linux/drivers/net/ethernet/xilinx/xilinx_axienet_main.c
<<
>>
Prefs
   1/*
   2 * Xilinx Axi Ethernet device driver
   3 *
   4 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
   5 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
   6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
   7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
   8 * Copyright (c) 2010 - 2011 PetaLogix
   9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
  10 *
  11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
  12 * and Spartan6.
  13 *
  14 * TODO:
  15 *  - Add Axi Fifo support.
  16 *  - Factor out Axi DMA code into separate driver.
  17 *  - Test and fix basic multicast filtering.
  18 *  - Add support for extended multicast filtering.
  19 *  - Test basic VLAN support.
  20 *  - Add support for extended VLAN support.
  21 */
  22
  23#include <linux/delay.h>
  24#include <linux/etherdevice.h>
  25#include <linux/module.h>
  26#include <linux/netdevice.h>
  27#include <linux/of_mdio.h>
  28#include <linux/of_net.h>
  29#include <linux/of_platform.h>
  30#include <linux/of_irq.h>
  31#include <linux/of_address.h>
  32#include <linux/skbuff.h>
  33#include <linux/spinlock.h>
  34#include <linux/phy.h>
  35#include <linux/mii.h>
  36#include <linux/ethtool.h>
  37
  38#include "xilinx_axienet.h"
  39
  40/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
  41#define TX_BD_NUM               64
  42#define RX_BD_NUM               128
  43
  44/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
  45#define DRIVER_NAME             "xaxienet"
  46#define DRIVER_DESCRIPTION      "Xilinx Axi Ethernet driver"
  47#define DRIVER_VERSION          "1.00a"
  48
  49#define AXIENET_REGS_N          32
  50
  51/* Match table for of_platform binding */
  52static const struct of_device_id axienet_of_match[] = {
  53        { .compatible = "xlnx,axi-ethernet-1.00.a", },
  54        { .compatible = "xlnx,axi-ethernet-1.01.a", },
  55        { .compatible = "xlnx,axi-ethernet-2.01.a", },
  56        {},
  57};
  58
  59MODULE_DEVICE_TABLE(of, axienet_of_match);
  60
  61/* Option table for setting up Axi Ethernet hardware options */
  62static struct axienet_option axienet_options[] = {
  63        /* Turn on jumbo packet support for both Rx and Tx */
  64        {
  65                .opt = XAE_OPTION_JUMBO,
  66                .reg = XAE_TC_OFFSET,
  67                .m_or = XAE_TC_JUM_MASK,
  68        }, {
  69                .opt = XAE_OPTION_JUMBO,
  70                .reg = XAE_RCW1_OFFSET,
  71                .m_or = XAE_RCW1_JUM_MASK,
  72        }, { /* Turn on VLAN packet support for both Rx and Tx */
  73                .opt = XAE_OPTION_VLAN,
  74                .reg = XAE_TC_OFFSET,
  75                .m_or = XAE_TC_VLAN_MASK,
  76        }, {
  77                .opt = XAE_OPTION_VLAN,
  78                .reg = XAE_RCW1_OFFSET,
  79                .m_or = XAE_RCW1_VLAN_MASK,
  80        }, { /* Turn on FCS stripping on receive packets */
  81                .opt = XAE_OPTION_FCS_STRIP,
  82                .reg = XAE_RCW1_OFFSET,
  83                .m_or = XAE_RCW1_FCS_MASK,
  84        }, { /* Turn on FCS insertion on transmit packets */
  85                .opt = XAE_OPTION_FCS_INSERT,
  86                .reg = XAE_TC_OFFSET,
  87                .m_or = XAE_TC_FCS_MASK,
  88        }, { /* Turn off length/type field checking on receive packets */
  89                .opt = XAE_OPTION_LENTYPE_ERR,
  90                .reg = XAE_RCW1_OFFSET,
  91                .m_or = XAE_RCW1_LT_DIS_MASK,
  92        }, { /* Turn on Rx flow control */
  93                .opt = XAE_OPTION_FLOW_CONTROL,
  94                .reg = XAE_FCC_OFFSET,
  95                .m_or = XAE_FCC_FCRX_MASK,
  96        }, { /* Turn on Tx flow control */
  97                .opt = XAE_OPTION_FLOW_CONTROL,
  98                .reg = XAE_FCC_OFFSET,
  99                .m_or = XAE_FCC_FCTX_MASK,
 100        }, { /* Turn on promiscuous frame filtering */
 101                .opt = XAE_OPTION_PROMISC,
 102                .reg = XAE_FMI_OFFSET,
 103                .m_or = XAE_FMI_PM_MASK,
 104        }, { /* Enable transmitter */
 105                .opt = XAE_OPTION_TXEN,
 106                .reg = XAE_TC_OFFSET,
 107                .m_or = XAE_TC_TX_MASK,
 108        }, { /* Enable receiver */
 109                .opt = XAE_OPTION_RXEN,
 110                .reg = XAE_RCW1_OFFSET,
 111                .m_or = XAE_RCW1_RX_MASK,
 112        },
 113        {}
 114};
 115
 116/**
 117 * axienet_dma_in32 - Memory mapped Axi DMA register read
 118 * @lp:         Pointer to axienet local structure
 119 * @reg:        Address offset from the base address of the Axi DMA core
 120 *
 121 * Return: The contents of the Axi DMA register
 122 *
 123 * This function returns the contents of the corresponding Axi DMA register.
 124 */
 125static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
 126{
 127        return in_be32(lp->dma_regs + reg);
 128}
 129
 130/**
 131 * axienet_dma_out32 - Memory mapped Axi DMA register write.
 132 * @lp:         Pointer to axienet local structure
 133 * @reg:        Address offset from the base address of the Axi DMA core
 134 * @value:      Value to be written into the Axi DMA register
 135 *
 136 * This function writes the desired value into the corresponding Axi DMA
 137 * register.
 138 */
 139static inline void axienet_dma_out32(struct axienet_local *lp,
 140                                     off_t reg, u32 value)
 141{
 142        out_be32((lp->dma_regs + reg), value);
 143}
 144
 145/**
 146 * axienet_dma_bd_release - Release buffer descriptor rings
 147 * @ndev:       Pointer to the net_device structure
 148 *
 149 * This function is used to release the descriptors allocated in
 150 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 151 * driver stop api is called.
 152 */
 153static void axienet_dma_bd_release(struct net_device *ndev)
 154{
 155        int i;
 156        struct axienet_local *lp = netdev_priv(ndev);
 157
 158        for (i = 0; i < RX_BD_NUM; i++) {
 159                dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
 160                                 lp->max_frm_size, DMA_FROM_DEVICE);
 161                dev_kfree_skb((struct sk_buff *)
 162                              (lp->rx_bd_v[i].sw_id_offset));
 163        }
 164
 165        if (lp->rx_bd_v) {
 166                dma_free_coherent(ndev->dev.parent,
 167                                  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 168                                  lp->rx_bd_v,
 169                                  lp->rx_bd_p);
 170        }
 171        if (lp->tx_bd_v) {
 172                dma_free_coherent(ndev->dev.parent,
 173                                  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 174                                  lp->tx_bd_v,
 175                                  lp->tx_bd_p);
 176        }
 177}
 178
 179/**
 180 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 181 * @ndev:       Pointer to the net_device structure
 182 *
 183 * Return: 0, on success -ENOMEM, on failure
 184 *
 185 * This function is called to initialize the Rx and Tx DMA descriptor
 186 * rings. This initializes the descriptors with required default values
 187 * and is called when Axi Ethernet driver reset is called.
