linux/drivers/net/wireless/ath/ath9k/hw.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/bitops.h>
  22#include <linux/etherdevice.h>
  23#include <linux/gpio.h>
  24#include <asm/unaligned.h>
  25
  26#include "hw.h"
  27#include "hw-ops.h"
  28#include "ar9003_mac.h"
  29#include "ar9003_mci.h"
  30#include "ar9003_phy.h"
  31#include "ath9k.h"
  32
  33static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  34
  35MODULE_AUTHOR("Atheros Communications");
  36MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  37MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  38MODULE_LICENSE("Dual BSD/GPL");
  39
  40static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  41{
  42        struct ath_common *common = ath9k_hw_common(ah);
  43        struct ath9k_channel *chan = ah->curchan;
  44        unsigned int clockrate;
  45
  46        /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  47        if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  48                clockrate = 117;
  49        else if (!chan) /* should really check for CCK instead */
  50                clockrate = ATH9K_CLOCK_RATE_CCK;
  51        else if (IS_CHAN_2GHZ(chan))
  52                clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  53        else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  54                clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  55        else
  56                clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  57
  58        if (chan) {
  59                if (IS_CHAN_HT40(chan))
  60                        clockrate *= 2;
  61                if (IS_CHAN_HALF_RATE(chan))
  62                        clockrate /= 2;
  63                if (IS_CHAN_QUARTER_RATE(chan))
  64                        clockrate /= 4;
  65        }
  66
  67        common->clockrate = clockrate;
  68}
  69
  70static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  71{
  72        struct ath_common *common = ath9k_hw_common(ah);
  73
  74        return usecs * common->clockrate;
  75}
  76
  77bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  78{
  79        int i;
  80
  81        BUG_ON(timeout < AH_TIME_QUANTUM);
  82
  83        for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  84                if ((REG_READ(ah, reg) & mask) == val)
  85                        return true;
  86
  87                udelay(AH_TIME_QUANTUM);
  88        }
  89
  90        ath_dbg(ath9k_hw_common(ah), ANY,
  91                "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  92                timeout, reg, REG_READ(ah, reg), mask, val);
  93
  94        return false;
  95}
  96EXPORT_SYMBOL(ath9k_hw_wait);
  97
  98void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  99                          int hw_delay)
 100{
 101        hw_delay /= 10;
 102
 103        if (IS_CHAN_HALF_RATE(chan))
 104                hw_delay *= 2;
 105        else if (IS_CHAN_QUARTER_RATE(chan))
 106                hw_delay *= 4;
 107
 108        udelay(hw_delay + BASE_ACTIVATE_DELAY);
 109}
 110
 111void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 112                          int column, unsigned int *writecnt)
 113{
 114        int r;
 115
 116        ENABLE_REGWRITE_BUFFER(ah);
 117        for (r = 0; r < array->ia_rows; r++) {
 118                REG_WRITE(ah, INI_RA(array, r, 0),
 119                          INI_RA(array, r, column));
 120                DO_DELAY(*writecnt);
 121        }
 122        REGWRITE_BUFFER_FLUSH(ah);
 123}
 124
 125void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
 126{
 127        u32 *tmp_reg_list, *tmp_data;
 128        int i;
 129
 130        tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
 131        if (!tmp_reg_list) {
 132                dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
 133                return;
 134        }
 135
 136        tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
 137        if (!tmp_data) {
 138                dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
 139                goto error_tmp_data;
 140        }
 141
 142        for (i = 0; i < size; i++)
 143                tmp_reg_list[i] = array[i][0];
 144
 145        REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
 146
 147        for (i = 0; i < size; i++)
 148                array[i][1] = tmp_data[i];
 149
 150        kfree(tmp_data);
 151error_tmp_data:
 152        kfree(tmp_reg_list);
 153}
 154
 155u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 156{
 157        u32 retval;
 158        int i;
 159
 160        for (i = 0, retval = 0; i < n; i++) {
 161                retval = (retval << 1) | (val & 1);
 162                val >>= 1;
 163        }
 164        return retval;
 165}
 166
 167u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 168                           u8 phy, int kbps,
 169                           u32 frameLen, u16 rateix,
 170                           bool shortPreamble)
 171{
 172        u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 173
 174        if (kbps == 0)
 175                return 0;
 176
 177        switch (phy) {
 178        case WLAN_RC_PHY_CCK:
 179                phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 180                if (shortPreamble)
 181                        phyTime >>= 1;
 182                numBits = frameLen << 3;
 183                txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 184                break;
 185        case WLAN_RC_PHY_OFDM:
 186                if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 187                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 188                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 189                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 190                        txTime = OFDM_SIFS_TIME_QUARTER
 191                                + OFDM_PREAMBLE_TIME_QUARTER
 192                                + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 193                } else if (ah->curchan &&
 194                           IS_CHAN_HALF_RATE(ah->curchan)) {
 195                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
 196                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 197                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 198                        txTime = OFDM_SIFS_TIME_HALF +
 199                                OFDM_PREAMBLE_TIME_HALF
 200                                + (numSymbols * OFDM_SYMBOL_TIME_HALF);
 201                } else {
 202                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 203                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 204                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 205                        txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 206                                + (numSymbols * OFDM_SYMBOL_TIME);
 207                }
 208                break;
 209        default:
 210                ath_err(ath9k_hw_common(ah),
 211                        "Unknown phy %u (rate ix %u)\n", phy, rateix);
 212                txTime = 0;
 213                break;
 214        }
 215
 216        return txTime;
 217}
 218EXPORT_SYMBOL(ath9k_hw_computetxtime);
 219
 220void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 221                                  struct ath9k_channel *chan,
 222                                  struct chan_centers *centers)
 223{
 224        int8_t extoff;
 225
 226        if (!IS_CHAN_HT40(chan)) {
 227                centers->ctl_center = centers->ext_center =
 228                        centers->synth_center = chan->channel;
 229                return;
 230        }
 231
 232        if (IS_CHAN_HT40PLUS(chan)) {
 233                centers->synth_center =
 234                        chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 235                extoff = 1;
 236        } else {
 237                centers->synth_center =
 238                        chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 239                extoff = -1;
 240        }
 241
 242        centers->ctl_center =
 243                centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 244        /* 25 MHz spacing is supported by hw but not on upper layers */
 245        centers->ext_center =
 246                centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 247}
 248
 249/******************/
 250/* Chip Revisions */
 251/******************/
 252
 253static void ath9k_hw_read_revisions(struct ath_hw *ah)
 254{
 255        u32 val;
 256
 257        if (ah->get_mac_revision)
 258                ah->hw_version.macRev = ah->get_mac_revision();
 259
 260        switch (ah->hw_version.devid) {
 261        case AR5416_AR9100_DEVID:
 262                ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 263                break;
 264        case AR9300_DEVID_AR9330:
 265                ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 266                if (!ah->get_mac_revision) {
 267                        val = REG_READ(ah, AR_SREV);
 268                        ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 269                }
 270                return;
 271        case AR9300_DEVID_AR9340:
 272                ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 273                return;
 274        case AR9300_DEVID_QCA955X:
 275                ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 276                return;
 277        case AR9300_DEVID_AR953X:
 278                ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 279                return;
 280        case AR9300_DEVID_QCA956X:
 281                ah->hw_version.macVersion = AR_SREV_VERSION_9561;
 282                return;
 283        }
 284
 285        val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
