linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2016 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/pci.h>
  30#include <linux/delay.h>
  31#include <linux/sched.h>
  32#include <linux/netdevice.h>
  33
  34#include "ixgbe.h"
  35#include "ixgbe_common.h"
  36#include "ixgbe_phy.h"
  37
  38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  44                                        u16 count);
  45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  49
  50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  53                                             u16 words, u16 *data);
  54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  55                                             u16 words, u16 *data);
  56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  57                                                 u16 offset);
  58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
  59
  60/* Base table for registers values that change by MAC */
  61const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
  62        IXGBE_MVALS_INIT(8259X)
  63};
  64
  65/**
  66 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  67 *  control
  68 *  @hw: pointer to hardware structure
  69 *
  70 *  There are several phys that do not support autoneg flow control. This
  71 *  function check the device id to see if the associated phy supports
  72 *  autoneg flow control.
  73 **/
  74bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  75{
  76        bool supported = false;
  77        ixgbe_link_speed speed;
  78        bool link_up;
  79
  80        switch (hw->phy.media_type) {
  81        case ixgbe_media_type_fiber:
  82                hw->mac.ops.check_link(hw, &speed, &link_up, false);
  83                /* if link is down, assume supported */
  84                if (link_up)
  85                        supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
  86                                true : false;
  87                else
  88                        supported = true;
  89                break;
  90        case ixgbe_media_type_backplane:
  91                supported = true;
  92                break;
  93        case ixgbe_media_type_copper:
  94                /* only some copper devices support flow control autoneg */
  95                switch (hw->device_id) {
  96                case IXGBE_DEV_ID_82599_T3_LOM:
  97                case IXGBE_DEV_ID_X540T:
  98                case IXGBE_DEV_ID_X540T1:
  99                case IXGBE_DEV_ID_X550T:
 100                case IXGBE_DEV_ID_X550T1:
 101                case IXGBE_DEV_ID_X550EM_X_10G_T:
 102                case IXGBE_DEV_ID_X550EM_A_10G_T:
 103                case IXGBE_DEV_ID_X550EM_A_1G_T:
 104                case IXGBE_DEV_ID_X550EM_A_1G_T_L:
 105                        supported = true;
 106                        break;
 107                default:
 108                        break;
 109                }
 110        default:
 111                break;
 112        }
 113
 114        return supported;
 115}
 116
 117/**
 118 *  ixgbe_setup_fc_generic - Set up flow control
 119 *  @hw: pointer to hardware structure
 120 *
 121 *  Called at init time to set up flow control.
 122 **/
 123s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
 124{
 125        s32 ret_val = 0;
 126        u32 reg = 0, reg_bp = 0;
 127        u16 reg_cu = 0;
 128        bool locked = false;
 129
 130        /*
 131         * Validate the requested mode.  Strict IEEE mode does not allow
 132         * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 133         */
 134        if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 135                hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 136                return IXGBE_ERR_INVALID_LINK_SETTINGS;
 137        }
 138
 139        /*
 140         * 10gig parts do not have a word in the EEPROM to determine the
 141         * default flow control setting, so we explicitly set it to full.
 142         */
 143        if (hw->fc.requested_mode == ixgbe_fc_default)
 144                hw->fc.requested_mode = ixgbe_fc_full;
 145
 146        /*
 147         * Set up the 1G and 10G flow control advertisement registers so the
 148         * HW will be able to do fc autoneg once the cable is plugged in.  If
 149         * we link at 10G, the 1G advertisement is harmless and vice versa.
 150         */
 151        switch (hw->phy.media_type) {
 152        case ixgbe_media_type_backplane:
 153                /* some MAC's need RMW protection on AUTOC */
 154                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 155                if (ret_val)
 156                        return ret_val;
 157
 158                /* fall through - only backplane uses autoc */
 159        case ixgbe_media_type_fiber:
 160                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 161
 162                break;
 163        case ixgbe_media_type_copper:
 164                hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 165                                        MDIO_MMD_AN, &reg_cu);
 166                break;
 167        default:
 168                break;
 169        }
 170
 171        /*
 172         * The possible values of fc.requested_mode are:
 173         * 0: Flow control is completely disabled
 174         * 1: Rx flow control is enabled (we can receive pause frames,
 175         *    but not send pause frames).
 176         * 2: Tx flow control is enabled (we can send pause frames but
 177         *    we do not support receiving pause frames).
 178         * 3: Both Rx and Tx flow control (symmetric) are enabled.
 179         * other: Invalid.
 180         */
 181        switch (hw->fc.requested_mode) {
 182        case ixgbe_fc_none:
 183                /* Flow control completely disabled by software override. */
 184                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 185                if (hw->phy.media_type == ixgbe_media_type_backplane)
 186                        reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 187                                    IXGBE_AUTOC_ASM_PAUSE);
 188                else if (hw->phy.media_type == ixgbe_media_type_copper)
 189                        reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 190                break;
 191        case ixgbe_fc_tx_pause:
 192                /*
 193                 * Tx Flow control is enabled, and Rx Flow control is
 194                 * disabled by software override.
 195                 */
 196                reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 197                reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 198                if (hw->phy.media_type == ixgbe_media_type_backplane) {
 199                        reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 200                        reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 201                } else if (hw->phy.media_type == ixgbe_media_type_copper) {
 202                        reg_cu |= IXGBE_TAF_ASM_PAUSE;
 203                        reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 204                }
 205                break;
 206        case ixgbe_fc_rx_pause:
 207                /*
 208                 * Rx Flow control is enabled and Tx Flow control is
 209                 * disabled by software override. Since there really
 210                 * isn't a way to advertise that we are capable of RX
 211                 * Pause ONLY, we will advertise that we support both
 212                 * symmetric and asymmetric Rx PAUSE, as such we fall
 213                 * through to the fc_full statement.  Later, we will
 214                 * disable the adapter's ability to send PAUSE frames.
 215                 */
 216        case ixgbe_fc_full:
 217                /* Flow control (both Rx and Tx) is enabled by SW override. */
 218                reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 219                if (hw->phy.media_type == ixgbe_media_type_backplane)
 220                        reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 221                                  IXGBE_AUTOC_ASM_PAUSE;
 222                else if (hw->phy.media_type == ixgbe_media_type_copper)
 223                        reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 224                break;
 225        default:
 226                hw_dbg(hw, "Flow control param set incorrectly\n");
 227                return IXGBE_ERR_CONFIG;
 228        }
 229
 230        if (hw->mac.type != ixgbe_mac_X540) {
 231                /*
 232                 * Enable auto-negotiation between the MAC & PHY;
 233                 * the MAC will advertise clause 37 flow control.
 234                 */
 235                IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 236                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 237
 238                /* Disable AN timeout */
 239                if (hw->fc.strict_ieee)
 240                        reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 241
 242                IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 243                hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 244        }
 245
 246        /*
 247         * AUTOC restart handles negotiation of 1G and 10G on backplane
 248         * and copper. There is no need to set the PCS1GCTL register.
 249         *
 250         */
 251        if (hw->phy.media_type == ixgbe_media_type_backplane) {
 252                /* Need the SW/FW semaphore around AUTOC writes if 82599 and
 253                 * LESM is on, likewise reset_pipeline requries the lock as
 254                 * it also writes AUTOC.
 255                 */
 256                ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 257                if (ret_val)
 258                        return ret_val;
 259
 260        } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 261                   ixgbe_device_supports_autoneg_fc(hw)) {
 262                hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 263                                      MDIO_MMD_AN, reg_cu);
 264        }
 265
 266        hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 267        return ret_val;
 268}
 269
 270/**
 271 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 272 *  @hw: pointer to hardware structure
 273 *
 274 *  Starts the hardware by filling the bus info structure and media type, clears
 275 *  all on chip counters, initializes receive address registers, multicast
 276 *  table, VLAN filter table, calls routine to set up link and flow control
 277 *  settings, and leaves transmit and receive units disabled and uninitialized
 278 **/
 279s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 280{
 281        s32 ret_val;
 282        u32 ctrl_ext;
 283        u16 device_caps;
 284
 285        /* Set the media type */
 286        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 287
 288        /* Identify the PHY */
 289        hw->phy.ops.identify(hw);
 290
 291        /* Clear the VLAN filter table */
 292        hw->mac.ops.clear_vfta(hw);
 293
 294        /* Clear statistics registers */
 295        hw->mac.ops.clear_hw_cntrs(hw);
 296
 297        /* Set No Snoop Disable */
 298        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 299        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 300        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 301        IXGBE_WRITE_FLUSH(hw);
 302
 303        /* Setup flow control if method for doing so */
 304        if (hw->mac.ops.setup_fc) {
 305                ret_val = hw->mac.ops.setup_fc(hw);
 306                if (ret_val)
 307                        return ret_val;
 308        }
 309
 310        /* Cashe bit indicating need for crosstalk fix */
 311        switch (hw->mac.type) {
 312        case ixgbe_mac_82599EB:
 313        case ixgbe_mac_X550EM_x:
 314        case ixgbe_mac_x550em_a:
 315                hw->mac.ops.get_device_caps(hw, &device_caps);
 316                if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
 317                        hw->need_crosstalk_fix = false;
 318                else
 319                        hw->need_crosstalk_fix = true;
 320                break;
 321        default:
 322                hw->need_crosstalk_fix = false;
 323                break;
 324        }
 325
 326        /* Clear adapter stopped flag */
 327        hw->adapter_stopped = false;
 328
 329        return 0;
 330}
 331
 332/**
 333 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 334 *  @hw: pointer to hw structure
 335 *
 336 * Performs the init sequence common to the second generation
 337 * of 10 GbE devices.
 338 * Devices in the second generation:
 339 *     82599
 340 *     X540
 341 **/
 342s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 343{
 344        u32 i;
 345
 346        /* Clear the rate limiters */
 347        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 348                IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 349                IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 350        }
 351        IXGBE_WRITE_FLUSH(hw);
 352
 353#ifndef CONFIG_ARCH_WANT_RELAX_ORDER
 354        /* Disable relaxed ordering */
 355        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 356                u32 regval;
 357
 358                regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 359                regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 360                IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 361        }
 362
 363        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 364                u32 regval;
 365
 366                regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 367                regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 368                            IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 369                IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 370        }
 371#endif
 372        return 0;
 373}
 374
 375/**
 376 *  ixgbe_init_hw_generic - Generic hardware initialization
 377 *  @hw: pointer to hardware structure
 378 *
 379 *  Initialize the hardware by resetting the hardware, filling the bus info
 380 *  structure and media type, clears all on chip counters, initializes receive
 381 *  address registers, multicast table, VLAN filter table, calls routine to set
 382 *  up link and flow control settings, and leaves transmit and receive units
 383 *  disabled and uninitialized
 384 **/
 385s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 386{
 387        s32 status;
 388
 389        /* Reset the hardware */
 390        status = hw->mac.ops.reset_hw(hw);
 391
 392        if (status == 0) {
 393                /* Start the HW */
 394                status = hw->mac.ops.start_hw(hw);
 395        }
 396
 397        /* Initialize the LED link active for LED blink support */
 398        if (hw->mac.ops.init_led_link_act)
 399                hw->mac.ops.init_led_link_act(hw);
 400
 401        return status;
 402}
 403
 404/**
 405 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 406 *  @hw: pointer to hardware structure
 407 *
 408 *  Clears all hardware statistics counters by reading them from the hardware
 409 *  Statistics counters are clear on read.
 410 **/
 411s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 412{
 413        u16 i = 0;
 414
 415        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 416        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 417        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 418        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 419        for (i = 0; i < 8; i++)
 420                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 421
 422        IXGBE_READ_REG(hw, IXGBE_MLFC);
 423        IXGBE_READ_REG(hw, IXGBE_MRFC);
 424        IXGBE_READ_REG(hw, IXGBE_RLEC);
 425        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 426        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 427        if (hw->mac.type >= ixgbe_mac_82599EB) {
 428                IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 429                IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 430        } else {
 431                IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 432                IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 433        }
 434
 435        for (i = 0; i < 8; i++) {
 436                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 437                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 438                if (hw->mac.type >= ixgbe_mac_82599EB) {
 439                        IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 440                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 441                } else {
 442                        IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 443                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 444                }
 445        }
 446        if (hw->mac.type >= ixgbe_mac_82599EB)
 447                for (i = 0; i < 8; i++)
 448                        IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 449        IXGBE_READ_REG(hw, IXGBE_PRC64);
 450        IXGBE_READ_REG(hw, IXGBE_PRC127);
 451        IXGBE_READ_REG(hw, IXGBE_PRC255);
 452        IXGBE_READ_REG(hw, IXGBE_PRC511);
 453        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 454        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 455        IXGBE_READ_REG(hw, IXGBE_GPRC);
 456        IXGBE_READ_REG(hw, IXGBE_BPRC);
 457        IXGBE_READ_REG(hw, IXGBE_MPRC);
 458        IXGBE_READ_REG(hw, IXGBE_GPTC);
 459        IXGBE_READ_REG(hw, IXGBE_GORCL);
 460        IXGBE_READ_REG(hw, IXGBE_GORCH);
 461        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 462        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 463        if (hw->mac.type == ixgbe_mac_82598EB)
 464                for (i = 0; i < 8; i++)
 465                        IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 466        IXGBE_READ_REG(hw, IXGBE_RUC);
 467        IXGBE_READ_REG(hw, IXGBE_RFC);
 468        IXGBE_READ_REG(hw, IXGBE_ROC);
 469        IXGBE_READ_REG(hw, IXGBE_RJC);
 470        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 471        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 472        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 473        IXGBE_READ_REG(hw, IXGBE_TORL);
 474        IXGBE_READ_REG(hw, IXGBE_TORH);
 475        IXGBE_READ_REG(hw, IXGBE_TPR);
 476        IXGBE_READ_REG(hw, IXGBE_TPT);
 477        IXGBE_READ_REG(hw, IXGBE_PTC64);
 478        IXGBE_READ_REG(hw, IXGBE_PTC127);
 479        IXGBE_READ_REG(hw, IXGBE_PTC255);
 480        IXGBE_READ_REG(hw, IXGBE_PTC511);
 481        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 482        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 483        IXGBE_READ_REG(hw, IXGBE_MPTC);
 484        IXGBE_READ_REG(hw, IXGBE_BPTC);
 485        for (i = 0; i < 16; i++) {
 486                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 487                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 488                if (hw->mac.type >= ixgbe_mac_82599EB) {
 489                        IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 490                        IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 491                        IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 492                        IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 493                        IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 494                } else {
 495                        IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 496                        IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 497                }
 498        }
 499
 500        if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 501                if (hw->phy.id == 0)
 502                        hw->phy.ops.identify(hw);
 503                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 504                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 505                hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 506                hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 507        }
 508
 509        return 0;
 510}
 511
 512/**
 513 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 514 *  @hw: pointer to hardware structure
 515 *  @pba_num: stores the part number string from the EEPROM
 516 *  @pba_num_size: part number string buffer length
 517 *
 518 *  Reads the part number string from the EEPROM.