 188 */
 189static int axienet_dma_bd_init(struct net_device *ndev)
 190{
 191        u32 cr;
 192        int i;
 193        struct sk_buff *skb;
 194        struct axienet_local *lp = netdev_priv(ndev);
 195
 196        /* Reset the indexes which are used for accessing the BDs */
 197        lp->tx_bd_ci = 0;
 198        lp->tx_bd_tail = 0;
 199        lp->rx_bd_ci = 0;
 200
 201        /* Allocate the Tx and Rx buffer descriptors. */
 202        lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 203                                          sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 204                                          &lp->tx_bd_p, GFP_KERNEL);
 205        if (!lp->tx_bd_v)
 206                goto out;
 207
 208        lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 209                                          sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 210                                          &lp->rx_bd_p, GFP_KERNEL);
 211        if (!lp->rx_bd_v)
 212                goto out;
 213
 214        for (i = 0; i < TX_BD_NUM; i++) {
 215                lp->tx_bd_v[i].next = lp->tx_bd_p +
 216                                      sizeof(*lp->tx_bd_v) *
 217                                      ((i + 1) % TX_BD_NUM);
 218        }
 219
 220        for (i = 0; i < RX_BD_NUM; i++) {
 221                lp->rx_bd_v[i].next = lp->rx_bd_p +
 222                                      sizeof(*lp->rx_bd_v) *
 223                                      ((i + 1) % RX_BD_NUM);
 224
 225                skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 226                if (!skb)
 227                        goto out;
 228
 229                lp->rx_bd_v[i].sw_id_offset = (u32) skb;
 230                lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
 231                                                     skb->data,
 232                                                     lp->max_frm_size,
 233                                                     DMA_FROM_DEVICE);
 234                lp->rx_bd_v[i].cntrl = lp->max_frm_size;
 235        }
 236
 237        /* Start updating the Rx channel control register */
 238        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 239        /* Update the interrupt coalesce count */
 240        cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
 241              ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
 242        /* Update the delay timer count */
 243        cr = ((cr & ~XAXIDMA_DELAY_MASK) |
 244              (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 245        /* Enable coalesce, delay timer and error interrupts */
 246        cr |= XAXIDMA_IRQ_ALL_MASK;
 247        /* Write to the Rx channel control register */
 248        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 249
 250        /* Start updating the Tx channel control register */
 251        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 252        /* Update the interrupt coalesce count */
 253        cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
 254              ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
 255        /* Update the delay timer count */
 256        cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
 257              (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 258        /* Enable coalesce, delay timer and error interrupts */
 259        cr |= XAXIDMA_IRQ_ALL_MASK;
 260        /* Write to the Tx channel control register */
 261        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 262
 263        /* Populate the tail pointer and bring the Rx Axi DMA engine out of
 264         * halted state. This will make the Rx side ready for reception.
 265         */
 266        axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
 267        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 268        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 269                          cr | XAXIDMA_CR_RUNSTOP_MASK);
 270        axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
 271                          (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
 272
 273        /* Write to the RS (Run-stop) bit in the Tx channel control register.
 274         * Tx channel is now ready to run. But only after we write to the
 275         * tail pointer register that the Tx channel will start transmitting.
 276         */
 277        axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
 278        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 279        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 280                          cr | XAXIDMA_CR_RUNSTOP_MASK);
 281
 282        return 0;
 283out:
 284        axienet_dma_bd_release(ndev);
 285        return -ENOMEM;
 286}
 287
 288/**
 289 * axienet_set_mac_address - Write the MAC address
 290 * @ndev:       Pointer to the net_device structure
 291 * @address:    6 byte Address to be written as MAC address
 292 *
 293 * This function is called to initialize the MAC address of the Axi Ethernet
 294 * core. It writes to the UAW0 and UAW1 registers of the core.
 295 */
 296static void axienet_set_mac_address(struct net_device *ndev,
 297                                    const void *address)
 298{
 299        struct axienet_local *lp = netdev_priv(ndev);
 300
 301        if (address)
 302                memcpy(ndev->dev_addr, address, ETH_ALEN);
 303        if (!is_valid_ether_addr(ndev->dev_addr))
 304                eth_hw_addr_random(ndev);
 305
 306        /* Set up unicast MAC address filter set its mac address */
 307        axienet_iow(lp, XAE_UAW0_OFFSET,
 308                    (ndev->dev_addr[0]) |
 309                    (ndev->dev_addr[1] << 8) |
 310                    (ndev->dev_addr[2] << 16) |
 311                    (ndev->dev_addr[3] << 24));
 312        axienet_iow(lp, XAE_UAW1_OFFSET,
 313                    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
 314                      ~XAE_UAW1_UNICASTADDR_MASK) |
 315                     (ndev->dev_addr[4] |
 316                     (ndev->dev_addr[5] << 8))));
 317}
 318
 319/**
 320 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 321 * @ndev:       Pointer to the net_device structure
 322 * @p:          6 byte Address to be written as MAC address
 323 *
 324 * Return: 0 for all conditions. Presently, there is no failure case.
 325 *
 326 * This function is called to initialize the MAC address of the Axi Ethernet
 327 * core. It calls the core specific axienet_set_mac_address. This is the
 328 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 329 */
 330static int netdev_set_mac_address(struct net_device *ndev, void *p)
 331{
 332        struct sockaddr *addr = p;
 333        axienet_set_mac_address(ndev, addr->sa_data);
 334        return 0;
 335}
 336
 337/**
 338 * axienet_set_multicast_list - Prepare the multicast table
 339 * @ndev:       Pointer to the net_device structure
 340 *
 341 * This function is called to initialize the multicast table during
 342 * initialization. The Axi Ethernet basic multicast support has a four-entry
 343 * multicast table which is initialized here. Additionally this function
 344 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 345 * means whenever the multicast table entries need to be updated this
 346 * function gets called.
 347 */
 348static void axienet_set_multicast_list(struct net_device *ndev)
 349{
 350        int i;
 351        u32 reg, af0reg, af1reg;
 352        struct axienet_local *lp = netdev_priv(ndev);
 353
 354        if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
 355            netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
 356                /* We must make the kernel realize we had to move into
 357                 * promiscuous mode. If it was a promiscuous mode request
 358                 * the flag is already set. If not we set it.