 286
 287        if (val == 0xFF) {
 288                val = REG_READ(ah, AR_SREV);
 289                ah->hw_version.macVersion =
 290                        (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 291                ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 292
 293                if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 294                        ah->is_pciexpress = true;
 295                else
 296                        ah->is_pciexpress = (val &
 297                                             AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 298        } else {
 299                if (!AR_SREV_9100(ah))
 300                        ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 301
 302                ah->hw_version.macRev = val & AR_SREV_REVISION;
 303
 304                if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 305                        ah->is_pciexpress = true;
 306        }
 307}
 308
 309/************************************/
 310/* HW Attach, Detach, Init Routines */
 311/************************************/
 312
 313static void ath9k_hw_disablepcie(struct ath_hw *ah)
 314{
 315        if (!AR_SREV_5416(ah))
 316                return;
 317
 318        REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 319        REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 320        REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 321        REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 322        REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 323        REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 324        REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 325        REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 326        REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 327
 328        REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 329}
 330
 331/* This should work for all families including legacy */
 332static bool ath9k_hw_chip_test(struct ath_hw *ah)
 333{
 334        struct ath_common *common = ath9k_hw_common(ah);
 335        u32 regAddr[2] = { AR_STA_ID0 };
 336        u32 regHold[2];
 337        static const u32 patternData[4] = {
 338                0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 339        };
 340        int i, j, loop_max;
 341
 342        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 343                loop_max = 2;
 344                regAddr[1] = AR_PHY_BASE + (8 << 2);
 345        } else
 346                loop_max = 1;
 347
 348        for (i = 0; i < loop_max; i++) {
 349                u32 addr = regAddr[i];
 350                u32 wrData, rdData;
 351
 352                regHold[i] = REG_READ(ah, addr);
 353                for (j = 0; j < 0x100; j++) {
 354                        wrData = (j << 16) | j;
 355                        REG_WRITE(ah, addr, wrData);
 356                        rdData = REG_READ(ah, addr);
 357                        if (rdData != wrData) {
 358                                ath_err(common,
 359                                        "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 360                                        addr, wrData, rdData);
 361                                return false;
 362                        }
 363                }
 364                for (j = 0; j < 4; j++) {
 365                        wrData = patternData[j];
 366                        REG_WRITE(ah, addr, wrData);
 367                        rdData = REG_READ(ah, addr);
 368                        if (wrData != rdData) {
 369                                ath_err(common,
 370                                        "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 371                                        addr, wrData, rdData);
 372                                return false;
 373                        }
 374                }
 375                REG_WRITE(ah, regAddr[i], regHold[i]);
 376        }
 377        udelay(100);
 378
 379        return true;
 380}
 381
 382static void ath9k_hw_init_config(struct ath_hw *ah)
 383{
 384        struct ath_common *common = ath9k_hw_common(ah);
 385
 386        ah->config.dma_beacon_response_time = 1;
 387        ah->config.sw_beacon_response_time = 6;
 388        ah->config.cwm_ignore_extcca = false;
 389        ah->config.analog_shiftreg = 1;
 390
 391        ah->config.rx_intr_mitigation = true;
 392
 393        if (AR_SREV_9300_20_OR_LATER(ah)) {
 394                ah->config.rimt_last = 500;
 395                ah->config.rimt_first = 2000;
 396        } else {
 397                ah->config.rimt_last = 250;
 398                ah->config.rimt_first = 700;
 399        }
 400
 401        if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 402                ah->config.pll_pwrsave = 7;
 403
 404        /*
 405         * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 406         * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 407         * This means we use it for all AR5416 devices, and the few
 408         * minor PCI AR9280 devices out there.
 409         *
 410         * Serialization is required because these devices do not handle
 411         * well the case of two concurrent reads/writes due to the latency
 412         * involved. During one read/write another read/write can be issued
 413         * on another CPU while the previous read/write may still be working
 414         * on our hardware, if we hit this case the hardware poops in a loop.
 415         * We prevent this by serializing reads and writes.
 416         *
 417         * This issue is not present on PCI-Express devices or pre-AR5416
 418         * devices (legacy, 802.11abg).
 419         */
 420        if (num_possible_cpus() > 1)
 421                ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 422
 423        if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 424                if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 425                    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 426                     !ah->is_pciexpress)) {
 427                        ah->config.serialize_regmode = SER_REG_MODE_ON;
 428                } else {
 429                        ah->config.serialize_regmode = SER_REG_MODE_OFF;
 430                }
 431        }
 432
 433        ath_dbg(common, RESET, "serialize_regmode is %d\n",
 434                ah->config.serialize_regmode);
 435
 436        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 437                ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 438        else
 439                ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 440}
 441
 442static void ath9k_hw_init_defaults(struct ath_hw *ah)
 443{
 444        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 445
 446        regulatory->country_code = CTRY_DEFAULT;
 447        regulatory->power_limit = MAX_RATE_POWER;
 448
 449        ah->hw_version.magic = AR5416_MAGIC;
 450        ah->hw_version.subvendorid = 0;
 451
 452        ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 453                               AR_STA_ID1_MCAST_KSRCH;
 454        if (AR_SREV_9100(ah))
 455                ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 456
 457        ah->slottime = 9;
 458        ah->globaltxtimeout = (u32) -1;
 459        ah->power_mode = ATH9K_PM_UNDEFINED;
 460        ah->htc_reset_init = true;
 461
 462        ah->tpc_enabled = false;
 463
 464        ah->ani_function = ATH9K_ANI_ALL;
 465        if (!AR_SREV_9300_20_OR_LATER(ah))
 466                ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 467
 468        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 469                ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 470        else
 471                ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 472}
 473
 474static void ath9k_hw_init_macaddr(struct ath_hw *ah)
 475{
 476        struct ath_common *common = ath9k_hw_common(ah);
 477        int i;
 478        u16 eeval;
 479        static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 480
 481        /* MAC address may already be loaded via ath9k_platform_data */
 482        if (is_valid_ether_addr(common->macaddr))
 483                return;
 484
 485        for (i = 0; i < 3; i++) {
 486                eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 487                common->macaddr[2 * i] = eeval >> 8;
 488                common->macaddr[2 * i + 1] = eeval & 0xff;
 489        }
 490
 491        if (is_valid_ether_addr(common->macaddr))
 492                return;
 493
 494        ath_err(common, "eeprom contains invalid mac address: %pM\n",
 495                common->macaddr);
 496
 497        random_ether_addr(common->macaddr);
 498        ath_err(common, "random mac address will be used: %pM\n",
 499                common->macaddr);
 500
 501        return;
 502}
 503
 504static int ath9k_hw_post_init(struct ath_hw *ah)
 505{
 506        struct ath_common *common = ath9k_hw_common(ah);
 507        int ecode;
 508
 509        if (common->bus_ops->ath_bus_type != ATH_USB) {
 510                if (!ath9k_hw_chip_test(ah))
 511                        return -ENODEV;
 512        }
 513
 514        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 515                ecode = ar9002_hw_rf_claim(ah);
 516                if (ecode != 0)
 517                        return ecode;
 518        }
 519
 520        ecode = ath9k_hw_eeprom_init(ah);
 521        if (ecode != 0)
 522                return ecode;
 523
 524        ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 525                ah->eep_ops->get_eeprom_ver(ah),
 526                ah->eep_ops->get_eeprom_rev(ah));
 527
 528        ath9k_hw_ani_init(ah);
 529
 530        /*
 531         * EEPROM needs to be initialized before we do this.
