559        __gfar_filer_enable(priv);
1560}
1561
1562static void gfar_filer_restore_table(struct gfar_private *priv)
1563{
1564        u32 rqfcr, rqfpr;
1565        unsigned int i;
1566
1567        __gfar_filer_disable(priv);
1568
1569        for (i = 0; i <= MAX_FILER_IDX; i++) {
1570                rqfcr = priv->ftp_rqfcr[i];
1571                rqfpr = priv->ftp_rqfpr[i];
1572                gfar_write_filer(priv, i, rqfcr, rqfpr);
1573        }
1574
1575        __gfar_filer_enable(priv);
1576}
1577
1578/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1579static void gfar_start_wol_filer(struct gfar_private *priv)
1580{
1581        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1582        u32 tempval;
1583        int i = 0;
1584
1585        /* Enable Rx hw queues */
1586        gfar_write(&regs->rqueue, priv->rqueue);
1587
1588        /* Initialize DMACTRL to have WWR and WOP */
1589        tempval = gfar_read(&regs->dmactrl);
1590        tempval |= DMACTRL_INIT_SETTINGS;
1591        gfar_write(&regs->dmactrl, tempval);
1592
1593        /* Make sure we aren't stopped */
1594        tempval = gfar_read(&regs->dmactrl);
1595        tempval &= ~DMACTRL_GRS;
1596        gfar_write(&regs->dmactrl, tempval);
1597
1598        for (i = 0; i < priv->num_grps; i++) {
1599                regs = priv->gfargrp[i].regs;
1600                /* Clear RHLT, so that the DMA starts polling now */
1601                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1602                /* enable the Filer General Purpose Interrupt */
1603                gfar_write(&regs->imask, IMASK_FGPI);
1604        }
1605
1606        /* Enable Rx DMA */
1607        tempval = gfar_read(&regs->maccfg1);
1608        tempval |= MACCFG1_RX_EN;
1609        gfar_write(&regs->maccfg1, tempval);
1610}
1611
1612static int gfar_suspend(struct device *dev)
1613{
1614        struct gfar_private *priv = dev_get_drvdata(dev);
1615        struct net_device *ndev = priv->ndev;
1616        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1617        u32 tempval;
1618        u16 wol = priv->wol_opts;
1619
1620        if (!netif_running(ndev))
1621                return 0;
1622
1623        disable_napi(priv);
1624        netif_tx_lock(ndev);
1625        netif_device_detach(ndev);
1626        netif_tx_unlock(ndev);
1627
1628        gfar_halt(priv);
1629
1630        if (wol & GFAR_WOL_MAGIC) {
1631                /* Enable interrupt on Magic Packet */
1632                gfar_write(&regs->imask, IMASK_MAG);
1633
1634                /* Enable Magic Packet mode */
1635                tempval = gfar_read(&regs->maccfg2);
1636                tempval |= MACCFG2_MPEN;
1637                gfar_write(&regs->maccfg2, tempval);
1638
1639                /* re-enable the Rx block */
1640                tempval = gfar_read(&regs->maccfg1);
1641                tempval |= MACCFG1_RX_EN;
1642                gfar_write(&regs->maccfg1, tempval);
1643
1644        } else if (wol & GFAR_WOL_FILER_UCAST) {
1645                gfar_filer_config_wol(priv);
1646                gfar_start_wol_filer(priv);
1647
1648        } else {
1649                phy_stop(ndev->phydev);
1650        }
1651
1652        return 0;
1653}
1654
1655static int gfar_resume(struct device *dev)
1656{
1657        struct gfar_private *priv = dev_get_drvdata(dev);
1658        struct net_device *ndev = priv->ndev;
1659        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1660        u32 tempval;
1661        u16 wol = priv->wol_opts;
1662
1663        if (!netif_running(ndev))
1664                return 0;
1665
1666        if (wol & GFAR_WOL_MAGIC) {
1667                /* Disable Magic Packet mode */
1668                tempval = gfar_read(&regs->maccfg2);
1669                tempval &= ~MACCFG2_MPEN;
1670                gfar_write(&regs->maccfg2, tempval);
1671
1672        } else if (wol & GFAR_WOL_FILER_UCAST) {
1673                /* need to stop rx only, tx is already down */
1674                gfar_halt(priv);
1675                gfar_filer_restore_table(priv);
1676
1677        } else {
1678                phy_start(ndev->phydev);
1679        }
1680
1681        gfar_start(priv);
1682
1683        netif_device_attach(ndev);
1684        enable_napi(priv);
1685
1686        return 0;
1687}
1688
1689static int gfar_restore(struct device *dev)
1690{
1691        struct gfar_private *priv = dev_get_drvdata(dev);
1692        struct net_device *ndev = priv->ndev;
1693
1694        if (!netif_running(ndev)) {
1695                netif_device_attach(ndev);
1696
1697                return 0;
1698        }
1699
1700        gfar_init_bds(ndev);
1701
1702        gfar_mac_reset(priv);
1703
1704        gfar_init_tx_rx_base(priv);
1705
1706        gfar_start(priv);
1707
1708        priv->oldlink = 0;
1709        priv->oldspeed = 0;
1710        priv->oldduplex = -1;
1711
1712        if (ndev->phydev)
1713                phy_start(ndev->phydev);
1714
1715        netif_device_attach(ndev);
1716        enable_napi(priv);
1717
1718        return 0;
1719}
1720
1721static const struct dev_pm_ops gfar_pm_ops = {
1722        .suspend = gfar_suspend,
1723        .resume = gfar_resume,
1724        .freeze = gfar_suspend,
1725        .thaw = gfar_resume,
1726        .restore = gfar_restore,
1727};
1728
1729#define GFAR_PM_OPS (&gfar_pm_ops)
1730
1731#else
1732
1733#define GFAR_PM_OPS NULL
1734
1735#endif
1736
1737/* Reads the controller's registers to determine what interface
1738 * connects it to the PHY.
1739 */
1740static phy_interface_t gfar_get_interface(struct net_device *dev)
1741{
1742        struct gfar_private *priv = netdev_priv(dev);
1743        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1744        u32 ecntrl;
1745
1746        ecntrl = gfar_read(&regs->ecntrl);
1747
1748        if (ecntrl & ECNTRL_SGMII_MODE)
1749                return PHY_INTERFACE_MODE_SGMII;
1750
1751        if (ecntrl & ECNTRL_TBI_MODE) {
1752                if (ecntrl & ECNTRL_REDUCED_MODE)
1753                        return PHY_INTERFACE_MODE_RTBI;
1754                else
1755                        return PHY_INTERFACE_MODE_TBI;
1756        }
1757
1758        if (ecntrl & ECNTRL_REDUCED_MODE) {
1759                if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1760                        return PHY_INTERFACE_MODE_RMII;
1761                }
1762                else {
1763                        phy_interface_t interface = priv->interface;
1764
1765                        /* This isn't autodetected right now, so it must
1766                         * be set by the device tree or platform code.
1767                         */
1768                        if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1769                                return PHY_INTERFACE_MODE_RGMII_ID;
1770
1771                        return PHY_INTERFACE_MODE_RGMII;
1772                }
1773        }
1774
1775        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1776                return PHY_INTERFACE_MODE_GMII;
1777
1778        return PHY_INTERFACE_MODE_MII;
1779}
1780
1781
1782/* Initializes driver's PHY state, and attaches to the PHY.
1783 * Returns 0 on success.
1784 */
1785static int init_phy(struct net_device *dev)
1786{
1787        struct gfar_private *priv = netdev_priv(dev);
1788        uint gigabit_support =
1789                priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1790                GFAR_SUPPORTED_GBIT : 0;
1791        phy_interface_t interface;
1792        struct phy_device *phydev;
1793
1794        priv->oldlink = 0;
1795        priv->oldspeed = 0;
1796        priv->oldduplex = -1;
1797
1798        interface = gfar_get_interface(dev);
1799
1800        phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1801                                interface);
1802        if (!phydev) {
1803                dev_err(&dev->dev, "could not attach to PHY\n");
1804                return -ENODEV;
1805        }
1806
1807        if (interface == PHY_INTERFACE_MODE_SGMII)
1808                gfar_configure_serdes(dev);
1809
1810        /* Remove any features not supported by the controller */
1811        phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1812        phydev->advertising = phydev->supported;
1813
1814        /* Add support for flow control, but don't advertise it by default */
1815        phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1816
1817        return 0;
1818}
1819
1820/* Initialize TBI PHY interface for communicating with the
1821 * SERDES lynx PHY on the chip.  We communicate with this PHY
1822 * through the MDIO bus on each controller, treating it as a
1823 * "normal" PHY at the address found in the TBIPA register.  We assume
1824 * that the TBIPA register is valid.  Either the MDIO bus code will set
1825 * it to a value that doesn't conflict with other PHYs on the bus, or the
1826 * value doesn't matter, as there are no other PHYs on the bus.
