linux/drivers/net/fddi/skfp/skfddi.c
<<
>>
Prefs
   1/*
   2 * File Name:
   3 *   skfddi.c
   4 *
   5 * Copyright Information:
   6 *   Copyright SysKonnect 1998,1999.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * The information in this file is provided "AS IS" without warranty.
  14 *
  15 * Abstract:
  16 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
  17 *   familie.
  18 *
  19 * Maintainers:
  20 *   CG    Christoph Goos (cgoos@syskonnect.de)
  21 *
  22 * Contributors:
  23 *   DM    David S. Miller
  24 *
  25 * Address all question to:
  26 *   linux@syskonnect.de
  27 *
  28 * The technical manual for the adapters is available from SysKonnect's
  29 * web pages: www.syskonnect.com
  30 * Goto "Support" and search Knowledge Base for "manual".
  31 *
  32 * Driver Architecture:
  33 *   The driver architecture is based on the DEC FDDI driver by
  34 *   Lawrence V. Stefani and several ethernet drivers.
  35 *   I also used an existing Windows NT miniport driver.
  36 *   All hardware dependent functions are handled by the SysKonnect
  37 *   Hardware Module.
  38 *   The only headerfiles that are directly related to this source
  39 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
  40 *   The others belong to the SysKonnect FDDI Hardware Module and
  41 *   should better not be changed.
  42 *
  43 * Modification History:
  44 *              Date            Name    Description
  45 *              02-Mar-98       CG      Created.
  46 *
  47 *              10-Mar-99       CG      Support for 2.2.x added.
  48 *              25-Mar-99       CG      Corrected IRQ routing for SMP (APIC)
  49 *              26-Oct-99       CG      Fixed compilation error on 2.2.13
  50 *              12-Nov-99       CG      Source code release
  51 *              22-Nov-99       CG      Included in kernel source.
  52 *              07-May-00       DM      64 bit fixes, new dma interface
  53 *              31-Jul-03       DB      Audit copy_*_user in skfp_ioctl
  54 *                                        Daniele Bellucci <bellucda@tiscali.it>
  55 *              03-Dec-03       SH      Convert to PCI device model
  56 *
  57 * Compilation options (-Dxxx):
  58 *              DRIVERDEBUG     print lots of messages to log file
  59 *              DUMPPACKETS     print received/transmitted packets to logfile
  60 * 
  61 * Tested cpu architectures:
  62 *      - i386
  63 *      - sparc64
  64 */
  65
  66/* Version information string - should be updated prior to */
  67/* each new release!!! */
  68#define VERSION         "2.07"
  69
  70static const char * const boot_msg = 
  71        "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
  72        "  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
  73
  74/* Include files */
  75
  76#include <linux/capability.h>
  77#include <linux/module.h>
  78#include <linux/kernel.h>
  79#include <linux/errno.h>
  80#include <linux/ioport.h>
  81#include <linux/interrupt.h>
  82#include <linux/pci.h>
  83#include <linux/netdevice.h>
  84#include <linux/fddidevice.h>
  85#include <linux/skbuff.h>
  86#include <linux/bitops.h>
  87#include <linux/gfp.h>
  88
  89#include <asm/byteorder.h>
  90#include <asm/io.h>
  91#include <linux/uaccess.h>
  92
  93#include        "h/types.h"
  94#undef ADDR                     // undo Linux definition
  95#include        "h/skfbi.h"
  96#include        "h/fddi.h"
  97#include        "h/smc.h"
  98#include        "h/smtstate.h"
  99
 100
 101// Define module-wide (static) routines
 102static int skfp_driver_init(struct net_device *dev);
 103static int skfp_open(struct net_device *dev);
 104static int skfp_close(struct net_device *dev);
 105static irqreturn_t skfp_interrupt(int irq, void *dev_id);
 106static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
 107static void skfp_ctl_set_multicast_list(struct net_device *dev);
 108static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
 109static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
 110static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 111static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
 112                                       struct net_device *dev);
 113static void send_queued_packets(struct s_smc *smc);
 114static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
 115static void ResetAdapter(struct s_smc *smc);
 116
 117
 118// Functions needed by the hardware module
 119void *mac_drv_get_space(struct s_smc *smc, u_int size);
 120void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
 121unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
 122unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
 123void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
 124                  int flag);
 125void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
 126void llc_restart_tx(struct s_smc *smc);
 127void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 128                         int frag_count, int len);
 129void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 130                         int frag_count);
 131void mac_drv_fill_rxd(struct s_smc *smc);
 132void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 133                       int frag_count);
 134int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
 135                    int la_len);
 136void dump_data(unsigned char *Data, int length);
 137
 138// External functions from the hardware module
 139extern u_int mac_drv_check_space(void);
 140extern int mac_drv_init(struct s_smc *smc);
 141extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
 142                        int len, int frame_status);
 143extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
 144                       int frame_len, int frame_status);
 145extern void fddi_isr(struct s_smc *smc);
 146extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
 147                        int len, int frame_status);
 148extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
 149extern void mac_drv_clear_rx_queue(struct s_smc *smc);
 150extern void enable_tx_irq(struct s_smc *smc, u_short queue);
 151
 152static const struct pci_device_id skfddi_pci_tbl[] = {
 153        { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
 154        { }                     /* Terminating entry */
 155};
 156MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
 157MODULE_LICENSE("GPL");
 158MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
 159
 160// Define module-wide (static) variables
 161
 162static int num_boards;  /* total number of adapters configured */
 163
 164static const struct net_device_ops skfp_netdev_ops = {
 165        .ndo_open               = skfp_open,
 166        .ndo_stop               = skfp_close,
 167        .ndo_start_xmit         = skfp_send_pkt,
 168        .ndo_get_stats          = skfp_ctl_get_stats,
 169        .ndo_set_rx_mode        = skfp_ctl_set_multicast_list,
 170        .ndo_set_mac_address    = skfp_ctl_set_mac_address,
 171        .ndo_do_ioctl           = skfp_ioctl,
 172};
 173
 174/*
 175 * =================
 176 * = skfp_init_one =
 177 * =================
 178 *   
 179 * Overview:
 180 *   Probes for supported FDDI PCI controllers
 181 *  
 182 * Returns:
 183 *   Condition code
 184 *       
 185 * Arguments:
 186 *   pdev - pointer to PCI device information
 187 *
 188 * Functional Description:
 189 *   This is now called by PCI driver registration process
 190 *   for each board found.
 191 *   
 192 * Return Codes:
 193 *   0           - This device (fddi0, fddi1, etc) configured successfully
 194 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
 195 *                         present for this device name
 196 *
 197 *
 198 * Side Effects:
 199 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 200 *   initialized and the board resources are read and stored in
 201 *   the device structure.