 532         * This is required for regulatory compliance.
 533         */
 534        if (AR_SREV_9300_20_OR_LATER(ah)) {
 535                u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 536                if ((regdmn & 0xF0) == CTL_FCC) {
 537                        ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 538                        ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 539                }
 540        }
 541
 542        return 0;
 543}
 544
 545static int ath9k_hw_attach_ops(struct ath_hw *ah)
 546{
 547        if (!AR_SREV_9300_20_OR_LATER(ah))
 548                return ar9002_hw_attach_ops(ah);
 549
 550        ar9003_hw_attach_ops(ah);
 551        return 0;
 552}
 553
 554/* Called for all hardware families */
 555static int __ath9k_hw_init(struct ath_hw *ah)
 556{
 557        struct ath_common *common = ath9k_hw_common(ah);
 558        int r = 0;
 559
 560        ath9k_hw_read_revisions(ah);
 561
 562        switch (ah->hw_version.macVersion) {
 563        case AR_SREV_VERSION_5416_PCI:
 564        case AR_SREV_VERSION_5416_PCIE:
 565        case AR_SREV_VERSION_9160:
 566        case AR_SREV_VERSION_9100:
 567        case AR_SREV_VERSION_9280:
 568        case AR_SREV_VERSION_9285:
 569        case AR_SREV_VERSION_9287:
 570        case AR_SREV_VERSION_9271:
 571        case AR_SREV_VERSION_9300:
 572        case AR_SREV_VERSION_9330:
 573        case AR_SREV_VERSION_9485:
 574        case AR_SREV_VERSION_9340:
 575        case AR_SREV_VERSION_9462:
 576        case AR_SREV_VERSION_9550:
 577        case AR_SREV_VERSION_9565:
 578        case AR_SREV_VERSION_9531:
 579        case AR_SREV_VERSION_9561:
 580                break;
 581        default:
 582                ath_err(common,
 583                        "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 584                        ah->hw_version.macVersion, ah->hw_version.macRev);
 585                return -EOPNOTSUPP;
 586        }
 587
 588        /*
 589         * Read back AR_WA into a permanent copy and set bits 14 and 17.
 590         * We need to do this to avoid RMW of this register. We cannot
 591         * read the reg when chip is asleep.
 592         */
 593        if (AR_SREV_9300_20_OR_LATER(ah)) {
 594                ah->WARegVal = REG_READ(ah, AR_WA);
 595                ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 596                                 AR_WA_ASPM_TIMER_BASED_DISABLE);
 597        }
 598
 599        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 600                ath_err(common, "Couldn't reset chip\n");
 601                return -EIO;
 602        }
 603
 604        if (AR_SREV_9565(ah)) {
 605                ah->WARegVal |= AR_WA_BIT22;
 606                REG_WRITE(ah, AR_WA, ah->WARegVal);
 607        }
 608
 609        ath9k_hw_init_defaults(ah);
 610        ath9k_hw_init_config(ah);
 611
 612        r = ath9k_hw_attach_ops(ah);
 613        if (r)
 614                return r;
 615
 616        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 617                ath_err(common, "Couldn't wakeup chip\n");
 618                return -EIO;
 619        }
 620
 621        if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 622            AR_SREV_9330(ah) || AR_SREV_9550(ah))
 623                ah->is_pciexpress = false;
 624
 625        ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 626        ath9k_hw_init_cal_settings(ah);
 627
 628        if (!ah->is_pciexpress)
 629                ath9k_hw_disablepcie(ah);
 630
 631        r = ath9k_hw_post_init(ah);
 632        if (r)
 633                return r;
 634
 635        ath9k_hw_init_mode_gain_regs(ah);
 636        r = ath9k_hw_fill_cap_info(ah);
 637        if (r)
 638                return r;
 639
 640        ath9k_hw_init_macaddr(ah);
 641        ath9k_hw_init_hang_checks(ah);
 642
 643        common->state = ATH_HW_INITIALIZED;
 644
 645        return 0;
 646}
 647
 648int ath9k_hw_init(struct ath_hw *ah)
 649{
 650        int ret;
 651        struct ath_common *common = ath9k_hw_common(ah);
 652
 653        /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 654        switch (ah->hw_version.devid) {
 655        case AR5416_DEVID_PCI:
 656        case AR5416_DEVID_PCIE:
 657        case AR5416_AR9100_DEVID:
 658        case AR9160_DEVID_PCI:
 659        case AR9280_DEVID_PCI:
 660        case AR9280_DEVID_PCIE:
 661        case AR9285_DEVID_PCIE:
 662        case AR9287_DEVID_PCI:
 663        case AR9287_DEVID_PCIE:
 664        case AR2427_DEVID_PCIE:
 665        case AR9300_DEVID_PCIE:
 666        case AR9300_DEVID_AR9485_PCIE:
 667        case AR9300_DEVID_AR9330:
 668        case AR9300_DEVID_AR9340:
 669        case AR9300_DEVID_QCA955X:
 670        case AR9300_DEVID_AR9580:
 671        case AR9300_DEVID_AR9462:
 672        case AR9485_DEVID_AR1111:
 673        case AR9300_DEVID_AR9565:
 674        case AR9300_DEVID_AR953X:
 675        case AR9300_DEVID_QCA956X:
 676                break;
 677        default:
 678                if (common->bus_ops->ath_bus_type == ATH_USB)
 679                        break;
 680                ath_err(common, "Hardware device ID 0x%04x not supported\n",
 681                        ah->hw_version.devid);
 682                return -EOPNOTSUPP;
 683        }
 684
 685        ret = __ath9k_hw_init(ah);
 686        if (ret) {
 687                ath_err(common,
 688                        "Unable to initialize hardware; initialization status: %d\n",
 689                        ret);
 690                return ret;
 691        }
 692
 693        ath_dynack_init(ah);
 694
 695        return 0;
 696}
 697EXPORT_SYMBOL(ath9k_hw_init);
 698
 699static void ath9k_hw_init_qos(struct ath_hw *ah)
 700{
 701        ENABLE_REGWRITE_BUFFER(ah);
 702
 703        REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 704        REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 705
 706        REG_WRITE(ah, AR_QOS_NO_ACK,
 707                  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 708                  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 709                  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 710
 711        REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 712        REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 713        REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 714        REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 715        REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 716
 717        REGWRITE_BUFFER_FLUSH(ah);
 718}
 719
 720u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 721{
 722        struct ath_common *common = ath9k_hw_common(ah);
 723        int i = 0;
 724
 725        REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 726        udelay(100);
 727        REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 728
 729        while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 730
 731                udelay(100);
 732
 733                if (WARN_ON_ONCE(i >= 100)) {
 734                        ath_err(common, "PLL4 measurement not done\n");
 735                        break;
 736                }
 737
 738                i++;
 739        }
 740
 741        return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 742}
 743EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 744
 745static void ath9k_hw_init_pll(struct ath_hw *ah,
 746                              struct ath9k_channel *chan)
 747{
 748        u32 pll;
 749
 750        pll = ath9k_hw_compute_pll_control(ah, chan);
 751
 752        if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 753                /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 754                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 755                              AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 756                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 757                              AR_CH0_DPLL2_KD, 0x40);
 758                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 759                              AR_CH0_DPLL2_KI, 0x4);
 760
 761                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 762                              AR_CH0_BB_DPLL1_REFDIV, 0x5);