 519 **/
 520s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 521                                  u32 pba_num_size)
 522{
 523        s32 ret_val;
 524        u16 data;
 525        u16 pba_ptr;
 526        u16 offset;
 527        u16 length;
 528
 529        if (pba_num == NULL) {
 530                hw_dbg(hw, "PBA string buffer was null\n");
 531                return IXGBE_ERR_INVALID_ARGUMENT;
 532        }
 533
 534        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 535        if (ret_val) {
 536                hw_dbg(hw, "NVM Read Error\n");
 537                return ret_val;
 538        }
 539
 540        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 541        if (ret_val) {
 542                hw_dbg(hw, "NVM Read Error\n");
 543                return ret_val;
 544        }
 545
 546        /*
 547         * if data is not ptr guard the PBA must be in legacy format which
 548         * means pba_ptr is actually our second data word for the PBA number
 549         * and we can decode it into an ascii string
 550         */
 551        if (data != IXGBE_PBANUM_PTR_GUARD) {
 552                hw_dbg(hw, "NVM PBA number is not stored as string\n");
 553
 554                /* we will need 11 characters to store the PBA */
 555                if (pba_num_size < 11) {
 556                        hw_dbg(hw, "PBA string buffer too small\n");
 557                        return IXGBE_ERR_NO_SPACE;
 558                }
 559
 560                /* extract hex string from data and pba_ptr */
 561                pba_num[0] = (data >> 12) & 0xF;
 562                pba_num[1] = (data >> 8) & 0xF;
 563                pba_num[2] = (data >> 4) & 0xF;
 564                pba_num[3] = data & 0xF;
 565                pba_num[4] = (pba_ptr >> 12) & 0xF;
 566                pba_num[5] = (pba_ptr >> 8) & 0xF;
 567                pba_num[6] = '-';
 568                pba_num[7] = 0;
 569                pba_num[8] = (pba_ptr >> 4) & 0xF;
 570                pba_num[9] = pba_ptr & 0xF;
 571
 572                /* put a null character on the end of our string */
 573                pba_num[10] = '\0';
 574
 575                /* switch all the data but the '-' to hex char */
 576                for (offset = 0; offset < 10; offset++) {
 577                        if (pba_num[offset] < 0xA)
 578                                pba_num[offset] += '0';
 579                        else if (pba_num[offset] < 0x10)
 580                                pba_num[offset] += 'A' - 0xA;
 581                }
 582
 583                return 0;
 584        }
 585
 586        ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 587        if (ret_val) {
 588                hw_dbg(hw, "NVM Read Error\n");
 589                return ret_val;
 590        }
 591
 592        if (length == 0xFFFF || length == 0) {
 593                hw_dbg(hw, "NVM PBA number section invalid length\n");
 594                return IXGBE_ERR_PBA_SECTION;
 595        }
 596
 597        /* check if pba_num buffer is big enough */
 598        if (pba_num_size  < (((u32)length * 2) - 1)) {
 599                hw_dbg(hw, "PBA string buffer too small\n");
 600                return IXGBE_ERR_NO_SPACE;
 601        }
 602
 603        /* trim pba length from start of string */
 604        pba_ptr++;
 605        length--;
 606
 607        for (offset = 0; offset < length; offset++) {
 608                ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 609                if (ret_val) {
 610                        hw_dbg(hw, "NVM Read Error\n");
 611                        return ret_val;
 612                }
 613                pba_num[offset * 2] = (u8)(data >> 8);
 614                pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 615        }
 616        pba_num[offset * 2] = '\0';
 617
 618        return 0;
 619}
 620
 621/**
 622 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 623 *  @hw: pointer to hardware structure
 624 *  @mac_addr: Adapter MAC address
 625 *
 626 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 627 *  A reset of the adapter must be performed prior to calling this function
 628 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 629 **/
 630s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 631{
 632        u32 rar_high;
 633        u32 rar_low;
 634        u16 i;
 635
 636        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 637        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 638
 639        for (i = 0; i < 4; i++)
 640                mac_addr[i] = (u8)(rar_low >> (i*8));
 641
 642        for (i = 0; i < 2; i++)
 643                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 644
 645        return 0;
 646}
 647
 648enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 649{
 650        switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 651        case IXGBE_PCI_LINK_WIDTH_1:
 652                return ixgbe_bus_width_pcie_x1;
 653        case IXGBE_PCI_LINK_WIDTH_2:
 654                return ixgbe_bus_width_pcie_x2;
 655        case IXGBE_PCI_LINK_WIDTH_4:
 656                return ixgbe_bus_width_pcie_x4;
 657        case IXGBE_PCI_LINK_WIDTH_8:
 658                return ixgbe_bus_width_pcie_x8;
 659        default:
 660                return ixgbe_bus_width_unknown;
 661        }
 662}
 663
 664enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 665{
 666        switch (link_status & IXGBE_PCI_LINK_SPEED) {
 667        case IXGBE_PCI_LINK_SPEED_2500:
 668                return ixgbe_bus_speed_2500;
 669        case IXGBE_PCI_LINK_SPEED_5000:
 670                return ixgbe_bus_speed_5000;
 671        case IXGBE_PCI_LINK_SPEED_8000:
 672                return ixgbe_bus_speed_8000;
 673        default:
 674                return ixgbe_bus_speed_unknown;
 675        }
 676}
 677
 678/**
 679 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 680 *  @hw: pointer to hardware structure
 681 *
 682 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 683 **/
 684s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 685{
 686        u16 link_status;
 687
 688        hw->bus.type = ixgbe_bus_type_pci_express;
 689
 690        /* Get the negotiated link width and speed from PCI config space */
 691        link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 692
 693        hw->bus.width = ixgbe_convert_bus_width(link_status);
 694        hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 695
 696        hw->mac.ops.set_lan_id(hw);
 697
 698        return 0;
 699}
 700
 701/**
 702 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 703 *  @hw: pointer to the HW structure
 704 *
 705 *  Determines the LAN function id by reading memory-mapped registers
 706 *  and swaps the port value if requested.
 707 **/
 708void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 709{
 710        struct ixgbe_bus_info *bus = &hw->bus;
 711        u16 ee_ctrl_4;
 712        u32 reg;
 713
 714        reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 715        bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 716        bus->lan_id = bus->func;
 717
 718        /* check for a port swap */
 719        reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
 720        if (reg & IXGBE_FACTPS_LFS)
 721                bus->func ^= 0x1;
 722
 723        /* Get MAC instance from EEPROM for configuring CS4227 */
 724        if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
 725                hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
 726                bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
 727                                   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
 728        }
 729}
 730
 731/**
 732 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 733 *  @hw: pointer to hardware structure
 734 *
 735 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 736 *  disables transmit and receive units. The adapter_stopped flag is used by
 737 *  the shared code and drivers to determine if the adapter is in a stopped
 738 *  state and should not touch the hardware.
 739 **/
 740s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 741{
 742        u32 reg_val;
 743        u16 i;
 744
 745        /*
 746         * Set the adapter_stopped flag so other driver functions stop touching
 747         * the hardware
 748         */
 749        hw->adapter_stopped = true;
 750
 751        /* Disable the receive unit */
 752        hw->mac.ops.disable_rx(hw);
 753
 754        /* Clear interrupt mask to stop interrupts from being generated */
 755        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 756
 757        /* Clear any pending interrupts, flush previous writes */
 758        IXGBE_READ_REG(hw, IXGBE_EICR);
 759
 760        /* Disable the transmit unit.  Each queue must be disabled. */
 761        for (i = 0; i < hw->mac.max_tx_queues; i++)
 762                IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 763
 764        /* Disable the receive unit by stopping each queue */
 765        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 766                reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 767                reg_val &= ~IXGBE_RXDCTL_ENABLE;
 768                reg_val |= IXGBE_RXDCTL_SWFLSH;
 769                IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 770        }
 771
 772        /* flush all queues disables */
 773        IXGBE_WRITE_FLUSH(hw);
 774        usleep_range(1000, 2000);
 775
 776        /*
 777         * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 778         * access and verify no pending requests
 779         */
 780        return ixgbe_disable_pcie_master(hw);
 781}
 782
 783/**
 784 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
 785 *  @hw: pointer to hardware structure
 786 *
 787 *  Store the index for the link active LED. This will be used to support
 788 *  blinking the LED.
 789 **/
 790s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
 791{
 792        struct ixgbe_mac_info *mac = &hw->mac;
 793        u32 led_reg, led_mode;
 794        u16 i;
 795
 796        led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 797
 798        /* Get LED link active from the LEDCTL register */
 799        for (i = 0; i < 4; i++) {
 800                led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
 801
 802                if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
 803                    IXGBE_LED_LINK_ACTIVE) {
 804                        mac->led_link_act = i;
 805                        return 0;
 806                }
 807        }
 808
 809        /* If LEDCTL register does not have the LED link active set, then use
 810         * known MAC defaults.
 811         */
 812        switch (hw->mac.type) {
 813        case ixgbe_mac_x550em_a:
 814                mac->led_link_act = 0;
 815                break;
 816        case ixgbe_mac_X550EM_x:
 817                mac->led_link_act = 1;
 818                break;
 819        default:
 820                mac->led_link_act = 2;
 821        }
 822
 823        return 0;
 824}
 825
 826/**
 827 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 828 *  @hw: pointer to hardware structure
 829 *  @index: led number to turn on
 830 **/
 831s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 832{
 833        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 834
 835        if (index > 3)
 836                return IXGBE_ERR_PARAM;
 837
 838        /* To turn on the LED, set mode to ON. */
 839        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 840        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 841        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 842        IXGBE_WRITE_FLUSH(hw);
 843
 844        return 0;
 845}
 846
 847/**
 848 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 849 *  @hw: pointer to hardware structure
 850 *  @index: led number to turn off
 851 **/
 852s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 853{
 854        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 855
 856        if (index > 3)
 857                return IXGBE_ERR_PARAM;
 858
 859        /* To turn off the LED, set mode to OFF. */
 860        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 861        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 862        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 863        IXGBE_WRITE_FLUSH(hw);
 864
 865        return 0;
 866}
 867
 868/**
 869 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 870 *  @hw: pointer to hardware structure
 871 *
 872 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 873 *  ixgbe_hw struct in order to set up EEPROM access.
 874 **/
 875s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 876{
 877        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 878        u32 eec;
 879        u16 eeprom_size;
 880
 881        if (eeprom->type == ixgbe_eeprom_uninitialized) {
 882                eeprom->type = ixgbe_eeprom_none;
 883                /* Set default semaphore delay to 10ms which is a well
 884                 * tested value */
 885                eeprom->semaphore_delay = 10;
 886                /* Clear EEPROM page size, it will be initialized as needed */
 887                eeprom->word_page_size = 0;
 888
 889                /*
 890                 * Check for EEPROM present first.
 891                 * If not present leave as none
 892                 */
 893                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 894                if (eec & IXGBE_EEC_PRES) {
 895                        eeprom->type = ixgbe_eeprom_spi;
 896
 897                        /*
 898                         * SPI EEPROM is assumed here.  This code would need to
 899                         * change if a future EEPROM is not SPI.
 900                         */
 901                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 902                                            IXGBE_EEC_SIZE_SHIFT);
 903                        eeprom->word_size = BIT(eeprom_size +
 904                                                 IXGBE_EEPROM_WORD_SIZE_SHIFT);
 905                }
 906
 907                if (eec & IXGBE_EEC_ADDR_SIZE)
 908                        eeprom->address_bits = 16;
 909                else
 910                        eeprom->address_bits = 8;
 911                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 912                       eeprom->type, eeprom->word_size, eeprom->address_bits);
 913        }
 914
 915        return 0;
 916}
 917
 918/**
 919 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 920 *  @hw: pointer to hardware structure
 921 *  @offset: offset within the EEPROM to write
 922 *  @words: number of words
 923 *  @data: 16 bit word(s) to write to EEPROM
 924 *
 925 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 926 **/
 927s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 928                                               u16 words, u16 *data)
 929{
 930        s32 status;
 931        u16 i, count;
 932
 933        hw->eeprom.ops.init_params(hw);
 934
 935        if (words == 0)
 936                return IXGBE_ERR_INVALID_ARGUMENT;
 937
 938        if (offset + words > hw->eeprom.word_size)
 939                return IXGBE_ERR_EEPROM;
 940
 941        /*
 942         * The EEPROM page size cannot be queried from the chip. We do lazy
 943         * initialization. It is worth to do that when we write large buffer.
 944         */
 945        if ((hw->eeprom.word_page_size == 0) &&
 946            (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 947                ixgbe_detect_eeprom_page_size_generic(hw, offset);
 948
 949        /*
 950         * We cannot hold synchronization semaphores for too long
 951         * to avoid other entity starvation. However it is more efficient
 952         * to read in bursts than synchronizing access for each word.
 953         */
 954        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 955                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 956                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 957                status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 958                                                            count, &data[i]);
 959
 960                if (status != 0)
 961                        break;
 962        }
 963
 964        return status;
 965}
 966
 967/**
 968 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 969 *  @hw: pointer to hardware structure
 970 *  @offset: offset within the EEPROM to be written to
 971 *  @words: number of word(s)
 972 *  @data: 16 bit word(s) to be written to the EEPROM
 973 *
 974 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 975 *  EEPROM will most likely contain an invalid checksum.
 976 **/
 977static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 978                                              u16 words, u16 *data)
 979{
 980        s32 status;
 981        u16 word;
 982        u16 page_size;
 983        u16 i;
 984        u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 985
 986        /* Prepare the EEPROM for writing  */
 987        status = ixgbe_acquire_eeprom(hw);
 988        if (status)
 989                return status;
 990
 991        if (ixgbe_ready_eeprom(hw) != 0) {
 992                ixgbe_release_eeprom(hw);
 993                return IXGBE_ERR_EEPROM;
 994        }
 995
 996        for (i = 0; i < words; i++) {
 997                ixgbe_standby_eeprom(hw);
 998
 999                /* Send the WRITE ENABLE command (8 bit opcode) */
1000                ixgbe_shift_out_eeprom_bits(hw,
1001                                            IXGBE_EEPROM_WREN_OPCODE_SPI,
1002                                            IXGBE_EEPROM_OPCODE_BITS);
1003
1004                ixgbe_standby_eeprom(hw);
1005
1006                /* Some SPI eeproms use the 8th address bit embedded
1007                 * in the opcode
1008                 */
1009                if ((hw->eeprom.address_bits == 8) &&
1010                    ((offset + i) >= 128))
1011                        write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1012
1013                /* Send the Write command (8-bit opcode + addr) */
1014                ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1015                                            IXGBE_EEPROM_OPCODE_BITS);
1016                ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1017                                            hw->eeprom.address_bits);
1018
1019                page_size = hw->eeprom.word_page_size;
1020
1021                /* Send the data in burst via SPI */
1022                do {
1023                        word = data[i];
1024                        word = (word >> 8) | (word << 8);
1025                        ixgbe_shift_out_eeprom_bits(hw, word, 16);
1026
1027                        if (page_size == 0)
1028                                break;
1029
1030                        /* do not wrap around page */
1031                        if (((offset + i) & (page_size - 1)) ==
1032                            (page_size - 1))
1033                                break;
1034                } while (++i < words);
1035
1036                ixgbe_standby_eeprom(hw);
1037                usleep_range(10000, 20000);
1038        }
1039        /* Done with writing - release the EEPROM */
1040        ixgbe_release_eeprom(hw);
1041
1042        return 0;
1043}
1044
1045/**
1046 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1047 *  @hw: pointer to hardware structure
1048 *  @offset: offset within the EEPROM to be written to
1049 *  @data: 16 bit word to be written to the EEPROM
1050 *
1051 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1052 *  EEPROM will most likely contain an invalid checksum.