 202 */
 203static int skfp_init_one(struct pci_dev *pdev,
 204                                const struct pci_device_id *ent)
 205{
 206        struct net_device *dev;
 207        struct s_smc *smc;      /* board pointer */
 208        void __iomem *mem;
 209        int err;
 210
 211        pr_debug("entering skfp_init_one\n");
 212
 213        if (num_boards == 0) 
 214                printk("%s\n", boot_msg);
 215
 216        err = pci_enable_device(pdev);
 217        if (err)
 218                return err;
 219
 220        err = pci_request_regions(pdev, "skfddi");
 221        if (err)
 222                goto err_out1;
 223
 224        pci_set_master(pdev);
 225
 226#ifdef MEM_MAPPED_IO
 227        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
 228                printk(KERN_ERR "skfp: region is not an MMIO resource\n");
 229                err = -EIO;
 230                goto err_out2;
 231        }
 232
 233        mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
 234#else
 235        if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
 236                printk(KERN_ERR "skfp: region is not PIO resource\n");
 237                err = -EIO;
 238                goto err_out2;
 239        }
 240
 241        mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
 242#endif
 243        if (!mem) {
 244                printk(KERN_ERR "skfp:  Unable to map register, "
 245                                "FDDI adapter will be disabled.\n");
 246                err = -EIO;
 247                goto err_out2;
 248        }
 249
 250        dev = alloc_fddidev(sizeof(struct s_smc));
 251        if (!dev) {
 252                printk(KERN_ERR "skfp: Unable to allocate fddi device, "
 253                                "FDDI adapter will be disabled.\n");
 254                err = -ENOMEM;
 255                goto err_out3;
 256        }
 257
 258        dev->irq = pdev->irq;
 259        dev->netdev_ops = &skfp_netdev_ops;
 260
 261        SET_NETDEV_DEV(dev, &pdev->dev);
 262
 263        /* Initialize board structure with bus-specific info */
 264        smc = netdev_priv(dev);
 265        smc->os.dev = dev;
 266        smc->os.bus_type = SK_BUS_TYPE_PCI;
 267        smc->os.pdev = *pdev;
 268        smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
 269        smc->os.MaxFrameSize = MAX_FRAME_SIZE;
 270        smc->os.dev = dev;
 271        smc->hw.slot = -1;
 272        smc->hw.iop = mem;
 273        smc->os.ResetRequested = FALSE;
 274        skb_queue_head_init(&smc->os.SendSkbQueue);
 275
 276        dev->base_addr = (unsigned long)mem;
 277
 278        err = skfp_driver_init(dev);
 279        if (err)
 280                goto err_out4;
 281
 282        err = register_netdev(dev);
 283        if (err)
 284                goto err_out5;
 285
 286        ++num_boards;
 287        pci_set_drvdata(pdev, dev);
 288
 289        if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
 290            (pdev->subsystem_device & 0xff00) == 0x5800) 
 291                printk("%s: SysKonnect FDDI PCI adapter"
 292                       " found (SK-%04X)\n", dev->name, 
 293                       pdev->subsystem_device);
 294        else
 295                printk("%s: FDDI PCI adapter found\n", dev->name);
 296
 297        return 0;
 298err_out5:
 299        if (smc->os.SharedMemAddr) 
 300                pci_free_consistent(pdev, smc->os.SharedMemSize,
 301                                    smc->os.SharedMemAddr, 
 302                                    smc->os.SharedMemDMA);
 303        pci_free_consistent(pdev, MAX_FRAME_SIZE,
 304                            smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
 305err_out4:
 306        free_netdev(dev);
 307err_out3:
 308#ifdef MEM_MAPPED_IO
 309        iounmap(mem);
 310#else
 311        ioport_unmap(mem);
 312#endif
 313err_out2:
 314        pci_release_regions(pdev);
 315err_out1:
 316        pci_disable_device(pdev);
 317        return err;
 318}
 319
 320/*
 321 * Called for each adapter board from pci_unregister_driver
 322 */
 323static void skfp_remove_one(struct pci_dev *pdev)
 324{
 325        struct net_device *p = pci_get_drvdata(pdev);
 326        struct s_smc *lp = netdev_priv(p);
 327
 328        unregister_netdev(p);
 329
 330        if (lp->os.SharedMemAddr) {
 331                pci_free_consistent(&lp->os.pdev,
 332                                    lp->os.SharedMemSize,
 333                                    lp->os.SharedMemAddr,
 334                                    lp->os.SharedMemDMA);
 335                lp->os.SharedMemAddr = NULL;
 336        }
 337        if (lp->os.LocalRxBuffer) {
 338                pci_free_consistent(&lp->os.pdev,
 339                                    MAX_FRAME_SIZE,
 340                                    lp->os.LocalRxBuffer,
 341                                    lp->os.LocalRxBufferDMA);
 342                lp->os.LocalRxBuffer = NULL;
 343        }
 344#ifdef MEM_MAPPED_IO
 345        iounmap(lp->hw.iop);
 346#else
 347        ioport_unmap(lp->hw.iop);
 348#endif
 349        pci_release_regions(pdev);
 350        free_netdev(p);
 351
 352        pci_disable_device(pdev);
 353}
 354
 355/*
 356 * ====================
 357 * = skfp_driver_init =
 358 * ====================
 359 *   
 360 * Overview:
 361 *   Initializes remaining adapter board structure information
 362 *   and makes sure adapter is in a safe state prior to skfp_open().
 363 *  
 364 * Returns:
 365 *   Condition code
 366 *       
 367 * Arguments:
 368 *   dev - pointer to device information
 369 *
 370 * Functional Description:
 371 *   This function allocates additional resources such as the host memory
 372 *   blocks needed by the adapter.
 373 *   The adapter is also reset. The OS must call skfp_open() to open 
 374 *   the adapter and bring it on-line.
 375 *
 376 * Return Codes:
 377 *    0 - initialization succeeded
 378 *   -1 - initialization failed
 379 */
 380static  int skfp_driver_init(struct net_device *dev)
 381{
 382        struct s_smc *smc = netdev_priv(dev);
 383        skfddi_priv *bp = &smc->os;
 384        int err = -EIO;
 385
 386        pr_debug("entering skfp_driver_init\n");
 387
 388        // set the io address in private structures
 389        bp->base_addr = dev->base_addr;
 390
 391        // Get the interrupt level from the PCI Configuration Table
 392        smc->hw.irq = dev->irq;
 393
 394        spin_lock_init(&bp->DriverLock);
 395        
 396        // Allocate invalid frame
 397        bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
 398        if (!bp->LocalRxBuffer) {
 399                printk("could not allocate mem for ");
 400                printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
 401                goto fail;
 402        }
 403
 404        // Determine the required size of the 'shared' memory area.
 405        bp->SharedMemSize = mac_drv_check_space();
 406        pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
 407        if (bp->SharedMemSize > 0) {
 408                bp->SharedMemSize += 16;        // for descriptor alignment
 409
 410                bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
 411                                                         bp->SharedMemSize,
 412                                                         &bp->SharedMemDMA);
 413                if (!bp->SharedMemAddr) {
 414                        printk("could not allocate mem for ");
 415                        printk("hardware module: %ld byte\n",
 416                               bp->SharedMemSize);
 417                        goto fail;
 418                }
 419                bp->SharedMemHeap = 0;  // Nothing used yet.
 420
 421        } else {
 422                bp->SharedMemAddr = NULL;
 423                bp->SharedMemHeap = 0;
 424        }                       // SharedMemSize > 0
 425
 426        memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
 427
 428        card_stop(smc);         // Reset adapter.
 429
 430        pr_debug("mac_drv_init()..\n");
 431        if (mac_drv_init(smc) != 0) {
 432                pr_debug("mac_drv_init() failed\n");
 433                goto fail;
 434        }
 435        read_address(smc, NULL);
 436        pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
 437        memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
 438
 439        smt_reset_defaults(smc, 0);
 440
 441        return 0;
 442
 443fail:
 444        if (bp->SharedMemAddr) {
 445                pci_free_consistent(&bp->pdev,
 446                                    bp->SharedMemSize,
 447                                    bp->SharedMemAddr,
 448                                    bp->SharedMemDMA);
 449                bp->SharedMemAddr = NULL;
 450        }
 451        if (bp->LocalRxBuffer) {
 452                pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
 453                                    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
 454                bp->LocalRxBuffer = NULL;
 455        }
 456        return err;
 457}                               // skfp_driver_init
 458
 459
 460/*
 461 * =============
 462 * = skfp_open =
 463 * =============
 464 *   
 465 * Overview:
 466 *   Opens the adapter
 467 *  
 468 * Returns:
 469 *   Condition code
 470 *       
 471 * Arguments:
 472 *   dev - pointer to device information
 473 *
 474 * Functional Description:
 475 *   This function brings the adapter to an operational state.
 476 *
 477 * Return Codes:
 478 *   0           - Adapter was successfully opened
 479 *   -EAGAIN - Could not register IRQ
 480 */
 481static int skfp_open(struct net_device *dev)
 482{
 483        struct s_smc *smc = netdev_priv(dev);
 484        int err;
 485
 486        pr_debug("entering skfp_open\n");
 487        /* Register IRQ - support shared interrupts by passing device ptr */
 488        err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
 489                          dev->name, dev);
 490        if (err)
 491                return err;
 492
 493        /*
 494         * Set current address to factory MAC address
 495         *
 496         * Note: We've already done this step in skfp_driver_init.
 497         *       However, it's possible that a user has set a node
 498         *               address override, then closed and reopened the
 499         *               adapter.  Unless we reset the device address field
 500         *               now, we'll continue to use the existing modified
 501         *               address.
 502         */
 503        read_address(smc, NULL);
 504        memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
 505
 506        init_smt(smc, NULL);
 507        smt_online(smc, 1);
 508        STI_FBI();
 509
 510        /* Clear local multicast address tables */
 511        mac_clear_multicast(smc);
 512
 513        /* Disable promiscuous filter settings */
 514        mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 515
 516        netif_start_queue(dev);
 517        return 0;
 518}                               // skfp_open
 519
 520
 521/*
 522 * ==============
 523 * = skfp_close =
 524 * ==============
 525 *   
 526 * Overview:
 527 *   Closes the device/module.
 528 *  
 529 * Returns:
 530 *   Condition code
 531 *       
 532 * Arguments:
 533 *   dev - pointer to device information
 534 *
 535 * Functional Description:
 536 *   This routine closes the adapter and brings it to a safe state.
 537 *   The interrupt service routine is deregistered with the OS.
 538 *   The adapter can be opened again with another call to skfp_open().
 539 *
 540 * Return Codes:
 541 *   Always return 0.
 542 *
 543 * Assumptions:
 544 *   No further requests for this adapter are made after this routine is
 545 *   called.  skfp_open() can be called to reset and reinitialize the
 546 *   adapter.