 763                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 764                              AR_CH0_BB_DPLL1_NINI, 0x58);
 765                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 766                              AR_CH0_BB_DPLL1_NFRAC, 0x0);
 767
 768                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 769                              AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 770                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 771                              AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 772                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 773                              AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 774
 775                /* program BB PLL phase_shift to 0x6 */
 776                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 777                              AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 778
 779                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 780                              AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 781                udelay(1000);
 782        } else if (AR_SREV_9330(ah)) {
 783                u32 ddr_dpll2, pll_control2, kd;
 784
 785                if (ah->is_clk_25mhz) {
 786                        ddr_dpll2 = 0x18e82f01;
 787                        pll_control2 = 0xe04a3d;
 788                        kd = 0x1d;
 789                } else {
 790                        ddr_dpll2 = 0x19e82f01;
 791                        pll_control2 = 0x886666;
 792                        kd = 0x3d;
 793                }
 794
 795                /* program DDR PLL ki and kd value */
 796                REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 797
 798                /* program DDR PLL phase_shift */
 799                REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 800                              AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 801
 802                REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 803                          pll | AR_RTC_9300_PLL_BYPASS);
 804                udelay(1000);
 805
 806                /* program refdiv, nint, frac to RTC register */
 807                REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 808
 809                /* program BB PLL kd and ki value */
 810                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 811                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 812
 813                /* program BB PLL phase_shift */
 814                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 815                              AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 816        } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 817                   AR_SREV_9561(ah)) {
 818                u32 regval, pll2_divint, pll2_divfrac, refdiv;
 819
 820                REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 821                          pll | AR_RTC_9300_SOC_PLL_BYPASS);
 822                udelay(1000);
 823
 824                REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 825                udelay(100);
 826
 827                if (ah->is_clk_25mhz) {
 828                        if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 829                                pll2_divint = 0x1c;
 830                                pll2_divfrac = 0xa3d2;
 831                                refdiv = 1;
 832                        } else {
 833                                pll2_divint = 0x54;
 834                                pll2_divfrac = 0x1eb85;
 835                                refdiv = 3;
 836                        }
 837                } else {
 838                        if (AR_SREV_9340(ah)) {
 839                                pll2_divint = 88;
 840                                pll2_divfrac = 0;
 841                                refdiv = 5;
 842                        } else {
 843                                pll2_divint = 0x11;
 844                                pll2_divfrac = (AR_SREV_9531(ah) ||
 845                                                AR_SREV_9561(ah)) ?
 846                                                0x26665 : 0x26666;
 847                                refdiv = 1;
 848                        }
 849                }
 850
 851                regval = REG_READ(ah, AR_PHY_PLL_MODE);
 852                if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 853                        regval |= (0x1 << 22);
 854                else
 855                        regval |= (0x1 << 16);
 856                REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 857                udelay(100);
 858
 859                REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 860                          (pll2_divint << 18) | pll2_divfrac);
 861                udelay(100);
 862
 863                regval = REG_READ(ah, AR_PHY_PLL_MODE);
 864                if (AR_SREV_9340(ah))
 865                        regval = (regval & 0x80071fff) |
 866                                (0x1 << 30) |
 867                                (0x1 << 13) |
 868                                (0x4 << 26) |
 869                                (0x18 << 19);
 870                else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 871                        regval = (regval & 0x01c00fff) |
 872                                (0x1 << 31) |
 873                                (0x2 << 29) |
 874                                (0xa << 25) |
 875                                (0x1 << 19);
 876
 877                        if (AR_SREV_9531(ah))
 878                                regval |= (0x6 << 12);
 879                } else
 880                        regval = (regval & 0x80071fff) |
 881                                (0x3 << 30) |
 882                                (0x1 << 13) |
 883                                (0x4 << 26) |
 884                                (0x60 << 19);
 885                REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 886
 887                if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 888                        REG_WRITE(ah, AR_PHY_PLL_MODE,
 889                                  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 890                else
 891                        REG_WRITE(ah, AR_PHY_PLL_MODE,
 892                                  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 893
 894                udelay(1000);
 895        }
 896
 897        if (AR_SREV_9565(ah))
 898                pll |= 0x40000;
 899        REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 900
 901        if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 902            AR_SREV_9550(ah))
 903                udelay(1000);
 904
 905        /* Switch the core clock for ar9271 to 117Mhz */
 906        if (AR_SREV_9271(ah)) {
 907                udelay(500);
 908                REG_WRITE(ah, 0x50040, 0x304);
 909        }
 910
 911        udelay(RTC_PLL_SETTLE_DELAY);
 912
 913        REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 914}
 915
 916static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 917                                          enum nl80211_iftype opmode)
 918{
 919        u32 sync_default = AR_INTR_SYNC_DEFAULT;
 920        u32 imr_reg = AR_IMR_TXERR |
 921                AR_IMR_TXURN |
 922                AR_IMR_RXERR |
 923                AR_IMR_RXORN |
 924                AR_IMR_BCNMISC;
 925
 926        if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 927            AR_SREV_9561(ah))
 928                sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 929
 930        if (AR_SREV_9300_20_OR_LATER(ah)) {
 931                imr_reg |= AR_IMR_RXOK_HP;
 932                if (ah->config.rx_intr_mitigation)
 933                        imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 934                else
 935                        imr_reg |= AR_IMR_RXOK_LP;
 936
 937        } else {
 938                if (ah->config.rx_intr_mitigation)
 939                        imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 940                else
 941                        imr_reg |= AR_IMR_RXOK;
 942        }
 943