1827 */
1828static void gfar_configure_serdes(struct net_device *dev)
1829{
1830        struct gfar_private *priv = netdev_priv(dev);
1831        struct phy_device *tbiphy;
1832
1833        if (!priv->tbi_node) {
1834                dev_warn(&dev->dev, "error: SGMII mode requires that the "
1835                                    "device tree specify a tbi-handle\n");
1836                return;
1837        }
1838
1839        tbiphy = of_phy_find_device(priv->tbi_node);
1840        if (!tbiphy) {
1841                dev_err(&dev->dev, "error: Could not get TBI device\n");
1842                return;
1843        }
1844
1845        /* If the link is already up, we must already be ok, and don't need to
1846         * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1847         * everything for us?  Resetting it takes the link down and requires
1848         * several seconds for it to come back.
1849         */
1850        if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1851                put_device(&tbiphy->mdio.dev);
1852                return;
1853        }
1854
1855        /* Single clk mode, mii mode off(for serdes communication) */
1856        phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1857
1858        phy_write(tbiphy, MII_ADVERTISE,
1859                  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1860                  ADVERTISE_1000XPSE_ASYM);
1861
1862        phy_write(tbiphy, MII_BMCR,
1863                  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1864                  BMCR_SPEED1000);
1865
1866        put_device(&tbiphy->mdio.dev);
1867}
1868
1869static int __gfar_is_rx_idle(struct gfar_private *priv)
1870{
1871        u32 res;
1872
1873        /* Normaly TSEC should not hang on GRS commands, so we should
1874         * actually wait for IEVENT_GRSC flag.
1875         */
1876        if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1877                return 0;
1878
1879        /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1880         * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1881         * and the Rx can be safely reset.
1882         */
1883        res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1884        res &= 0x7f807f80;
1885        if ((res & 0xffff) == (res >> 16))
1886                return 1;
1887
1888        return 0;
1889}
1890
1891/* Halt the receive and transmit queues */
1892static void gfar_halt_nodisable(struct gfar_private *priv)
1893{
1894        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1895        u32 tempval;
1896        unsigned int timeout;
1897        int stopped;
1898
1899        gfar_ints_disable(priv);
1900
1901        if (gfar_is_dma_stopped(priv))
1902                return;
1903
1904        /* Stop the DMA, and wait for it to stop */
1905        tempval = gfar_read(&regs->dmactrl);
1906        tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1907        gfar_write(&regs->dmactrl, tempval);
1908
1909retry:
1910        timeout = 1000;
1911        while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1912                cpu_relax();
1913                timeout--;
1914        }
1915
1916        if (!timeout)
1917                stopped = gfar_is_dma_stopped(priv);
1918
1919        if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1920            !__gfar_is_rx_idle(priv))
1921                goto retry;
1922}
1923
1924/* Halt the receive and transmit queues */
1925void gfar_halt(struct gfar_private *priv)
1926{
1927        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1928        u32 tempval;
1929
1930        /* Dissable the Rx/Tx hw queues */
1931        gfar_write(&regs->rqueue, 0);
1932        gfar_write(&regs->tqueue, 0);
1933
1934        mdelay(10);
1935
1936        gfar_halt_nodisable(priv);
1937
1938        /* Disable Rx/Tx DMA */
1939        tempval = gfar_read(&regs->maccfg1);
1940        tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1941        gfar_write(&regs->maccfg1, tempval);
1942}
1943
1944void stop_gfar(struct net_device *dev)
1945{
1946        struct gfar_private *priv = netdev_priv(dev);
1947
1948        netif_tx_stop_all_queues(dev);
1949
1950        smp_mb__before_atomic();
1951        set_bit(GFAR_DOWN, &priv->state);
1952        smp_mb__after_atomic();
1953
1954        disable_napi(priv);
1955
1956        /* disable ints and gracefully shut down Rx/Tx DMA */
1957        gfar_halt(priv);
1958
1959        phy_stop(dev->phydev);
1960
1961        free_skb_resources(priv);
1962}
1963
1964static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1965{
1966        struct txbd8 *txbdp;
1967        struct gfar_private *priv = netdev_priv(tx_queue->dev);
1968        int i, j;
1969
1970        txbdp = tx_queue->tx_bd_base;
1971
1972        for (i = 0; i < tx_queue->tx_ring_size; i++) {
1973                if (!tx_queue->tx_skbuff[i])
1974                        continue;
1975
1976                dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1977                                 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1978                txbdp->lstatus = 0;
1979                for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1980                     j++) {
1981                        txbdp++;
1982                        dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1983                                       be16_to_cpu(txbdp->length),
1984                                       DMA_TO_DEVICE);
1985                }
1986                txbdp++;
1987                dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1988                tx_queue->tx_skbuff[i] = NULL;
1989        }
1990        kfree(tx_queue->tx_skbuff);
1991        tx_queue->tx_skbuff = NULL;
1992}
1993
1994static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1995{
1996        int i;
1997
1998        struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1999
2000        if (rx_queue->skb)
2001                dev_kfree_skb(rx_queue->skb);
2002
2003        for (i = 0; i < rx_queue->rx_ring_size; i++) {
2004                struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2005
2006                rxbdp->lstatus = 0;
2007                rxbdp->bufPtr = 0;
2008                rxbdp++;
2009
2010                if (!rxb->page)
2011                        continue;
2012
2013                dma_unmap_page(rx_queue->dev, rxb->dma,
2014                               PAGE_SIZE, DMA_FROM_DEVICE);
2015                __free_page(rxb->page);
2016
2017                rxb->page = NULL;
2018        }
2019
2020        kfree(rx_queue->rx_buff);
2021        rx_queue->rx_buff = NULL;
2022}
2023
2024/* If there are any tx skbs or rx skbs still around, free them.
2025 * Then free tx_skbuff and rx_skbuff
2026 */
2027static void free_skb_resources(struct gfar_private *priv)
2028{
2029        struct gfar_priv_tx_q *tx_queue = NULL;
2030        struct gfar_priv_rx_q *rx_queue = NULL;
2031        int i;
2032
2033        /* Go through all the buffer descriptors and free their data buffers */
2034        for (i = 0; i < priv->num_tx_queues; i++) {
2035                struct netdev_queue *txq;
2036
2037                tx_queue = priv->tx_queue[i];
2038                txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2039                if (tx_queue->tx_skbuff)
2040                        free_skb_tx_queue(tx_queue);
2041                netdev_tx_reset_queue(txq);
2042        }
2043
2044        for (i = 0; i < priv->num_rx_queues; i++) {
2045                rx_queue = priv->rx_queue[i];
2046                if (rx_queue->rx_buff)
2047                        free_skb_rx_queue(rx_queue);
2048        }
2049
2050        dma_free_coherent(priv->dev,
2051                          sizeof(struct txbd8) * priv->total_tx_ring_size +
2052                          sizeof(struct rxbd8) * priv->total_rx_ring_size,
2053                          priv->tx_queue[0]->tx_bd_base,
2054                          priv->tx_queue[0]->tx_bd_dma_base);
2055}
2056
2057void gfar_start(struct gfar_private *priv)
2058{
2059        struct gfar __iomem *regs = priv->gfargrp[0].regs;
2060        u32 tempval;
2061        int i = 0;
2062
2063        /* Enable Rx/Tx hw queues */
2064        gfar_write(&regs->rqueue, priv->rqueue);
2065        gfar_write(&regs->tqueue, priv->tqueue);
2066
2067        /* Initialize DMACTRL to have WWR and WOP */
2068        tempval = gfar_read(&regs->dmactrl);
2069        tempval |= DMACTRL_INIT_SETTINGS;
2070        gfar_write(&regs->dmactrl, tempval);
2071
2072        /* Make sure we aren't stopped */
2073        tempval = gfar_read(&regs->dmactrl);
2074        tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2075        gfar_write(&regs->dmactrl, tempval);
2076
2077        for (i = 0; i < priv->num_grps; i++) {
2078                regs = priv->gfargrp[i].regs;
2079                /* Clear THLT/RHLT, so that the DMA starts polling now */
2080                gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2081                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2082        }
2083
2084        /* Enable Rx/Tx DMA */
2085        tempval = gfar_read(&regs->maccfg1);
2086        tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2087        gfar_write(&regs->maccfg1, tempval);
2088
2089        gfar_ints_enable(priv);
2090
2091        netif_trans_update(priv->ndev); /* prevent tx timeout */
2092}
2093
2094static void free_grp_irqs(struct gfar_priv_grp *grp)
2095{
2096        free_irq(gfar_irq(grp, TX)->irq, grp);
2097        free_irq(gfar_irq(grp, RX)->irq, grp);
2098        free_irq(gfar_irq(grp, ER)->irq, grp);
2099}
2100
2101static int register_grp_irqs(struct gfar_priv_grp *grp)
2102{
2103        struct gfar_private *priv = grp->priv;
2104        struct net_device *dev = priv->ndev;
2105        int err;
2106
2107        /* If the device has multiple interrupts, register for
2108         * them.  Otherwise, only register for the one
2109         */
2110        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2111                /* Install our interrupt handlers for Error,
2112                 * Transmit, and Receive
2113                 */
2114                err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2115                                  gfar_irq(grp, ER)->name, grp);
2116                if (err < 0) {
2117                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2118                                  gfar_irq(grp, ER)->irq);
2119
2120                        goto err_irq_fail;
2121                }
2122                enable_irq_wake(gfar_irq(grp, ER)->irq);
2123
2124                err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2125                                  gfar_irq(grp, TX)->name, grp);
2126                if (err < 0) {
2127                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2128                                  gfar_irq(grp, TX)->irq);
2129                        goto tx_irq_fail;
2130                }
2131                err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2132                                  gfar_irq(grp, RX)->name, grp);
2133                if (err < 0) {
2134                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2135                                  gfar_irq(grp, RX)->irq);
2136                        goto rx_irq_fail;
2137                }
2138                enable_irq_wake(gfar_irq(grp, RX)->irq);
2139
2140        } else {
2141                err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2142                                  gfar_irq(grp, TX)->name, grp);
2143                if (err < 0) {
2144                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2145                                  gfar_irq(grp, TX)->irq);
2146                        goto err_irq_fail;
2147                }
2148                enable_irq_wake(gfar_irq(grp, TX)->irq);
2149        }
2150
2151        return 0;
2152
2153rx_irq_fail:
2154        free_irq(gfar_irq(grp, TX)->irq, grp);
2155tx_irq_fail:
2156        free_irq(gfar_irq(grp, ER)->irq, grp);
2157err_irq_fail:
2158        return err;
2159
2160}
2161