1053 **/
1054s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1055{
1056        hw->eeprom.ops.init_params(hw);
1057
1058        if (offset >= hw->eeprom.word_size)
1059                return IXGBE_ERR_EEPROM;
1060
1061        return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1062}
1063
1064/**
1065 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1066 *  @hw: pointer to hardware structure
1067 *  @offset: offset within the EEPROM to be read
1068 *  @words: number of word(s)
1069 *  @data: read 16 bit words(s) from EEPROM
1070 *
1071 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1072 **/
1073s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1074                                              u16 words, u16 *data)
1075{
1076        s32 status;
1077        u16 i, count;
1078
1079        hw->eeprom.ops.init_params(hw);
1080
1081        if (words == 0)
1082                return IXGBE_ERR_INVALID_ARGUMENT;
1083
1084        if (offset + words > hw->eeprom.word_size)
1085                return IXGBE_ERR_EEPROM;
1086
1087        /*
1088         * We cannot hold synchronization semaphores for too long
1089         * to avoid other entity starvation. However it is more efficient
1090         * to read in bursts than synchronizing access for each word.
1091         */
1092        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1093                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1094                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1095
1096                status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1097                                                           count, &data[i]);
1098
1099                if (status)
1100                        return status;
1101        }
1102
1103        return 0;
1104}
1105
1106/**
1107 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1108 *  @hw: pointer to hardware structure
1109 *  @offset: offset within the EEPROM to be read
1110 *  @words: number of word(s)
1111 *  @data: read 16 bit word(s) from EEPROM
1112 *
1113 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1114 **/
1115static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1116                                             u16 words, u16 *data)
1117{
1118        s32 status;
1119        u16 word_in;
1120        u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1121        u16 i;
1122
1123        /* Prepare the EEPROM for reading  */
1124        status = ixgbe_acquire_eeprom(hw);
1125        if (status)
1126                return status;
1127
1128        if (ixgbe_ready_eeprom(hw) != 0) {
1129                ixgbe_release_eeprom(hw);
1130                return IXGBE_ERR_EEPROM;
1131        }
1132
1133        for (i = 0; i < words; i++) {
1134                ixgbe_standby_eeprom(hw);
1135                /* Some SPI eeproms use the 8th address bit embedded
1136                 * in the opcode
1137                 */
1138                if ((hw->eeprom.address_bits == 8) &&
1139                    ((offset + i) >= 128))
1140                        read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1141
1142                /* Send the READ command (opcode + addr) */
1143                ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1144                                            IXGBE_EEPROM_OPCODE_BITS);
1145                ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1146                                            hw->eeprom.address_bits);
1147
1148                /* Read the data. */
1149                word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1150                data[i] = (word_in >> 8) | (word_in << 8);
1151        }
1152
1153        /* End this read operation */
1154        ixgbe_release_eeprom(hw);
1155
1156        return 0;
1157}
1158
1159/**
1160 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1161 *  @hw: pointer to hardware structure
1162 *  @offset: offset within the EEPROM to be read
1163 *  @data: read 16 bit value from EEPROM
1164 *
1165 *  Reads 16 bit value from EEPROM through bit-bang method
1166 **/
1167s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1168                                       u16 *data)
1169{
1170        hw->eeprom.ops.init_params(hw);
1171
1172        if (offset >= hw->eeprom.word_size)
1173                return IXGBE_ERR_EEPROM;
1174
1175        return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1176}
1177
1178/**
1179 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1180 *  @hw: pointer to hardware structure
1181 *  @offset: offset of word in the EEPROM to read
1182 *  @words: number of word(s)
1183 *  @data: 16 bit word(s) from the EEPROM
1184 *
1185 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1186 **/
1187s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1188                                   u16 words, u16 *data)
1189{
1190        u32 eerd;
1191        s32 status;
1192        u32 i;
1193
1194        hw->eeprom.ops.init_params(hw);
1195
1196        if (words == 0)
1197                return IXGBE_ERR_INVALID_ARGUMENT;
1198
1199        if (offset >= hw->eeprom.word_size)
1200                return IXGBE_ERR_EEPROM;
1201
1202        for (i = 0; i < words; i++) {
1203                eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1204                       IXGBE_EEPROM_RW_REG_START;
1205
1206                IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1207                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1208
1209                if (status == 0) {
1210                        data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1211                                   IXGBE_EEPROM_RW_REG_DATA);
1212                } else {
1213                        hw_dbg(hw, "Eeprom read timed out\n");
1214                        return status;
1215                }
1216        }
1217
1218        return 0;
1219}
1220
1221/**
1222 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1223 *  @hw: pointer to hardware structure
1224 *  @offset: offset within the EEPROM to be used as a scratch pad
1225 *
1226 *  Discover EEPROM page size by writing marching data at given offset.
1227 *  This function is called only when we are writing a new large buffer
1228 *  at given offset so the data would be overwritten anyway.
1229 **/
1230static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1231                                                 u16 offset)
1232{
1233        u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1234        s32 status;
1235        u16 i;
1236
1237        for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1238                data[i] = i;
1239
1240        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1241        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1242                                             IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1243        hw->eeprom.word_page_size = 0;
1244        if (status)
1245                return status;
1246
1247        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1248        if (status)
1249                return status;
1250
1251        /*
1252         * When writing in burst more than the actual page size
1253         * EEPROM address wraps around current page.
1254         */
1255        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1256
1257        hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1258               hw->eeprom.word_page_size);
1259        return 0;
1260}
1261
1262/**
1263 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1264 *  @hw: pointer to hardware structure
1265 *  @offset: offset of  word in the EEPROM to read
1266 *  @data: word read from the EEPROM
1267 *
1268 *  Reads a 16 bit word from the EEPROM using the EERD register.
1269 **/
1270s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1271{
1272        return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1273}
1274
1275/**
1276 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1277 *  @hw: pointer to hardware structure
1278 *  @offset: offset of  word in the EEPROM to write
1279 *  @words: number of words
1280 *  @data: word(s) write to the EEPROM
1281 *
1282 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1283 **/
1284s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1285                                    u16 words, u16 *data)
1286{
1287        u32 eewr;
1288        s32 status;
1289        u16 i;
1290
1291        hw->eeprom.ops.init_params(hw);
1292
1293        if (words == 0)
1294                return IXGBE_ERR_INVALID_ARGUMENT;
1295
1296        if (offset >= hw->eeprom.word_size)
1297                return IXGBE_ERR_EEPROM;
1298
1299        for (i = 0; i < words; i++) {
1300                eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1301                       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1302                       IXGBE_EEPROM_RW_REG_START;
1303
1304                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1305                if (status) {
1306                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1307                        return status;
1308                }
1309
1310                IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1311
1312                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1313                if (status) {
1314                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1315                        return status;
1316                }
1317        }
1318
1319        return 0;
1320}
1321
1322/**
1323 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1324 *  @hw: pointer to hardware structure
1325 *  @offset: offset of  word in the EEPROM to write
1326 *  @data: word write to the EEPROM
1327 *
1328 *  Write a 16 bit word to the EEPROM using the EEWR register.
1329 **/
1330s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1331{
1332        return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1333}
1334
1335/**
1336 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1337 *  @hw: pointer to hardware structure
1338 *  @ee_reg: EEPROM flag for polling
1339 *
1340 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1341 *  read or write is done respectively.
1342 **/
1343static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1344{
1345        u32 i;
1346        u32 reg;
1347
1348        for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1349                if (ee_reg == IXGBE_NVM_POLL_READ)
1350                        reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1351                else
1352                        reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1353
1354                if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1355                        return 0;
1356                }
1357                udelay(5);
1358        }
1359        return IXGBE_ERR_EEPROM;
1360}
1361
1362/**
1363 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1364 *  @hw: pointer to hardware structure
1365 *
1366 *  Prepares EEPROM for access using bit-bang method. This function should
1367 *  be called before issuing a command to the EEPROM.
1368 **/
1369static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1370{
1371        u32 eec;
1372        u32 i;
1373
1374        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1375                return IXGBE_ERR_SWFW_SYNC;
1376
1377        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1378
1379        /* Request EEPROM Access */
1380        eec |= IXGBE_EEC_REQ;
1381        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1382
1383        for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1384                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1385                if (eec & IXGBE_EEC_GNT)
1386                        break;
1387                udelay(5);
1388        }
1389
1390        /* Release if grant not acquired */
1391        if (!(eec & IXGBE_EEC_GNT)) {
1392                eec &= ~IXGBE_EEC_REQ;
1393                IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1394                hw_dbg(hw, "Could not acquire EEPROM grant\n");
1395
1396                hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1397                return IXGBE_ERR_EEPROM;
1398        }
1399
1400        /* Setup EEPROM for Read/Write */
1401        /* Clear CS and SK */
1402        eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1403        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1404        IXGBE_WRITE_FLUSH(hw);
1405        udelay(1);
1406        return 0;
1407}
1408
1409/**
1410 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1411 *  @hw: pointer to hardware structure
1412 *
1413 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1414 **/
1415static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1416{
1417        u32 timeout = 2000;
1418        u32 i;
1419        u32 swsm;
1420
1421        /* Get SMBI software semaphore between device drivers first */
1422        for (i = 0; i < timeout; i++) {
1423                /*
1424                 * If the SMBI bit is 0 when we read it, then the bit will be
1425                 * set and we have the semaphore
1426                 */
1427                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1428                if (!(swsm & IXGBE_SWSM_SMBI))
1429                        break;
1430                usleep_range(50, 100);
1431        }
1432
1433        if (i == timeout) {
1434                hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1435                /* this release is particularly important because our attempts
1436                 * above to get the semaphore may have succeeded, and if there
1437                 * was a timeout, we should unconditionally clear the semaphore
1438                 * bits to free the driver to make progress
1439                 */
1440                ixgbe_release_eeprom_semaphore(hw);
1441
1442                usleep_range(50, 100);
1443                /* one last try
1444                 * If the SMBI bit is 0 when we read it, then the bit will be
1445                 * set and we have the semaphore
1446                 */
1447                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1448                if (swsm & IXGBE_SWSM_SMBI) {
1449                        hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1450                        return IXGBE_ERR_EEPROM;
1451                }
1452        }
1453
1454        /* Now get the semaphore between SW/FW through the SWESMBI bit */
1455        for (i = 0; i < timeout; i++) {
1456                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1457
1458                /* Set the SW EEPROM semaphore bit to request access */
1459                swsm |= IXGBE_SWSM_SWESMBI;
1460                IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1461
1462                /* If we set the bit successfully then we got the
1463                 * semaphore.
1464                 */
1465                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1466                if (swsm & IXGBE_SWSM_SWESMBI)
1467                        break;
1468
1469                usleep_range(50, 100);
1470        }
1471
1472        /* Release semaphores and return error if SW EEPROM semaphore
1473         * was not granted because we don't have access to the EEPROM
1474         */
1475        if (i >= timeout) {
1476                hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1477                ixgbe_release_eeprom_semaphore(hw);
1478                return IXGBE_ERR_EEPROM;
1479        }
1480
1481        return 0;
1482}
1483
1484/**
1485 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1486 *  @hw: pointer to hardware structure
1487 *
1488 *  This function clears hardware semaphore bits.
1489 **/
1490static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1491{
1492        u32 swsm;
1493
1494        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1495
1496        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1497        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1498        IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1499        IXGBE_WRITE_FLUSH(hw);
1500}
1501
1502/**
1503 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1504 *  @hw: pointer to hardware structure
1505 **/
1506static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1507{
1508        u16 i;
1509        u8 spi_stat_reg;
1510
1511        /*
1512         * Read "Status Register" repeatedly until the LSB is cleared.  The
1513         * EEPROM will signal that the command has been completed by clearing
1514         * bit 0 of the internal status register.  If it's not cleared within
1515         * 5 milliseconds, then error out.
1516         */
1517        for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1518                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1519                                            IXGBE_EEPROM_OPCODE_BITS);
1520                spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1521                if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1522                        break;
1523
1524                udelay(5);
1525                ixgbe_standby_eeprom(hw);
1526        }
1527
1528        /*
1529         * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1530         * devices (and only 0-5mSec on 5V devices)
1531         */
1532        if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1533                hw_dbg(hw, "SPI EEPROM Status error\n");
1534                return IXGBE_ERR_EEPROM;
1535        }
1536
1537        return 0;
1538}
1539
1540/**
1541 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1542 *  @hw: pointer to hardware structure
1543 **/
1544static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1545{
1546        u32 eec;
1547
1548        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1549
1550        /* Toggle CS to flush commands */
1551        eec |= IXGBE_EEC_CS;
1552        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1553        IXGBE_WRITE_FLUSH(hw);
1554        udelay(1);
1555        eec &= ~IXGBE_EEC_CS;
1556        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1557        IXGBE_WRITE_FLUSH(hw);
1558        udelay(1);
1559}
1560
1561/**
1562 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1563 *  @hw: pointer to hardware structure
1564 *  @data: data to send to the EEPROM
1565 *  @count: number of bits to shift out
1566 **/
1567static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1568                                        u16 count)
1569{
1570        u32 eec;
1571        u32 mask;
1572        u32 i;
1573
1574        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1575
1576        /*
1577         * Mask is used to shift "count" bits of "data" out to the EEPROM
1578         * one bit at a time.  Determine the starting bit based on count
1579         */
1580        mask = BIT(count - 1);
1581
1582        for (i = 0; i < count; i++) {
1583                /*
1584                 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1585                 * "1", and then raising and then lowering the clock (the SK
1586                 * bit controls the clock input to the EEPROM).  A "0" is
1587                 * shifted out to the EEPROM by setting "DI" to "0" and then
1588                 * raising and then lowering the clock.
1589                 */
1590                if (data & mask)
1591                        eec |= IXGBE_EEC_DI;
1592                else
1593                        eec &= ~IXGBE_EEC_DI;
1594
1595                IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1596                IXGBE_WRITE_FLUSH(hw);
1597
1598                udelay(1);
1599
1600                ixgbe_raise_eeprom_clk(hw, &eec);
1601                ixgbe_lower_eeprom_clk(hw, &eec);
1602
1603                /*
1604                 * Shift mask to signify next bit of data to shift in to the
1605                 * EEPROM
1606                 */
1607                mask = mask >> 1;
1608        }
1609
1610        /* We leave the "DI" bit set to "0" when we leave this routine. */
1611        eec &= ~IXGBE_EEC_DI;
1612        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1613        IXGBE_WRITE_FLUSH(hw);
1614}
1615
1616/**
1617 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1618 *  @hw: pointer to hardware structure
1619 **/
1620static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1621{
1622        u32 eec;
1623        u32 i;
1624        u16 data = 0;
1625
1626        /*
1627         * In order to read a register from the EEPROM, we need to shift
1628         * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1629         * the clock input to the EEPROM (setting the SK bit), and then reading
1630         * the value of the "DO" bit.  During this "shifting in" process the
1631         * "DI" bit should always be clear.