 944        if (ah->config.tx_intr_mitigation)
 945                imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 946        else
 947                imr_reg |= AR_IMR_TXOK;
 948
 949        ENABLE_REGWRITE_BUFFER(ah);
 950
 951        REG_WRITE(ah, AR_IMR, imr_reg);
 952        ah->imrs2_reg |= AR_IMR_S2_GTT;
 953        REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 954
 955        if (!AR_SREV_9100(ah)) {
 956                REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 957                REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 958                REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 959        }
 960
 961        REGWRITE_BUFFER_FLUSH(ah);
 962
 963        if (AR_SREV_9300_20_OR_LATER(ah)) {
 964                REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 965                REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
 966                REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
 967                REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
 968        }
 969}
 970
 971static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
 972{
 973        u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
 974        val = min(val, (u32) 0xFFFF);
 975        REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
 976}
 977
 978void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
 979{
 980        u32 val = ath9k_hw_mac_to_clks(ah, us);
 981        val = min(val, (u32) 0xFFFF);
 982        REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
 983}
 984
 985void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
 986{
 987        u32 val = ath9k_hw_mac_to_clks(ah, us);
 988        val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
 989        REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
 990}
 991
 992void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
 993{
 994        u32 val = ath9k_hw_mac_to_clks(ah, us);
 995        val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
 996        REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
 997}
 998
 999static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1000{
1001        if (tu > 0xFFFF) {
1002                ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1003                        tu);
1004                ah->globaltxtimeout = (u32) -1;
1005                return false;
1006        } else {
1007                REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1008                ah->globaltxtimeout = tu;
1009                return true;
1010        }
1011}
1012
1013void ath9k_hw_init_global_settings(struct ath_hw *ah)
1014{
1015        struct ath_common *common = ath9k_hw_common(ah);
1016        const struct ath9k_channel *chan = ah->curchan;
1017        int acktimeout, ctstimeout, ack_offset = 0;
1018        int slottime;
1019        int sifstime;
1020        int rx_lat = 0, tx_lat = 0, eifs = 0;
1021        u32 reg;
1022
1023        ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1024                ah->misc_mode);
1025
1026        if (!chan)
1027                return;
1028
1029        if (ah->misc_mode != 0)
1030                REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1031
1032        if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1033                rx_lat = 41;
1034        else
1035                rx_lat = 37;
1036        tx_lat = 54;
1037
1038        if (IS_CHAN_5GHZ(chan))
1039                sifstime = 16;
1040        else
1041                sifstime = 10;
1042
1043        if (IS_CHAN_HALF_RATE(chan)) {
1044                eifs = 175;
1045                rx_lat *= 2;
1046                tx_lat *= 2;
1047                if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1048                    tx_lat += 11;
1049
1050                sifstime = 32;
1051                ack_offset = 16;
1052                slottime = 13;
1053        } else if (IS_CHAN_QUARTER_RATE(chan)) {
1054                eifs = 340;
1055                rx_lat = (rx_lat * 4) - 1;
1056                tx_lat *= 4;
1057                if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1058                    tx_lat += 22;
1059
1060                sifstime = 64;
1061                ack_offset = 32;
1062                slottime = 21;
1063        } else {
1064                if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1065                        eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1066                        reg = AR_USEC_ASYNC_FIFO;
1067                } else {
1068                        eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1069                                common->clockrate;
1070                        reg = REG_READ(ah, AR_USEC);
1071                }
1072                rx_lat = MS(reg, AR_USEC_RX_LAT);
1073                tx_lat = MS(reg, AR_USEC_TX_LAT);
1074
1075                slottime = ah->slottime;
1076        }
1077
1078        /* As defined by IEEE 802.11-2007 17.3.8.6 */
1079        slottime += 3 * ah->coverage_class;
1080        acktimeout = slottime + sifstime + ack_offset;
1081        ctstimeout = acktimeout;
1082
1083        /*
1084         * Workaround for early ACK timeouts, add an offset to match the
1085         * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1086         * This was initially only meant to work around an issue with delayed
1087         * BA frames in some implementations, but it has been found to fix ACK
1088         * timeout issues in other cases as well.
1089         */
1090        if (IS_CHAN_2GHZ(chan) &&
1091            !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1092                acktimeout += 64 - sifstime - ah->slottime;
1093                ctstimeout += 48 - sifstime - ah->slottime;
1094        }
1095
1096        if (ah->dynack.enabled) {
1097                acktimeout = ah->dynack.ackto;
1098                ctstimeout = acktimeout;
1099                slottime = (acktimeout - 3) / 2;
1100        } else {
1101                ah->dynack.ackto = acktimeout;
1102        }
1103
1104        ath9k_hw_set_sifs_time(ah, sifstime);
1105        ath9k_hw_setslottime(ah, slottime);
1106        ath9k_hw_set_ack_timeout(ah, acktimeout);
1107        ath9k_hw_set_cts_timeout(ah, ctstimeout);
1108        if (ah->globaltxtimeout != (u32) -1)
1109                ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1110
1111        REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1112        REG_RMW(ah, AR_USEC,
1113                (common->clockrate - 1) |
1114                SM(rx_lat, AR_USEC_RX_LAT) |
1115                SM(tx_lat, AR_USEC_TX_LAT),
1116                AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1117
1118}
1119EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1120
1121void ath9k_hw_deinit(struct ath_hw *ah)
1122{
1123        struct ath_common *common = ath9k_hw_common(ah);
1124
1125        if (common->state < ATH_HW_INITIALIZED)
1126                return;
1127
1128        ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1129}
1130EXPORT_SYMBOL(ath9k_hw_deinit);
1131
1132/*******/
1133/* INI */
1134/*******/
1135
1136u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1137{
1138        u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1139
1140        if (IS_CHAN_2GHZ(chan))
1141                ctl |= CTL_11G;
1142        else
1143                ctl |= CTL_11A;
1144
1145        return ctl;
1146}
1147
1148/****************************************/
1149/* Reset and Channel Switching Routines */
1150/****************************************/
1151
1152static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1153{
1154        struct ath_common *common = ath9k_hw_common(ah);
1155        int txbuf_size;
1156
1157        ENABLE_REGWRITE_BUFFER(ah);
1158
1159        /*
1160         * set AHB_MODE not to do cacheline prefetches
1161        */
1162        if (!AR_SREV_9300_20_OR_LATER(ah))
1163                REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1164
1165        /*
1166         * let mac dma reads be in 128 byte chunks
1167         */
1168        REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1169
1170        REGWRITE_BUFFER_FLUSH(ah);
1171
1172        /*
1173         * Restore TX Trigger Level to its pre-reset value.