 359                 */
 360                ndev->flags |= IFF_PROMISC;
 361                reg = axienet_ior(lp, XAE_FMI_OFFSET);
 362                reg |= XAE_FMI_PM_MASK;
 363                axienet_iow(lp, XAE_FMI_OFFSET, reg);
 364                dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
 365        } else if (!netdev_mc_empty(ndev)) {
 366                struct netdev_hw_addr *ha;
 367
 368                i = 0;
 369                netdev_for_each_mc_addr(ha, ndev) {
 370                        if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
 371                                break;
 372
 373                        af0reg = (ha->addr[0]);
 374                        af0reg |= (ha->addr[1] << 8);
 375                        af0reg |= (ha->addr[2] << 16);
 376                        af0reg |= (ha->addr[3] << 24);
 377
 378                        af1reg = (ha->addr[4]);
 379                        af1reg |= (ha->addr[5] << 8);
 380
 381                        reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 382                        reg |= i;
 383
 384                        axienet_iow(lp, XAE_FMI_OFFSET, reg);
 385                        axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
 386                        axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
 387                        i++;
 388                }
 389        } else {
 390                reg = axienet_ior(lp, XAE_FMI_OFFSET);
 391                reg &= ~XAE_FMI_PM_MASK;
 392
 393                axienet_iow(lp, XAE_FMI_OFFSET, reg);
 394
 395                for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
 396                        reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 397                        reg |= i;
 398
 399                        axienet_iow(lp, XAE_FMI_OFFSET, reg);
 400                        axienet_iow(lp, XAE_AF0_OFFSET, 0);
 401                        axienet_iow(lp, XAE_AF1_OFFSET, 0);
 402                }
 403
 404                dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
 405        }
 406}
 407
 408/**
 409 * axienet_setoptions - Set an Axi Ethernet option
 410 * @ndev:       Pointer to the net_device structure
 411 * @options:    Option to be enabled/disabled
 412 *
 413 * The Axi Ethernet core has multiple features which can be selectively turned
 414 * on or off. The typical options could be jumbo frame option, basic VLAN
 415 * option, promiscuous mode option etc. This function is used to set or clear
 416 * these options in the Axi Ethernet hardware. This is done through
 417 * axienet_option structure .
 418 */
 419static void axienet_setoptions(struct net_device *ndev, u32 options)
 420{
 421        int reg;
 422        struct axienet_local *lp = netdev_priv(ndev);
 423        struct axienet_option *tp = &axienet_options[0];
 424
 425        while (tp->opt) {
 426                reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
 427                if (options & tp->opt)
 428                        reg |= tp->m_or;
 429                axienet_iow(lp, tp->reg, reg);
 430                tp++;
 431        }
 432
 433        lp->options |= options;
 434}
 435
 436static void __axienet_device_reset(struct axienet_local *lp, off_t offset)
 437{
 438        u32 timeout;
 439        /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
 440         * process of Axi DMA takes a while to complete as all pending
 441         * commands/transfers will be flushed or completed during this
 442         * reset process.
 443         */
 444        axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
 445        timeout = DELAY_OF_ONE_MILLISEC;
 446        while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
 447                udelay(1);
 448                if (--timeout == 0) {
 449                        netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
 450                                   __func__);
 451                        break;
 452                }
 453        }
 454}
 455
 456/**
 457 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 458 * @ndev:       Pointer to the net_device structure
 459 *
 460 * This function is called to reset and initialize the Axi Ethernet core. This
 461 * is typically called during initialization. It does a reset of the Axi DMA
 462 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 463 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
 464 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 465 * core.
 466 */
 467static void axienet_device_reset(struct net_device *ndev)
 468{
 469        u32 axienet_status;
 470        struct axienet_local *lp = netdev_priv(ndev);
 471
 472        __axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
 473        __axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
 474
 475        lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
 476        lp->options |= XAE_OPTION_VLAN;
 477        lp->options &= (~XAE_OPTION_JUMBO);
 478
 479        if ((ndev->mtu > XAE_MTU) &&
 480                (ndev->mtu <= XAE_JUMBO_MTU)) {
 481                lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
 482                                        XAE_TRL_SIZE;
 483
 484                if (lp->max_frm_size <= lp->rxmem)
 485                        lp->options |= XAE_OPTION_JUMBO;
 486        }
 487
 488        if (axienet_dma_bd_init(ndev)) {
 489                netdev_err(ndev, "%s: descriptor allocation failed\n",
 490                           __func__);
 491        }
 492
 493        axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
 494        axienet_status &= ~XAE_RCW1_RX_MASK;
 495        axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
 496
 497        axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
 498        if (axienet_status & XAE_INT_RXRJECT_MASK)
 499                axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
 500
 501        axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
 502
 503        /* Sync default options with HW but leave receiver and
 504         * transmitter disabled.
 505         */
 506        axienet_setoptions(ndev, lp->options &
 507                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 508        axienet_set_mac_address(ndev, NULL);
 509        axienet_set_multicast_list(ndev);
 510        axienet_setoptions(ndev, lp->options);
 511
 512        netif_trans_update(ndev);
 513}
 514
 515/**
 516 * axienet_adjust_link - Adjust the PHY link speed/duplex.
 517 * @ndev:       Pointer to the net_device structure
 518 *
 519 * This function is called to change the speed and duplex setting after
 520 * auto negotiation is done by the PHY. This is the function that gets
 521 * registered with the PHY interface through the "of_phy_connect" call.
 522 */
 523static void axienet_adjust_link(struct net_device *ndev)
 524{
 525        u32 emmc_reg;
 526        u32 link_state;
 527        u32 setspeed = 1;
 528        struct axienet_local *lp = netdev_priv(ndev);
 529        struct phy_device *phy = ndev->phydev;
 530
 531        link_state = phy->speed | (phy->duplex << 1) | phy->link;
 532        if (lp->last_link != link_state) {
 533                if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
 534                        if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
 535                                setspeed = 0;
 536                } else {
 537                        if ((phy->speed == SPEED_1000) &&
 538                            (lp->phy_type == XAE_PHY_TYPE_MII))
 539                                setspeed = 0;
 540                }
 541
 542                if (setspeed == 1) {
 543                        emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
 544                        emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
 545
 546                        switch (phy->speed) {
 547                        case SPEED_1000:
 548                                emmc_reg |= XAE_EMMC_LINKSPD_1000;
 549                                break;
 550                        case SPEED_100:
 551                                emmc_reg |= XAE_EMMC_LINKSPD_100;
 552                                break;
 553                        case SPEED_10:
 554                                emmc_reg |= XAE_EMMC_LINKSPD_10;
 555                                break;
 556                        default:
 557                                dev_err(&ndev->dev, "Speed other than 10, 100 "
 558                                        "or 1Gbps is not supported\n");
 559                                break;
 560                        }
 561
 562                        axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
 563                        lp->last_link = link_state;
 564                        phy_print_status(phy);
 565                } else {
 566                        netdev_err(ndev,
 567                                   "Error setting Axi Ethernet mac speed\n");
 568                }
 569        }
 570}
 571
 572/**
 573 * axienet_start_xmit_done - Invoked once a transmit is completed by the
 574 * Axi DMA Tx channel.
 575 * @ndev:       Pointer to the net_device structure
 576 *
 577 * This function is invoked from the Axi DMA Tx isr to notify the completion
 578 * of transmit operation. It clears fields in the corresponding Tx BDs and
 579 * unmaps the corresponding buffer so that CPU can regain ownership of the
 580 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 581 * required.