1632         */
1633        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1634
1635        eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1636
1637        for (i = 0; i < count; i++) {
1638                data = data << 1;
1639                ixgbe_raise_eeprom_clk(hw, &eec);
1640
1641                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1642
1643                eec &= ~(IXGBE_EEC_DI);
1644                if (eec & IXGBE_EEC_DO)
1645                        data |= 1;
1646
1647                ixgbe_lower_eeprom_clk(hw, &eec);
1648        }
1649
1650        return data;
1651}
1652
1653/**
1654 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1655 *  @hw: pointer to hardware structure
1656 *  @eec: EEC register's current value
1657 **/
1658static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1659{
1660        /*
1661         * Raise the clock input to the EEPROM
1662         * (setting the SK bit), then delay
1663         */
1664        *eec = *eec | IXGBE_EEC_SK;
1665        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1666        IXGBE_WRITE_FLUSH(hw);
1667        udelay(1);
1668}
1669
1670/**
1671 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1672 *  @hw: pointer to hardware structure
1673 *  @eecd: EECD's current value
1674 **/
1675static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1676{
1677        /*
1678         * Lower the clock input to the EEPROM (clearing the SK bit), then
1679         * delay
1680         */
1681        *eec = *eec & ~IXGBE_EEC_SK;
1682        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1683        IXGBE_WRITE_FLUSH(hw);
1684        udelay(1);
1685}
1686
1687/**
1688 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1689 *  @hw: pointer to hardware structure
1690 **/
1691static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1692{
1693        u32 eec;
1694
1695        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1696
1697        eec |= IXGBE_EEC_CS;  /* Pull CS high */
1698        eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1699
1700        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1701        IXGBE_WRITE_FLUSH(hw);
1702
1703        udelay(1);
1704
1705        /* Stop requesting EEPROM access */
1706        eec &= ~IXGBE_EEC_REQ;
1707        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1708
1709        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1710
1711        /*
1712         * Delay before attempt to obtain semaphore again to allow FW
1713         * access. semaphore_delay is in ms we need us for usleep_range
1714         */
1715        usleep_range(hw->eeprom.semaphore_delay * 1000,
1716                     hw->eeprom.semaphore_delay * 2000);
1717}
1718
1719/**
1720 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1721 *  @hw: pointer to hardware structure
1722 **/
1723s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1724{
1725        u16 i;
1726        u16 j;
1727        u16 checksum = 0;
1728        u16 length = 0;
1729        u16 pointer = 0;
1730        u16 word = 0;
1731
1732        /* Include 0x0-0x3F in the checksum */
1733        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1734                if (hw->eeprom.ops.read(hw, i, &word)) {
1735                        hw_dbg(hw, "EEPROM read failed\n");
1736                        break;
1737                }
1738                checksum += word;
1739        }
1740
1741        /* Include all data from pointers except for the fw pointer */
1742        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1743                if (hw->eeprom.ops.read(hw, i, &pointer)) {
1744                        hw_dbg(hw, "EEPROM read failed\n");
1745                        return IXGBE_ERR_EEPROM;
1746                }
1747
1748                /* If the pointer seems invalid */
1749                if (pointer == 0xFFFF || pointer == 0)
1750                        continue;
1751
1752                if (hw->eeprom.ops.read(hw, pointer, &length)) {
1753                        hw_dbg(hw, "EEPROM read failed\n");
1754                        return IXGBE_ERR_EEPROM;
1755                }
1756
1757                if (length == 0xFFFF || length == 0)
1758                        continue;
1759
1760                for (j = pointer + 1; j <= pointer + length; j++) {
1761                        if (hw->eeprom.ops.read(hw, j, &word)) {
1762                                hw_dbg(hw, "EEPROM read failed\n");
1763                                return IXGBE_ERR_EEPROM;
1764                        }
1765                        checksum += word;
1766                }
1767        }
1768
1769        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1770
1771        return (s32)checksum;
1772}
1773
1774/**
1775 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1776 *  @hw: pointer to hardware structure
1777 *  @checksum_val: calculated checksum
1778 *
1779 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1780 *  caller does not need checksum_val, the value can be NULL.
1781 **/
1782s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1783                                           u16 *checksum_val)
1784{
1785        s32 status;
1786        u16 checksum;
1787        u16 read_checksum = 0;
1788
1789        /*
1790         * Read the first word from the EEPROM. If this times out or fails, do
1791         * not continue or we could be in for a very long wait while every
1792         * EEPROM read fails
1793         */
1794        status = hw->eeprom.ops.read(hw, 0, &checksum);
1795        if (status) {
1796                hw_dbg(hw, "EEPROM read failed\n");
1797                return status;
1798        }
1799
1800        status = hw->eeprom.ops.calc_checksum(hw);
1801        if (status < 0)
1802                return status;
1803
1804        checksum = (u16)(status & 0xffff);
1805
1806        status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1807        if (status) {
1808                hw_dbg(hw, "EEPROM read failed\n");
1809                return status;
1810        }
1811
1812        /* Verify read checksum from EEPROM is the same as
1813         * calculated checksum
1814         */
1815        if (read_checksum != checksum)
1816                status = IXGBE_ERR_EEPROM_CHECKSUM;
1817
1818        /* If the user cares, return the calculated checksum */
1819        if (checksum_val)
1820                *checksum_val = checksum;
1821
1822        return status;
1823}
1824
1825/**
1826 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1827 *  @hw: pointer to hardware structure
1828 **/
1829s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1830{
1831        s32 status;
1832        u16 checksum;
1833
1834        /*
1835         * Read the first word from the EEPROM. If this times out or fails, do
1836         * not continue or we could be in for a very long wait while every
1837         * EEPROM read fails
1838         */
1839        status = hw->eeprom.ops.read(hw, 0, &checksum);
1840        if (status) {
1841                hw_dbg(hw, "EEPROM read failed\n");
1842                return status;
1843        }
1844
1845        status = hw->eeprom.ops.calc_checksum(hw);
1846        if (status < 0)
1847                return status;
1848
1849        checksum = (u16)(status & 0xffff);
1850
1851        status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1852
1853        return status;
1854}
1855
1856/**
1857 *  ixgbe_set_rar_generic - Set Rx address register
1858 *  @hw: pointer to hardware structure
1859 *  @index: Receive address register to write
1860 *  @addr: Address to put into receive address register
1861 *  @vmdq: VMDq "set" or "pool" index
1862 *  @enable_addr: set flag that address is active
1863 *
1864 *  Puts an ethernet address into a receive address register.
1865 **/
1866s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1867                          u32 enable_addr)
1868{
1869        u32 rar_low, rar_high;
1870        u32 rar_entries = hw->mac.num_rar_entries;
1871
1872        /* Make sure we are using a valid rar index range */
1873        if (index >= rar_entries) {
1874                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1875                return IXGBE_ERR_INVALID_ARGUMENT;
1876        }
1877
1878        /* setup VMDq pool selection before this RAR gets enabled */
1879        hw->mac.ops.set_vmdq(hw, index, vmdq);
1880
1881        /*
1882         * HW expects these in little endian so we reverse the byte
1883         * order from network order (big endian) to little endian
1884         */
1885        rar_low = ((u32)addr[0] |
1886                   ((u32)addr[1] << 8) |
1887                   ((u32)addr[2] << 16) |
1888                   ((u32)addr[3] << 24));
1889        /*
1890         * Some parts put the VMDq setting in the extra RAH bits,
1891         * so save everything except the lower 16 bits that hold part
1892         * of the address and the address valid bit.
1893         */
1894        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1895        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1896        rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1897
1898        if (enable_addr != 0)
1899                rar_high |= IXGBE_RAH_AV;
1900
1901        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1902        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1903
1904        return 0;
1905}
1906
1907/**
1908 *  ixgbe_clear_rar_generic - Remove Rx address register
1909 *  @hw: pointer to hardware structure
1910 *  @index: Receive address register to write
1911 *
1912 *  Clears an ethernet address from a receive address register.
1913 **/
1914s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1915{
1916        u32 rar_high;
1917        u32 rar_entries = hw->mac.num_rar_entries;
1918
1919        /* Make sure we are using a valid rar index range */
1920        if (index >= rar_entries) {
1921                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1922                return IXGBE_ERR_INVALID_ARGUMENT;
1923        }
1924
1925        /*
1926         * Some parts put the VMDq setting in the extra RAH bits,
1927         * so save everything except the lower 16 bits that hold part
1928         * of the address and the address valid bit.
1929         */
1930        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1931        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1932
1933        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1934        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1935
1936        /* clear VMDq pool/queue selection for this RAR */
1937        hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1938
1939        return 0;
1940}
1941
1942/**
1943 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1944 *  @hw: pointer to hardware structure
1945 *
1946 *  Places the MAC address in receive address register 0 and clears the rest
1947 *  of the receive address registers. Clears the multicast table. Assumes
1948 *  the receiver is in reset when the routine is called.
1949 **/
1950s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1951{
1952        u32 i;
1953        u32 rar_entries = hw->mac.num_rar_entries;
1954
1955        /*
1956         * If the current mac address is valid, assume it is a software override
1957         * to the permanent address.
1958         * Otherwise, use the permanent address from the eeprom.
1959         */
1960        if (!is_valid_ether_addr(hw->mac.addr)) {
1961                /* Get the MAC address from the RAR0 for later reference */
1962                hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1963
1964                hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1965        } else {
1966                /* Setup the receive address. */
1967                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1968                hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1969
1970                hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1971        }
1972
1973        /*  clear VMDq pool/queue selection for RAR 0 */
1974        hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1975
1976        hw->addr_ctrl.overflow_promisc = 0;
1977
1978        hw->addr_ctrl.rar_used_count = 1;
1979
1980        /* Zero out the other receive addresses. */
1981        hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1982        for (i = 1; i < rar_entries; i++) {
1983                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1984                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1985        }
1986
1987        /* Clear the MTA */
1988        hw->addr_ctrl.mta_in_use = 0;
1989        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1990
1991        hw_dbg(hw, " Clearing MTA\n");
1992        for (i = 0; i < hw->mac.mcft_size; i++)
1993                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1994
1995        if (hw->mac.ops.init_uta_tables)
1996                hw->mac.ops.init_uta_tables(hw);
1997
1998        return 0;
1999}
2000
2001/**
2002 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2003 *  @hw: pointer to hardware structure
2004 *  @mc_addr: the multicast address
2005 *
2006 *  Extracts the 12 bits, from a multicast address, to determine which
2007 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2008 *  incoming rx multicast addresses, to determine the bit-vector to check in
2009 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2010 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2011 *  to mc_filter_type.
2012 **/
2013static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2014{
2015        u32 vector = 0;
2016
2017        switch (hw->mac.mc_filter_type) {
2018        case 0:   /* use bits [47:36] of the address */
2019                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2020                break;
2021        case 1:   /* use bits [46:35] of the address */
2022                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2023                break;
2024        case 2:   /* use bits [45:34] of the address */
2025                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2026                break;
2027        case 3:   /* use bits [43:32] of the address */
2028                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2029                break;
2030        default:  /* Invalid mc_filter_type */
2031                hw_dbg(hw, "MC filter type param set incorrectly\n");
2032                break;
2033        }
2034
2035        /* vector can only be 12-bits or boundary will be exceeded */
2036        vector &= 0xFFF;
2037        return vector;
2038}
2039
2040/**
2041 *  ixgbe_set_mta - Set bit-vector in multicast table
2042 *  @hw: pointer to hardware structure
2043 *  @hash_value: Multicast address hash value
2044 *
2045 *  Sets the bit-vector in the multicast table.
2046 **/
2047static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2048{
2049        u32 vector;
2050        u32 vector_bit;
2051        u32 vector_reg;
2052
2053        hw->addr_ctrl.mta_in_use++;
2054
2055        vector = ixgbe_mta_vector(hw, mc_addr);
2056        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2057
2058        /*
2059         * The MTA is a register array of 128 32-bit registers. It is treated
2060         * like an array of 4096 bits.  We want to set bit
2061         * BitArray[vector_value]. So we figure out what register the bit is
2062         * in, read it, OR in the new bit, then write back the new value.  The
2063         * register is determined by the upper 7 bits of the vector value and
2064         * the bit within that register are determined by the lower 5 bits of
2065         * the value.
2066         */
2067        vector_reg = (vector >> 5) & 0x7F;
2068        vector_bit = vector & 0x1F;
2069        hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2070}
2071
2072/**
2073 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2074 *  @hw: pointer to hardware structure
2075 *  @netdev: pointer to net device structure
2076 *
2077 *  The given list replaces any existing list. Clears the MC addrs from receive
2078 *  address registers and the multicast table. Uses unused receive address
2079 *  registers for the first multicast addresses, and hashes the rest into the
2080 *  multicast table.
2081 **/
2082s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2083                                      struct net_device *netdev)
2084{
2085        struct netdev_hw_addr *ha;
2086        u32 i;
2087
2088        /*
2089         * Set the new number of MC addresses that we are being requested to
2090         * use.
2091         */
2092        hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2093        hw->addr_ctrl.mta_in_use = 0;
2094
2095        /* Clear mta_shadow */
2096        hw_dbg(hw, " Clearing MTA\n");
2097        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2098
2099        /* Update mta shadow */
2100        netdev_for_each_mc_addr(ha, netdev) {
2101                hw_dbg(hw, " Adding the multicast addresses:\n");
2102                ixgbe_set_mta(hw, ha->addr);
2103        }
2104
2105        /* Enable mta */
2106        for (i = 0; i < hw->mac.mcft_size; i++)
2107                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2108                                      hw->mac.mta_shadow[i]);
2109
2110        if (hw->addr_ctrl.mta_in_use > 0)
2111                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2112                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2113
2114        hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2115        return 0;
2116}
2117
2118/**
2119 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2120 *  @hw: pointer to hardware structure
2121 *
2122 *  Enables multicast address in RAR and the use of the multicast hash table.
2123 **/
2124s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2125{
2126        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2127
2128        if (a->mta_in_use > 0)
2129                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2130                                hw->mac.mc_filter_type);
2131
2132        return 0;
2133}
2134
2135/**
2136 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2137 *  @hw: pointer to hardware structure
2138 *
2139 *  Disables multicast address in RAR and the use of the multicast hash table.
2140 **/
2141s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2142{
2143        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2144
2145        if (a->mta_in_use > 0)
2146                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2147
2148        return 0;
2149}
2150
2151/**
2152 *  ixgbe_fc_enable_generic - Enable flow control
2153 *  @hw: pointer to hardware structure
2154 *
2155 *  Enable flow control according to the current settings.