2162static void gfar_free_irq(struct gfar_private *priv)
2163{
2164        int i;
2165
2166        /* Free the IRQs */
2167        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2168                for (i = 0; i < priv->num_grps; i++)
2169                        free_grp_irqs(&priv->gfargrp[i]);
2170        } else {
2171                for (i = 0; i < priv->num_grps; i++)
2172                        free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2173                                 &priv->gfargrp[i]);
2174        }
2175}
2176
2177static int gfar_request_irq(struct gfar_private *priv)
2178{
2179        int err, i, j;
2180
2181        for (i = 0; i < priv->num_grps; i++) {
2182                err = register_grp_irqs(&priv->gfargrp[i]);
2183                if (err) {
2184                        for (j = 0; j < i; j++)
2185                                free_grp_irqs(&priv->gfargrp[j]);
2186                        return err;
2187                }
2188        }
2189
2190        return 0;
2191}
2192
2193/* Bring the controller up and running */
2194int startup_gfar(struct net_device *ndev)
2195{
2196        struct gfar_private *priv = netdev_priv(ndev);
2197        int err;
2198
2199        gfar_mac_reset(priv);
2200
2201        err = gfar_alloc_skb_resources(ndev);
2202        if (err)
2203                return err;
2204
2205        gfar_init_tx_rx_base(priv);
2206
2207        smp_mb__before_atomic();
2208        clear_bit(GFAR_DOWN, &priv->state);
2209        smp_mb__after_atomic();
2210
2211        /* Start Rx/Tx DMA and enable the interrupts */
2212        gfar_start(priv);
2213
2214        /* force link state update after mac reset */
2215        priv->oldlink = 0;
2216        priv->oldspeed = 0;
2217        priv->oldduplex = -1;
2218
2219        phy_start(ndev->phydev);
2220
2221        enable_napi(priv);
2222
2223        netif_tx_wake_all_queues(ndev);
2224
2225        return 0;
2226}
2227
2228/* Called when something needs to use the ethernet device
2229 * Returns 0 for success.
2230 */
2231static int gfar_enet_open(struct net_device *dev)
2232{
2233        struct gfar_private *priv = netdev_priv(dev);
2234        int err;
2235
2236        err = init_phy(dev);
2237        if (err)
2238                return err;
2239
2240        err = gfar_request_irq(priv);
2241        if (err)
2242                return err;
2243
2244        err = startup_gfar(dev);
2245        if (err)
2246                return err;
2247
2248        return err;
2249}
2250
2251static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2252{
2253        struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2254
2255        memset(fcb, 0, GMAC_FCB_LEN);
2256
2257        return fcb;
2258}
2259
2260static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2261                                    int fcb_length)
2262{
2263        /* If we're here, it's a IP packet with a TCP or UDP
2264         * payload.  We set it to checksum, using a pseudo-header
2265         * we provide
2266         */
2267        u8 flags = TXFCB_DEFAULT;
2268
2269        /* Tell the controller what the protocol is
2270         * And provide the already calculated phcs
2271         */
2272        if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2273                flags |= TXFCB_UDP;
2274                fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2275        } else
2276                fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2277
2278        /* l3os is the distance between the start of the
2279         * frame (skb->data) and the start of the IP hdr.
2280         * l4os is the distance between the start of the
2281         * l3 hdr and the l4 hdr
2282         */
2283        fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2284        fcb->l4os = skb_network_header_len(skb);
2285
2286        fcb->flags = flags;
2287}
2288
2289static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2290{
2291        fcb->flags |= TXFCB_VLN;
2292        fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2293}
2294
2295static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2296                                      struct txbd8 *base, int ring_size)
2297{
2298        struct txbd8 *new_bd = bdp + stride;
2299
2300        return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2301}
2302
2303static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2304                                      int ring_size)
2305{
2306        return skip_txbd(bdp, 1, base, ring_size);
2307}
2308
2309/* eTSEC12: csum generation not supported for some fcb offsets */
2310static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2311                                       unsigned long fcb_addr)
2312{
2313        return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2314               (fcb_addr % 0x20) > 0x18);
2315}
2316
2317/* eTSEC76: csum generation for frames larger than 2500 may
2318 * cause excess delays before start of transmission
2319 */
2320static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2321                                       unsigned int len)
2322{
2323        return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2324               (len > 2500));
2325}
2326
2327/* This is called by the kernel when a frame is ready for transmission.
2328 * It is pointed to by the dev->hard_start_xmit function pointer
2329 */
2330static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2331{
2332        struct gfar_private *priv = netdev_priv(dev);
2333        struct gfar_priv_tx_q *tx_queue = NULL;
2334        struct netdev_queue *txq;
2335        struct gfar __iomem *regs = NULL;
2336        struct txfcb *fcb = NULL;
2337        struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2338        u32 lstatus;
2339        skb_frag_t *frag;
2340        int i, rq = 0;
2341        int do_tstamp, do_csum, do_vlan;
2342        u32 bufaddr;
2343        unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2344
2345        rq = skb->queue_mapping;
2346        tx_queue = priv->tx_queue[rq];
2347        txq = netdev_get_tx_queue(dev, rq);
2348        base = tx_queue->tx_bd_base;
2349        regs = tx_queue->grp->regs;
2350
2351        do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2352        do_vlan = skb_vlan_tag_present(skb);
2353        do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2354                    priv->hwts_tx_en;
2355
2356        if (do_csum || do_vlan)
2357                fcb_len = GMAC_FCB_LEN;
2358
2359        /* check if time stamp should be generated */
2360        if (unlikely(do_tstamp))
2361                fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2362
2363        /* make space for additional header when fcb is needed */
2364        if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2365                struct sk_buff *skb_new;
2366
2367                skb_new = skb_realloc_headroom(skb, fcb_len);
2368                if (!skb_new) {
2369                        dev->stats.tx_errors++;
2370                        dev_kfree_skb_any(skb);
2371                        return NETDEV_TX_OK;
2372                }
2373
2374                if (skb->sk)
2375                        skb_set_owner_w(skb_new, skb->sk);
2376                dev_consume_skb_any(skb);
2377                skb = skb_new;
2378        }
2379
2380        /* total number of fragments in the SKB */
2381        nr_frags = skb_shinfo(skb)->nr_frags;
2382
2383        /* calculate the required number of TxBDs for this skb */
2384        if (unlikely(do_tstamp))
2385                nr_txbds = nr_frags + 2;
2386        else
2387                nr_txbds = nr_frags + 1;
2388
2389        /* check if there is space to queue this packet */
2390        if (nr_txbds > tx_queue->num_txbdfree) {
2391                /* no space, stop the queue */
2392                netif_tx_stop_queue(txq);
2393                dev->stats.tx_fifo_errors++;
2394                return NETDEV_TX_BUSY;
2395        }
2396
2397        /* Update transmit stats */
2398        bytes_sent = skb->len;
2399        tx_queue->stats.tx_bytes += bytes_sent;
2400        /* keep Tx bytes on wire for BQL accounting */
2401        GFAR_CB(skb)->bytes_sent = bytes_sent;
2402        tx_queue->stats.tx_packets++;
2403
2404        txbdp = txbdp_start = tx_queue->cur_tx;
2405        lstatus = be32_to_cpu(txbdp->lstatus);
2406
2407        /* Add TxPAL between FCB and frame if required */
2408        if (unlikely(do_tstamp)) {
2409                skb_push(skb, GMAC_TXPAL_LEN);
2410                memset(skb->data, 0, GMAC_TXPAL_LEN);
2411        }
2412
2413        /* Add TxFCB if required */
2414        if (fcb_len) {
2415                fcb = gfar_add_fcb(skb);
2416                lstatus |= BD_LFLAG(TXBD_TOE);
2417        }
2418
2419        /* Set up checksumming */
2420        if (do_csum) {
2421                gfar_tx_checksum(skb, fcb, fcb_len);
2422
2423                if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2424                    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2425                        __skb_pull(skb, GMAC_FCB_LEN);
2426                        skb_checksum_help(skb);
2427                        if (do_vlan || do_tstamp) {
2428                                /* put back a new fcb for vlan/tstamp TOE */
2429                                fcb = gfar_add_fcb(skb);
2430                        } else {
2431                                /* Tx TOE not used */
2432                                lstatus &= ~(BD_LFLAG(TXBD_TOE));
2433                                fcb = NULL;
2434                        }
2435                }
2436        }
2437
2438        if (do_vlan)
2439                gfar_tx_vlan(skb, fcb);
2440
2441        bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2442                                 DMA_TO_DEVICE);
2443        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2444                goto dma_map_err;
2445
2446        txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2447
2448        /* Time stamp insertion requires one additional TxBD */
2449        if (unlikely(do_tstamp))
2450                txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2451                                                 tx_queue->tx_ring_size);
2452
2453        if (likely(!nr_frags)) {
2454                if (likely(!do_tstamp))
2455                        lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2456        } else {
2457                u32 lstatus_start = lstatus;
2458
2459                /* Place the fragment addresses and lengths into the TxBDs */
2460                frag = &skb_shinfo(skb)->frags[0];
2461                for (i = 0; i < nr_frags; i++, frag++) {
2462                        unsigned int size;
2463
2464                        /* Point at the next BD, wrapping as needed */
2465                        txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2466
2467                        size = skb_frag_size(frag);
2468
2469                        lstatus = be32_to_cpu(txbdp->lstatus) | size |
2470                                  BD_LFLAG(TXBD_READY);
2471
2472                        /* Handle the last BD specially */
2473                        if (i == nr_frags - 1)
2474                                lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2475
2476                        bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2477                                                   size, DMA_TO_DEVICE);
2478                        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2479                                goto dma_map_err;
2480
2481                        /* set the TxBD length and buffer pointer */
2482                        txbdp->bufPtr = cpu_to_be32(bufaddr);
2483                        txbdp->lstatus = cpu_to_be32(lstatus);
2484                }
2485
2486                lstatus = lstatus_start;
2487        }
2488
2489        /* If time stamping is requested one additional TxBD must be set up. The
2490         * first TxBD points to the FCB and must have a data length of
2491         * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2492         * the full frame length.