 582 */
 583static void axienet_start_xmit_done(struct net_device *ndev)
 584{
 585        u32 size = 0;
 586        u32 packets = 0;
 587        struct axienet_local *lp = netdev_priv(ndev);
 588        struct axidma_bd *cur_p;
 589        unsigned int status = 0;
 590
 591        cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 592        status = cur_p->status;
 593        while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
 594                dma_unmap_single(ndev->dev.parent, cur_p->phys,
 595                                (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
 596                                DMA_TO_DEVICE);
 597                if (cur_p->app4)
 598                        dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
 599                /*cur_p->phys = 0;*/
 600                cur_p->app0 = 0;
 601                cur_p->app1 = 0;
 602                cur_p->app2 = 0;
 603                cur_p->app4 = 0;
 604                cur_p->status = 0;
 605
 606                size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
 607                packets++;
 608
 609                ++lp->tx_bd_ci;
 610                lp->tx_bd_ci %= TX_BD_NUM;
 611                cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 612                status = cur_p->status;
 613        }
 614
 615        ndev->stats.tx_packets += packets;
 616        ndev->stats.tx_bytes += size;
 617        netif_wake_queue(ndev);
 618}
 619
 620/**
 621 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 622 * @lp:         Pointer to the axienet_local structure
 623 * @num_frag:   The number of BDs to check for
 624 *
 625 * Return: 0, on success
 626 *          NETDEV_TX_BUSY, if any of the descriptors are not free
 627 *
 628 * This function is invoked before BDs are allocated and transmission starts.
 629 * This function returns 0 if a BD or group of BDs can be allocated for
 630 * transmission. If the BD or any of the BDs are not free the function
 631 * returns a busy status. This is invoked from axienet_start_xmit.
 632 */
 633static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
 634                                            int num_frag)
 635{
 636        struct axidma_bd *cur_p;
 637        cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
 638        if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
 639                return NETDEV_TX_BUSY;
 640        return 0;
 641}
 642
 643/**
 644 * axienet_start_xmit - Starts the transmission.
 645 * @skb:        sk_buff pointer that contains data to be Txed.
 646 * @ndev:       Pointer to net_device structure.
 647 *
 648 * Return: NETDEV_TX_OK, on success
 649 *          NETDEV_TX_BUSY, if any of the descriptors are not free
 650 *
 651 * This function is invoked from upper layers to initiate transmission. The
 652 * function uses the next available free BDs and populates their fields to
 653 * start the transmission. Additionally if checksum offloading is supported,
 654 * it populates AXI Stream Control fields with appropriate values.
 655 */
 656static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 657{
 658        u32 ii;
 659        u32 num_frag;
 660        u32 csum_start_off;
 661        u32 csum_index_off;
 662        skb_frag_t *frag;
 663        dma_addr_t tail_p;
 664        struct axienet_local *lp = netdev_priv(ndev);
 665        struct axidma_bd *cur_p;
 666
 667        num_frag = skb_shinfo(skb)->nr_frags;
 668        cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 669
 670        if (axienet_check_tx_bd_space(lp, num_frag)) {
 671                if (!netif_queue_stopped(ndev))
 672                        netif_stop_queue(ndev);
 673                return NETDEV_TX_BUSY;
 674        }
 675
 676        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 677                if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 678                        /* Tx Full Checksum Offload Enabled */
 679                        cur_p->app0 |= 2;
 680                } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
 681                        csum_start_off = skb_transport_offset(skb);
 682                        csum_index_off = csum_start_off + skb->csum_offset;
 683                        /* Tx Partial Checksum Offload Enabled */
 684                        cur_p->app0 |= 1;
 685                        cur_p->app1 = (csum_start_off << 16) | csum_index_off;
 686                }
 687        } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 688                cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
 689        }
 690
 691        cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
 692        cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
 693                                     skb_headlen(skb), DMA_TO_DEVICE);
 694
 695        for (ii = 0; ii < num_frag; ii++) {
 696                ++lp->tx_bd_tail;
 697                lp->tx_bd_tail %= TX_BD_NUM;
 698                cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 699                frag = &skb_shinfo(skb)->frags[ii];
 700                cur_p->phys = dma_map_single(ndev->dev.parent,
 701                                             skb_frag_address(frag),
 702                                             skb_frag_size(frag),
 703                                             DMA_TO_DEVICE);
 704                cur_p->cntrl = skb_frag_size(frag);
 705        }
 706
 707        cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
 708        cur_p->app4 = (unsigned long)skb;
 709
 710        tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
 711        /* Start the transfer */
 712        axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
 713        ++lp->tx_bd_tail;
 714        lp->tx_bd_tail %= TX_BD_NUM;
 715
 716        return NETDEV_TX_OK;
 717}
 718
 719/**
 720 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
 721 *                BD processing.
 722 * @ndev:       Pointer to net_device structure.
 723 *
 724 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
 725 * does minimal processing and invokes "netif_rx" to complete further
 726 * processing.
 727 */
 728static void axienet_recv(struct net_device *ndev)
 729{
 730        u32 length;
 731        u32 csumstatus;
 732        u32 size = 0;
 733        u32 packets = 0;
 734        dma_addr_t tail_p = 0;
 735        struct axienet_local *lp = netdev_priv(ndev);
 736        struct sk_buff *skb, *new_skb;
 737        struct axidma_bd *cur_p;
 738
 739        cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 740
 741        while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
 742                tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
 743                skb = (struct sk_buff *) (cur_p->sw_id_offset);
 744                length = cur_p->app4 & 0x0000FFFF;
 745
 746                dma_unmap_single(ndev->dev.parent, cur_p->phys,
 747                                 lp->max_frm_size,
 748                                 DMA_FROM_DEVICE);
 749
 750                skb_put(skb, length);
 751                skb->protocol = eth_type_trans(skb, ndev);
 752                /*skb_checksum_none_assert(skb);*/
 753                skb->ip_summed = CHECKSUM_NONE;
 754
 755                /* if we're doing Rx csum offload, set it up */
 756                if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
 757                        csumstatus = (cur_p->app2 &
 758                                      XAE_FULL_CSUM_STATUS_MASK) >> 3;
 759                        if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
 760                            (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
 761                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 762                        }
 763                } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
 764                           skb->protocol == htons(ETH_P_IP) &&
 765                           skb->len > 64) {
 766                        skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
 767                        skb->ip_summed = CHECKSUM_COMPLETE;
 768                }
 769
 770                netif_rx(skb);
 771
 772                size += length;
 773                packets++;
 774
 775                new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 776                if (!new_skb)
 777                        return;
 778
 779                cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
 780                                             lp->max_frm_size,
 781                                             DMA_FROM_DEVICE);
 782                cur_p->cntrl = lp->max_frm_size;
 783                cur_p->status = 0;
 784                cur_p->sw_id_offset = (u32) new_skb;
 785
 786                ++lp->rx_bd_ci;
 787                lp->rx_bd_ci %= RX_BD_NUM;
 788                cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 789        }
 790
 791        ndev->stats.rx_packets += packets;
 792        ndev->stats.rx_bytes += size;
 793
 794        if (tail_p)
 795                axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
 796}
 797
 798/**
 799 * axienet_tx_irq - Tx Done Isr.