2156 **/
2157s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2158{
2159        u32 mflcn_reg, fccfg_reg;
2160        u32 reg;
2161        u32 fcrtl, fcrth;
2162        int i;
2163
2164        /* Validate the water mark configuration. */
2165        if (!hw->fc.pause_time)
2166                return IXGBE_ERR_INVALID_LINK_SETTINGS;
2167
2168        /* Low water mark of zero causes XOFF floods */
2169        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2170                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2171                    hw->fc.high_water[i]) {
2172                        if (!hw->fc.low_water[i] ||
2173                            hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2174                                hw_dbg(hw, "Invalid water mark configuration\n");
2175                                return IXGBE_ERR_INVALID_LINK_SETTINGS;
2176                        }
2177                }
2178        }
2179
2180        /* Negotiate the fc mode to use */
2181        hw->mac.ops.fc_autoneg(hw);
2182
2183        /* Disable any previous flow control settings */
2184        mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2185        mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2186
2187        fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2188        fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2189
2190        /*
2191         * The possible values of fc.current_mode are:
2192         * 0: Flow control is completely disabled
2193         * 1: Rx flow control is enabled (we can receive pause frames,
2194         *    but not send pause frames).
2195         * 2: Tx flow control is enabled (we can send pause frames but
2196         *    we do not support receiving pause frames).
2197         * 3: Both Rx and Tx flow control (symmetric) are enabled.
2198         * other: Invalid.
2199         */
2200        switch (hw->fc.current_mode) {
2201        case ixgbe_fc_none:
2202                /*
2203                 * Flow control is disabled by software override or autoneg.
2204                 * The code below will actually disable it in the HW.
2205                 */
2206                break;
2207        case ixgbe_fc_rx_pause:
2208                /*
2209                 * Rx Flow control is enabled and Tx Flow control is
2210                 * disabled by software override. Since there really
2211                 * isn't a way to advertise that we are capable of RX
2212                 * Pause ONLY, we will advertise that we support both
2213                 * symmetric and asymmetric Rx PAUSE.  Later, we will
2214                 * disable the adapter's ability to send PAUSE frames.
2215                 */
2216                mflcn_reg |= IXGBE_MFLCN_RFCE;
2217                break;
2218        case ixgbe_fc_tx_pause:
2219                /*
2220                 * Tx Flow control is enabled, and Rx Flow control is
2221                 * disabled by software override.
2222                 */
2223                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2224                break;
2225        case ixgbe_fc_full:
2226                /* Flow control (both Rx and Tx) is enabled by SW override. */
2227                mflcn_reg |= IXGBE_MFLCN_RFCE;
2228                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2229                break;
2230        default:
2231                hw_dbg(hw, "Flow control param set incorrectly\n");
2232                return IXGBE_ERR_CONFIG;
2233        }
2234
2235        /* Set 802.3x based flow control settings. */
2236        mflcn_reg |= IXGBE_MFLCN_DPF;
2237        IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2238        IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2239
2240        /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2241        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2242                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2243                    hw->fc.high_water[i]) {
2244                        fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2245                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2246                        fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2247                } else {
2248                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2249                        /*
2250                         * In order to prevent Tx hangs when the internal Tx
2251                         * switch is enabled we must set the high water mark
2252                         * to the Rx packet buffer size - 24KB.  This allows
2253                         * the Tx switch to function even under heavy Rx
2254                         * workloads.
2255                         */
2256                        fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2257                }
2258
2259                IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2260        }
2261
2262        /* Configure pause time (2 TCs per register) */
2263        reg = hw->fc.pause_time * 0x00010001;
2264        for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2265                IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2266
2267        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2268
2269        return 0;
2270}
2271
2272/**
2273 *  ixgbe_negotiate_fc - Negotiate flow control
2274 *  @hw: pointer to hardware structure
2275 *  @adv_reg: flow control advertised settings
2276 *  @lp_reg: link partner's flow control settings
2277 *  @adv_sym: symmetric pause bit in advertisement
2278 *  @adv_asm: asymmetric pause bit in advertisement
2279 *  @lp_sym: symmetric pause bit in link partner advertisement
2280 *  @lp_asm: asymmetric pause bit in link partner advertisement
2281 *
2282 *  Find the intersection between advertised settings and link partner's
2283 *  advertised settings
2284 **/
2285s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2286                       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2287{
2288        if ((!(adv_reg)) ||  (!(lp_reg)))
2289                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2290
2291        if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2292                /*
2293                 * Now we need to check if the user selected Rx ONLY
2294                 * of pause frames.  In this case, we had to advertise
2295                 * FULL flow control because we could not advertise RX
2296                 * ONLY. Hence, we must now check to see if we need to
2297                 * turn OFF the TRANSMISSION of PAUSE frames.
2298                 */
2299                if (hw->fc.requested_mode == ixgbe_fc_full) {
2300                        hw->fc.current_mode = ixgbe_fc_full;
2301                        hw_dbg(hw, "Flow Control = FULL.\n");
2302                } else {
2303                        hw->fc.current_mode = ixgbe_fc_rx_pause;
2304                        hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2305                }
2306        } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2307                   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2308                hw->fc.current_mode = ixgbe_fc_tx_pause;
2309                hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2310        } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2311                   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2312                hw->fc.current_mode = ixgbe_fc_rx_pause;
2313                hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2314        } else {
2315                hw->fc.current_mode = ixgbe_fc_none;
2316                hw_dbg(hw, "Flow Control = NONE.\n");
2317        }
2318        return 0;
2319}
2320
2321/**
2322 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2323 *  @hw: pointer to hardware structure
2324 *
2325 *  Enable flow control according on 1 gig fiber.
2326 **/
2327static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2328{
2329        u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2330        s32 ret_val;
2331
2332        /*
2333         * On multispeed fiber at 1g, bail out if
2334         * - link is up but AN did not complete, or if
2335         * - link is up and AN completed but timed out
2336         */
2337
2338        linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2339        if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2340            (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2341                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2342
2343        pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2344        pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2345
2346        ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2347                               pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2348                               IXGBE_PCS1GANA_ASM_PAUSE,
2349                               IXGBE_PCS1GANA_SYM_PAUSE,
2350                               IXGBE_PCS1GANA_ASM_PAUSE);
2351
2352        return ret_val;
2353}
2354
2355/**
2356 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2357 *  @hw: pointer to hardware structure
2358 *
2359 *  Enable flow control according to IEEE clause 37.
2360 **/
2361static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2362{
2363        u32 links2, anlp1_reg, autoc_reg, links;
2364        s32 ret_val;
2365
2366        /*
2367         * On backplane, bail out if
2368         * - backplane autoneg was not completed, or if
2369         * - we are 82599 and link partner is not AN enabled
2370         */
2371        links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2372        if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2373                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2374
2375        if (hw->mac.type == ixgbe_mac_82599EB) {
2376                links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2377                if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2378                        return IXGBE_ERR_FC_NOT_NEGOTIATED;
2379        }
2380        /*
2381         * Read the 10g AN autoc and LP ability registers and resolve
2382         * local flow control settings accordingly
2383         */
2384        autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2385        anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2386
2387        ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2388                anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2389                IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2390
2391        return ret_val;
2392}
2393
2394/**
2395 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2396 *  @hw: pointer to hardware structure
2397 *
2398 *  Enable flow control according to IEEE clause 37.
2399 **/
2400static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2401{
2402        u16 technology_ability_reg = 0;
2403        u16 lp_technology_ability_reg = 0;
2404
2405        hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2406                             MDIO_MMD_AN,
2407                             &technology_ability_reg);
2408        hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2409                             MDIO_MMD_AN,
2410                             &lp_technology_ability_reg);
2411
2412        return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2413                                  (u32)lp_technology_ability_reg,
2414                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2415                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2416}
2417
2418/**
2419 *  ixgbe_fc_autoneg - Configure flow control
2420 *  @hw: pointer to hardware structure
2421 *
2422 *  Compares our advertised flow control capabilities to those advertised by
2423 *  our link partner, and determines the proper flow control mode to use.
2424 **/
2425void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2426{
2427        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2428        ixgbe_link_speed speed;
2429        bool link_up;
2430
2431        /*
2432         * AN should have completed when the cable was plugged in.
2433         * Look for reasons to bail out.  Bail out if:
2434         * - FC autoneg is disabled, or if
2435         * - link is not up.
2436         *
2437         * Since we're being called from an LSC, link is already known to be up.
2438         * So use link_up_wait_to_complete=false.
2439         */
2440        if (hw->fc.disable_fc_autoneg)
2441                goto out;
2442
2443        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2444        if (!link_up)
2445                goto out;
2446
2447        switch (hw->phy.media_type) {
2448        /* Autoneg flow control on fiber adapters */
2449        case ixgbe_media_type_fiber:
2450                if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2451                        ret_val = ixgbe_fc_autoneg_fiber(hw);
2452                break;
2453
2454        /* Autoneg flow control on backplane adapters */
2455        case ixgbe_media_type_backplane:
2456                ret_val = ixgbe_fc_autoneg_backplane(hw);
2457                break;
2458
2459        /* Autoneg flow control on copper adapters */
2460        case ixgbe_media_type_copper:
2461                if (ixgbe_device_supports_autoneg_fc(hw))
2462                        ret_val = ixgbe_fc_autoneg_copper(hw);
2463                break;
2464
2465        default:
2466                break;
2467        }
2468
2469out:
2470        if (ret_val == 0) {
2471                hw->fc.fc_was_autonegged = true;
2472        } else {
2473                hw->fc.fc_was_autonegged = false;
2474                hw->fc.current_mode = hw->fc.requested_mode;
2475        }
2476}
2477
2478/**
2479 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2480 * @hw: pointer to hardware structure
2481 *
2482 * System-wide timeout range is encoded in PCIe Device Control2 register.
2483 *
2484 *  Add 10% to specified maximum and return the number of times to poll for
2485 *  completion timeout, in units of 100 microsec.  Never return less than
2486 *  800 = 80 millisec.
2487 **/
2488static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2489{
2490        s16 devctl2;
2491        u32 pollcnt;
2492
2493        devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2494        devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2495
2496        switch (devctl2) {
2497        case IXGBE_PCIDEVCTRL2_65_130ms:
2498                 pollcnt = 1300;         /* 130 millisec */
2499                break;
2500        case IXGBE_PCIDEVCTRL2_260_520ms:
2501                pollcnt = 5200;         /* 520 millisec */
2502                break;
2503        case IXGBE_PCIDEVCTRL2_1_2s:
2504                pollcnt = 20000;        /* 2 sec */
2505                break;
2506        case IXGBE_PCIDEVCTRL2_4_8s:
2507                pollcnt = 80000;        /* 8 sec */
2508                break;
2509        case IXGBE_PCIDEVCTRL2_17_34s:
2510                pollcnt = 34000;        /* 34 sec */
2511                break;
2512        case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2513        case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2514        case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2515        case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2516        default:
2517                pollcnt = 800;          /* 80 millisec minimum */
2518                break;
2519        }
2520
2521        /* add 10% to spec maximum */
2522        return (pollcnt * 11) / 10;
2523}
2524
2525/**
2526 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2527 *  @hw: pointer to hardware structure
2528 *
2529 *  Disables PCI-Express master access and verifies there are no pending
2530 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2531 *  bit hasn't caused the master requests to be disabled, else 0
2532 *  is returned signifying master requests disabled.
2533 **/
2534static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2535{
2536        u32 i, poll;
2537        u16 value;
2538
2539        /* Always set this bit to ensure any future transactions are blocked */
2540        IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2541
2542        /* Poll for bit to read as set */
2543        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2544                if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2545                        break;
2546                usleep_range(100, 120);
2547        }
2548        if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2549                hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2550                goto gio_disable_fail;
2551        }
2552
2553        /* Exit if master requests are blocked */
2554        if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2555            ixgbe_removed(hw->hw_addr))
2556                return 0;
2557
2558        /* Poll for master request bit to clear */
2559        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2560                udelay(100);
2561                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2562                        return 0;
2563        }
2564
2565        /*
2566         * Two consecutive resets are required via CTRL.RST per datasheet
2567         * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2568         * of this need.  The first reset prevents new master requests from
2569         * being issued by our device.  We then must wait 1usec or more for any
2570         * remaining completions from the PCIe bus to trickle in, and then reset
2571         * again to clear out any effects they may have had on our device.
2572         */
2573        hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2574gio_disable_fail:
2575        hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2576
2577        if (hw->mac.type >= ixgbe_mac_X550)
2578                return 0;
2579
2580        /*
2581         * Before proceeding, make sure that the PCIe block does not have
2582         * transactions pending.
2583         */
2584        poll = ixgbe_pcie_timeout_poll(hw);
2585        for (i = 0; i < poll; i++) {
2586                udelay(100);
2587                value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2588                if (ixgbe_removed(hw->hw_addr))
2589                        return 0;
2590                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2591                        return 0;
2592        }
2593
2594        hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2595        return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2596}
2597
2598/**
2599 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2600 *  @hw: pointer to hardware structure
2601 *  @mask: Mask to specify which semaphore to acquire
2602 *
2603 *  Acquires the SWFW semaphore through the GSSR register for the specified
2604 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2605 **/
2606s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2607{
2608        u32 gssr = 0;
2609        u32 swmask = mask;
2610        u32 fwmask = mask << 5;
2611        u32 timeout = 200;
2612        u32 i;
2613
2614        for (i = 0; i < timeout; i++) {
2615                /*
2616                 * SW NVM semaphore bit is used for access to all
2617                 * SW_FW_SYNC bits (not just NVM)
2618                 */
2619                if (ixgbe_get_eeprom_semaphore(hw))
2620                        return IXGBE_ERR_SWFW_SYNC;
2621
2622                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2623                if (!(gssr & (fwmask | swmask))) {
2624                        gssr |= swmask;
2625                        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2626                        ixgbe_release_eeprom_semaphore(hw);
2627                        return 0;
2628                } else {
2629                        /* Resource is currently in use by FW or SW */
2630                        ixgbe_release_eeprom_semaphore(hw);
2631                        usleep_range(5000, 10000);
2632                }
2633        }
2634
2635        /* If time expired clear the bits holding the lock and retry */
2636        if (gssr & (fwmask | swmask))
2637                ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2638
2639        usleep_range(5000, 10000);
2640        return IXGBE_ERR_SWFW_SYNC;
2641}
2642
2643/**
2644 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2645 *  @hw: pointer to hardware structure
2646 *  @mask: Mask to specify which semaphore to release
2647 *
2648 *  Releases the SWFW semaphore through the GSSR register for the specified
2649 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2650 **/
2651void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2652{
2653        u32 gssr;
2654        u32 swmask = mask;
2655
2656        ixgbe_get_eeprom_semaphore(hw);
2657
2658        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2659        gssr &= ~swmask;
2660        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2661
2662        ixgbe_release_eeprom_semaphore(hw);
2663}
2664
2665/**
2666 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2667 * @hw: pointer to hardware structure
2668 * @reg_val: Value we read from AUTOC
2669 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2670 *          true in this the generic case.