1174         * The initial value depends on whether aggregation is enabled, and is
1175         * adjusted whenever underruns are detected.
1176         */
1177        if (!AR_SREV_9300_20_OR_LATER(ah))
1178                REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1179
1180        ENABLE_REGWRITE_BUFFER(ah);
1181
1182        /*
1183         * let mac dma writes be in 128 byte chunks
1184         */
1185        REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1186
1187        /*
1188         * Setup receive FIFO threshold to hold off TX activities
1189         */
1190        REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1191
1192        if (AR_SREV_9300_20_OR_LATER(ah)) {
1193                REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1194                REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1195
1196                ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1197                        ah->caps.rx_status_len);
1198        }
1199
1200        /*
1201         * reduce the number of usable entries in PCU TXBUF to avoid
1202         * wrap around issues.
1203         */
1204        if (AR_SREV_9285(ah)) {
1205                /* For AR9285 the number of Fifos are reduced to half.
1206                 * So set the usable tx buf size also to half to
1207                 * avoid data/delimiter underruns
1208                 */
1209                txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1210        } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1211                /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1212                txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1213        } else {
1214                txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1215        }
1216
1217        if (!AR_SREV_9271(ah))
1218                REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1219
1220        REGWRITE_BUFFER_FLUSH(ah);
1221
1222        if (AR_SREV_9300_20_OR_LATER(ah))
1223                ath9k_hw_reset_txstatus_ring(ah);
1224}
1225
1226static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1227{
1228        u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1229        u32 set = AR_STA_ID1_KSRCH_MODE;
1230
1231        ENABLE_REG_RMW_BUFFER(ah);
1232        switch (opmode) {
1233        case NL80211_IFTYPE_ADHOC:
1234                if (!AR_SREV_9340_13(ah)) {
1235                        set |= AR_STA_ID1_ADHOC;
1236                        REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1237                        break;
1238                }
1239                /* fall through */
1240        case NL80211_IFTYPE_OCB:
1241        case NL80211_IFTYPE_MESH_POINT:
1242        case NL80211_IFTYPE_AP:
1243                set |= AR_STA_ID1_STA_AP;
1244                /* fall through */
1245        case NL80211_IFTYPE_STATION:
1246                REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1247                break;
1248        default:
1249                if (!ah->is_monitoring)
1250                        set = 0;
1251                break;
1252        }
1253        REG_RMW(ah, AR_STA_ID1, set, mask);
1254        REG_RMW_BUFFER_FLUSH(ah);
1255}
1256
1257void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1258                                   u32 *coef_mantissa, u32 *coef_exponent)
1259{
1260        u32 coef_exp, coef_man;
1261
1262        for (coef_exp = 31; coef_exp > 0; coef_exp--)
1263                if ((coef_scaled >> coef_exp) & 0x1)
1264                        break;
1265
1266        coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1267
1268        coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1269
1270        *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1271        *coef_exponent = coef_exp - 16;
1272}
1273
1274/* AR9330 WAR:
1275 * call external reset function to reset WMAC if:
1276 * - doing a cold reset
1277 * - we have pending frames in the TX queues.
1278 */
1279static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1280{
1281        int i, npend = 0;
1282
1283        for (i = 0; i < AR_NUM_QCU; i++) {
1284                npend = ath9k_hw_numtxpending(ah, i);
1285                if (npend)
1286                        break;
1287        }
1288
1289        if (ah->external_reset &&
1290            (npend || type == ATH9K_RESET_COLD)) {
1291                int reset_err = 0;
1292
1293                ath_dbg(ath9k_hw_common(ah), RESET,
1294                        "reset MAC via external reset\n");
1295
1296                reset_err = ah->external_reset();
1297                if (reset_err) {
1298                        ath_err(ath9k_hw_common(ah),
1299                                "External reset failed, err=%d\n",
1300                                reset_err);
1301                        return false;
1302                }
1303
1304                REG_WRITE(ah, AR_RTC_RESET, 1);
1305        }
1306
1307        return true;
1308}
1309
1310static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1311{
1312        u32 rst_flags;
1313        u32 tmpReg;
1314
1315        if (AR_SREV_9100(ah)) {
1316                REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1317                              AR_RTC_DERIVED_CLK_PERIOD, 1);
1318                (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1319        }
1320
1321        ENABLE_REGWRITE_BUFFER(ah);
1322
1323        if (AR_SREV_9300_20_OR_LATER(ah)) {
1324                REG_WRITE(ah, AR_WA, ah->WARegVal);
1325                udelay(10);
1326        }
1327
1328        REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1329                  AR_RTC_FORCE_WAKE_ON_INT);
1330
1331        if (AR_SREV_9100(ah)) {
1332                rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1333                        AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1334        } else {
1335                tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1336                if (AR_SREV_9340(ah))
1337                        tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1338                else
1339                        tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1340                                  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1341
1342                if (tmpReg) {
1343                        u32 val;
1344                        REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1345
1346                        val = AR_RC_HOSTIF;
1347                        if (!AR_SREV_9300_20_OR_LATER(ah))
1348                                val |= AR_RC_AHB;
1349                        REG_WRITE(ah, AR_RC, val);
1350
1351                } else if (!AR_SREV_9300_20_OR_LATER(ah))
1352                        REG_WRITE(ah, AR_RC, AR_RC_AHB);
1353
1354                rst_flags = AR_RTC_RC_MAC_WARM;
1355                if (type == ATH9K_RESET_COLD)
1356                        rst_flags |= AR_RTC_RC_MAC_COLD;
1357        }
1358
1359        if (AR_SREV_9330(ah)) {
1360                if (!ath9k_hw_ar9330_reset_war(ah, type))
1361                        return false;
1362        }
1363
1364        if (ath9k_hw_mci_is_enabled(ah))
1365                ar9003_mci_check_gpm_offset(ah);
1366
1367        /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1368         * RTC_RC reg read
1369         */
1370        if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1371                REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1372                ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1373                              20 * AH_WAIT_TIMEOUT);
1374                REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1375        }
1376
1377        REG_WRITE(ah, AR_RTC_RC, rst_flags);
1378
1379        REGWRITE_BUFFER_FLUSH(ah);
1380
1381        if (AR_SREV_9300_20_OR_LATER(ah))
1382                udelay(50);
1383        else if (AR_SREV_9100(ah))
1384                mdelay(10);