 800 * @irq:        irq number
 801 * @_ndev:      net_device pointer
 802 *
 803 * Return: IRQ_HANDLED for all cases.
 804 *
 805 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
 806 * to complete the BD processing.
 807 */
 808static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
 809{
 810        u32 cr;
 811        unsigned int status;
 812        struct net_device *ndev = _ndev;
 813        struct axienet_local *lp = netdev_priv(ndev);
 814
 815        status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 816        if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 817                axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 818                axienet_start_xmit_done(lp->ndev);
 819                goto out;
 820        }
 821        if (!(status & XAXIDMA_IRQ_ALL_MASK))
 822                dev_err(&ndev->dev, "No interrupts asserted in Tx path\n");
 823        if (status & XAXIDMA_IRQ_ERROR_MASK) {
 824                dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
 825                dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 826                        (lp->tx_bd_v[lp->tx_bd_ci]).phys);
 827
 828                cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 829                /* Disable coalesce, delay timer and error interrupts */
 830                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 831                /* Write to the Tx channel control register */
 832                axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 833
 834                cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 835                /* Disable coalesce, delay timer and error interrupts */
 836                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 837                /* Write to the Rx channel control register */
 838                axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 839
 840                tasklet_schedule(&lp->dma_err_tasklet);
 841                axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 842        }
 843out:
 844        return IRQ_HANDLED;
 845}
 846
 847/**
 848 * axienet_rx_irq - Rx Isr.
 849 * @irq:        irq number
 850 * @_ndev:      net_device pointer
 851 *
 852 * Return: IRQ_HANDLED for all cases.
 853 *
 854 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
 855 * processing.
 856 */
 857static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
 858{
 859        u32 cr;
 860        unsigned int status;
 861        struct net_device *ndev = _ndev;
 862        struct axienet_local *lp = netdev_priv(ndev);
 863
 864        status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 865        if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 866                axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 867                axienet_recv(lp->ndev);
 868                goto out;
 869        }
 870        if (!(status & XAXIDMA_IRQ_ALL_MASK))
 871                dev_err(&ndev->dev, "No interrupts asserted in Rx path\n");
 872        if (status & XAXIDMA_IRQ_ERROR_MASK) {
 873                dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
 874                dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 875                        (lp->rx_bd_v[lp->rx_bd_ci]).phys);
 876
 877                cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 878                /* Disable coalesce, delay timer and error interrupts */
 879                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 880                /* Finally write to the Tx channel control register */
 881                axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 882
 883                cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 884                /* Disable coalesce, delay timer and error interrupts */
 885                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 886                /* write to the Rx channel control register */
 887                axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 888
 889                tasklet_schedule(&lp->dma_err_tasklet);
 890                axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 891        }
 892out:
 893        return IRQ_HANDLED;
 894}
 895
 896static void axienet_dma_err_handler(unsigned long data);
 897
 898/**
 899 * axienet_open - Driver open routine.
 900 * @ndev:       Pointer to net_device structure
 901 *
 902 * Return: 0, on success.
 903 *          -ENODEV, if PHY cannot be connected to
 904 *          non-zero error value on failure
 905 *
 906 * This is the driver open routine. It calls phy_start to start the PHY device.
 907 * It also allocates interrupt service routines, enables the interrupt lines
 908 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
 909 * descriptors are initialized.
 910 */
 911static int axienet_open(struct net_device *ndev)
 912{
 913        int ret, mdio_mcreg;
 914        struct axienet_local *lp = netdev_priv(ndev);
 915        struct phy_device *phydev = NULL;
 916
 917        dev_dbg(&ndev->dev, "axienet_open()\n");
 918
 919        mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
 920        ret = axienet_mdio_wait_until_ready(lp);
 921        if (ret < 0)
 922                return ret;
 923        /* Disable the MDIO interface till Axi Ethernet Reset is completed.
 924         * When we do an Axi Ethernet reset, it resets the complete core
 925         * including the MDIO. If MDIO is not disabled when the reset
 926         * process is started, MDIO will be broken afterwards.
 927         */
 928        axienet_iow(lp, XAE_MDIO_MC_OFFSET,
 929                    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
 930        axienet_device_reset(ndev);
 931        /* Enable the MDIO */
 932        axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
 933        ret = axienet_mdio_wait_until_ready(lp);
 934        if (ret < 0)
 935                return ret;
 936
 937        if (lp->phy_node) {
 938                if (lp->phy_type == XAE_PHY_TYPE_GMII) {
 939                        phydev = of_phy_connect(lp->ndev, lp->phy_node,
 940                                                axienet_adjust_link, 0,
 941                                                PHY_INTERFACE_MODE_GMII);
 942                } else if (lp->phy_type == XAE_PHY_TYPE_RGMII_2_0) {
 943                        phydev = of_phy_connect(lp->ndev, lp->phy_node,
 944                                                axienet_adjust_link, 0,
 945                                                PHY_INTERFACE_MODE_RGMII_ID);
 946                }
 947
 948                if (!phydev)
 949                        dev_err(lp->dev, "of_phy_connect() failed\n");
 950                else
 951                        phy_start(phydev);
 952        }
 953
 954        /* Enable tasklets for Axi DMA error handling */
 955        tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
 956                     (unsigned long) lp);
 957
 958        /* Enable interrupts for Axi DMA Tx */
 959        ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
 960        if (ret)
 961                goto err_tx_irq;
 962        /* Enable interrupts for Axi DMA Rx */
 963        ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
 964        if (ret)
 965                goto err_rx_irq;
 966
 967        return 0;
 968
 969err_rx_irq:
 970        free_irq(lp->tx_irq, ndev);
 971err_tx_irq:
 972        if (phydev)
 973                phy_disconnect(phydev);
 974        tasklet_kill(&lp->dma_err_tasklet);
 975        dev_err(lp->dev, "request_irq() failed\n");
 976        return ret;
 977}
 978
 979/**
 980 * axienet_stop - Driver stop routine.
 981 * @ndev:       Pointer to net_device structure
 982 *
 983 * Return: 0, on success.
 984 *
 985 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
 986 * device. It also removes the interrupt handlers and disables the interrupts.
 987 * The Axi DMA Tx/Rx BDs are released.
 988 */
 989static int axienet_stop(struct net_device *ndev)
 990{
 991        u32 cr;
 992        struct axienet_local *lp = netdev_priv(ndev);
 993
 994        dev_dbg(&ndev->dev, "axienet_close()\n");
 995
 996        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 997        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 998                          cr & (~XAXIDMA_CR_RUNSTOP_MASK));
 999        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1000        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1001                          cr & (~XAXIDMA_CR_RUNSTOP_MASK));
1002        axienet_setoptions(ndev, lp->options &
1003                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1004
1005        tasklet_kill(&lp->dma_err_tasklet);
1006
1007        free_irq(lp->tx_irq, ndev);
1008        free_irq(lp->rx_irq, ndev);
1009
1010        if (ndev->phydev)
1011                phy_disconnect(ndev->phydev);
1012
1013        axienet_dma_bd_release(ndev);
1014        return 0;
1015}
1016
1017/**
1018 * axienet_change_mtu - Driver change mtu routine.