2671 *
2672 * The default case requires no protection so just to the register read.
2673 **/
2674s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2675{
2676        *locked = false;
2677        *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2678        return 0;
2679}
2680
2681/**
2682 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2683 * @hw: pointer to hardware structure
2684 * @reg_val: value to write to AUTOC
2685 * @locked: bool to indicate whether the SW/FW lock was already taken by
2686 *          previous read.
2687 **/
2688s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2689{
2690        IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2691        return 0;
2692}
2693
2694/**
2695 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2696 *  @hw: pointer to hardware structure
2697 *
2698 *  Stops the receive data path and waits for the HW to internally
2699 *  empty the Rx security block.
2700 **/
2701s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2702{
2703#define IXGBE_MAX_SECRX_POLL 40
2704        int i;
2705        int secrxreg;
2706
2707        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2708        secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2709        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2710        for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2711                secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2712                if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2713                        break;
2714                else
2715                        /* Use interrupt-safe sleep just in case */
2716                        udelay(1000);
2717        }
2718
2719        /* For informational purposes only */
2720        if (i >= IXGBE_MAX_SECRX_POLL)
2721                hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2722
2723        return 0;
2724
2725}
2726
2727/**
2728 *  ixgbe_enable_rx_buff - Enables the receive data path
2729 *  @hw: pointer to hardware structure
2730 *
2731 *  Enables the receive data path
2732 **/
2733s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2734{
2735        u32 secrxreg;
2736
2737        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2738        secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2739        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2740        IXGBE_WRITE_FLUSH(hw);
2741
2742        return 0;
2743}
2744
2745/**
2746 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2747 *  @hw: pointer to hardware structure
2748 *  @regval: register value to write to RXCTRL
2749 *
2750 *  Enables the Rx DMA unit
2751 **/
2752s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2753{
2754        if (regval & IXGBE_RXCTRL_RXEN)
2755                hw->mac.ops.enable_rx(hw);
2756        else
2757                hw->mac.ops.disable_rx(hw);
2758
2759        return 0;
2760}
2761
2762/**
2763 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2764 *  @hw: pointer to hardware structure
2765 *  @index: led number to blink
2766 **/
2767s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2768{
2769        ixgbe_link_speed speed = 0;
2770        bool link_up = false;
2771        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2772        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2773        bool locked = false;
2774        s32 ret_val;
2775
2776        if (index > 3)
2777                return IXGBE_ERR_PARAM;
2778
2779        /*
2780         * Link must be up to auto-blink the LEDs;
2781         * Force it if link is down.
2782         */
2783        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2784
2785        if (!link_up) {
2786                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2787                if (ret_val)
2788                        return ret_val;
2789
2790                autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2791                autoc_reg |= IXGBE_AUTOC_FLU;
2792
2793                ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2794                if (ret_val)
2795                        return ret_val;
2796
2797                IXGBE_WRITE_FLUSH(hw);
2798
2799                usleep_range(10000, 20000);
2800        }
2801
2802        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2803        led_reg |= IXGBE_LED_BLINK(index);
2804        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2805        IXGBE_WRITE_FLUSH(hw);
2806
2807        return 0;
2808}
2809
2810/**
2811 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2812 *  @hw: pointer to hardware structure
2813 *  @index: led number to stop blinking
2814 **/
2815s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2816{
2817        u32 autoc_reg = 0;
2818        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2819        bool locked = false;
2820        s32 ret_val;
2821
2822        if (index > 3)
2823                return IXGBE_ERR_PARAM;
2824
2825        ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2826        if (ret_val)
2827                return ret_val;
2828
2829        autoc_reg &= ~IXGBE_AUTOC_FLU;
2830        autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2831
2832        ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2833        if (ret_val)
2834                return ret_val;
2835
2836        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2837        led_reg &= ~IXGBE_LED_BLINK(index);
2838        led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2839        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2840        IXGBE_WRITE_FLUSH(hw);
2841
2842        return 0;
2843}
2844
2845/**
2846 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2847 *  @hw: pointer to hardware structure
2848 *  @san_mac_offset: SAN MAC address offset
2849 *
2850 *  This function will read the EEPROM location for the SAN MAC address
2851 *  pointer, and returns the value at that location.  This is used in both
2852 *  get and set mac_addr routines.
2853 **/
2854static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2855                                        u16 *san_mac_offset)
2856{
2857        s32 ret_val;
2858
2859        /*
2860         * First read the EEPROM pointer to see if the MAC addresses are
2861         * available.
2862         */
2863        ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2864                                      san_mac_offset);
2865        if (ret_val)
2866                hw_err(hw, "eeprom read at offset %d failed\n",
2867                       IXGBE_SAN_MAC_ADDR_PTR);
2868
2869        return ret_val;
2870}
2871
2872/**
2873 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2874 *  @hw: pointer to hardware structure
2875 *  @san_mac_addr: SAN MAC address
2876 *
2877 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2878 *  per-port, so set_lan_id() must be called before reading the addresses.
2879 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2880 *  upon for non-SFP connections, so we must call it here.
2881 **/
2882s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2883{
2884        u16 san_mac_data, san_mac_offset;
2885        u8 i;
2886        s32 ret_val;
2887
2888        /*
2889         * First read the EEPROM pointer to see if the MAC addresses are
2890         * available.  If they're not, no point in calling set_lan_id() here.
2891         */
2892        ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2893        if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2894
2895                goto san_mac_addr_clr;
2896
2897        /* make sure we know which port we need to program */
2898        hw->mac.ops.set_lan_id(hw);
2899        /* apply the port offset to the address offset */
2900        (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2901                         (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2902        for (i = 0; i < 3; i++) {
2903                ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2904                                              &san_mac_data);
2905                if (ret_val) {
2906                        hw_err(hw, "eeprom read at offset %d failed\n",
2907                               san_mac_offset);
2908                        goto san_mac_addr_clr;
2909                }
2910                san_mac_addr[i * 2] = (u8)(san_mac_data);
2911                san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2912                san_mac_offset++;
2913        }
2914        return 0;
2915
2916san_mac_addr_clr:
2917        /* No addresses available in this EEPROM.  It's not necessarily an
2918         * error though, so just wipe the local address and return.
2919         */
2920        for (i = 0; i < 6; i++)
2921                san_mac_addr[i] = 0xFF;
2922        return ret_val;
2923}
2924
2925/**
2926 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2927 *  @hw: pointer to hardware structure
2928 *
2929 *  Read PCIe configuration space, and get the MSI-X vector count from
2930 *  the capabilities table.
2931 **/
2932u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2933{
2934        u16 msix_count;
2935        u16 max_msix_count;
2936        u16 pcie_offset;
2937
2938        switch (hw->mac.type) {
2939        case ixgbe_mac_82598EB:
2940                pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2941                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2942                break;
2943        case ixgbe_mac_82599EB:
2944        case ixgbe_mac_X540:
2945        case ixgbe_mac_X550:
2946        case ixgbe_mac_X550EM_x:
2947        case ixgbe_mac_x550em_a:
2948                pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2949                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2950                break;
2951        default:
2952                return 1;
2953        }
2954
2955        msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2956        if (ixgbe_removed(hw->hw_addr))
2957                msix_count = 0;
2958        msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2959
2960        /* MSI-X count is zero-based in HW */
2961        msix_count++;
2962
2963        if (msix_count > max_msix_count)
2964                msix_count = max_msix_count;
2965
2966        return msix_count;
2967}
2968
2969/**
2970 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2971 *  @hw: pointer to hardware struct
2972 *  @rar: receive address register index to disassociate
2973 *  @vmdq: VMDq pool index to remove from the rar
2974 **/
2975s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2976{
2977        u32 mpsar_lo, mpsar_hi;
2978        u32 rar_entries = hw->mac.num_rar_entries;
2979
2980        /* Make sure we are using a valid rar index range */
2981        if (rar >= rar_entries) {
2982                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2983                return IXGBE_ERR_INVALID_ARGUMENT;
2984        }
2985
2986        mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2987        mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2988
2989        if (ixgbe_removed(hw->hw_addr))
2990                return 0;
2991
2992        if (!mpsar_lo && !mpsar_hi)
2993                return 0;
2994
2995        if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2996                if (mpsar_lo) {
2997                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2998                        mpsar_lo = 0;
2999                }
3000                if (mpsar_hi) {
3001                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3002                        mpsar_hi = 0;
3003                }
3004        } else if (vmdq < 32) {
3005                mpsar_lo &= ~BIT(vmdq);
3006                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3007        } else {
3008                mpsar_hi &= ~BIT(vmdq - 32);
3009                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3010        }
3011
3012        /* was that the last pool using this rar? */
3013        if (mpsar_lo == 0 && mpsar_hi == 0 &&
3014            rar != 0 && rar != hw->mac.san_mac_rar_index)
3015                hw->mac.ops.clear_rar(hw, rar);
3016
3017        return 0;
3018}
3019
3020/**
3021 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3022 *  @hw: pointer to hardware struct
3023 *  @rar: receive address register index to associate with a VMDq index
3024 *  @vmdq: VMDq pool index
3025 **/
3026s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3027{
3028        u32 mpsar;
3029        u32 rar_entries = hw->mac.num_rar_entries;
3030
3031        /* Make sure we are using a valid rar index range */
3032        if (rar >= rar_entries) {
3033                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3034                return IXGBE_ERR_INVALID_ARGUMENT;
3035        }
3036
3037        if (vmdq < 32) {
3038                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3039                mpsar |= BIT(vmdq);
3040                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3041        } else {
3042                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3043                mpsar |= BIT(vmdq - 32);
3044                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3045        }
3046        return 0;
3047}
3048
3049/**
3050 *  This function should only be involved in the IOV mode.
3051 *  In IOV mode, Default pool is next pool after the number of
3052 *  VFs advertized and not 0.
3053 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3054 *
3055 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3056 *  @hw: pointer to hardware struct
3057 *  @vmdq: VMDq pool index
3058 **/
3059s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3060{
3061        u32 rar = hw->mac.san_mac_rar_index;
3062
3063        if (vmdq < 32) {
3064                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3065                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3066        } else {
3067                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3068                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3069        }
3070
3071        return 0;
3072}
3073
3074/**
3075 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3076 *  @hw: pointer to hardware structure
3077 **/
3078s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3079{
3080        int i;
3081
3082        for (i = 0; i < 128; i++)
3083                IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3084
3085        return 0;
3086}
3087
3088/**
3089 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3090 *  @hw: pointer to hardware structure
3091 *  @vlan: VLAN id to write to VLAN filter
3092 *
3093 *  return the VLVF index where this VLAN id should be placed
3094 *
3095 **/
3096static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3097{
3098        s32 regindex, first_empty_slot;
3099        u32 bits;
3100
3101        /* short cut the special case */
3102        if (vlan == 0)
3103                return 0;
3104
3105        /* if vlvf_bypass is set we don't want to use an empty slot, we
3106         * will simply bypass the VLVF if there are no entries present in the
3107         * VLVF that contain our VLAN
3108         */
3109        first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3110
3111        /* add VLAN enable bit for comparison */
3112        vlan |= IXGBE_VLVF_VIEN;
3113
3114        /* Search for the vlan id in the VLVF entries. Save off the first empty
3115         * slot found along the way.
3116         *
3117         * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3118         */
3119        for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3120                bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3121                if (bits == vlan)
3122                        return regindex;
3123                if (!first_empty_slot && !bits)
3124                        first_empty_slot = regindex;
3125        }
3126
3127        /* If we are here then we didn't find the VLAN.  Return first empty
3128         * slot we found during our search, else error.
3129         */
3130        if (!first_empty_slot)
3131                hw_dbg(hw, "No space in VLVF.\n");
3132
3133        return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3134}
3135
3136/**
3137 *  ixgbe_set_vfta_generic - Set VLAN filter table
3138 *  @hw: pointer to hardware structure
3139 *  @vlan: VLAN id to write to VLAN filter
3140 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3141 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3142 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3143 *
3144 *  Turn on/off specified VLAN in the VLAN filter table.
3145 **/
3146s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3147                           bool vlan_on, bool vlvf_bypass)
3148{
3149        u32 regidx, vfta_delta, vfta, bits;
3150        s32 vlvf_index;
3151
3152        if ((vlan > 4095) || (vind > 63))
3153                return IXGBE_ERR_PARAM;
3154
3155        /*
3156         * this is a 2 part operation - first the VFTA, then the
3157         * VLVF and VLVFB if VT Mode is set
3158         * We don't write the VFTA until we know the VLVF part succeeded.
3159         */
3160
3161        /* Part 1
3162         * The VFTA is a bitstring made up of 128 32-bit registers
3163         * that enable the particular VLAN id, much like the MTA:
3164         *    bits[11-5]: which register
3165         *    bits[4-0]:  which bit in the register
3166         */
3167        regidx = vlan / 32;
3168        vfta_delta = BIT(vlan % 32);
3169        vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3170
3171        /* vfta_delta represents the difference between the current value
3172         * of vfta and the value we want in the register.  Since the diff
3173         * is an XOR mask we can just update vfta using an XOR.
3174         */
3175        vfta_delta &= vlan_on ? ~vfta : vfta;
3176        vfta ^= vfta_delta;
3177
3178        /* Part 2
3179         * If VT Mode is set
3180         *   Either vlan_on
3181         *     make sure the vlan is in VLVF
3182         *     set the vind bit in the matching VLVFB
3183         *   Or !vlan_on
3184         *     clear the pool bit and possibly the vind
3185         */
3186        if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3187                goto vfta_update;
3188
3189        vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3190        if (vlvf_index < 0) {
3191                if (vlvf_bypass)
3192                        goto vfta_update;
3193                return vlvf_index;
3194        }
3195
3196        bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3197
3198        /* set the pool bit */
3199        bits |= BIT(vind % 32);
3200        if (vlan_on)
3201                goto vlvf_update;
3202
3203        /* clear the pool bit */
3204        bits ^= BIT(vind % 32);
3205
3206        if (!bits &&
3207            !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3208                /* Clear VFTA first, then disable VLVF.  Otherwise
3209                 * we run the risk of stray packets leaking into
3210                 * the PF via the default pool
3211                 */
3212                if (vfta_delta)
3213                        IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3214
3215                /* disable VLVF and clear remaining bit from pool */
3216                IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3217                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3218
3219                return 0;
3220        }
3221
3222        /* If there are still bits set in the VLVFB registers
3223         * for the VLAN ID indicated we need to see if the
3224         * caller is requesting that we clear the VFTA entry bit.
3225         * If the caller has requested that we clear the VFTA
3226         * entry bit but there are still pools/VFs using this VLAN
3227         * ID entry then ignore the request.  We're not worried
3228         * about the case where we're turning the VFTA VLAN ID
3229         * entry bit on, only when requested to turn it off as
3230         * there may be multiple pools and/or VFs using the
3231         * VLAN ID entry.  In that case we cannot clear the
3232         * VFTA bit until all pools/VFs using that VLAN ID have also
3233         * been cleared.  This will be indicated by "bits" being
3234         * zero.