 547 */
 548static int skfp_close(struct net_device *dev)
 549{
 550        struct s_smc *smc = netdev_priv(dev);
 551        skfddi_priv *bp = &smc->os;
 552
 553        CLI_FBI();
 554        smt_reset_defaults(smc, 1);
 555        card_stop(smc);
 556        mac_drv_clear_tx_queue(smc);
 557        mac_drv_clear_rx_queue(smc);
 558
 559        netif_stop_queue(dev);
 560        /* Deregister (free) IRQ */
 561        free_irq(dev->irq, dev);
 562
 563        skb_queue_purge(&bp->SendSkbQueue);
 564        bp->QueueSkb = MAX_TX_QUEUE_LEN;
 565
 566        return 0;
 567}                               // skfp_close
 568
 569
 570/*
 571 * ==================
 572 * = skfp_interrupt =
 573 * ==================
 574 *   
 575 * Overview:
 576 *   Interrupt processing routine
 577 *  
 578 * Returns:
 579 *   None
 580 *       
 581 * Arguments:
 582 *   irq        - interrupt vector
 583 *   dev_id     - pointer to device information
 584 *
 585 * Functional Description:
 586 *   This routine calls the interrupt processing routine for this adapter.  It
 587 *   disables and reenables adapter interrupts, as appropriate.  We can support
 588 *   shared interrupts since the incoming dev_id pointer provides our device
 589 *   structure context. All the real work is done in the hardware module.
 590 *
 591 * Return Codes:
 592 *   None
 593 *
 594 * Assumptions:
 595 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
 596 *   on Intel-based systems) is done by the operating system outside this
 597 *   routine.
 598 *
 599 *       System interrupts are enabled through this call.
 600 *
 601 * Side Effects:
 602 *   Interrupts are disabled, then reenabled at the adapter.
 603 */
 604
 605static irqreturn_t skfp_interrupt(int irq, void *dev_id)
 606{
 607        struct net_device *dev = dev_id;
 608        struct s_smc *smc;      /* private board structure pointer */
 609        skfddi_priv *bp;
 610
 611        smc = netdev_priv(dev);
 612        bp = &smc->os;
 613
 614        // IRQs enabled or disabled ?
 615        if (inpd(ADDR(B0_IMSK)) == 0) {
 616                // IRQs are disabled: must be shared interrupt
 617                return IRQ_NONE;
 618        }
 619        // Note: At this point, IRQs are enabled.
 620        if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {    // IRQ?
 621                // Adapter did not issue an IRQ: must be shared interrupt
 622                return IRQ_NONE;
 623        }
 624        CLI_FBI();              // Disable IRQs from our adapter.
 625        spin_lock(&bp->DriverLock);
 626
 627        // Call interrupt handler in hardware module (HWM).
 628        fddi_isr(smc);
 629
 630        if (smc->os.ResetRequested) {
 631                ResetAdapter(smc);
 632                smc->os.ResetRequested = FALSE;
 633        }
 634        spin_unlock(&bp->DriverLock);
 635        STI_FBI();              // Enable IRQs from our adapter.
 636
 637        return IRQ_HANDLED;
 638}                               // skfp_interrupt
 639
 640
 641/*
 642 * ======================
 643 * = skfp_ctl_get_stats =
 644 * ======================
 645 *   
 646 * Overview:
 647 *   Get statistics for FDDI adapter
 648 *  
 649 * Returns:
 650 *   Pointer to FDDI statistics structure
 651 *       
 652 * Arguments:
 653 *   dev - pointer to device information
 654 *
 655 * Functional Description:
 656 *   Gets current MIB objects from adapter, then
 657 *   returns FDDI statistics structure as defined
 658 *   in if_fddi.h.
 659 *
 660 *   Note: Since the FDDI statistics structure is
 661 *   still new and the device structure doesn't
 662 *   have an FDDI-specific get statistics handler,
 663 *   we'll return the FDDI statistics structure as
 664 *   a pointer to an Ethernet statistics structure.
 665 *   That way, at least the first part of the statistics
 666 *   structure can be decoded properly.
 667 *   We'll have to pay attention to this routine as the
 668 *   device structure becomes more mature and LAN media
 669 *   independent.
 670 *
 671 */
 672static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
 673{
 674        struct s_smc *bp = netdev_priv(dev);
 675
 676        /* Fill the bp->stats structure with driver-maintained counters */
 677
 678        bp->os.MacStat.port_bs_flag[0] = 0x1234;
 679        bp->os.MacStat.port_bs_flag[1] = 0x5678;
 680// goos: need to fill out fddi statistic
 681#if 0
 682        /* Get FDDI SMT MIB objects */
 683
 684/* Fill the bp->stats structure with the SMT MIB object values */
 685
 686        memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
 687        bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
 688        bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
 689        bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
 690        memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
 691        bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
 692        bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
 693        bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
 694        bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
 695        bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
 696        bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
 697        bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
 698        bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
 699        bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
 700        bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
 701        bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
 702        bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
 703        bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
 704        bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
 705        bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
 706        bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
 707        bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
 708        bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
 709        bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
 710        bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
 711        bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
 712        bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
 713        bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
 714        bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
 715        memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
 716        memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
 717        memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
 718        memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
 719        bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
 720        bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
 721        bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
 722        memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
 723        bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
 724        bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
 725        bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
 726        bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
 727        bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
 728        bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
 729        bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
 730        bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
 731        bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
 732        bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
 733        bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
 734        bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
 735        bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
 736        bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
 737        bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
 738        bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
 739        memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
 740        bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
 741        bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
 742        bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
 743        bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
 744        bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
 745        bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
 746        bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
 747        bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
 748        bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
 749        bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
 750        memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
 751        memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
 752        bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
 753        bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
 754        bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
 755        bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
 756        bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
 757        bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
 758        bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
 759        bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
 760        bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
 761        bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
 762        bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
 763        bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
 764        bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
 765        bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
 766        bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
 767        bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
 768        bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
 769        bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
 770        bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
 771        bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
 772        bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
 773        bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
 774        bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
 775        bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
 776        bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
 777        bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
 778
 779
 780        /* Fill the bp->stats structure with the FDDI counter values */
 781
 782        bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
 783        bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
 784        bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
 785        bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
 786        bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
 787        bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
 788        bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
 789        bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
 790        bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
 791        bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
 792        bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
 793
 794#endif
 795        return (struct net_device_stats *)&bp->os.MacStat;
 796}                               // ctl_get_stat
 797
 798
 799/*
 800 * ==============================
 801 * = skfp_ctl_set_multicast_list =
 802 * ==============================
 803 *   
 804 * Overview:
 805 *   Enable/Disable LLC frame promiscuous mode reception
 806 *   on the adapter and/or update multicast address table.
 807 *  
 808 * Returns:
 809 *   None
 810 *       
 811 * Arguments:
 812 *   dev - pointer to device information
 813 *
 814 * Functional Description:
 815 *   This function acquires the driver lock and only calls
 816 *   skfp_ctl_set_multicast_list_wo_lock then.
 817 *   This routine follows a fairly simple algorithm for setting the
 818 *   adapter filters and CAM:
 819 *
 820 *      if IFF_PROMISC flag is set
 821 *              enable promiscuous mode
 822 *      else
 823 *              disable promiscuous mode
 824 *              if number of multicast addresses <= max. multicast number
 825 *                      add mc addresses to adapter table
 826 *              else
 827 *                      enable promiscuous mode
 828 *              update adapter filters
 829 *
 830 * Assumptions:
 831 *   Multicast addresses are presented in canonical (LSB) format.
 832 *
 833 * Side Effects:
 834 *   On-board adapter filters are updated.
 835 */
 836static void skfp_ctl_set_multicast_list(struct net_device *dev)
 837{
 838        struct s_smc *smc = netdev_priv(dev);
 839        skfddi_priv *bp = &smc->os;
 840        unsigned long Flags;
 841
 842        spin_lock_irqsave(&bp->DriverLock, Flags);
 843        skfp_ctl_set_multicast_list_wo_lock(dev);
 844        spin_unlock_irqrestore(&bp->DriverLock, Flags);
 845}                               // skfp_ctl_set_multicast_list
 846
 847
 848
 849static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
 850{
 851        struct s_smc *smc = netdev_priv(dev);
 852        struct netdev_hw_addr *ha;
 853
 854        /* Enable promiscuous mode, if necessary */
 855        if (dev->flags & IFF_PROMISC) {
 856                mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
 857                pr_debug("PROMISCUOUS MODE ENABLED\n");
 858        }
 859        /* Else, update multicast address table */
 860        else {
 861                mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 862                pr_debug("PROMISCUOUS MODE DISABLED\n");
 863
 864                // Reset all MC addresses
 865                mac_clear_multicast(smc);
 866                mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
 867
 868                if (dev->flags & IFF_ALLMULTI) {
 869                        mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 870                        pr_debug("ENABLE ALL MC ADDRESSES\n");
 871                } else if (!netdev_mc_empty(dev)) {
 872                        if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
 873                                /* use exact filtering */
 874
 875                                // point to first multicast addr
 876                                netdev_for_each_mc_addr(ha, dev) {
 877                                        mac_add_multicast(smc,
 878                                                (struct fddi_addr *)ha->addr,
 879                                                1);
 880
 881                                        pr_debug("ENABLE MC ADDRESS: %pMF\n",
 882                                                 ha->addr);
 883                                }
 884
 885                        } else {        // more MC addresses than HW supports
 886
 887                                mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 888                                pr_debug("ENABLE ALL MC ADDRESSES\n");
 889                        }
 890                } else {        // no MC addresses
 891
 892                        pr_debug("DISABLE ALL MC ADDRESSES\n");
 893                }
 894
 895                /* Update adapter filters */
 896                mac_update_multicast(smc);
 897        }
 898}                               // skfp_ctl_set_multicast_list_wo_lock
 899
 900
 901/*
 902 * ===========================
 903 * = skfp_ctl_set_mac_address =
 904 * ===========================
 905 *   
 906 * Overview:
 907 *   set new mac address on adapter and update dev_addr field in device table.