1385        else
1386                udelay(100);
1387
1388        REG_WRITE(ah, AR_RTC_RC, 0);
1389        if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1390                ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1391                return false;
1392        }
1393
1394        if (!AR_SREV_9100(ah))
1395                REG_WRITE(ah, AR_RC, 0);
1396
1397        if (AR_SREV_9100(ah))
1398                udelay(50);
1399
1400        return true;
1401}
1402
1403static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1404{
1405        ENABLE_REGWRITE_BUFFER(ah);
1406
1407        if (AR_SREV_9300_20_OR_LATER(ah)) {
1408                REG_WRITE(ah, AR_WA, ah->WARegVal);
1409                udelay(10);
1410        }
1411
1412        REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1413                  AR_RTC_FORCE_WAKE_ON_INT);
1414
1415        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1416                REG_WRITE(ah, AR_RC, AR_RC_AHB);
1417
1418        REG_WRITE(ah, AR_RTC_RESET, 0);
1419
1420        REGWRITE_BUFFER_FLUSH(ah);
1421
1422        udelay(2);
1423
1424        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1425                REG_WRITE(ah, AR_RC, 0);
1426
1427        REG_WRITE(ah, AR_RTC_RESET, 1);
1428
1429        if (!ath9k_hw_wait(ah,
1430                           AR_RTC_STATUS,
1431                           AR_RTC_STATUS_M,
1432                           AR_RTC_STATUS_ON,
1433                           AH_WAIT_TIMEOUT)) {
1434                ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1435                return false;
1436        }
1437
1438        return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1439}
1440
1441static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1442{
1443        bool ret = false;
1444
1445        if (AR_SREV_9300_20_OR_LATER(ah)) {
1446                REG_WRITE(ah, AR_WA, ah->WARegVal);
1447                udelay(10);
1448        }
1449
1450        REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1451                  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1452
1453        if (!ah->reset_power_on)
1454                type = ATH9K_RESET_POWER_ON;
1455
1456        switch (type) {
1457        case ATH9K_RESET_POWER_ON:
1458                ret = ath9k_hw_set_reset_power_on(ah);
1459                if (ret)
1460                        ah->reset_power_on = true;
1461                break;
1462        case ATH9K_RESET_WARM:
1463        case ATH9K_RESET_COLD:
1464                ret = ath9k_hw_set_reset(ah, type);
1465                break;
1466        default:
1467                break;
1468        }
1469
1470        return ret;
1471}
1472
1473static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1474                                struct ath9k_channel *chan)
1475{
1476        int reset_type = ATH9K_RESET_WARM;
1477
1478        if (AR_SREV_9280(ah)) {
1479                if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1480                        reset_type = ATH9K_RESET_POWER_ON;
1481                else
1482                        reset_type = ATH9K_RESET_COLD;
1483        } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1484                   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1485                reset_type = ATH9K_RESET_COLD;
1486
1487        if (!ath9k_hw_set_reset_reg(ah, reset_type))
1488                return false;
1489
1490        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1491                return false;
1492
1493        ah->chip_fullsleep = false;
1494
1495        if (AR_SREV_9330(ah))
1496                ar9003_hw_internal_regulator_apply(ah);
1497        ath9k_hw_init_pll(ah, chan);
1498
1499        return true;
1500}
1501
1502static bool ath9k_hw_channel_change(struct ath_hw *ah,
1503                                    struct ath9k_channel *chan)
1504{
1505        struct ath_common *common = ath9k_hw_common(ah);
1506        struct ath9k_hw_capabilities *pCap = &ah->caps;
1507        bool band_switch = false, mode_diff = false;
1508        u8 ini_reloaded = 0;
1509        u32 qnum;
1510        int r;
1511
1512        if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1513                u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1514                band_switch = !!(flags_diff & CHANNEL_5GHZ);
1515                mode_diff = !!(flags_diff & ~CHANNEL_HT);
1516        }
1517
1518        for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1519                if (ath9k_hw_numtxpending(ah, qnum)) {
1520                        ath_dbg(common, QUEUE,
1521                                "Transmit frames pending on queue %d\n", qnum);
1522                        return false;
1523                }
1524        }
1525
1526        if (!ath9k_hw_rfbus_req(ah)) {
1527                ath_err(common, "Could not kill baseband RX\n");
1528                return false;
1529        }
1530
1531        if (band_switch || mode_diff) {
1532                ath9k_hw_mark_phy_inactive(ah);
1533                udelay(5);
1534
1535                if (band_switch)
1536                        ath9k_hw_init_pll(ah, chan);
1537
1538                if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1539                        ath_err(common, "Failed to do fast channel change\n");
1540                        return false;
1541                }
1542        }
1543
1544        ath9k_hw_set_channel_regs(ah, chan);
1545
1546        r = ath9k_hw_rf_set_freq(ah, chan);
1547        if (r) {
1548                ath_err(common, "Failed to set channel\n");
1549                return false;
1550        }
1551        ath9k_hw_set_clockrate(ah);
1552        ath9k_hw_apply_txpower(ah, chan, false);
1553
1554        ath9k_hw_set_delta_slope(ah, chan);
1555        ath9k_hw_spur_mitigate_freq(ah, chan);
1556
1557        if (band_switch || ini_reloaded)
1558                ah->eep_ops->set_board_values(ah, chan);
1559
1560        ath9k_hw_init_bb(ah, chan);
1561        ath9k_hw_rfbus_done(ah);
1562
1563        if (band_switch || ini_reloaded) {
1564                ah->ah_flags |= AH_FASTCC;
1565                ath9k_hw_init_cal(ah, chan);
1566                ah->ah_flags &= ~AH_FASTCC;
1567        }
1568
1569        return true;
1570}
1571
1572static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1573{
1574        u32 gpio_mask = ah->gpio_mask;
1575        int i;
1576
1577        for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1578                if (!(gpio_mask & 1))
1579                        continue;
1580
1581                ath9k_hw_gpio_request_out(ah, i, NULL,
1582                                          AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1583                ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1584                ath9k_hw_gpio_free(ah, i);
1585        }
1586}
1587
1588void ath9k_hw_check_nav(struct ath_hw *ah)
1589{
1590        struct ath_common *common = ath9k_hw_common(ah);
1591        u32 val;
1592
1593        val = REG_READ(ah, AR_NAV);
1594        if (val != 0xdeadbeef && val > 0x7fff) {
1595                ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1596                REG_WRITE(ah, AR_NAV, 0);
1597        }
1598}
1599EXPORT_SYMBOL(ath9k_hw_check_nav);
1600
1601bool ath9k_hw_check_alive(struct ath_hw *ah)
1602{
1603        int count = 50;
1604        u32 reg, last_val;
1605
1606        /* Check if chip failed to wake up */
1607        if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1608                return false;
1609
1610        if (AR_SREV_9300(ah))
1611                return !ath9k_hw_detect_mac_hang(ah);
1612
1613        if (AR_SREV_9285_12_OR_LATER(ah))
1614                return true;
1615
1616        last_val = REG_READ(ah, AR_OBS_BUS_1);
1617        do {
1618                reg = REG_READ(ah, AR_OBS_BUS_1);
1619                if (reg != last_val)
1620                        return true;
1621
1622                udelay(1);