3235         */
3236        vfta_delta = 0;
3237
3238vlvf_update:
3239        /* record pool change and enable VLAN ID if not already enabled */
3240        IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3241        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3242
3243vfta_update:
3244        /* Update VFTA now that we are ready for traffic */
3245        if (vfta_delta)
3246                IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3247
3248        return 0;
3249}
3250
3251/**
3252 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3253 *  @hw: pointer to hardware structure
3254 *
3255 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3256 **/
3257s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3258{
3259        u32 offset;
3260
3261        for (offset = 0; offset < hw->mac.vft_size; offset++)
3262                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3263
3264        for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3265                IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3266                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3267                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3268        }
3269
3270        return 0;
3271}
3272
3273/**
3274 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3275 *  @hw: pointer to hardware structure
3276 *
3277 *  Contains the logic to identify if we need to verify link for the
3278 *  crosstalk fix
3279 **/
3280static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3281{
3282        /* Does FW say we need the fix */
3283        if (!hw->need_crosstalk_fix)
3284                return false;
3285
3286        /* Only consider SFP+ PHYs i.e. media type fiber */
3287        switch (hw->mac.ops.get_media_type(hw)) {
3288        case ixgbe_media_type_fiber:
3289        case ixgbe_media_type_fiber_qsfp:
3290                break;
3291        default:
3292                return false;
3293        }
3294
3295        return true;
3296}
3297
3298/**
3299 *  ixgbe_check_mac_link_generic - Determine link and speed status
3300 *  @hw: pointer to hardware structure
3301 *  @speed: pointer to link speed
3302 *  @link_up: true when link is up
3303 *  @link_up_wait_to_complete: bool used to wait for link up or not
3304 *
3305 *  Reads the links register to determine if link is up and the current speed
3306 **/
3307s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3308                                 bool *link_up, bool link_up_wait_to_complete)
3309{
3310        u32 links_reg, links_orig;
3311        u32 i;
3312
3313        /* If Crosstalk fix enabled do the sanity check of making sure
3314         * the SFP+ cage is full.
3315         */
3316        if (ixgbe_need_crosstalk_fix(hw)) {
3317                u32 sfp_cage_full;
3318
3319                switch (hw->mac.type) {
3320                case ixgbe_mac_82599EB:
3321                        sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3322                                        IXGBE_ESDP_SDP2;
3323                        break;
3324                case ixgbe_mac_X550EM_x:
3325                case ixgbe_mac_x550em_a:
3326                        sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3327                                        IXGBE_ESDP_SDP0;
3328                        break;
3329                default:
3330                        /* sanity check - No SFP+ devices here */
3331                        sfp_cage_full = false;
3332                        break;
3333                }
3334
3335                if (!sfp_cage_full) {
3336                        *link_up = false;
3337                        *speed = IXGBE_LINK_SPEED_UNKNOWN;
3338                        return 0;
3339                }
3340        }
3341
3342        /* clear the old state */
3343        links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3344
3345        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3346
3347        if (links_orig != links_reg) {
3348                hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3349                       links_orig, links_reg);
3350        }
3351
3352        if (link_up_wait_to_complete) {
3353                for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3354                        if (links_reg & IXGBE_LINKS_UP) {
3355                                *link_up = true;
3356                                break;
3357                        } else {
3358                                *link_up = false;
3359                        }
3360                        msleep(100);
3361                        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3362                }
3363        } else {
3364                if (links_reg & IXGBE_LINKS_UP)
3365                        *link_up = true;
3366                else
3367                        *link_up = false;
3368        }
3369
3370        switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3371        case IXGBE_LINKS_SPEED_10G_82599:
3372                if ((hw->mac.type >= ixgbe_mac_X550) &&
3373                    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3374                        *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3375                else
3376                        *speed = IXGBE_LINK_SPEED_10GB_FULL;
3377                break;
3378        case IXGBE_LINKS_SPEED_1G_82599:
3379                *speed = IXGBE_LINK_SPEED_1GB_FULL;
3380                break;
3381        case IXGBE_LINKS_SPEED_100_82599:
3382                if ((hw->mac.type >= ixgbe_mac_X550) &&
3383                    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3384                        *speed = IXGBE_LINK_SPEED_5GB_FULL;
3385                else
3386                        *speed = IXGBE_LINK_SPEED_100_FULL;
3387                break;
3388        case IXGBE_LINKS_SPEED_10_X550EM_A:
3389                *speed = IXGBE_LINK_SPEED_UNKNOWN;
3390                if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3391                    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3392                        *speed = IXGBE_LINK_SPEED_10_FULL;
3393                }
3394                break;
3395        default:
3396                *speed = IXGBE_LINK_SPEED_UNKNOWN;
3397        }
3398
3399        return 0;
3400}
3401
3402/**
3403 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3404 *  the EEPROM
3405 *  @hw: pointer to hardware structure
3406 *  @wwnn_prefix: the alternative WWNN prefix
3407 *  @wwpn_prefix: the alternative WWPN prefix
3408 *
3409 *  This function will read the EEPROM from the alternative SAN MAC address
3410 *  block to check the support for the alternative WWNN/WWPN prefix support.
3411 **/
3412s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3413                                        u16 *wwpn_prefix)
3414{
3415        u16 offset, caps;
3416        u16 alt_san_mac_blk_offset;
3417
3418        /* clear output first */
3419        *wwnn_prefix = 0xFFFF;
3420        *wwpn_prefix = 0xFFFF;
3421
3422        /* check if alternative SAN MAC is supported */
3423        offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3424        if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3425                goto wwn_prefix_err;
3426
3427        if ((alt_san_mac_blk_offset == 0) ||
3428            (alt_san_mac_blk_offset == 0xFFFF))
3429                return 0;
3430
3431        /* check capability in alternative san mac address block */
3432        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3433        if (hw->eeprom.ops.read(hw, offset, &caps))
3434                goto wwn_prefix_err;
3435        if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3436                return 0;
3437
3438        /* get the corresponding prefix for WWNN/WWPN */
3439        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3440        if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3441                hw_err(hw, "eeprom read at offset %d failed\n", offset);
3442
3443        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3444        if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3445                goto wwn_prefix_err;
3446
3447        return 0;
3448
3449wwn_prefix_err:
3450        hw_err(hw, "eeprom read at offset %d failed\n", offset);
3451        return 0;
3452}
3453
3454/**
3455 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3456 *  @hw: pointer to hardware structure
3457 *  @enable: enable or disable switch for MAC anti-spoofing
3458 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3459 *
3460 **/
3461void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3462{
3463        int vf_target_reg = vf >> 3;
3464        int vf_target_shift = vf % 8;
3465        u32 pfvfspoof;
3466
3467        if (hw->mac.type == ixgbe_mac_82598EB)
3468                return;
3469
3470        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3471        if (enable)
3472                pfvfspoof |= BIT(vf_target_shift);
3473        else
3474                pfvfspoof &= ~BIT(vf_target_shift);
3475        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3476}
3477
3478/**
3479 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3480 *  @hw: pointer to hardware structure
3481 *  @enable: enable or disable switch for VLAN anti-spoofing
3482 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3483 *
3484 **/
3485void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3486{
3487        int vf_target_reg = vf >> 3;
3488        int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3489        u32 pfvfspoof;
3490
3491        if (hw->mac.type == ixgbe_mac_82598EB)
3492                return;
3493
3494        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3495        if (enable)
3496                pfvfspoof |= BIT(vf_target_shift);
3497        else
3498                pfvfspoof &= ~BIT(vf_target_shift);
3499        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3500}
3501
3502/**
3503 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3504 *  @hw: pointer to hardware structure
3505 *  @device_caps: the EEPROM word with the extra device capabilities
3506 *
3507 *  This function will read the EEPROM location for the device capabilities,
3508 *  and return the word through device_caps.
3509 **/
3510s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3511{
3512        hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3513
3514        return 0;
3515}
3516
3517/**
3518 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3519 * @hw: pointer to hardware structure
3520 * @num_pb: number of packet buffers to allocate
3521 * @headroom: reserve n KB of headroom
3522 * @strategy: packet buffer allocation strategy
3523 **/
3524void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3525                             int num_pb,
3526                             u32 headroom,
3527                             int strategy)
3528{
3529        u32 pbsize = hw->mac.rx_pb_size;
3530        int i = 0;
3531        u32 rxpktsize, txpktsize, txpbthresh;
3532
3533        /* Reserve headroom */
3534        pbsize -= headroom;
3535
3536        if (!num_pb)
3537                num_pb = 1;
3538
3539        /* Divide remaining packet buffer space amongst the number
3540         * of packet buffers requested using supplied strategy.
3541         */
3542        switch (strategy) {
3543        case (PBA_STRATEGY_WEIGHTED):
3544                /* pba_80_48 strategy weight first half of packet buffer with
3545                 * 5/8 of the packet buffer space.
3546                 */
3547                rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3548                pbsize -= rxpktsize * (num_pb / 2);
3549                rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3550                for (; i < (num_pb / 2); i++)
3551                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3552                /* fall through - configure remaining packet buffers */
3553        case (PBA_STRATEGY_EQUAL):
3554                /* Divide the remaining Rx packet buffer evenly among the TCs */
3555                rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3556                for (; i < num_pb; i++)
3557                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3558                break;
3559        default:
3560                break;
3561        }
3562
3563        /*
3564         * Setup Tx packet buffer and threshold equally for all TCs
3565         * TXPBTHRESH register is set in K so divide by 1024 and subtract
3566         * 10 since the largest packet we support is just over 9K.
3567         */
3568        txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3569        txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3570        for (i = 0; i < num_pb; i++) {
3571                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3572                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3573        }
3574
3575        /* Clear unused TCs, if any, to zero buffer size*/
3576        for (; i < IXGBE_MAX_PB; i++) {
3577                IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3578                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3579                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3580        }
3581}
3582
3583/**
3584 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3585 *  @buffer: pointer to EEPROM
3586 *  @length: size of EEPROM to calculate a checksum for
3587 *
3588 *  Calculates the checksum for some buffer on a specified length.  The
3589 *  checksum calculated is returned.
3590 **/
3591u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3592{
3593        u32 i;
3594        u8 sum = 0;
3595
3596        if (!buffer)
3597                return 0;
3598
3599        for (i = 0; i < length; i++)
3600                sum += buffer[i];
3601
3602        return (u8) (0 - sum);
3603}
3604
3605/**
3606 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3607 *  @hw: pointer to the HW structure
3608 *  @buffer: command to write and where the return status will be placed
3609 *  @length: length of buffer, must be multiple of 4 bytes
3610 *  @timeout: time in ms to wait for command completion
3611 *
3612 *  Communicates with the manageability block. On success return 0
3613 *  else returns semaphore error when encountering an error acquiring
3614 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3615 *
3616 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3617 *  by the caller.
3618 **/
3619s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3620                       u32 timeout)
3621{
3622        u32 hicr, i, fwsts;
3623        u16 dword_len;
3624
3625        if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3626                hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3627                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3628        }
3629
3630        /* Set bit 9 of FWSTS clearing FW reset indication */
3631        fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3632        IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3633
3634        /* Check that the host interface is enabled. */
3635        hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3636        if (!(hicr & IXGBE_HICR_EN)) {
3637                hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3638                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3639        }
3640
3641        /* Calculate length in DWORDs. We must be DWORD aligned */
3642        if (length % sizeof(u32)) {
3643                hw_dbg(hw, "Buffer length failure, not aligned to dword");
3644                return IXGBE_ERR_INVALID_ARGUMENT;
3645        }
3646
3647        dword_len = length >> 2;
3648
3649        /* The device driver writes the relevant command block
3650         * into the ram area.
3651         */
3652        for (i = 0; i < dword_len; i++)
3653                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3654                                      i, cpu_to_le32(buffer[i]));
3655
3656        /* Setting this bit tells the ARC that a new command is pending. */
3657        IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3658
3659        for (i = 0; i < timeout; i++) {
3660                hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3661                if (!(hicr & IXGBE_HICR_C))
3662                        break;
3663                usleep_range(1000, 2000);
3664        }
3665
3666        /* Check command successful completion. */
3667        if ((timeout && i == timeout) ||
3668            !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3669                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3670
3671        return 0;
3672}
3673
3674/**
3675 *  ixgbe_host_interface_command - Issue command to manageability block
3676 *  @hw: pointer to the HW structure
3677 *  @buffer: contains the command to write and where the return status will
3678 *           be placed
3679 *  @length: length of buffer, must be multiple of 4 bytes
3680 *  @timeout: time in ms to wait for command completion
3681 *  @return_data: read and return data from the buffer (true) or not (false)
3682 *  Needed because FW structures are big endian and decoding of
3683 *  these fields can be 8 bit or 16 bit based on command. Decoding
3684 *  is not easily understood without making a table of commands.
3685 *  So we will leave this up to the caller to read back the data
3686 *  in these cases.
3687 *
3688 *  Communicates with the manageability block.  On success return 0
3689 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3690 **/
3691s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3692                                 u32 length, u32 timeout,
3693                                 bool return_data)
3694{
3695        u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3696        union {
3697                struct ixgbe_hic_hdr hdr;
3698                u32 u32arr[1];
3699        } *bp = buffer;
3700        u16 buf_len, dword_len;
3701        s32 status;
3702        u32 bi;
3703
3704        if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3705                hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3706                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3707        }
3708        /* Take management host interface semaphore */
3709        status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3710        if (status)
3711                return status;
3712
3713        status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3714        if (status)
3715                goto rel_out;
3716
3717        if (!return_data)
3718                goto rel_out;
3719
3720        /* Calculate length in DWORDs */
3721        dword_len = hdr_size >> 2;
3722
3723        /* first pull in the header so we know the buffer length */
3724        for (bi = 0; bi < dword_len; bi++) {
3725                bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3726                le32_to_cpus(&bp->u32arr[bi]);
3727        }
3728
3729        /* If there is any thing in data position pull it in */
3730        buf_len = bp->hdr.buf_len;
3731        if (!buf_len)
3732                goto rel_out;
3733
3734        if (length < round_up(buf_len, 4) + hdr_size) {
3735                hw_dbg(hw, "Buffer not large enough for reply message.\n");
3736                status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3737                goto rel_out;
3738        }
3739
3740        /* Calculate length in DWORDs, add 3 for odd lengths */
3741        dword_len = (buf_len + 3) >> 2;
3742
3743        /* Pull in the rest of the buffer (bi is where we left off) */
3744        for (; bi <= dword_len; bi++) {
3745                bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3746                le32_to_cpus(&bp->u32arr[bi]);
3747        }
3748
3749rel_out:
3750        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3751
3752        return status;
3753}
3754
3755/**
3756 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3757 *  @hw: pointer to the HW structure
3758 *  @maj: driver version major number
3759 *  @min: driver version minor number
3760 *  @build: driver version build number
3761 *  @sub: driver version sub build number
3762 *  @len: length of driver_ver string
3763 *  @driver_ver: driver string
3764 *
3765 *  Sends driver version number to firmware through the manageability
3766 *  block.  On success return 0
3767 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3768 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3769 **/
3770s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3771                                 u8 build, u8 sub, __always_unused u16 len,
3772                                 __always_unused const char *driver_ver)
3773{
3774        struct ixgbe_hic_drv_info fw_cmd;
3775        int i;
3776        s32 ret_val;
3777
3778        fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3779        fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3780        fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3781        fw_cmd.port_num = hw->bus.func;
3782        fw_cmd.ver_maj = maj;
3783        fw_cmd.ver_min = min;
3784        fw_cmd.ver_build = build;
3785        fw_cmd.ver_sub = sub;
3786        fw_cmd.hdr.checksum = 0;
3787        fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3788                                (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3789        fw_cmd.pad = 0;
3790        fw_cmd.pad2 = 0;
3791
3792        for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3793                ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3794                                                       sizeof(fw_cmd),
3795                                                       IXGBE_HI_COMMAND_TIMEOUT,
3796                                                       true);
3797                if (ret_val != 0)
3798                        continue;
3799
3800                if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3801                    FW_CEM_RESP_STATUS_SUCCESS)
3802                        ret_val = 0;
3803                else
3804                        ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3805
3806                break;
3807        }
3808
3809        return ret_val;
3810}
3811
3812/**
3813 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3814 * @hw: pointer to the hardware structure
3815 *
3816 * The 82599 and x540 MACs can experience issues if TX work is still pending
3817 * when a reset occurs.  This function prevents this by flushing the PCIe
3818 * buffers on the system.