 908 *  
 909 * Returns:
 910 *   None
 911 *       
 912 * Arguments:
 913 *   dev  - pointer to device information
 914 *   addr - pointer to sockaddr structure containing unicast address to set
 915 *
 916 * Assumptions:
 917 *   The address pointed to by addr->sa_data is a valid unicast
 918 *   address and is presented in canonical (LSB) format.
 919 */
 920static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
 921{
 922        struct s_smc *smc = netdev_priv(dev);
 923        struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
 924        skfddi_priv *bp = &smc->os;
 925        unsigned long Flags;
 926
 927
 928        memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
 929        spin_lock_irqsave(&bp->DriverLock, Flags);
 930        ResetAdapter(smc);
 931        spin_unlock_irqrestore(&bp->DriverLock, Flags);
 932
 933        return 0;               /* always return zero */
 934}                               // skfp_ctl_set_mac_address
 935
 936
 937/*
 938 * ==============
 939 * = skfp_ioctl =
 940 * ==============
 941 *   
 942 * Overview:
 943 *
 944 * Perform IOCTL call functions here. Some are privileged operations and the
 945 * effective uid is checked in those cases.
 946 *  
 947 * Returns:
 948 *   status value
 949 *   0 - success
 950 *   other - failure
 951 *       
 952 * Arguments:
 953 *   dev  - pointer to device information
 954 *   rq - pointer to ioctl request structure
 955 *   cmd - ?
 956 *
 957 */
 958
 959
 960static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 961{
 962        struct s_smc *smc = netdev_priv(dev);
 963        skfddi_priv *lp = &smc->os;
 964        struct s_skfp_ioctl ioc;
 965        int status = 0;
 966
 967        if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
 968                return -EFAULT;
 969
 970        switch (ioc.cmd) {
 971        case SKFP_GET_STATS:    /* Get the driver statistics */
 972                ioc.len = sizeof(lp->MacStat);
 973                status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
 974                                ? -EFAULT : 0;
 975                break;
 976        case SKFP_CLR_STATS:    /* Zero out the driver statistics */
 977                if (!capable(CAP_NET_ADMIN)) {
 978                        status = -EPERM;
 979                } else {
 980                        memset(&lp->MacStat, 0, sizeof(lp->MacStat));
 981                }
 982                break;
 983        default:
 984                printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
 985                status = -EOPNOTSUPP;
 986
 987        }                       // switch
 988
 989        return status;
 990}                               // skfp_ioctl
 991
 992
 993/*
 994 * =====================
 995 * = skfp_send_pkt     =
 996 * =====================
 997 *   
 998 * Overview:
 999 *   Queues a packet for transmission and try to transmit it.
1000 *  
1001 * Returns:
1002 *   Condition code
1003 *       
1004 * Arguments:
1005 *   skb - pointer to sk_buff to queue for transmission
1006 *   dev - pointer to device information
1007 *
1008 * Functional Description:
1009 *   Here we assume that an incoming skb transmit request
1010 *   is contained in a single physically contiguous buffer
1011 *   in which the virtual address of the start of packet
1012 *   (skb->data) can be converted to a physical address
1013 *   by using pci_map_single().
1014 *
1015 *   We have an internal queue for packets we can not send 
1016 *   immediately. Packets in this queue can be given to the 
1017 *   adapter if transmit buffers are freed.
1018 *
1019 *   We can't free the skb until after it's been DMA'd
1020 *   out by the adapter, so we'll keep it in the driver and
1021 *   return it in mac_drv_tx_complete.
1022 *
1023 * Return Codes:
1024 *   0 - driver has queued and/or sent packet
1025 *       1 - caller should requeue the sk_buff for later transmission
1026 *
1027 * Assumptions:
1028 *   The entire packet is stored in one physically
1029 *   contiguous buffer which is not cached and whose
1030 *   32-bit physical address can be determined.
1031 *
1032 *   It's vital that this routine is NOT reentered for the
1033 *   same board and that the OS is not in another section of
1034 *   code (eg. skfp_interrupt) for the same board on a
1035 *   different thread.
1036 *
1037 * Side Effects:
1038 *   None
1039 */
1040static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1041                                       struct net_device *dev)
1042{
1043        struct s_smc *smc = netdev_priv(dev);
1044        skfddi_priv *bp = &smc->os;
1045
1046        pr_debug("skfp_send_pkt\n");
1047
1048        /*
1049         * Verify that incoming transmit request is OK
1050         *
1051         * Note: The packet size check is consistent with other
1052         *               Linux device drivers, although the correct packet
1053         *               size should be verified before calling the
1054         *               transmit routine.
1055         */
1056
1057        if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1058                bp->MacStat.gen.tx_errors++;    /* bump error counter */
1059                // dequeue packets from xmt queue and send them
1060                netif_start_queue(dev);
1061                dev_kfree_skb(skb);
1062                return NETDEV_TX_OK;    /* return "success" */
1063        }
1064        if (bp->QueueSkb == 0) {        // return with tbusy set: queue full
1065
1066                netif_stop_queue(dev);
1067                return NETDEV_TX_BUSY;
1068        }
1069        bp->QueueSkb--;
1070        skb_queue_tail(&bp->SendSkbQueue, skb);
1071        send_queued_packets(netdev_priv(dev));
1072        if (bp->QueueSkb == 0) {
1073                netif_stop_queue(dev);
1074        }
1075        return NETDEV_TX_OK;
1076
1077}                               // skfp_send_pkt
1078
1079
1080/*
1081 * =======================
1082 * = send_queued_packets =
1083 * =======================
1084 *   
1085 * Overview:
1086 *   Send packets from the driver queue as long as there are some and
1087 *   transmit resources are available.
1088 *  
1089 * Returns:
1090 *   None
1091 *       
1092 * Arguments:
1093 *   smc - pointer to smc (adapter) structure
1094 *
1095 * Functional Description:
1096 *   Take a packet from queue if there is any. If not, then we are done.
1097 *   Check if there are resources to send the packet. If not, requeue it
1098 *   and exit. 
1099 *   Set packet descriptor flags and give packet to adapter.
1100 *   Check if any send resources can be freed (we do not use the
1101 *   transmit complete interrupt).
1102 */
1103static void send_queued_packets(struct s_smc *smc)
1104{
1105        skfddi_priv *bp = &smc->os;
1106        struct sk_buff *skb;
1107        unsigned char fc;
1108        int queue;
1109        struct s_smt_fp_txd *txd;       // Current TxD.
1110        dma_addr_t dma_address;
1111        unsigned long Flags;
1112
1113        int frame_status;       // HWM tx frame status.
1114
1115        pr_debug("send queued packets\n");
1116        for (;;) {
1117                // send first buffer from queue
1118                skb = skb_dequeue(&bp->SendSkbQueue);
1119
1120                if (!skb) {
1121                        pr_debug("queue empty\n");
1122                        return;
1123                }               // queue empty !
1124
1125                spin_lock_irqsave(&bp->DriverLock, Flags);
1126                fc = skb->data[0];
1127                queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1128#ifdef ESS
1129                // Check if the frame may/must be sent as a synchronous frame.
1130
1131                if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1132                        // It's an LLC frame.
1133                        if (!smc->ess.sync_bw_available)
1134                                fc &= ~FC_SYNC_BIT; // No bandwidth available.
1135
1136                        else {  // Bandwidth is available.
1137
1138                                if (smc->mib.fddiESSSynchTxMode) {
1139                                        // Send as sync. frame.
1140                                        fc |= FC_SYNC_BIT;
1141                                }
1142                        }
1143                }
1144#endif                          // ESS
1145                frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1146
1147                if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1148                        // Unable to send the frame.
1149
1150                        if ((frame_status & RING_DOWN) != 0) {
1151                                // Ring is down.