1019 * @ndev:       Pointer to net_device structure
1020 * @new_mtu:    New mtu value to be applied
1021 *
1022 * Return: Always returns 0 (success).
1023 *
1024 * This is the change mtu driver routine. It checks if the Axi Ethernet
1025 * hardware supports jumbo frames before changing the mtu. This can be
1026 * called only when the device is not up.
1027 */
1028static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1029{
1030        struct axienet_local *lp = netdev_priv(ndev);
1031
1032        if (netif_running(ndev))
1033                return -EBUSY;
1034
1035        if ((new_mtu + VLAN_ETH_HLEN +
1036                XAE_TRL_SIZE) > lp->rxmem)
1037                return -EINVAL;
1038
1039        ndev->mtu = new_mtu;
1040
1041        return 0;
1042}
1043
1044#ifdef CONFIG_NET_POLL_CONTROLLER
1045/**
1046 * axienet_poll_controller - Axi Ethernet poll mechanism.
1047 * @ndev:       Pointer to net_device structure
1048 *
1049 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1050 * to polling the ISRs and are enabled back after the polling is done.
1051 */
1052static void axienet_poll_controller(struct net_device *ndev)
1053{
1054        struct axienet_local *lp = netdev_priv(ndev);
1055        disable_irq(lp->tx_irq);
1056        disable_irq(lp->rx_irq);
1057        axienet_rx_irq(lp->tx_irq, ndev);
1058        axienet_tx_irq(lp->rx_irq, ndev);
1059        enable_irq(lp->tx_irq);
1060        enable_irq(lp->rx_irq);
1061}
1062#endif
1063
1064static const struct net_device_ops axienet_netdev_ops = {
1065        .ndo_open = axienet_open,
1066        .ndo_stop = axienet_stop,
1067        .ndo_start_xmit = axienet_start_xmit,
1068        .ndo_change_mtu = axienet_change_mtu,
1069        .ndo_set_mac_address = netdev_set_mac_address,
1070        .ndo_validate_addr = eth_validate_addr,
1071        .ndo_set_rx_mode = axienet_set_multicast_list,
1072#ifdef CONFIG_NET_POLL_CONTROLLER
1073        .ndo_poll_controller = axienet_poll_controller,
1074#endif
1075};
1076
1077/**
1078 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1079 * @ndev:       Pointer to net_device structure
1080 * @ed:         Pointer to ethtool_drvinfo structure
1081 *
1082 * This implements ethtool command for getting the driver information.
1083 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1084 */
1085static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1086                                         struct ethtool_drvinfo *ed)
1087{
1088        strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1089        strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1090}
1091
1092/**
1093 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1094 *                                 AxiEthernet core.
1095 * @ndev:       Pointer to net_device structure
1096 *
1097 * This implements ethtool command for getting the total register length
1098 * information.
1099 *
1100 * Return: the total regs length
1101 */
1102static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1103{
1104        return sizeof(u32) * AXIENET_REGS_N;
1105}
1106
1107/**
1108 * axienet_ethtools_get_regs - Dump the contents of all registers present
1109 *                             in AxiEthernet core.
1110 * @ndev:       Pointer to net_device structure
1111 * @regs:       Pointer to ethtool_regs structure
1112 * @ret:        Void pointer used to return the contents of the registers.
1113 *
1114 * This implements ethtool command for getting the Axi Ethernet register dump.
1115 * Issue "ethtool -d ethX" to execute this function.
1116 */
1117static void axienet_ethtools_get_regs(struct net_device *ndev,
1118                                      struct ethtool_regs *regs, void *ret)
1119{
1120        u32 *data = (u32 *) ret;
1121        size_t len = sizeof(u32) * AXIENET_REGS_N;
1122        struct axienet_local *lp = netdev_priv(ndev);
1123
1124        regs->version = 0;
1125        regs->len = len;
1126
1127        memset(data, 0, len);
1128        data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1129        data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1130        data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1131        data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1132        data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1133        data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1134        data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1135        data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1136        data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1137        data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1138        data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1139        data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1140        data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1141        data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1142        data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1143        data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1144        data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1145        data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1146        data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1147        data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1148        data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1149        data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1150        data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1151        data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1152        data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1153        data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1154        data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1155        data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1156        data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1157        data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1158        data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1159        data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1160}
1161
1162/**
1163 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1164 *                                   Tx and Rx paths.
1165 * @ndev:       Pointer to net_device structure
1166 * @epauseparm: Pointer to ethtool_pauseparam structure.
1167 *
1168 * This implements ethtool command for getting axi ethernet pause frame
1169 * setting. Issue "ethtool -a ethX" to execute this function.
1170 */
1171static void
1172axienet_ethtools_get_pauseparam(struct net_device *ndev,
1173                                struct ethtool_pauseparam *epauseparm)
1174{
1175        u32 regval;
1176        struct axienet_local *lp = netdev_priv(ndev);
1177        epauseparm->autoneg  = 0;
1178        regval = axienet_ior(lp, XAE_FCC_OFFSET);
1179        epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1180        epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1181}
1182
1183/**
1184 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1185 *                                   settings.
1186 * @ndev:       Pointer to net_device structure
1187 * @epauseparm:Pointer to ethtool_pauseparam structure
1188 *
1189 * This implements ethtool command for enabling flow control on Rx and Tx
1190 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1191 * function.
1192 *
1193 * Return: 0 on success, -EFAULT if device is running
1194 */
1195static int
1196axienet_ethtools_set_pauseparam(struct net_device *ndev,
1197                                struct ethtool_pauseparam *epauseparm)
1198{
1199        u32 regval = 0;
1200        struct axienet_local *lp = netdev_priv(ndev);
1201
1202        if (netif_running(ndev)) {
1203                netdev_err(ndev,
1204                           "Please stop netif before applying configuration\n");
1205                return -EFAULT;
1206        }
1207
1208        regval = axienet_ior(lp, XAE_FCC_OFFSET);
1209        if (epauseparm->tx_pause)
1210                regval |= XAE_FCC_FCTX_MASK;
1211        else
1212                regval &= ~XAE_FCC_FCTX_MASK;
1213        if (epauseparm->rx_pause)
1214                regval |= XAE_FCC_FCRX_MASK;
1215        else
1216                regval &= ~XAE_FCC_FCRX_MASK;
1217        axienet_iow(lp, XAE_FCC_OFFSET, regval);
1218
1219        return 0;
1220}
1221
1222/**
1223 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1224 * @ndev:       Pointer to net_device structure
1225 * @ecoalesce:  Pointer to ethtool_coalesce structure
1226 *
1227 * This implements ethtool command for getting the DMA interrupt coalescing
1228 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1229 * execute this function.