2493         */
2494        if (unlikely(do_tstamp)) {
2495                u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2496
2497                bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2498                bufaddr += fcb_len;
2499
2500                lstatus_ts |= BD_LFLAG(TXBD_READY) |
2501                              (skb_headlen(skb) - fcb_len);
2502                if (!nr_frags)
2503                        lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2504
2505                txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2506                txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2507                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2508
2509                /* Setup tx hardware time stamping */
2510                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2511                fcb->ptp = 1;
2512        } else {
2513                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2514        }
2515
2516        netdev_tx_sent_queue(txq, bytes_sent);
2517
2518        gfar_wmb();
2519
2520        txbdp_start->lstatus = cpu_to_be32(lstatus);
2521
2522        gfar_wmb(); /* force lstatus write before tx_skbuff */
2523
2524        tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2525
2526        /* Update the current skb pointer to the next entry we will use
2527         * (wrapping if necessary)
2528         */
2529        tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2530                              TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2531
2532        tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2533
2534        /* We can work in parallel with gfar_clean_tx_ring(), except
2535         * when modifying num_txbdfree. Note that we didn't grab the lock
2536         * when we were reading the num_txbdfree and checking for available
2537         * space, that's because outside of this function it can only grow.
2538         */
2539        spin_lock_bh(&tx_queue->txlock);
2540        /* reduce TxBD free count */
2541        tx_queue->num_txbdfree -= (nr_txbds);
2542        spin_unlock_bh(&tx_queue->txlock);
2543
2544        /* If the next BD still needs to be cleaned up, then the bds
2545         * are full.  We need to tell the kernel to stop sending us stuff.
2546         */
2547        if (!tx_queue->num_txbdfree) {
2548                netif_tx_stop_queue(txq);
2549
2550                dev->stats.tx_fifo_errors++;
2551        }
2552
2553        /* Tell the DMA to go go go */
2554        gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2555
2556        return NETDEV_TX_OK;
2557
2558dma_map_err:
2559        txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2560        if (do_tstamp)
2561                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2562        for (i = 0; i < nr_frags; i++) {
2563                lstatus = be32_to_cpu(txbdp->lstatus);
2564                if (!(lstatus & BD_LFLAG(TXBD_READY)))
2565                        break;
2566
2567                lstatus &= ~BD_LFLAG(TXBD_READY);
2568                txbdp->lstatus = cpu_to_be32(lstatus);
2569                bufaddr = be32_to_cpu(txbdp->bufPtr);
2570                dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2571                               DMA_TO_DEVICE);
2572                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2573        }
2574        gfar_wmb();
2575        dev_kfree_skb_any(skb);
2576        return NETDEV_TX_OK;
2577}
2578
2579/* Stops the kernel queue, and halts the controller */
2580static int gfar_close(struct net_device *dev)
2581{
2582        struct gfar_private *priv = netdev_priv(dev);
2583
2584        cancel_work_sync(&priv->reset_task);
2585        stop_gfar(dev);
2586
2587        /* Disconnect from the PHY */
2588        phy_disconnect(dev->phydev);
2589
2590        gfar_free_irq(priv);
2591
2592        return 0;
2593}
2594
2595/* Changes the mac address if the controller is not running. */
2596static int gfar_set_mac_address(struct net_device *dev)
2597{
2598        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2599
2600        return 0;
2601}
2602
2603static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2604{
2605        struct gfar_private *priv = netdev_priv(dev);
2606
2607        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2608                cpu_relax();
2609
2610        if (dev->flags & IFF_UP)
2611                stop_gfar(dev);
2612
2613        dev->mtu = new_mtu;
2614
2615        if (dev->flags & IFF_UP)
2616                startup_gfar(dev);
2617
2618        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2619
2620        return 0;
2621}
2622
2623void reset_gfar(struct net_device *ndev)
2624{
2625        struct gfar_private *priv = netdev_priv(ndev);
2626
2627        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2628                cpu_relax();
2629
2630        stop_gfar(ndev);
2631        startup_gfar(ndev);
2632
2633        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2634}
2635
2636/* gfar_reset_task gets scheduled when a packet has not been
2637 * transmitted after a set amount of time.
2638 * For now, assume that clearing out all the structures, and
2639 * starting over will fix the problem.
2640 */
2641static void gfar_reset_task(struct work_struct *work)
2642{
2643        struct gfar_private *priv = container_of(work, struct gfar_private,
2644                                                 reset_task);
2645        reset_gfar(priv->ndev);
2646}
2647
2648static void gfar_timeout(struct net_device *dev)
2649{
2650        struct gfar_private *priv = netdev_priv(dev);
2651
2652        dev->stats.tx_errors++;
2653        schedule_work(&priv->reset_task);
2654}
2655
2656/* Interrupt Handler for Transmit complete */
2657static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2658{
2659        struct net_device *dev = tx_queue->dev;
2660        struct netdev_queue *txq;
2661        struct gfar_private *priv = netdev_priv(dev);
2662        struct txbd8 *bdp, *next = NULL;
2663        struct txbd8 *lbdp = NULL;
2664        struct txbd8 *base = tx_queue->tx_bd_base;
2665        struct sk_buff *skb;
2666        int skb_dirtytx;
2667        int tx_ring_size = tx_queue->tx_ring_size;
2668        int frags = 0, nr_txbds = 0;
2669        int i;
2670        int howmany = 0;
2671        int tqi = tx_queue->qindex;
2672        unsigned int bytes_sent = 0;
2673        u32 lstatus;
2674        size_t buflen;
2675
2676        txq = netdev_get_tx_queue(dev, tqi);
2677        bdp = tx_queue->dirty_tx;
2678        skb_dirtytx = tx_queue->skb_dirtytx;
2679
2680        while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2681
2682                frags = skb_shinfo(skb)->nr_frags;
2683
2684                /* When time stamping, one additional TxBD must be freed.
2685                 * Also, we need to dma_unmap_single() the TxPAL.