1152                                pr_debug("Tx attempt while ring down.\n");
1153                        } else if ((frame_status & OUT_OF_TXD) != 0) {
1154                                pr_debug("%s: out of TXDs.\n", bp->dev->name);
1155                        } else {
1156                                pr_debug("%s: out of transmit resources",
1157                                        bp->dev->name);
1158                        }
1159
1160                        // Note: We will retry the operation as soon as
1161                        // transmit resources become available.
1162                        skb_queue_head(&bp->SendSkbQueue, skb);
1163                        spin_unlock_irqrestore(&bp->DriverLock, Flags);
1164                        return; // Packet has been queued.
1165
1166                }               // if (unable to send frame)
1167
1168                bp->QueueSkb++; // one packet less in local queue
1169
1170                // source address in packet ?
1171                CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1172
1173                txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1174
1175                dma_address = pci_map_single(&bp->pdev, skb->data,
1176                                             skb->len, PCI_DMA_TODEVICE);
1177                if (frame_status & LAN_TX) {
1178                        txd->txd_os.skb = skb;                  // save skb
1179                        txd->txd_os.dma_addr = dma_address;     // save dma mapping
1180                }
1181                hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1182                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1183
1184                if (!(frame_status & LAN_TX)) {         // local only frame
1185                        pci_unmap_single(&bp->pdev, dma_address,
1186                                         skb->len, PCI_DMA_TODEVICE);
1187                        dev_kfree_skb_irq(skb);
1188                }
1189                spin_unlock_irqrestore(&bp->DriverLock, Flags);
1190        }                       // for
1191
1192        return;                 // never reached
1193
1194}                               // send_queued_packets
1195
1196
1197/************************
1198 * 
1199 * CheckSourceAddress
1200 *
1201 * Verify if the source address is set. Insert it if necessary.
1202 *
1203 ************************/
1204static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1205{
1206        unsigned char SRBit;
1207
1208        if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1209
1210                return;
1211        if ((unsigned short) frame[1 + 10] != 0)
1212                return;
1213        SRBit = frame[1 + 6] & 0x01;
1214        memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1215        frame[8] |= SRBit;
1216}                               // CheckSourceAddress
1217
1218
1219/************************
1220 *
1221 *      ResetAdapter
1222 *
1223 *      Reset the adapter and bring it back to operational mode.
1224 * Args
1225 *      smc - A pointer to the SMT context struct.
1226 * Out
1227 *      Nothing.
1228 *
1229 ************************/
1230static void ResetAdapter(struct s_smc *smc)
1231{
1232
1233        pr_debug("[fddi: ResetAdapter]\n");
1234
1235        // Stop the adapter.
1236
1237        card_stop(smc);         // Stop all activity.
1238
1239        // Clear the transmit and receive descriptor queues.
1240        mac_drv_clear_tx_queue(smc);
1241        mac_drv_clear_rx_queue(smc);
1242
1243        // Restart the adapter.
1244
1245        smt_reset_defaults(smc, 1);     // Initialize the SMT module.
1246
1247        init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1248
1249        smt_online(smc, 1);     // Insert into the ring again.
1250        STI_FBI();
1251
1252        // Restore original receive mode (multicasts, promiscuous, etc.).
1253        skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1254}                               // ResetAdapter
1255
1256
1257//--------------- functions called by hardware module ----------------
1258
1259/************************
1260 *
1261 *      llc_restart_tx
1262 *
1263 *      The hardware driver calls this routine when the transmit complete
1264 *      interrupt bits (end of frame) for the synchronous or asynchronous
1265 *      queue is set.
1266 *
1267 * NOTE The hardware driver calls this function also if no packets are queued.
1268 *      The routine must be able to handle this case.
1269 * Args
1270 *      smc - A pointer to the SMT context struct.
1271 * Out
1272 *      Nothing.
1273 *
1274 ************************/
1275void llc_restart_tx(struct s_smc *smc)
1276{
1277        skfddi_priv *bp = &smc->os;
1278
1279        pr_debug("[llc_restart_tx]\n");
1280
1281        // Try to send queued packets
1282        spin_unlock(&bp->DriverLock);
1283        send_queued_packets(smc);
1284        spin_lock(&bp->DriverLock);
1285        netif_start_queue(bp->dev);// system may send again if it was blocked
1286
1287}                               // llc_restart_tx
1288
1289
1290/************************
1291 *
1292 *      mac_drv_get_space
1293 *
1294 *      The hardware module calls this function to allocate the memory
1295 *      for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1296 * Args
1297 *      smc - A pointer to the SMT context struct.
1298 *
1299 *      size - Size of memory in bytes to allocate.
1300 * Out
1301 *      != 0    A pointer to the virtual address of the allocated memory.
1302 *      == 0    Allocation error.
1303 *
1304 ************************/
1305void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1306{
1307        void *virt;
1308
1309        pr_debug("mac_drv_get_space (%d bytes), ", size);
1310        virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1311
1312        if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1313                printk("Unexpected SMT memory size requested: %d\n", size);
1314                return NULL;
1315        }
1316        smc->os.SharedMemHeap += size;  // Move heap pointer.
1317
1318        pr_debug("mac_drv_get_space end\n");
1319        pr_debug("virt addr: %lx\n", (ulong) virt);
1320        pr_debug("bus  addr: %lx\n", (ulong)
1321               (smc->os.SharedMemDMA +
1322                ((char *) virt - (char *)smc->os.SharedMemAddr)));
1323        return virt;
1324}                               // mac_drv_get_space
1325
1326
1327/************************
1328 *
1329 *      mac_drv_get_desc_mem
1330 *
1331 *      This function is called by the hardware dependent module.
1332 *      It allocates the memory for the RxD and TxD descriptors.
1333 *
1334 *      This memory must be non-cached, non-movable and non-swappable.
1335 *      This memory should start at a physical page boundary.
1336 * Args
1337 *      smc - A pointer to the SMT context struct.
1338 *
1339 *      size - Size of memory in bytes to allocate.
1340 * Out
1341 *      != 0    A pointer to the virtual address of the allocated memory.
1342 *      == 0    Allocation error.
1343 *
1344 ************************/
1345void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1346{
1347
1348        char *virt;
1349
1350        pr_debug("mac_drv_get_desc_mem\n");
1351
1352        // Descriptor memory must be aligned on 16-byte boundary.
1353
1354        virt = mac_drv_get_space(smc, size);
1355
1356        size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1357        size = size % 16;
1358
1359        pr_debug("Allocate %u bytes alignment gap ", size);
1360        pr_debug("for descriptor memory.\n");
1361
1362        if (!mac_drv_get_space(smc, size)) {
1363                printk("fddi: Unable to align descriptor memory.\n");
1364                return NULL;
1365        }
1366        return virt + size;
1367}                               // mac_drv_get_desc_mem
1368
1369
1370/************************
1371 *
1372 *      mac_drv_virt2phys
1373 *
1374 *      Get the physical address of a given virtual address.
1375 * Args
1376 *      smc - A pointer to the SMT context struct.
1377 *
1378 *      virt - A (virtual) pointer into our 'shared' memory area.
1379 * Out
1380 *      Physical address of the given virtual address.
1381 *
1382 ************************/
1383unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1384{
1385        return smc->os.SharedMemDMA +
1386                ((char *) virt - (char *)smc->os.SharedMemAddr);
1387}                               // mac_drv_virt2phys
1388
1389
1390/************************
1391 *
1392 *      dma_master
1393 *
1394 *      The HWM calls this function, when the driver leads through a DMA
1395 *      transfer. If the OS-specific module must prepare the system hardware
1396 *      for the DMA transfer, it should do it in this function.
1397 *
1398 *      The hardware module calls this dma_master if it wants to send an SMT
1399 *      frame.  This means that the virt address passed in here is part of
1400 *      the 'shared' memory area.
1401 * Args
1402 *      smc - A pointer to the SMT context struct.
1403 *
1404 *      virt - The virtual address of the data.
1405 *
1406 *      len - The length in bytes of the data.
1407 *
1408 *      flag - Indicates the transmit direction and the buffer type:
1409 *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1410 *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1411 *              SMT_BUF (0x80)  SMT buffer
1412 *
1413 *      >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1414 * Out
1415 *      Returns the pyhsical address for the DMA transfer.
1416 *
1417 ************************/
1418u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1419{
1420        return smc->os.SharedMemDMA +
1421                ((char *) virt - (char *)smc->os.SharedMemAddr);
1422}                               // dma_master
1423
1424
1425/************************
1426 *
1427 *      dma_complete
1428 *
1429 *      The hardware module calls this routine when it has completed a DMA
1430 *      transfer. If the operating system dependent module has set up the DMA
1431 *      channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1432 *      the DMA channel.
1433 * Args
1434 *      smc - A pointer to the SMT context struct.