1230 *
1231 * Return: 0 always
1232 */
1233static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1234                                         struct ethtool_coalesce *ecoalesce)
1235{
1236        u32 regval = 0;
1237        struct axienet_local *lp = netdev_priv(ndev);
1238        regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1239        ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1240                                             >> XAXIDMA_COALESCE_SHIFT;
1241        regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1242        ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1243                                             >> XAXIDMA_COALESCE_SHIFT;
1244        return 0;
1245}
1246
1247/**
1248 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1249 * @ndev:       Pointer to net_device structure
1250 * @ecoalesce:  Pointer to ethtool_coalesce structure
1251 *
1252 * This implements ethtool command for setting the DMA interrupt coalescing
1253 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1254 * prompt to execute this function.
1255 *
1256 * Return: 0, on success, Non-zero error value on failure.
1257 */
1258static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1259                                         struct ethtool_coalesce *ecoalesce)
1260{
1261        struct axienet_local *lp = netdev_priv(ndev);
1262
1263        if (netif_running(ndev)) {
1264                netdev_err(ndev,
1265                           "Please stop netif before applying configuration\n");
1266                return -EFAULT;
1267        }
1268
1269        if ((ecoalesce->rx_coalesce_usecs) ||
1270            (ecoalesce->rx_coalesce_usecs_irq) ||
1271            (ecoalesce->rx_max_coalesced_frames_irq) ||
1272            (ecoalesce->tx_coalesce_usecs) ||
1273            (ecoalesce->tx_coalesce_usecs_irq) ||
1274            (ecoalesce->tx_max_coalesced_frames_irq) ||
1275            (ecoalesce->stats_block_coalesce_usecs) ||
1276            (ecoalesce->use_adaptive_rx_coalesce) ||
1277            (ecoalesce->use_adaptive_tx_coalesce) ||
1278            (ecoalesce->pkt_rate_low) ||
1279            (ecoalesce->rx_coalesce_usecs_low) ||
1280            (ecoalesce->rx_max_coalesced_frames_low) ||
1281            (ecoalesce->tx_coalesce_usecs_low) ||
1282            (ecoalesce->tx_max_coalesced_frames_low) ||
1283            (ecoalesce->pkt_rate_high) ||
1284            (ecoalesce->rx_coalesce_usecs_high) ||
1285            (ecoalesce->rx_max_coalesced_frames_high) ||
1286            (ecoalesce->tx_coalesce_usecs_high) ||
1287            (ecoalesce->tx_max_coalesced_frames_high) ||
1288            (ecoalesce->rate_sample_interval))
1289                return -EOPNOTSUPP;
1290        if (ecoalesce->rx_max_coalesced_frames)
1291                lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1292        if (ecoalesce->tx_max_coalesced_frames)
1293                lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1294
1295        return 0;
1296}
1297
1298static const struct ethtool_ops axienet_ethtool_ops = {
1299        .get_drvinfo    = axienet_ethtools_get_drvinfo,
1300        .get_regs_len   = axienet_ethtools_get_regs_len,
1301        .get_regs       = axienet_ethtools_get_regs,
1302        .get_link       = ethtool_op_get_link,
1303        .get_pauseparam = axienet_ethtools_get_pauseparam,
1304        .set_pauseparam = axienet_ethtools_set_pauseparam,
1305        .get_coalesce   = axienet_ethtools_get_coalesce,
1306        .set_coalesce   = axienet_ethtools_set_coalesce,
1307        .get_link_ksettings = phy_ethtool_get_link_ksettings,
1308        .set_link_ksettings = phy_ethtool_set_link_ksettings,
1309};
1310
1311/**
1312 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1313 * @data:       Data passed
1314 *
1315 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1316 * Tx/Rx BDs.
1317 */
1318static void axienet_dma_err_handler(unsigned long data)
1319{
1320        u32 axienet_status;
1321        u32 cr, i;
1322        int mdio_mcreg;
1323        struct axienet_local *lp = (struct axienet_local *) data;
1324        struct net_device *ndev = lp->ndev;
1325        struct axidma_bd *cur_p;
1326
1327        axienet_setoptions(ndev, lp->options &
1328                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1329        mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1330        axienet_mdio_wait_until_ready(lp);
1331        /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1332         * When we do an Axi Ethernet reset, it resets the complete core
1333         * including the MDIO. So if MDIO is not disabled when the reset
1334         * process is started, MDIO will be broken afterwards.
1335         */
1336        axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1337                    ~XAE_MDIO_MC_MDIOEN_MASK));
1338
1339        __axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
1340        __axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
1341
1342        axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1343        axienet_mdio_wait_until_ready(lp);
1344
1345        for (i = 0; i < TX_BD_NUM; i++) {
1346                cur_p = &lp->tx_bd_v[i];
1347                if (cur_p->phys)
1348                        dma_unmap_single(ndev->dev.parent, cur_p->phys,
1349                                         (cur_p->cntrl &
1350                                          XAXIDMA_BD_CTRL_LENGTH_MASK),
1351                                         DMA_TO_DEVICE);
1352                if (cur_p->app4)
1353                        dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1354                cur_p->phys = 0;
1355                cur_p->cntrl = 0;
1356                cur_p->status = 0;
1357                cur_p->app0 = 0;
1358                cur_p->app1 = 0;
1359                cur_p->app2 = 0;
1360                cur_p->app3 = 0;
1361                cur_p->app4 = 0;
1362                cur_p->sw_id_offset = 0;
1363        }
1364
1365        for (i = 0; i < RX_BD_NUM; i++) {
1366                cur_p = &lp->rx_bd_v[i];
1367                cur_p->status = 0;
1368                cur_p->app0 = 0;
1369                cur_p->app1 = 0;
1370                cur_p->app2 = 0;
1371                cur_p->app3 = 0;
1372                cur_p->app4 = 0;
1373        }
1374
1375        lp->tx_bd_ci = 0;
1376        lp->tx_bd_tail = 0;
1377        lp->rx_bd_ci = 0;
1378
1379        /* Start updating the Rx channel control register */
1380        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1381        /* Update the interrupt coalesce count */
1382        cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1383              (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1384        /* Update the delay timer count */
1385        cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1386              (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1387        /* Enable coalesce, delay timer and error interrupts */
1388        cr |= XAXIDMA_IRQ_ALL_MASK;
1389        /* Finally write to the Rx channel control register */
1390        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1391
1392        /* Start updating the Tx channel control register */
1393        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1394        /* Update the interrupt coalesce count */
1395        cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1396              (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1397        /* Update the delay timer count */
1398        cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1399              (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1400        /* Enable coalesce, delay timer and error interrupts */
1401        cr |= XAXIDMA_IRQ_ALL_MASK;
1402        /* Finally write to the Tx channel control register */
1403        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1404
1405        /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1406         * halted state. This will make the Rx side ready for reception.
1407         */
1408        axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1409        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1410        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1411                          cr | XAXIDMA_CR_RUNSTOP_MASK);
1412        axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1413                          (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1414
1415        /* Write to the RS (Run-stop) bit in the Tx channel control register.