3819 **/
3820void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3821{
3822        u32 gcr_ext, hlreg0, i, poll;
3823        u16 value;
3824
3825        /*
3826         * If double reset is not requested then all transactions should
3827         * already be clear and as such there is no work to do
3828         */
3829        if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3830                return;
3831
3832        /*
3833         * Set loopback enable to prevent any transmits from being sent
3834         * should the link come up.  This assumes that the RXCTRL.RXEN bit
3835         * has already been cleared.
3836         */
3837        hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3838        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3839
3840        /* wait for a last completion before clearing buffers */
3841        IXGBE_WRITE_FLUSH(hw);
3842        usleep_range(3000, 6000);
3843
3844        /* Before proceeding, make sure that the PCIe block does not have
3845         * transactions pending.
3846         */
3847        poll = ixgbe_pcie_timeout_poll(hw);
3848        for (i = 0; i < poll; i++) {
3849                usleep_range(100, 200);
3850                value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3851                if (ixgbe_removed(hw->hw_addr))
3852                        break;
3853                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3854                        break;
3855        }
3856
3857        /* initiate cleaning flow for buffers in the PCIe transaction layer */
3858        gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3859        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3860                        gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3861
3862        /* Flush all writes and allow 20usec for all transactions to clear */
3863        IXGBE_WRITE_FLUSH(hw);
3864        udelay(20);
3865
3866        /* restore previous register values */
3867        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3868        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3869}
3870
3871static const u8 ixgbe_emc_temp_data[4] = {
3872        IXGBE_EMC_INTERNAL_DATA,
3873        IXGBE_EMC_DIODE1_DATA,
3874        IXGBE_EMC_DIODE2_DATA,
3875        IXGBE_EMC_DIODE3_DATA
3876};
3877static const u8 ixgbe_emc_therm_limit[4] = {
3878        IXGBE_EMC_INTERNAL_THERM_LIMIT,
3879        IXGBE_EMC_DIODE1_THERM_LIMIT,
3880        IXGBE_EMC_DIODE2_THERM_LIMIT,
3881        IXGBE_EMC_DIODE3_THERM_LIMIT
3882};
3883
3884/**
3885 *  ixgbe_get_ets_data - Extracts the ETS bit data
3886 *  @hw: pointer to hardware structure
3887 *  @ets_cfg: extected ETS data
3888 *  @ets_offset: offset of ETS data
3889 *
3890 *  Returns error code.
3891 **/
3892static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3893                              u16 *ets_offset)
3894{
3895        s32 status;
3896
3897        status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3898        if (status)
3899                return status;
3900
3901        if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3902                return IXGBE_NOT_IMPLEMENTED;
3903
3904        status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3905        if (status)
3906                return status;
3907
3908        if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3909                return IXGBE_NOT_IMPLEMENTED;
3910
3911        return 0;
3912}
3913
3914/**
3915 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3916 *  @hw: pointer to hardware structure
3917 *
3918 *  Returns the thermal sensor data structure
3919 **/
3920s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3921{
3922        s32 status;
3923        u16 ets_offset;
3924        u16 ets_cfg;
3925        u16 ets_sensor;
3926        u8  num_sensors;
3927        u8  i;
3928        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3929
3930        /* Only support thermal sensors attached to physical port 0 */
3931        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3932                return IXGBE_NOT_IMPLEMENTED;
3933
3934        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3935        if (status)
3936                return status;
3937
3938        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3939        if (num_sensors > IXGBE_MAX_SENSORS)
3940                num_sensors = IXGBE_MAX_SENSORS;
3941
3942        for (i = 0; i < num_sensors; i++) {
3943                u8  sensor_index;
3944                u8  sensor_location;
3945
3946                status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3947                                             &ets_sensor);
3948                if (status)
3949                        return status;
3950
3951                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3952                                IXGBE_ETS_DATA_INDEX_SHIFT);
3953                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3954                                   IXGBE_ETS_DATA_LOC_SHIFT);
3955
3956                if (sensor_location != 0) {
3957                        status = hw->phy.ops.read_i2c_byte(hw,
3958                                        ixgbe_emc_temp_data[sensor_index],
3959                                        IXGBE_I2C_THERMAL_SENSOR_ADDR,
3960                                        &data->sensor[i].temp);
3961                        if (status)
3962                                return status;
3963                }
3964        }
3965
3966        return 0;
3967}
3968
3969/**
3970 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3971 * @hw: pointer to hardware structure
3972 *
3973 * Inits the thermal sensor thresholds according to the NVM map
3974 * and save off the threshold and location values into mac.thermal_sensor_data
3975 **/
3976s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3977{
3978        s32 status;
3979        u16 ets_offset;
3980        u16 ets_cfg;
3981        u16 ets_sensor;
3982        u8  low_thresh_delta;
3983        u8  num_sensors;
3984        u8  therm_limit;
3985        u8  i;
3986        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3987
3988        memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3989
3990        /* Only support thermal sensors attached to physical port 0 */
3991        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3992                return IXGBE_NOT_IMPLEMENTED;
3993
3994        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3995        if (status)
3996                return status;
3997
3998        low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3999                             IXGBE_ETS_LTHRES_DELTA_SHIFT);
4000        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4001        if (num_sensors > IXGBE_MAX_SENSORS)
4002                num_sensors = IXGBE_MAX_SENSORS;
4003
4004        for (i = 0; i < num_sensors; i++) {
4005                u8  sensor_index;
4006                u8  sensor_location;
4007
4008                if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4009                        hw_err(hw, "eeprom read at offset %d failed\n",
4010                               ets_offset + 1 + i);
4011                        continue;
4012                }
4013                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4014                                IXGBE_ETS_DATA_INDEX_SHIFT);
4015                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4016                                   IXGBE_ETS_DATA_LOC_SHIFT);
4017                therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4018
4019                hw->phy.ops.write_i2c_byte(hw,
4020                        ixgbe_emc_therm_limit[sensor_index],
4021                        IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4022
4023                if (sensor_location == 0)
4024                        continue;
4025
4026                data->sensor[i].location = sensor_location;
4027                data->sensor[i].caution_thresh = therm_limit;
4028                data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4029        }
4030
4031        return 0;
4032}
4033
4034void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4035{
4036        u32 rxctrl;
4037
4038        rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4039        if (rxctrl & IXGBE_RXCTRL_RXEN) {
4040                if (hw->mac.type != ixgbe_mac_82598EB) {
4041                        u32 pfdtxgswc;
4042
4043                        pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4044                        if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4045                                pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4046                                IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4047                                hw->mac.set_lben = true;
4048                        } else {
4049                                hw->mac.set_lben = false;
4050                        }
4051                }
4052                rxctrl &= ~IXGBE_RXCTRL_RXEN;
4053                IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4054        }
4055}
4056
4057void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4058{
4059        u32 rxctrl;
4060
4061        rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4062        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4063
4064        if (hw->mac.type != ixgbe_mac_82598EB) {
4065                if (hw->mac.set_lben) {
4066                        u32 pfdtxgswc;
4067
4068                        pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4069                        pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4070                        IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4071                        hw->mac.set_lben = false;
4072                }
4073        }
4074}
4075
4076/** ixgbe_mng_present - returns true when management capability is present
4077 * @hw: pointer to hardware structure
4078 **/
4079bool ixgbe_mng_present(struct ixgbe_hw *hw)
4080{
4081        u32 fwsm;
4082
4083        if (hw->mac.type < ixgbe_mac_82599EB)
4084                return false;
4085
4086        fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4087        fwsm &= IXGBE_FWSM_MODE_MASK;
4088        return fwsm == IXGBE_FWSM_FW_MODE_PT;
4089}
4090
4091/**
4092 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4093 *  @hw: pointer to hardware structure
4094 *  @speed: new link speed
4095 *  @autoneg_wait_to_complete: true when waiting for completion is needed
4096 *
4097 *  Set the link speed in the MAC and/or PHY register and restarts link.
4098 */
4099s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4100                                          ixgbe_link_speed speed,
4101                                          bool autoneg_wait_to_complete)
4102{
4103        ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4104        ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4105        s32 status = 0;
4106        u32 speedcnt = 0;
4107        u32 i = 0;
4108        bool autoneg, link_up = false;
4109
4110        /* Mask off requested but non-supported speeds */
4111        status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4112        if (status)
4113                return status;
4114
4115        speed &= link_speed;
4116
4117        /* Try each speed one by one, highest priority first.  We do this in
4118         * software because 10Gb fiber doesn't support speed autonegotiation.
4119         */
4120        if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4121                speedcnt++;
4122                highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4123
4124                /* Set the module link speed */
4125                switch (hw->phy.media_type) {
4126                case ixgbe_media_type_fiber:
4127                        hw->mac.ops.set_rate_select_speed(hw,
4128                                                    IXGBE_LINK_SPEED_10GB_FULL);
4129                        break;
4130                case ixgbe_media_type_fiber_qsfp:
4131                        /* QSFP module automatically detects MAC link speed */
4132                        break;
4133                default:
4134                        hw_dbg(hw, "Unexpected media type\n");
4135                        break;
4136                }
4137
4138                /* Allow module to change analog characteristics (1G->10G) */
4139                msleep(40);
4140
4141                status = hw->mac.ops.setup_mac_link(hw,
4142                                                    IXGBE_LINK_SPEED_10GB_FULL,
4143                                                    autoneg_wait_to_complete);
4144                if (status)
4145                        return status;
4146
4147                /* Flap the Tx laser if it has not already been done */
4148                if (hw->mac.ops.flap_tx_laser)
4149                        hw->mac.ops.flap_tx_laser(hw);
4150
4151                /* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4152                 * Section 73.10.2, we may have to wait up to 500ms if KR is
4153                 * attempted.  82599 uses the same timing for 10g SFI.
4154                 */
4155                for (i = 0; i < 5; i++) {
4156                        /* Wait for the link partner to also set speed */
4157                        msleep(100);
4158
4159                        /* If we have link, just jump out */
4160                        status = hw->mac.ops.check_link(hw, &link_speed,
4161                                                        &link_up, false);
4162                        if (status)
4163                                return status;
4164
4165                        if (link_up)
4166                                goto out;
4167                }
4168        }
4169
4170        if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4171                speedcnt++;
4172                if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4173                        highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4174
4175                /* Set the module link speed */
4176                switch (hw->phy.media_type) {
4177                case ixgbe_media_type_fiber:
4178                        hw->mac.ops.set_rate_select_speed(hw,
4179                                                     IXGBE_LINK_SPEED_1GB_FULL);
4180                        break;
4181                case ixgbe_media_type_fiber_qsfp:
4182                        /* QSFP module automatically detects link speed */
4183                        break;
4184                default:
4185                        hw_dbg(hw, "Unexpected media type\n");
4186                        break;
4187                }
4188
4189                /* Allow module to change analog characteristics (10G->1G) */
4190                msleep(40);
4191
4192                status = hw->mac.ops.setup_mac_link(hw,
4193                                                    IXGBE_LINK_SPEED_1GB_FULL,
4194                                                    autoneg_wait_to_complete);
4195                if (status)
4196                        return status;
4197
4198                /* Flap the Tx laser if it has not already been done */
4199                if (hw->mac.ops.flap_tx_laser)
4200                        hw->mac.ops.flap_tx_laser(hw);
4201
4202                /* Wait for the link partner to also set speed */
4203                msleep(100);
4204
4205                /* If we have link, just jump out */
4206                status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4207                                                false);
4208                if (status)
4209                        return status;
4210
4211                if (link_up)
4212                        goto out;
4213        }
4214
4215        /* We didn't get link.  Configure back to the highest speed we tried,
4216         * (if there was more than one).  We call ourselves back with just the
4217         * single highest speed that the user requested.
4218         */
4219        if (speedcnt > 1)
4220                status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4221                                                      highest_link_speed,
4222                                                      autoneg_wait_to_complete);
4223
4224out:
4225        /* Set autoneg_advertised value based on input link speed */
4226        hw->phy.autoneg_advertised = 0;
4227
4228        if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4229                hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4230
4231        if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4232                hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4233
4234        return status;
4235}
4236
4237/**
4238 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4239 *  @hw: pointer to hardware structure
4240 *  @speed: link speed to set
4241 *
4242 *  Set module link speed via the soft rate select.
4243 */
4244void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4245                                      ixgbe_link_speed speed)
4246{
4247        s32 status;
4248        u8 rs, eeprom_data;
4249
4250        switch (speed) {
4251        case IXGBE_LINK_SPEED_10GB_FULL:
4252                /* one bit mask same as setting on */
4253                rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4254                break;
4255        case IXGBE_LINK_SPEED_1GB_FULL:
4256                rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4257                break;
4258        default:
4259                hw_dbg(hw, "Invalid fixed module speed\n");
4260                return;
4261        }
4262
4263        /* Set RS0 */
4264        status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4265                                           IXGBE_I2C_EEPROM_DEV_ADDR2,
4266                                           &eeprom_data);
4267        if (status) {
4268                hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4269                return;
4270        }
4271
4272        eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4273
4274        status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4275                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
4276                                            eeprom_data);
4277        if (status) {
4278                hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4279                return;
4280        }
4281
4282        /* Set RS1 */
4283        status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4284                                           IXGBE_I2C_EEPROM_DEV_ADDR2,
4285                                           &eeprom_data);
4286        if (status) {
4287                hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4288                return;
4289        }
4290
4291        eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4292
4293        status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4294                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
4295                                            eeprom_data);
4296        if (status) {
4297                hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4298                return;
4299        }
4300}
4301