1435 *
1436 *      descr - A pointer to a TxD or RxD, respectively.
1437 *
1438 *      flag - Indicates the DMA transfer direction / SMT buffer:
1439 *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1440 *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1441 *              SMT_BUF (0x80)  SMT buffer (managed by HWM)
1442 * Out
1443 *      Nothing.
1444 *
1445 ************************/
1446void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1447{
1448        /* For TX buffers, there are two cases.  If it is an SMT transmit
1449         * buffer, there is nothing to do since we use consistent memory
1450         * for the 'shared' memory area.  The other case is for normal
1451         * transmit packets given to us by the networking stack, and in
1452         * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1453         * below.
1454         *
1455         * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1456         * because the hardware module is about to potentially look at
1457         * the contents of the buffer.  If we did not call the PCI DMA
1458         * unmap first, the hardware module could read inconsistent data.
1459         */
1460        if (flag & DMA_WR) {
1461                skfddi_priv *bp = &smc->os;
1462                volatile struct s_smt_fp_rxd *r = &descr->r;
1463
1464                /* If SKB is NULL, we used the local buffer. */
1465                if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1466                        int MaxFrameSize = bp->MaxFrameSize;
1467
1468                        pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1469                                         MaxFrameSize, PCI_DMA_FROMDEVICE);
1470                        r->rxd_os.dma_addr = 0;
1471                }
1472        }
1473}                               // dma_complete
1474
1475
1476/************************
1477 *
1478 *      mac_drv_tx_complete
1479 *
1480 *      Transmit of a packet is complete. Release the tx staging buffer.
1481 *
1482 * Args
1483 *      smc - A pointer to the SMT context struct.
1484 *
1485 *      txd - A pointer to the last TxD which is used by the frame.
1486 * Out
1487 *      Returns nothing.
1488 *
1489 ************************/
1490void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1491{
1492        struct sk_buff *skb;
1493
1494        pr_debug("entering mac_drv_tx_complete\n");
1495        // Check if this TxD points to a skb
1496
1497        if (!(skb = txd->txd_os.skb)) {
1498                pr_debug("TXD with no skb assigned.\n");
1499                return;
1500        }
1501        txd->txd_os.skb = NULL;
1502
1503        // release the DMA mapping
1504        pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1505                         skb->len, PCI_DMA_TODEVICE);
1506        txd->txd_os.dma_addr = 0;
1507
1508        smc->os.MacStat.gen.tx_packets++;       // Count transmitted packets.
1509        smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1510
1511        // free the skb
1512        dev_kfree_skb_irq(skb);
1513
1514        pr_debug("leaving mac_drv_tx_complete\n");
1515}                               // mac_drv_tx_complete
1516
1517
1518/************************
1519 *
1520 * dump packets to logfile
1521 *
1522 ************************/
1523#ifdef DUMPPACKETS
1524void dump_data(unsigned char *Data, int length)
1525{
1526        int i, j;
1527        unsigned char s[255], sh[10];
1528        if (length > 64) {
1529                length = 64;
1530        }
1531        printk(KERN_INFO "---Packet start---\n");
1532        for (i = 0, j = 0; i < length / 8; i++, j += 8)
1533                printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1534                       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1535                       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1536        strcpy(s, "");
1537        for (i = 0; i < length % 8; i++) {
1538                sprintf(sh, "%02x ", Data[j + i]);
1539                strcat(s, sh);
1540        }
1541        printk(KERN_INFO "%s\n", s);
1542        printk(KERN_INFO "------------------\n");
1543}                               // dump_data
1544#else
1545#define dump_data(data,len)
1546#endif                          // DUMPPACKETS
1547
1548/************************
1549 *
1550 *      mac_drv_rx_complete
1551 *
1552 *      The hardware module calls this function if an LLC frame is received
1553 *      in a receive buffer. Also the SMT, NSA, and directed beacon frames
1554 *      from the network will be passed to the LLC layer by this function
1555 *      if passing is enabled.
1556 *
1557 *      mac_drv_rx_complete forwards the frame to the LLC layer if it should
1558 *      be received. It also fills the RxD ring with new receive buffers if
1559 *      some can be queued.
1560 * Args
1561 *      smc - A pointer to the SMT context struct.
1562 *
1563 *      rxd - A pointer to the first RxD which is used by the receive frame.
1564 *
1565 *      frag_count - Count of RxDs used by the received frame.
1566 *
1567 *      len - Frame length.
1568 * Out
1569 *      Nothing.
1570 *
1571 ************************/
1572void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1573                         int frag_count, int len)
1574{
1575        skfddi_priv *bp = &smc->os;
1576        struct sk_buff *skb;
1577        unsigned char *virt, *cp;
1578        unsigned short ri;
1579        u_int RifLength;
1580
1581        pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1582        if (frag_count != 1) {  // This is not allowed to happen.
1583
1584                printk("fddi: Multi-fragment receive!\n");
1585                goto RequeueRxd;        // Re-use the given RXD(s).
1586
1587        }
1588        skb = rxd->rxd_os.skb;
1589        if (!skb) {
1590                pr_debug("No skb in rxd\n");
1591                smc->os.MacStat.gen.rx_errors++;
1592                goto RequeueRxd;
1593        }
1594        virt = skb->data;
1595
1596        // The DMA mapping was released in dma_complete above.
1597
1598        dump_data(skb->data, len);
1599
1600        /*
1601         * FDDI Frame format:
1602         * +-------+-------+-------+------------+--------+------------+
1603         * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1604         * +-------+-------+-------+------------+--------+------------+
1605         *
1606         * FC = Frame Control
1607         * DA = Destination Address
1608         * SA = Source Address
1609         * RIF = Routing Information Field
1610         * LLC = Logical Link Control
1611         */
1612
1613        // Remove Routing Information Field (RIF), if present.
1614
1615        if ((virt[1 + 6] & FDDI_RII) == 0)
1616                RifLength = 0;
1617        else {
1618                int n;
1619// goos: RIF removal has still to be tested
1620                pr_debug("RIF found\n");
1621                // Get RIF length from Routing Control (RC) field.
1622                cp = virt + FDDI_MAC_HDR_LEN;   // Point behind MAC header.
1623
1624                ri = ntohs(*((__be16 *) cp));
1625                RifLength = ri & FDDI_RCF_LEN_MASK;
1626                if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1627                        printk("fddi: Invalid RIF.\n");
1628                        goto RequeueRxd;        // Discard the frame.
1629
1630                }
1631                virt[1 + 6] &= ~FDDI_RII;       // Clear RII bit.
1632                // regions overlap
1633
1634                virt = cp + RifLength;
1635                for (n = FDDI_MAC_HDR_LEN; n; n--)
1636                        *--virt = *--cp;
1637                // adjust sbd->data pointer
1638                skb_pull(skb, RifLength);
1639                len -= RifLength;
1640                RifLength = 0;
1641        }
1642
1643        // Count statistics.
1644        smc->os.MacStat.gen.rx_packets++;       // Count indicated receive
1645                                                // packets.
1646        smc->os.MacStat.gen.rx_bytes+=len;      // Count bytes.
1647
1648        // virt points to header again
1649        if (virt[1] & 0x01) {   // Check group (multicast) bit.
1650
1651                smc->os.MacStat.gen.multicast++;
1652        }
1653
1654        // deliver frame to system
1655        rxd->rxd_os.skb = NULL;
1656        skb_trim(skb, len);
1657        skb->protocol = fddi_type_trans(skb, bp->dev);
1658
1659        netif_rx(skb);
1660
1661        HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1662        return;
1663
1664      RequeueRxd:
1665        pr_debug("Rx: re-queue RXD.\n");
1666        mac_drv_requeue_rxd(smc, rxd, frag_count);
1667        smc->os.MacStat.gen.rx_errors++;        // Count receive packets
1668                                                // not indicated.
1669
1670}                               // mac_drv_rx_complete
1671
1672
1673/************************
1674 *
1675 *      mac_drv_requeue_rxd
1676 *
1677 *      The hardware module calls this function to request the OS-specific
1678 *      module to queue the receive buffer(s) represented by the pointer
1679 *      to the RxD and the frag_count into the receive queue again. This
1680 *      buffer was filled with an invalid frame or an SMT frame.
1681 * Args
1682 *      smc - A pointer to the SMT context struct.
1683 *
1684 *      rxd - A pointer to the first RxD which is used by the receive frame.
1685 *
1686 *      frag_count - Count of RxDs used by the received frame.
1687 * Out
1688 *      Nothing.
1689 *
1690 ************************/
1691void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1692                         int frag_count)
1693{
1694        volatile struct s_smt_fp_rxd *next_rxd;
1695        volatile struct s_smt_fp_rxd *src_rxd;
1696        struct sk_buff *skb;
1697        int MaxFrameSize;
1698        unsigned char *v_addr;
1699        dma_addr_t b_addr;
1700
1701        if (frag_count != 1)    // This is not allowed to happen.