2686                 */
2687                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2688                        nr_txbds = frags + 2;
2689                else
2690                        nr_txbds = frags + 1;
2691
2692                lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2693
2694                lstatus = be32_to_cpu(lbdp->lstatus);
2695
2696                /* Only clean completed frames */
2697                if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2698                    (lstatus & BD_LENGTH_MASK))
2699                        break;
2700
2701                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2702                        next = next_txbd(bdp, base, tx_ring_size);
2703                        buflen = be16_to_cpu(next->length) +
2704                                 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2705                } else
2706                        buflen = be16_to_cpu(bdp->length);
2707
2708                dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2709                                 buflen, DMA_TO_DEVICE);
2710
2711                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2712                        struct skb_shared_hwtstamps shhwtstamps;
2713                        u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2714                                          ~0x7UL);
2715
2716                        memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2717                        shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2718                        skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2719                        skb_tstamp_tx(skb, &shhwtstamps);
2720                        gfar_clear_txbd_status(bdp);
2721                        bdp = next;
2722                }
2723
2724                gfar_clear_txbd_status(bdp);
2725                bdp = next_txbd(bdp, base, tx_ring_size);
2726
2727                for (i = 0; i < frags; i++) {
2728                        dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2729                                       be16_to_cpu(bdp->length),
2730                                       DMA_TO_DEVICE);
2731                        gfar_clear_txbd_status(bdp);
2732                        bdp = next_txbd(bdp, base, tx_ring_size);
2733                }
2734
2735                bytes_sent += GFAR_CB(skb)->bytes_sent;
2736
2737                dev_kfree_skb_any(skb);
2738
2739                tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2740
2741                skb_dirtytx = (skb_dirtytx + 1) &
2742                              TX_RING_MOD_MASK(tx_ring_size);
2743
2744                howmany++;
2745                spin_lock(&tx_queue->txlock);
2746                tx_queue->num_txbdfree += nr_txbds;
2747                spin_unlock(&tx_queue->txlock);
2748        }
2749
2750        /* If we freed a buffer, we can restart transmission, if necessary */
2751        if (tx_queue->num_txbdfree &&
2752            netif_tx_queue_stopped(txq) &&
2753            !(test_bit(GFAR_DOWN, &priv->state)))
2754                netif_wake_subqueue(priv->ndev, tqi);
2755
2756        /* Update dirty indicators */
2757        tx_queue->skb_dirtytx = skb_dirtytx;
2758        tx_queue->dirty_tx = bdp;
2759
2760        netdev_tx_completed_queue(txq, howmany, bytes_sent);
2761}
2762
2763static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2764{
2765        struct page *page;
2766        dma_addr_t addr;
2767
2768        page = dev_alloc_page();
2769        if (unlikely(!page))
2770                return false;
2771
2772        addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2773        if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2774                __free_page(page);
2775
2776                return false;
2777        }
2778
2779        rxb->dma = addr;
2780        rxb->page = page;
2781        rxb->page_offset = 0;
2782
2783        return true;
2784}
2785
2786static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2787{
2788        struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2789        struct gfar_extra_stats *estats = &priv->extra_stats;
2790
2791        netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2792        atomic64_inc(&estats->rx_alloc_err);
2793}
2794
2795static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2796                                int alloc_cnt)
2797{
2798        struct rxbd8 *bdp;
2799        struct gfar_rx_buff *rxb;
2800        int i;
2801
2802        i = rx_queue->next_to_use;
2803        bdp = &rx_queue->rx_bd_base[i];
2804        rxb = &rx_queue->rx_buff[i];
2805
2806        while (alloc_cnt--) {
2807                /* try reuse page */
2808                if (unlikely(!rxb->page)) {
2809                        if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2810                                gfar_rx_alloc_err(rx_queue);
2811                                break;
2812                        }
2813                }
2814
2815                /* Setup the new RxBD */
2816                gfar_init_rxbdp(rx_queue, bdp,
2817                                rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2818
2819                /* Update to the next pointer */
2820                bdp++;
2821                rxb++;
2822
2823                if (unlikely(++i == rx_queue->rx_ring_size)) {
2824                        i = 0;
2825                        bdp = rx_queue->rx_bd_base;
2826                        rxb = rx_queue->rx_buff;
2827                }
2828        }
2829
2830        rx_queue->next_to_use = i;
2831        rx_queue->next_to_alloc = i;
2832}
2833
2834static void count_errors(u32 lstatus, struct net_device *ndev)
2835{
2836        struct gfar_private *priv = netdev_priv(ndev);
2837        struct net_device_stats *stats = &ndev->stats;
2838        struct gfar_extra_stats *estats = &priv->extra_stats;
2839
2840        /* If the packet was truncated, none of the other errors matter */
2841        if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2842                stats->rx_length_errors++;
2843
2844                atomic64_inc(&estats->rx_trunc);
2845
2846                return;
2847        }
2848        /* Count the errors, if there were any */
2849        if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2850                stats->rx_length_errors++;
2851
2852                if (lstatus & BD_LFLAG(RXBD_LARGE))
2853                        atomic64_inc(&estats->rx_large);
2854                else
2855                        atomic64_inc(&estats->rx_short);
2856        }
2857        if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2858                stats->rx_frame_errors++;
2859                atomic64_inc(&estats->rx_nonoctet);
2860        }
2861        if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2862                atomic64_inc(&estats->rx_crcerr);
2863                stats->rx_crc_errors++;
2864        }
2865        if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2866                atomic64_inc(&estats->rx_overrun);
2867                stats->rx_over_errors++;
2868        }
2869}
2870
2871irqreturn_t gfar_receive(int irq, void *grp_id)
2872{
2873        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2874        unsigned long flags;
2875        u32 imask, ievent;
2876
2877        ievent = gfar_read(&grp->regs->ievent);
2878
2879        if (unlikely(ievent & IEVENT_FGPI)) {
2880                gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2881                return IRQ_HANDLED;
2882        }
2883
2884        if (likely(napi_schedule_prep(&grp->napi_rx))) {
2885                spin_lock_irqsave(&grp->grplock, flags);
2886                imask = gfar_read(&grp->regs->imask);
2887                imask &= IMASK_RX_DISABLED;
2888                gfar_write(&grp->regs->imask, imask);
2889                spin_unlock_irqrestore(&grp->grplock, flags);
2890                __napi_schedule(&grp->napi_rx);
2891        } else {
2892                /* Clear IEVENT, so interrupts aren't called again
2893                 * because of the packets that have already arrived.
2894                 */
2895                gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2896        }
2897
2898        return IRQ_HANDLED;
2899}
2900
2901/* Interrupt Handler for Transmit complete */
2902static irqreturn_t gfar_transmit(int irq, void *grp_id)
2903{
2904        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2905        unsigned long flags;
2906        u32 imask;
2907
2908        if (likely(napi_schedule_prep(&grp->napi_tx))) {
2909                spin_lock_irqsave(&grp->grplock, flags);
2910                imask = gfar_read(&grp->regs->imask);
2911                imask &= IMASK_TX_DISABLED;
2912                gfar_write(&grp->regs->imask, imask);
2913                spin_unlock_irqrestore(&grp->grplock, flags);
2914                __napi_schedule(&grp->napi_tx);
2915        } else {
2916                /* Clear IEVENT, so interrupts aren't called again
2917                 * because of the packets that have already arrived.
2918                 */
2919                gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2920        }
2921
2922        return IRQ_HANDLED;
2923}
2924
2925static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2926                             struct sk_buff *skb, bool first)
2927{
2928        unsigned int size = lstatus & BD_LENGTH_MASK;
2929        struct page *page = rxb->page;
2930        bool last = !!(lstatus & BD_LFLAG(RXBD_LAST));
2931
2932        /* Remove the FCS from the packet length */
2933        if (last)
2934                size -= ETH_FCS_LEN;
2935
2936        if (likely(first)) {
2937                skb_put(skb, size);
2938        } else {
2939                /* the last fragments' length contains the full frame length */
2940                if (last)
2941                        size -= skb->len;
2942
2943                /* in case the last fragment consisted only of the FCS */
2944                if (size > 0)
2945                        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2946                                        rxb->page_offset + RXBUF_ALIGNMENT,
2947                                        size, GFAR_RXB_TRUESIZE);
2948        }
2949
2950        /* try reuse page */
2951        if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2952                return false;
2953
2954        /* change offset to the other half */
2955        rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2956
2957        page_ref_inc(page);
2958
2959        return true;
2960}
2961
2962static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2963                               struct gfar_rx_buff *old_rxb)
2964{
2965        struct gfar_rx_buff *new_rxb;
2966        u16 nta = rxq->next_to_alloc;
2967
2968        new_rxb = &rxq->rx_buff[nta];
2969
2970        /* find next buf that can reuse a page */
2971        nta++;
2972        rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2973
2974        /* copy page reference */
2975        *new_rxb = *old_rxb;
2976
2977        /* sync for use by the device */
2978        dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2979                                         old_rxb->page_offset,
2980                                         GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2981}
2982
2983static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2984                                            u32 lstatus, struct sk_buff *skb)
2985{
2986        struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2987        struct page *page = rxb->page;
2988        bool first = false;
2989
2990        if (likely(!skb)) {
2991                void *buff_addr = page_address(page) + rxb->page_offset;
2992
2993                skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2994                if (unlikely(!skb)) {
2995                        gfar_rx_alloc_err(rx_queue);
2996                        return NULL;
2997                }
2998                skb_reserve(skb, RXBUF_ALIGNMENT);
2999                first = true;
3000        }
3001
3002        dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3003                                      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3004
3005        if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3006                /* reuse the free half of the page */
3007                gfar_reuse_rx_page(rx_queue, rxb);
3008        } else {
3009                /* page cannot be reused, unmap it */
3010                dma_unmap_page(rx_queue->dev, rxb->dma,
3011                               PAGE_SIZE, DMA_FROM_DEVICE);
3012        }
3013
3014        /* clear rxb content */
3015        rxb->page = NULL;
3016
3017        return skb;
3018}
3019
3020static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3021{
3022        /* If valid headers were found, and valid sums
3023         * were verified, then we tell the kernel that no
3024         * checksumming is necessary.  Otherwise, it is [FIXME]
3025         */
3026        if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3027            (RXFCB_CIP | RXFCB_CTU))
3028                skb->ip_summed = CHECKSUM_UNNECESSARY;
3029        else
3030                skb_checksum_none_assert(skb);
3031}
3032
3033/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3034static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3035{
3036        struct gfar_private *priv = netdev_priv(ndev);
3037        struct rxfcb *fcb = NULL;
3038
3039        /* fcb is at the beginning if exists */
3040        fcb = (struct rxfcb *)skb->data;
3041
3042        /* Remove the FCB from the skb
3043         * Remove the padded bytes, if there are any
3044         */
3045        if (priv->uses_rxfcb)
3046                skb_pull(skb, GMAC_FCB_LEN);
3047
3048        /* Get receive timestamp from the skb */
3049        if (priv->hwts_rx_en) {
3050                struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3051                u64 *ns = (u64 *) skb->data;
3052
3053                memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3054                shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3055        }
3056
3057        if (priv->padding)
3058                skb_pull(skb, priv->padding);
3059
3060        if (ndev->features & NETIF_F_RXCSUM)
3061                gfar_rx_checksum(skb, fcb);
3062
3063        /* Tell the skb what kind of packet this is */
3064        skb->protocol = eth_type_trans(skb, ndev);
3065
3066        /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3067         * Even if vlan rx accel is disabled, on some chips
3068         * RXFCB_VLN is pseudo randomly set.