1416         * Tx channel is now ready to run. But only after we write to the
1417         * tail pointer register that the Tx channel will start transmitting
1418         */
1419        axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1420        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1421        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1422                          cr | XAXIDMA_CR_RUNSTOP_MASK);
1423
1424        axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1425        axienet_status &= ~XAE_RCW1_RX_MASK;
1426        axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1427
1428        axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1429        if (axienet_status & XAE_INT_RXRJECT_MASK)
1430                axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1431        axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1432
1433        /* Sync default options with HW but leave receiver and
1434         * transmitter disabled.
1435         */
1436        axienet_setoptions(ndev, lp->options &
1437                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1438        axienet_set_mac_address(ndev, NULL);
1439        axienet_set_multicast_list(ndev);
1440        axienet_setoptions(ndev, lp->options);
1441}
1442
1443/**
1444 * axienet_probe - Axi Ethernet probe function.
1445 * @pdev:       Pointer to platform device structure.
1446 *
1447 * Return: 0, on success
1448 *          Non-zero error value on failure.
1449 *
1450 * This is the probe routine for Axi Ethernet driver. This is called before
1451 * any other driver routines are invoked. It allocates and sets up the Ethernet
1452 * device. Parses through device tree and populates fields of
1453 * axienet_local. It registers the Ethernet device.
1454 */
1455static int axienet_probe(struct platform_device *pdev)
1456{
1457        int ret;
1458        struct device_node *np;
1459        struct axienet_local *lp;
1460        struct net_device *ndev;
1461        const void *mac_addr;
1462        struct resource *ethres, dmares;
1463        u32 value;
1464
1465        ndev = alloc_etherdev(sizeof(*lp));
1466        if (!ndev)
1467                return -ENOMEM;
1468
1469        platform_set_drvdata(pdev, ndev);
1470
1471        SET_NETDEV_DEV(ndev, &pdev->dev);
1472        ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1473        ndev->features = NETIF_F_SG;
1474        ndev->netdev_ops = &axienet_netdev_ops;
1475        ndev->ethtool_ops = &axienet_ethtool_ops;
1476
1477        /* MTU range: 64 - 9000 */
1478        ndev->min_mtu = 64;
1479        ndev->max_mtu = XAE_JUMBO_MTU;
1480
1481        lp = netdev_priv(ndev);
1482        lp->ndev = ndev;
1483        lp->dev = &pdev->dev;
1484        lp->options = XAE_OPTION_DEFAULTS;
1485        /* Map device registers */
1486        ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1487        lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1488        if (IS_ERR(lp->regs)) {
1489                dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1490                ret = PTR_ERR(lp->regs);
1491                goto free_netdev;
1492        }
1493
1494        /* Setup checksum offload, but default to off if not specified */
1495        lp->features = 0;
1496
1497        ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1498        if (!ret) {
1499                switch (value) {
1500                case 1:
1501                        lp->csum_offload_on_tx_path =
1502                                XAE_FEATURE_PARTIAL_TX_CSUM;
1503                        lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1504                        /* Can checksum TCP/UDP over IPv4. */
1505                        ndev->features |= NETIF_F_IP_CSUM;
1506                        break;
1507                case 2:
1508                        lp->csum_offload_on_tx_path =
1509                                XAE_FEATURE_FULL_TX_CSUM;
1510                        lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1511                        /* Can checksum TCP/UDP over IPv4. */
1512                        ndev->features |= NETIF_F_IP_CSUM;
1513                        break;
1514                default:
1515                        lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1516                }
1517        }
1518        ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1519        if (!ret) {
1520                switch (value) {
1521                case 1:
1522                        lp->csum_offload_on_rx_path =
1523                                XAE_FEATURE_PARTIAL_RX_CSUM;
1524                        lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1525                        break;
1526                case 2:
1527                        lp->csum_offload_on_rx_path =
1528                                XAE_FEATURE_FULL_RX_CSUM;
1529                        lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1530                        break;
1531                default:
1532                        lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1533                }
1534        }
1535        /* For supporting jumbo frames, the Axi Ethernet hardware must have
1536         * a larger Rx/Tx Memory. Typically, the size must be large so that
1537         * we can enable jumbo option and start supporting jumbo frames.
1538         * Here we check for memory allocated for Rx/Tx in the hardware from
1539         * the device-tree and accordingly set flags.
1540         */
1541        of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1542        of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &lp->phy_type);
1543
1544        /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1545        np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1546        if (!np) {
1547                dev_err(&pdev->dev, "could not find DMA node\n");
1548                ret = -ENODEV;
1549                goto free_netdev;
1550        }
1551        ret = of_address_to_resource(np, 0, &dmares);
1552        if (ret) {
1553                dev_err(&pdev->dev, "unable to get DMA resource\n");
1554                goto free_netdev;
1555        }
1556        lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1557        if (IS_ERR(lp->dma_regs)) {
1558                dev_err(&pdev->dev, "could not map DMA regs\n");
1559                ret = PTR_ERR(lp->dma_regs);
1560                goto free_netdev;
1561        }
1562        lp->rx_irq = irq_of_parse_and_map(np, 1);
1563        lp->tx_irq = irq_of_parse_and_map(np, 0);
1564        of_node_put(np);
1565        if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1566                dev_err(&pdev->dev, "could not determine irqs\n");
1567                ret = -ENOMEM;
1568                goto free_netdev;
1569        }
1570
1571        /* Retrieve the MAC address */
1572        mac_addr = of_get_mac_address(pdev->dev.of_node);
1573        if (!mac_addr) {
1574                dev_err(&pdev->dev, "could not find MAC address\n");
1575                goto free_netdev;
1576        }
1577        axienet_set_mac_address(ndev, mac_addr);
1578
1579        lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1580        lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1581
1582        lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1583        if (lp->phy_node) {
1584                ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1585                if (ret)
1586                        dev_warn(&pdev->dev, "error registering MDIO bus\n");
1587        }
1588
1589        ret = register_netdev(lp->ndev);
1590        if (ret) {
1591                dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1592                goto free_netdev;
1593        }
1594
1595        return 0;
1596
1597free_netdev:
1598        free_netdev(ndev);
1599
1600        return ret;
1601}
1602
1603static int axienet_remove(struct platform_device *pdev)
1604{
1605        struct net_device *ndev = platform_get_drvdata(pdev);
1606        struct axienet_local *lp = netdev_priv(ndev);
1607
1608        axienet_mdio_teardown(lp);
1609        unregister_netdev(ndev);
1610
1611        of_node_put(lp->phy_node);
1612        lp->phy_node = NULL;
1613
1614        free_netdev(ndev);
1615
1616        return 0;
1617}
1618
1619static struct platform_driver axienet_driver = {
1620        .probe = axienet_probe,
1621        .remove = axienet_remove,
1622        .driver = {
1623                 .name = "xilinx_axienet",
1624                 .of_match_table = axienet_of_match,
1625        },
1626};
1627
1628module_platform_driver(axienet_driver);
1629
1630MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1631MODULE_AUTHOR("Xilinx");
1632MODULE_LICENSE("GPL");
1633