1702
1703                printk("fddi: Multi-fragment requeue!\n");
1704
1705        MaxFrameSize = smc->os.MaxFrameSize;
1706        src_rxd = rxd;
1707        for (; frag_count > 0; frag_count--) {
1708                next_rxd = src_rxd->rxd_next;
1709                rxd = HWM_GET_CURR_RXD(smc);
1710
1711                skb = src_rxd->rxd_os.skb;
1712                if (skb == NULL) {      // this should not happen
1713
1714                        pr_debug("Requeue with no skb in rxd!\n");
1715                        skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1716                        if (skb) {
1717                                // we got a skb
1718                                rxd->rxd_os.skb = skb;
1719                                skb_reserve(skb, 3);
1720                                skb_put(skb, MaxFrameSize);
1721                                v_addr = skb->data;
1722                                b_addr = pci_map_single(&smc->os.pdev,
1723                                                        v_addr,
1724                                                        MaxFrameSize,
1725                                                        PCI_DMA_FROMDEVICE);
1726                                rxd->rxd_os.dma_addr = b_addr;
1727                        } else {
1728                                // no skb available, use local buffer
1729                                pr_debug("Queueing invalid buffer!\n");
1730                                rxd->rxd_os.skb = NULL;
1731                                v_addr = smc->os.LocalRxBuffer;
1732                                b_addr = smc->os.LocalRxBufferDMA;
1733                        }
1734                } else {
1735                        // we use skb from old rxd
1736                        rxd->rxd_os.skb = skb;
1737                        v_addr = skb->data;
1738                        b_addr = pci_map_single(&smc->os.pdev,
1739                                                v_addr,
1740                                                MaxFrameSize,
1741                                                PCI_DMA_FROMDEVICE);
1742                        rxd->rxd_os.dma_addr = b_addr;
1743                }
1744                hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1745                            FIRST_FRAG | LAST_FRAG);
1746
1747                src_rxd = next_rxd;
1748        }
1749}                               // mac_drv_requeue_rxd
1750
1751
1752/************************
1753 *
1754 *      mac_drv_fill_rxd
1755 *
1756 *      The hardware module calls this function at initialization time
1757 *      to fill the RxD ring with receive buffers. It is also called by
1758 *      mac_drv_rx_complete if rx_free is large enough to queue some new
1759 *      receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1760 *      receive buffers as long as enough RxDs and receive buffers are
1761 *      available.
1762 * Args
1763 *      smc - A pointer to the SMT context struct.
1764 * Out
1765 *      Nothing.
1766 *
1767 ************************/
1768void mac_drv_fill_rxd(struct s_smc *smc)
1769{
1770        int MaxFrameSize;
1771        unsigned char *v_addr;
1772        unsigned long b_addr;
1773        struct sk_buff *skb;
1774        volatile struct s_smt_fp_rxd *rxd;
1775
1776        pr_debug("entering mac_drv_fill_rxd\n");
1777
1778        // Walk through the list of free receive buffers, passing receive
1779        // buffers to the HWM as long as RXDs are available.
1780
1781        MaxFrameSize = smc->os.MaxFrameSize;
1782        // Check if there is any RXD left.
1783        while (HWM_GET_RX_FREE(smc) > 0) {
1784                pr_debug(".\n");
1785
1786                rxd = HWM_GET_CURR_RXD(smc);
1787                skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1788                if (skb) {
1789                        // we got a skb
1790                        skb_reserve(skb, 3);
1791                        skb_put(skb, MaxFrameSize);
1792                        v_addr = skb->data;
1793                        b_addr = pci_map_single(&smc->os.pdev,
1794                                                v_addr,
1795                                                MaxFrameSize,
1796                                                PCI_DMA_FROMDEVICE);
1797                        rxd->rxd_os.dma_addr = b_addr;
1798                } else {
1799                        // no skb available, use local buffer
1800                        // System has run out of buffer memory, but we want to
1801                        // keep the receiver running in hope of better times.
1802                        // Multiple descriptors may point to this local buffer,
1803                        // so data in it must be considered invalid.
1804                        pr_debug("Queueing invalid buffer!\n");
1805                        v_addr = smc->os.LocalRxBuffer;
1806                        b_addr = smc->os.LocalRxBufferDMA;
1807                }
1808
1809                rxd->rxd_os.skb = skb;
1810
1811                // Pass receive buffer to HWM.
1812                hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1813                            FIRST_FRAG | LAST_FRAG);
1814        }
1815        pr_debug("leaving mac_drv_fill_rxd\n");
1816}                               // mac_drv_fill_rxd
1817
1818
1819/************************
1820 *
1821 *      mac_drv_clear_rxd
1822 *
1823 *      The hardware module calls this function to release unused
1824 *      receive buffers.
1825 * Args
1826 *      smc - A pointer to the SMT context struct.
1827 *
1828 *      rxd - A pointer to the first RxD which is used by the receive buffer.
1829 *
1830 *      frag_count - Count of RxDs used by the receive buffer.
1831 * Out
1832 *      Nothing.
1833 *
1834 ************************/
1835void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1836                       int frag_count)
1837{
1838
1839        struct sk_buff *skb;
1840
1841        pr_debug("entering mac_drv_clear_rxd\n");
1842
1843        if (frag_count != 1)    // This is not allowed to happen.
1844
1845                printk("fddi: Multi-fragment clear!\n");
1846
1847        for (; frag_count > 0; frag_count--) {
1848                skb = rxd->rxd_os.skb;
1849                if (skb != NULL) {
1850                        skfddi_priv *bp = &smc->os;
1851                        int MaxFrameSize = bp->MaxFrameSize;
1852
1853                        pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1854                                         MaxFrameSize, PCI_DMA_FROMDEVICE);
1855
1856                        dev_kfree_skb(skb);
1857                        rxd->rxd_os.skb = NULL;
1858                }
1859                rxd = rxd->rxd_next;    // Next RXD.
1860
1861        }
1862}                               // mac_drv_clear_rxd
1863
1864
1865/************************
1866 *
1867 *      mac_drv_rx_init
1868 *
1869 *      The hardware module calls this routine when an SMT or NSA frame of the
1870 *      local SMT should be delivered to the LLC layer.
1871 *
1872 *      It is necessary to have this function, because there is no other way to
1873 *      copy the contents of SMT MBufs into receive buffers.
1874 *
1875 *      mac_drv_rx_init allocates the required target memory for this frame,
1876 *      and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1877 * Args
1878 *      smc - A pointer to the SMT context struct.
1879 *
1880 *      len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1881 *
1882 *      fc - The Frame Control field of the received frame.
1883 *
1884 *      look_ahead - A pointer to the lookahead data buffer (may be NULL).
1885 *
1886 *      la_len - The length of the lookahead data stored in the lookahead
1887 *      buffer (may be zero).
1888 * Out
1889 *      Always returns zero (0).
1890 *
1891 ************************/
1892int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1893                    char *look_ahead, int la_len)
1894{
1895        struct sk_buff *skb;
1896
1897        pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1898
1899        // "Received" a SMT or NSA frame of the local SMT.
1900
1901        if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1902                pr_debug("fddi: Discard invalid local SMT frame\n");
1903                pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1904                       len, la_len, (unsigned long) look_ahead);
1905                return 0;
1906        }
1907        skb = alloc_skb(len + 3, GFP_ATOMIC);
1908        if (!skb) {
1909                pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1910                return 0;
1911        }
1912        skb_reserve(skb, 3);
1913        skb_put(skb, len);
1914        skb_copy_to_linear_data(skb, look_ahead, len);
1915
1916        // deliver frame to system
1917        skb->protocol = fddi_type_trans(skb, smc->os.dev);
1918        netif_rx(skb);
1919
1920        return 0;
1921}                               // mac_drv_rx_init
1922
1923
1924/************************
1925 *
1926 *      smt_timer_poll
1927 *
1928 *      This routine is called periodically by the SMT module to clean up the
1929 *      driver.
1930 *
1931 *      Return any queued frames back to the upper protocol layers if the ring
1932 *      is down.
1933 * Args
1934 *      smc - A pointer to the SMT context struct.
1935 * Out
1936 *      Nothing.
1937 *
1938 ************************/
1939void smt_timer_poll(struct s_smc *smc)
1940{
1941}                               // smt_timer_poll
1942
1943
1944/************************
1945 *
1946 *      ring_status_indication
1947 *
1948 *      This function indicates a change of the ring state.
1949 * Args
1950 *      smc - A pointer to the SMT context struct.
1951 *
1952 *      status - The current ring status.
1953 * Out
1954 *      Nothing.