3069         */
3070        if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3071            be16_to_cpu(fcb->flags) & RXFCB_VLN)
3072                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3073                                       be16_to_cpu(fcb->vlctl));
3074}
3075
3076/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3077 * until the budget/quota has been reached. Returns the number
3078 * of frames handled
3079 */
3080int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3081{
3082        struct net_device *ndev = rx_queue->ndev;
3083        struct gfar_private *priv = netdev_priv(ndev);
3084        struct rxbd8 *bdp;
3085        int i, howmany = 0;
3086        struct sk_buff *skb = rx_queue->skb;
3087        int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3088        unsigned int total_bytes = 0, total_pkts = 0;
3089
3090        /* Get the first full descriptor */
3091        i = rx_queue->next_to_clean;
3092
3093        while (rx_work_limit--) {
3094                u32 lstatus;
3095
3096                if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3097                        gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3098                        cleaned_cnt = 0;
3099                }
3100
3101                bdp = &rx_queue->rx_bd_base[i];
3102                lstatus = be32_to_cpu(bdp->lstatus);
3103                if (lstatus & BD_LFLAG(RXBD_EMPTY))
3104                        break;
3105
3106                /* order rx buffer descriptor reads */
3107                rmb();
3108
3109                /* fetch next to clean buffer from the ring */
3110                skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3111                if (unlikely(!skb))
3112                        break;
3113
3114                cleaned_cnt++;
3115                howmany++;
3116
3117                if (unlikely(++i == rx_queue->rx_ring_size))
3118                        i = 0;
3119
3120                rx_queue->next_to_clean = i;
3121
3122                /* fetch next buffer if not the last in frame */
3123                if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3124                        continue;
3125
3126                if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3127                        count_errors(lstatus, ndev);
3128
3129                        /* discard faulty buffer */
3130                        dev_kfree_skb(skb);
3131                        skb = NULL;
3132                        rx_queue->stats.rx_dropped++;
3133                        continue;
3134                }
3135
3136                /* Increment the number of packets */
3137                total_pkts++;
3138                total_bytes += skb->len;
3139
3140                skb_record_rx_queue(skb, rx_queue->qindex);
3141
3142                gfar_process_frame(ndev, skb);
3143
3144                /* Send the packet up the stack */
3145                napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3146
3147                skb = NULL;
3148        }
3149
3150        /* Store incomplete frames for completion */
3151        rx_queue->skb = skb;
3152
3153        rx_queue->stats.rx_packets += total_pkts;
3154        rx_queue->stats.rx_bytes += total_bytes;
3155
3156        if (cleaned_cnt)
3157                gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3158
3159        /* Update Last Free RxBD pointer for LFC */
3160        if (unlikely(priv->tx_actual_en)) {
3161                u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3162
3163                gfar_write(rx_queue->rfbptr, bdp_dma);
3164        }
3165
3166        return howmany;
3167}
3168
3169static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3170{
3171        struct gfar_priv_grp *gfargrp =
3172                container_of(napi, struct gfar_priv_grp, napi_rx);
3173        struct gfar __iomem *regs = gfargrp->regs;
3174        struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3175        int work_done = 0;
3176
3177        /* Clear IEVENT, so interrupts aren't called again
3178         * because of the packets that have already arrived
3179         */
3180        gfar_write(&regs->ievent, IEVENT_RX_MASK);
3181
3182        work_done = gfar_clean_rx_ring(rx_queue, budget);
3183
3184        if (work_done < budget) {
3185                u32 imask;
3186                napi_complete_done(napi, work_done);
3187                /* Clear the halt bit in RSTAT */
3188                gfar_write(&regs->rstat, gfargrp->rstat);
3189
3190                spin_lock_irq(&gfargrp->grplock);
3191                imask = gfar_read(&regs->imask);
3192                imask |= IMASK_RX_DEFAULT;
3193                gfar_write(&regs->imask, imask);
3194                spin_unlock_irq(&gfargrp->grplock);
3195        }
3196
3197        return work_done;
3198}
3199
3200static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3201{
3202        struct gfar_priv_grp *gfargrp =
3203                container_of(napi, struct gfar_priv_grp, napi_tx);
3204        struct gfar __iomem *regs = gfargrp->regs;
3205        struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3206        u32 imask;
3207
3208        /* Clear IEVENT, so interrupts aren't called again
3209         * because of the packets that have already arrived
3210         */
3211        gfar_write(&regs->ievent, IEVENT_TX_MASK);
3212
3213        /* run Tx cleanup to completion */
3214        if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3215                gfar_clean_tx_ring(tx_queue);
3216
3217        napi_complete(napi);
3218
3219        spin_lock_irq(&gfargrp->grplock);
3220        imask = gfar_read(&regs->imask);
3221        imask |= IMASK_TX_DEFAULT;
3222        gfar_write(&regs->imask, imask);
3223        spin_unlock_irq(&gfargrp->grplock);
3224
3225        return 0;
3226}
3227
3228static int gfar_poll_rx(struct napi_struct *napi, int budget)
3229{
3230        struct gfar_priv_grp *gfargrp =
3231                container_of(napi, struct gfar_priv_grp, napi_rx);
3232        struct gfar_private *priv = gfargrp->priv;
3233        struct gfar __iomem *regs = gfargrp->regs;
3234        struct gfar_priv_rx_q *rx_queue = NULL;
3235        int work_done = 0, work_done_per_q = 0;
3236        int i, budget_per_q = 0;
3237        unsigned long rstat_rxf;
3238        int num_act_queues;
3239
3240        /* Clear IEVENT, so interrupts aren't called again
3241         * because of the packets that have already arrived
3242         */
3243        gfar_write(&regs->ievent, IEVENT_RX_MASK);
3244
3245        rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3246
3247        num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3248        if (num_act_queues)
3249                budget_per_q = budget/num_act_queues;
3250
3251        for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3252                /* skip queue if not active */
3253                if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3254                        continue;
3255
3256                rx_queue = priv->rx_queue[i];
3257                work_done_per_q =
3258                        gfar_clean_rx_ring(rx_queue, budget_per_q);
3259                work_done += work_done_per_q;
3260
3261                /* finished processing this queue */
3262                if (work_done_per_q < budget_per_q) {
3263                        /* clear active queue hw indication */
3264                        gfar_write(&regs->rstat,
3265                                   RSTAT_CLEAR_RXF0 >> i);
3266                        num_act_queues--;
3267
3268                        if (!num_act_queues)
3269                                break;
3270                }
3271        }
3272
3273        if (!num_act_queues) {
3274                u32 imask;
3275                napi_complete_done(napi, work_done);
3276
3277                /* Clear the halt bit in RSTAT */
3278                gfar_write(&regs->rstat, gfargrp->rstat);
3279
3280                spin_lock_irq(&gfargrp->grplock);
3281                imask = gfar_read(&regs->imask);
3282                imask |= IMASK_RX_DEFAULT;
3283                gfar_write(&regs->imask, imask);
3284                spin_unlock_irq(&gfargrp->grplock);
3285        }
3286
3287        return work_done;
3288}
3289
3290static int gfar_poll_tx(struct napi_struct *napi, int budget)
3291{
3292        struct gfar_priv_grp *gfargrp =
3293                container_of(napi, struct gfar_priv_grp, napi_tx);
3294        struct gfar_private *priv = gfargrp->priv;
3295        struct gfar __iomem *regs = gfargrp->regs;
3296        struct gfar_priv_tx_q *tx_queue = NULL;
3297        int has_tx_work = 0;
3298        int i;
3299
3300        /* Clear IEVENT, so interrupts aren't called again
3301         * because of the packets that have already arrived
3302         */
3303        gfar_write(&regs->ievent, IEVENT_TX_MASK);
3304
3305        for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3306                tx_queue = priv->tx_queue[i];
3307                /* run Tx cleanup to completion */
3308                if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3309                        gfar_clean_tx_ring(tx_queue);
3310                        has_tx_work = 1;
3311                }
3312        }
3313
3314        if (!has_tx_work) {
3315                u32 imask;
3316                napi_complete(napi);
3317
3318                spin_lock_irq(&gfargrp->grplock);
3319                imask = gfar_read(&regs->imask);
3320                imask |= IMASK_TX_DEFAULT;
3321                gfar_write(&regs->imask, imask);
3322                spin_unlock_irq(&gfargrp->grplock);
3323        }
3324
3325        return 0;
3326}
3327
3328
3329#ifdef CONFIG_NET_POLL_CONTROLLER
3330/* Polling 'interrupt' - used by things like netconsole to send skbs
3331 * without having to re-enable interrupts. It's not called while
3332 * the interrupt routine is executing.