1955 *
1956 ************************/
1957void ring_status_indication(struct s_smc *smc, u_long status)
1958{
1959        pr_debug("ring_status_indication( ");
1960        if (status & RS_RES15)
1961                pr_debug("RS_RES15 ");
1962        if (status & RS_HARDERROR)
1963                pr_debug("RS_HARDERROR ");
1964        if (status & RS_SOFTERROR)
1965                pr_debug("RS_SOFTERROR ");
1966        if (status & RS_BEACON)
1967                pr_debug("RS_BEACON ");
1968        if (status & RS_PATHTEST)
1969                pr_debug("RS_PATHTEST ");
1970        if (status & RS_SELFTEST)
1971                pr_debug("RS_SELFTEST ");
1972        if (status & RS_RES9)
1973                pr_debug("RS_RES9 ");
1974        if (status & RS_DISCONNECT)
1975                pr_debug("RS_DISCONNECT ");
1976        if (status & RS_RES7)
1977                pr_debug("RS_RES7 ");
1978        if (status & RS_DUPADDR)
1979                pr_debug("RS_DUPADDR ");
1980        if (status & RS_NORINGOP)
1981                pr_debug("RS_NORINGOP ");
1982        if (status & RS_VERSION)
1983                pr_debug("RS_VERSION ");
1984        if (status & RS_STUCKBYPASSS)
1985                pr_debug("RS_STUCKBYPASSS ");
1986        if (status & RS_EVENT)
1987                pr_debug("RS_EVENT ");
1988        if (status & RS_RINGOPCHANGE)
1989                pr_debug("RS_RINGOPCHANGE ");
1990        if (status & RS_RES0)
1991                pr_debug("RS_RES0 ");
1992        pr_debug("]\n");
1993}                               // ring_status_indication
1994
1995
1996/************************
1997 *
1998 *      smt_get_time
1999 *
2000 *      Gets the current time from the system.
2001 * Args
2002 *      None.
2003 * Out
2004 *      The current time in TICKS_PER_SECOND.
2005 *
2006 *      TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2007 *      defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2008 *      to the time returned by smt_get_time().
2009 *
2010 ************************/
2011unsigned long smt_get_time(void)
2012{
2013        return jiffies;
2014}                               // smt_get_time
2015
2016
2017/************************
2018 *
2019 *      smt_stat_counter
2020 *
2021 *      Status counter update (ring_op, fifo full).
2022 * Args
2023 *      smc - A pointer to the SMT context struct.
2024 *
2025 *      stat -  = 0: A ring operational change occurred.
2026 *              = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2027 * Out
2028 *      Nothing.
2029 *
2030 ************************/
2031void smt_stat_counter(struct s_smc *smc, int stat)
2032{
2033//      BOOLEAN RingIsUp ;
2034
2035        pr_debug("smt_stat_counter\n");
2036        switch (stat) {
2037        case 0:
2038                pr_debug("Ring operational change.\n");
2039                break;
2040        case 1:
2041                pr_debug("Receive fifo overflow.\n");
2042                smc->os.MacStat.gen.rx_errors++;
2043                break;
2044        default:
2045                pr_debug("Unknown status (%d).\n", stat);
2046                break;
2047        }
2048}                               // smt_stat_counter
2049
2050
2051/************************
2052 *
2053 *      cfm_state_change
2054 *
2055 *      Sets CFM state in custom statistics.
2056 * Args
2057 *      smc - A pointer to the SMT context struct.
2058 *
2059 *      c_state - Possible values are:
2060 *
2061 *              EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2062 *              EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2063 * Out
2064 *      Nothing.
2065 *
2066 ************************/
2067void cfm_state_change(struct s_smc *smc, int c_state)
2068{
2069#ifdef DRIVERDEBUG
2070        char *s;
2071
2072        switch (c_state) {
2073        case SC0_ISOLATED:
2074                s = "SC0_ISOLATED";
2075                break;
2076        case SC1_WRAP_A:
2077                s = "SC1_WRAP_A";
2078                break;
2079        case SC2_WRAP_B:
2080                s = "SC2_WRAP_B";
2081                break;
2082        case SC4_THRU_A:
2083                s = "SC4_THRU_A";
2084                break;
2085        case SC5_THRU_B:
2086                s = "SC5_THRU_B";
2087                break;
2088        case SC7_WRAP_S:
2089                s = "SC7_WRAP_S";
2090                break;
2091        case SC9_C_WRAP_A:
2092                s = "SC9_C_WRAP_A";
2093                break;
2094        case SC10_C_WRAP_B:
2095                s = "SC10_C_WRAP_B";
2096                break;
2097        case SC11_C_WRAP_S:
2098                s = "SC11_C_WRAP_S";
2099                break;
2100        default:
2101                pr_debug("cfm_state_change: unknown %d\n", c_state);
2102                return;
2103        }
2104        pr_debug("cfm_state_change: %s\n", s);
2105#endif                          // DRIVERDEBUG
2106}                               // cfm_state_change
2107
2108
2109/************************
2110 *
2111 *      ecm_state_change
2112 *
2113 *      Sets ECM state in custom statistics.
2114 * Args
2115 *      smc - A pointer to the SMT context struct.
2116 *
2117 *      e_state - Possible values are:
2118 *
2119 *              SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2120 *              SC5_THRU_B (7), SC7_WRAP_S (8)
2121 * Out
2122 *      Nothing.
2123 *
2124 ************************/
2125void ecm_state_change(struct s_smc *smc, int e_state)
2126{
2127#ifdef DRIVERDEBUG
2128        char *s;
2129
2130        switch (e_state) {
2131        case EC0_OUT:
2132                s = "EC0_OUT";
2133                break;
2134        case EC1_IN:
2135                s = "EC1_IN";
2136                break;
2137        case EC2_TRACE:
2138                s = "EC2_TRACE";
2139                break;
2140        case EC3_LEAVE:
2141                s = "EC3_LEAVE";
2142                break;
2143        case EC4_PATH_TEST:
2144                s = "EC4_PATH_TEST";
2145                break;
2146        case EC5_INSERT:
2147                s = "EC5_INSERT";
2148                break;
2149        case EC6_CHECK:
2150                s = "EC6_CHECK";
2151                break;
2152        case EC7_DEINSERT:
2153                s = "EC7_DEINSERT";
2154                break;
2155        default:
2156                s = "unknown";
2157                break;
2158        }
2159        pr_debug("ecm_state_change: %s\n", s);
2160#endif                          //DRIVERDEBUG
2161}                               // ecm_state_change
2162
2163
2164/************************
2165 *
2166 *      rmt_state_change
2167 *
2168 *      Sets RMT state in custom statistics.
2169 * Args
2170 *      smc - A pointer to the SMT context struct.
2171 *
2172 *      r_state - Possible values are:
2173 *
2174 *              RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2175 *              RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2176 * Out
2177 *      Nothing.
2178 *
2179 ************************/
2180void rmt_state_change(struct s_smc *smc, int r_state)
2181{
2182#ifdef DRIVERDEBUG
2183        char *s;
2184
2185        switch (r_state) {
2186        case RM0_ISOLATED:
2187                s = "RM0_ISOLATED";
2188                break;
2189        case RM1_NON_OP:
2190                s = "RM1_NON_OP - not operational";
2191                break;
2192        case RM2_RING_OP:
2193                s = "RM2_RING_OP - ring operational";
2194                break;
2195        case RM3_DETECT:
2196                s = "RM3_DETECT - detect dupl addresses";
2197                break;
2198        case RM4_NON_OP_DUP:
2199                s = "RM4_NON_OP_DUP - dupl. addr detected";
2200                break;
2201        case RM5_RING_OP_DUP:
2202                s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2203                break;
2204        case RM6_DIRECTED:
2205                s = "RM6_DIRECTED - sending directed beacons";
2206                break;
2207        case RM7_TRACE:
2208                s = "RM7_TRACE - trace initiated";
2209                break;
2210        default:
2211                s = "unknown";
2212                break;
2213        }
2214        pr_debug("[rmt_state_change: %s]\n", s);
2215#endif                          // DRIVERDEBUG
2216}                               // rmt_state_change
2217
2218
2219/************************
2220 *
2221 *      drv_reset_indication
2222 *
2223 *      This function is called by the SMT when it has detected a severe
2224 *      hardware problem. The driver should perform a reset on the adapter
2225 *      as soon as possible, but not from within this function.
2226 * Args
2227 *      smc - A pointer to the SMT context struct.
2228 * Out
2229 *      Nothing.
2230 *
2231 ************************/
2232void drv_reset_indication(struct s_smc *smc)
2233{
2234        pr_debug("entering drv_reset_indication\n");
2235
2236        smc->os.ResetRequested = TRUE;  // Set flag.
2237
2238}                               // drv_reset_indication
2239
2240static struct pci_driver skfddi_pci_driver = {
2241        .name           = "skfddi",
2242        .id_table       = skfddi_pci_tbl,
2243        .probe          = skfp_init_one,
2244        .remove         = skfp_remove_one,
2245};
2246
2247module_pci_driver(skfddi_pci_driver);
2248