3333 */
3334static void gfar_netpoll(struct net_device *dev)
3335{
3336        struct gfar_private *priv = netdev_priv(dev);
3337        int i;
3338
3339        /* If the device has multiple interrupts, run tx/rx */
3340        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3341                for (i = 0; i < priv->num_grps; i++) {
3342                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
3343
3344                        disable_irq(gfar_irq(grp, TX)->irq);
3345                        disable_irq(gfar_irq(grp, RX)->irq);
3346                        disable_irq(gfar_irq(grp, ER)->irq);
3347                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3348                        enable_irq(gfar_irq(grp, ER)->irq);
3349                        enable_irq(gfar_irq(grp, RX)->irq);
3350                        enable_irq(gfar_irq(grp, TX)->irq);
3351                }
3352        } else {
3353                for (i = 0; i < priv->num_grps; i++) {
3354                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
3355
3356                        disable_irq(gfar_irq(grp, TX)->irq);
3357                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3358                        enable_irq(gfar_irq(grp, TX)->irq);
3359                }
3360        }
3361}
3362#endif
3363
3364/* The interrupt handler for devices with one interrupt */
3365static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3366{
3367        struct gfar_priv_grp *gfargrp = grp_id;
3368
3369        /* Save ievent for future reference */
3370        u32 events = gfar_read(&gfargrp->regs->ievent);
3371
3372        /* Check for reception */
3373        if (events & IEVENT_RX_MASK)
3374                gfar_receive(irq, grp_id);
3375
3376        /* Check for transmit completion */
3377        if (events & IEVENT_TX_MASK)
3378                gfar_transmit(irq, grp_id);
3379
3380        /* Check for errors */
3381        if (events & IEVENT_ERR_MASK)
3382                gfar_error(irq, grp_id);
3383
3384        return IRQ_HANDLED;
3385}
3386
3387/* Called every time the controller might need to be made
3388 * aware of new link state.  The PHY code conveys this
3389 * information through variables in the phydev structure, and this
3390 * function converts those variables into the appropriate
3391 * register values, and can bring down the device if needed.
3392 */
3393static void adjust_link(struct net_device *dev)
3394{
3395        struct gfar_private *priv = netdev_priv(dev);
3396        struct phy_device *phydev = dev->phydev;
3397
3398        if (unlikely(phydev->link != priv->oldlink ||
3399                     (phydev->link && (phydev->duplex != priv->oldduplex ||
3400                                       phydev->speed != priv->oldspeed))))
3401                gfar_update_link_state(priv);
3402}
3403
3404/* Update the hash table based on the current list of multicast
3405 * addresses we subscribe to.  Also, change the promiscuity of
3406 * the device based on the flags (this function is called
3407 * whenever dev->flags is changed
3408 */
3409static void gfar_set_multi(struct net_device *dev)
3410{
3411        struct netdev_hw_addr *ha;
3412        struct gfar_private *priv = netdev_priv(dev);
3413        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3414        u32 tempval;
3415
3416        if (dev->flags & IFF_PROMISC) {
3417                /* Set RCTRL to PROM */
3418                tempval = gfar_read(&regs->rctrl);
3419                tempval |= RCTRL_PROM;
3420                gfar_write(&regs->rctrl, tempval);
3421        } else {
3422                /* Set RCTRL to not PROM */
3423                tempval = gfar_read(&regs->rctrl);
3424                tempval &= ~(RCTRL_PROM);
3425                gfar_write(&regs->rctrl, tempval);
3426        }
3427
3428        if (dev->flags & IFF_ALLMULTI) {
3429                /* Set the hash to rx all multicast frames */
3430                gfar_write(&regs->igaddr0, 0xffffffff);
3431                gfar_write(&regs->igaddr1, 0xffffffff);
3432                gfar_write(&regs->igaddr2, 0xffffffff);
3433                gfar_write(&regs->igaddr3, 0xffffffff);
3434                gfar_write(&regs->igaddr4, 0xffffffff);
3435                gfar_write(&regs->igaddr5, 0xffffffff);
3436                gfar_write(&regs->igaddr6, 0xffffffff);
3437                gfar_write(&regs->igaddr7, 0xffffffff);
3438                gfar_write(&regs->gaddr0, 0xffffffff);
3439                gfar_write(&regs->gaddr1, 0xffffffff);
3440                gfar_write(&regs->gaddr2, 0xffffffff);
3441                gfar_write(&regs->gaddr3, 0xffffffff);
3442                gfar_write(&regs->gaddr4, 0xffffffff);
3443                gfar_write(&regs->gaddr5, 0xffffffff);
3444                gfar_write(&regs->gaddr6, 0xffffffff);
3445                gfar_write(&regs->gaddr7, 0xffffffff);
3446        } else {
3447                int em_num;
3448                int idx;
3449
3450                /* zero out the hash */
3451                gfar_write(&regs->igaddr0, 0x0);
3452                gfar_write(&regs->igaddr1, 0x0);
3453                gfar_write(&regs->igaddr2, 0x0);
3454                gfar_write(&regs->igaddr3, 0x0);
3455                gfar_write(&regs->igaddr4, 0x0);
3456                gfar_write(&regs->igaddr5, 0x0);
3457                gfar_write(&regs->igaddr6, 0x0);
3458                gfar_write(&regs->igaddr7, 0x0);
3459                gfar_write(&regs->gaddr0, 0x0);
3460                gfar_write(&regs->gaddr1, 0x0);
3461                gfar_write(&regs->gaddr2, 0x0);
3462                gfar_write(&regs->gaddr3, 0x0);
3463                gfar_write(&regs->gaddr4, 0x0);
3464                gfar_write(&regs->gaddr5, 0x0);
3465                gfar_write(&regs->gaddr6, 0x0);
3466                gfar_write(&regs->gaddr7, 0x0);
3467
3468                /* If we have extended hash tables, we need to
3469                 * clear the exact match registers to prepare for
3470                 * setting them
3471                 */
3472                if (priv->extended_hash) {
3473                        em_num = GFAR_EM_NUM + 1;
3474                        gfar_clear_exact_match(dev);
3475                        idx = 1;
3476                } else {
3477                        idx = 0;
3478                        em_num = 0;
3479                }
3480
3481                if (netdev_mc_empty(dev))
3482                        return;
3483
3484                /* Parse the list, and set the appropriate bits */
3485                netdev_for_each_mc_addr(ha, dev) {
3486                        if (idx < em_num) {
3487                                gfar_set_mac_for_addr(dev, idx, ha->addr);
3488                                idx++;
3489                        } else
3490                                gfar_set_hash_for_addr(dev, ha->addr);
3491                }
3492        }
3493}
3494
3495
3496/* Clears each of the exact match registers to zero, so they
3497 * don't interfere with normal reception
3498 */
3499static void gfar_clear_exact_match(struct net_device *dev)
3500{
3501        int idx;
3502        static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3503
3504        for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3505                gfar_set_mac_for_addr(dev, idx, zero_arr);
3506}
3507
3508/* Set the appropriate hash bit for the given addr */
3509/* The algorithm works like so:
3510 * 1) Take the Destination Address (ie the multicast address), and
3511 * do a CRC on it (little endian), and reverse the bits of the
3512 * result.
3513 * 2) Use the 8 most significant bits as a hash into a 256-entry
3514 * table.  The table is controlled through 8 32-bit registers:
3515 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3516 * gaddr7.  This means that the 3 most significant bits in the
3517 * hash index which gaddr register to use, and the 5 other bits
3518 * indicate which bit (assuming an IBM numbering scheme, which
3519 * for PowerPC (tm) is usually the case) in the register holds
3520 * the entry.
3521 */
3522static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3523{
3524        u32 tempval;
3525        struct gfar_private *priv = netdev_priv(dev);
3526        u32 result = ether_crc(ETH_ALEN, addr);
3527        int width = priv->hash_width;
3528        u8 whichbit = (result >> (32 - width)) & 0x1f;
3529        u8 whichreg = result >> (32 - width + 5);
3530        u32 value = (1 << (31-whichbit));
3531
3532        tempval = gfar_read(priv->hash_regs[whichreg]);
3533        tempval |= value;
3534        gfar_write(priv->hash_regs[whichreg], tempval);
3535}
3536
3537
3538/* There are multiple MAC Address register pairs on some controllers
3539 * This function sets the numth pair to a given address
3540 */
3541static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3542                                  const u8 *addr)
3543{
3544        struct gfar_private *priv = netdev_priv(dev);
3545        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3546        u32 tempval;
3547        u32 __iomem *macptr = &regs->macstnaddr1;
3548
3549        macptr += num*2;
3550
3551        /* For a station address of 0x12345678ABCD in transmission
3552         * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3553         * MACnADDR2 is set to 0x34120000.
3554         */
3555        tempval = (addr[5] << 24) | (addr[4] << 16) |
3556                  (addr[3] << 8)  |  addr[2];
3557
3558        gfar_write(macptr, tempval);
3559
3560        tempval = (addr[1] << 24) | (addr[0] << 16);
3561
3562        gfar_write(macptr+1, tempval);
3563}
3564
3565/* GFAR error interrupt handler */
3566static irqreturn_t gfar_error(int irq, void *grp_id)
3567{
3568        struct gfar_priv_grp *gfargrp = grp_id;
3569        struct gfar __iomem *regs = gfargrp->regs;
3570        struct gfar_private *priv= gfargrp->priv;
3571        struct net_device *dev = priv->ndev;
3572
3573        /* Save ievent for future reference */
3574        u32 events = gfar_read(&regs->ievent);
3575
3576        /* Clear IEVENT */
3577        gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3578
3579        /* Magic Packet is not an error. */
3580        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3581            (events & IEVENT_MAG))
3582                events &= ~IEVENT_MAG;
3583
3584        /* Hmm... */
3585        if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3586                netdev_dbg(dev,
3587                           "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3588                           events, gfar_read(&regs->imask));
3589
3590        /* Update the error counters */
3591        if (events & IEVENT_TXE) {
3592                dev->stats.tx_errors++;
3593
3594                if (events & IEVENT_LC)
3595                        dev->stats.tx_window_errors++;
3596                if (events & IEVENT_CRL)
3597                        dev->stats.tx_aborted_errors++;
3598                if (events & IEVENT_XFUN) {
3599                        netif_dbg(priv, tx_err, dev,
3600                                  "TX FIFO underrun, packet dropped\n");
3601                        dev->stats.tx_dropped++;
3602                        atomic64_inc(&priv->extra_stats.tx_underrun);
3603
3604                        schedule_work(&priv->reset_task);
3605                }
3606                netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3607        }
3608        if (events & IEVENT_BSY) {
3609                dev->stats.rx_over_errors++;
3610                atomic64_inc(&priv->extra_stats.rx_bsy);
3611
3612                netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3613                          gfar_read(&regs->rstat));
3614        }
3615        if (events & IEVENT_BABR) {
3616                dev->stats.rx_errors++;
3617                atomic64_inc(&priv->extra_stats.rx_babr);
3618
3619                netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3620        }
3621        if (events & IEVENT_EBERR) {
3622                atomic64_inc(&priv->extra_stats.eberr);
3623                netif_dbg(priv, rx_err, dev, "bus error\n");
3624        }
3625        if (events & IEVENT_RXC)
3626                netif_dbg(priv, rx_status, dev, "control frame\n");
3627
3628        if (events & IEVENT_BABT) {
3629                atomic64_inc(&priv->extra_stats.tx_babt);
3630                netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3631        }
3632        return IRQ_HANDLED;
3633}
3634
3635static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3636{
3637        struct net_device *ndev = priv->ndev;
3638        struct phy_device *phydev = ndev->phydev;
3639        u32 val = 0;
3640
3641        if (!phydev->duplex)
3642                return val;
3643
3644        if (!priv->pause_aneg_en) {
3645                if (priv->tx_pause_en)
3646                        val |= MACCFG1_TX_FLOW;
3647                if (priv->rx_pause_en)
3648                        val |= MACCFG1_RX_FLOW;
3649        } else {
3650                u16 lcl_adv, rmt_adv;
3651                u8 flowctrl;
3652                /* get link partner capabilities */
3653                rmt_adv = 0;
3654                if (phydev->pause)
3655                        rmt_adv = LPA_PAUSE_CAP;
3656                if (phydev->asym_pause)
3657                        rmt_adv |= LPA_PAUSE_ASYM;
3658
3659                lcl_adv = 0;
3660                if (phydev->advertising & ADVERTISED_Pause)
3661                        lcl_adv |= ADVERTISE_PAUSE_CAP;
3662                if (phydev->advertising & ADVERTISED_Asym_Pause)
3663                        lcl_adv |= ADVERTISE_PAUSE_ASYM;
3664
3665                flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3666                if (flowctrl & FLOW_CTRL_TX)
3667                        val |= MACCFG1_TX_FLOW;
3668                if (flowctrl & FLOW_CTRL_RX)
3669                        val |= MACCFG1_RX_FLOW;
3670        }
3671
3672        return val;
3673}
3674
3675static noinline void gfar_update_link_state(struct gfar_private *priv)
3676{
3677        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3678        struct net_device *ndev = priv->ndev;
3679        struct phy_device *phydev = ndev->phydev;
3680        struct gfar_priv_rx_q *rx_queue = NULL;
3681        int i;
3682
3683        if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3684                return;
3685
3686        if (phydev->link) {
3687                u32 tempval1 = gfar_read(&regs->maccfg1);
3688                u32 tempval = gfar_read(&regs->maccfg2);
3689                u32 ecntrl = gfar_read(&regs->ecntrl);
3690                u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3691
3692                if (phydev->duplex != priv->oldduplex) {
3693                        if (!(phydev->duplex))
3694                                tempval &= ~(MACCFG2_FULL_DUPLEX);
3695                        else
3696                                tempval |= MACCFG2_FULL_DUPLEX;
3697
3698                        priv->oldduplex = phydev->duplex;
3699                }
3700
3701                if (phydev->speed != priv->oldspeed) {
3702                        switch (phydev->speed) {
3703                        case 1000:
3704                                tempval =
3705                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3706
3707                                ecntrl &= ~(ECNTRL_R100);
3708                                break;
3709                        case 100:
3710                        case 10:
3711                                tempval =
3712                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3713
3714                                /* Reduced mode distinguishes
3715                                 * between 10 and 100
3716                                 */
3717                                if (phydev->speed == SPEED_100)
3718                                        ecntrl |= ECNTRL_R100;
3719                                else
3720                                        ecntrl &= ~(ECNTRL_R100);
3721                                break;
3722                        default:
3723                                netif_warn(priv, link, priv->ndev,
3724                                           "Ack!  Speed (%d) is not 10/100/1000!\n",
3725                                           phydev->speed);
3726                                break;
3727                        }
3728
3729                        priv->oldspeed = phydev->speed;
3730                }
3731
3732                tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3733                tempval1 |= gfar_get_flowctrl_cfg(priv);
3734
3735                /* Turn last free buffer recording on */
3736                if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3737                        for (i = 0; i < priv->num_rx_queues; i++) {
3738                                u32 bdp_dma;
3739
3740                                rx_queue = priv->rx_queue[i];
3741                                bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3742                                gfar_write(rx_queue->rfbptr, bdp_dma);
3743                        }
3744
3745                        priv->tx_actual_en = 1;
3746                }
3747
3748                if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3749                        priv->tx_actual_en = 0;
3750
3751                gfar_write(&regs->maccfg1, tempval1);
3752                gfar_write(&regs->maccfg2, tempval);
3753                gfar_write(&regs->ecntrl, ecntrl);
3754
3755                if (!priv->oldlink)
3756                        priv->oldlink = 1;
3757
3758        } else if (priv->oldlink) {
3759                priv->oldlink = 0;
3760                priv->oldspeed = 0;
3761                priv->oldduplex = -1;
3762        }
3763
3764        if (netif_msg_link(priv))
3765                phy_print_status(phydev);
3766}
3767
3768static const struct of_device_id gfar_match[] =
3769{
3770        {
3771                .type = "network",
3772                .compatible = "gianfar",
3773        },
3774        {
3775                .compatible = "fsl,etsec2",
3776        },
3777        {},
3778};
3779MODULE_DEVICE_TABLE(of, gfar_match);
3780
3781/* Structure for a device driver */
3782static struct platform_driver gfar_driver = {
3783        .driver = {
3784                .name = "fsl-gianfar",
3785                .pm = GFAR_PM_OPS,
3786                .of_match_table = gfar_match,
3787        },
3788        .probe = gfar_probe,
3789        .remove = gfar_remove,
3790};
3791
3792module_platform_driver(gfar_driver);
3793