1623                last_val = reg;
1624                if ((reg & 0x7E7FFFEF) == 0x00702400)
1625                        continue;
1626
1627                switch (reg & 0x7E000B00) {
1628                case 0x1E000000:
1629                case 0x52000B00:
1630                case 0x18000B00:
1631                        continue;
1632                default:
1633                        return true;
1634                }
1635        } while (count-- > 0);
1636
1637        return false;
1638}
1639EXPORT_SYMBOL(ath9k_hw_check_alive);
1640
1641static void ath9k_hw_init_mfp(struct ath_hw *ah)
1642{
1643        /* Setup MFP options for CCMP */
1644        if (AR_SREV_9280_20_OR_LATER(ah)) {
1645                /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1646                 * frames when constructing CCMP AAD. */
1647                REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1648                              0xc7ff);
1649                if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1650                        ah->sw_mgmt_crypto_tx = true;
1651                else
1652                        ah->sw_mgmt_crypto_tx = false;
1653                ah->sw_mgmt_crypto_rx = false;
1654        } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1655                /* Disable hardware crypto for management frames */
1656                REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1657                            AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1658                REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1659                            AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1660                ah->sw_mgmt_crypto_tx = true;
1661                ah->sw_mgmt_crypto_rx = true;
1662        } else {
1663                ah->sw_mgmt_crypto_tx = true;
1664                ah->sw_mgmt_crypto_rx = true;
1665        }
1666}
1667
1668static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1669                                  u32 macStaId1, u32 saveDefAntenna)
1670{
1671        struct ath_common *common = ath9k_hw_common(ah);
1672
1673        ENABLE_REGWRITE_BUFFER(ah);
1674
1675        REG_RMW(ah, AR_STA_ID1, macStaId1
1676                  | AR_STA_ID1_RTS_USE_DEF
1677                  | ah->sta_id1_defaults,
1678                  ~AR_STA_ID1_SADH_MASK);
1679        ath_hw_setbssidmask(common);
1680        REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1681        ath9k_hw_write_associd(ah);
1682        REG_WRITE(ah, AR_ISR, ~0);
1683        REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1684
1685        REGWRITE_BUFFER_FLUSH(ah);
1686
1687        ath9k_hw_set_operating_mode(ah, ah->opmode);
1688}
1689
1690static void ath9k_hw_init_queues(struct ath_hw *ah)
1691{
1692        int i;
1693
1694        ENABLE_REGWRITE_BUFFER(ah);
1695
1696        for (i = 0; i < AR_NUM_DCU; i++)
1697                REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1698
1699        REGWRITE_BUFFER_FLUSH(ah);
1700
1701        ah->intr_txqs = 0;
1702        for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1703                ath9k_hw_resettxqueue(ah, i);
1704}
1705
1706/*
1707 * For big endian systems turn on swapping for descriptors
1708 */
1709static void ath9k_hw_init_desc(struct ath_hw *ah)
1710{
1711        struct ath_common *common = ath9k_hw_common(ah);
1712
1713        if (AR_SREV_9100(ah)) {
1714                u32 mask;
1715                mask = REG_READ(ah, AR_CFG);
1716                if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1717                        ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1718                                mask);
1719                } else {
1720                        mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1721                        REG_WRITE(ah, AR_CFG, mask);
1722                        ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1723                                REG_READ(ah, AR_CFG));
1724                }
1725        } else {
1726                if (common->bus_ops->ath_bus_type == ATH_USB) {
1727                        /* Configure AR9271 target WLAN */
1728                        if (AR_SREV_9271(ah))
1729                                REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1730                        else
1731                                REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1732                }
1733#ifdef __BIG_ENDIAN
1734                else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1735                         AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1736                         AR_SREV_9561(ah))
1737                        REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1738                else
1739                        REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1740#endif
1741        }
1742}
1743
1744/*
1745 * Fast channel change:
1746 * (Change synthesizer based on channel freq without resetting chip)
1747 */
1748static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1749{
1750        struct ath_common *common = ath9k_hw_common(ah);
1751        struct ath9k_hw_capabilities *pCap = &ah->caps;
1752        int ret;
1753
1754        if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1755                goto fail;
1756
1757        if (ah->chip_fullsleep)
1758                goto fail;
1759
1760        if (!ah->curchan)
1761                goto fail;
1762
1763        if (chan->channel == ah->curchan->channel)
1764                goto fail;
1765
1766        if ((ah->curchan->channelFlags | chan->channelFlags) &
1767            (CHANNEL_HALF | CHANNEL_QUARTER))
1768                goto fail;
1769
1770        /*
1771         * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1772         */
1773        if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1774            ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1775                goto fail;
1776
1777        if (!ath9k_hw_check_alive(ah))
1778                goto fail;
1779
1780        /*
1781         * For AR9462, make sure that calibration data for
1782         * re-using are present.
1783         */
1784        if (AR_SREV_9462(ah) && (ah->caldata &&
1785                                 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1786                                  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1787                                  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1788                goto fail;
1789
1790        ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1791                ah->curchan->channel, chan->channel);
1792
1793        ret = ath9k_hw_channel_change(ah, chan);
1794        if (!ret)
1795                goto fail;
1796
1797        if (ath9k_hw_mci_is_enabled(ah))
1798                ar9003_mci_2g5g_switch(ah, false);
1799
1800        ath9k_hw_loadnf(ah, ah->curchan);
1801        ath9k_hw_start_nfcal(ah, true);
1802
1803        if (AR_SREV_9271(ah))
1804                ar9002_hw_load_ani_reg(ah, chan);
1805
1806        return 0;
1807fail:
1808        return -EINVAL;
1809}
1810
1811u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1812{
1813        struct timespec ts;
1814        s64 usec;
1815
1816        if (!cur) {
1817                getrawmonotonic(&ts);
1818                cur = &ts;
1819        }
1820
1821        usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1822        usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1823
1824        return (u32) usec;
1825}
1826EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1827
1828int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1829                   struct ath9k_hw_cal_data *caldata, bool fastcc)
1830{
1831        struct ath_common *common = ath9k_hw_common(ah);
1832        u32 saveLedState;
1833        u32 saveDefAntenna;
1834        u32 macStaId1;
1835        struct timespec tsf_ts;
1836        u32 tsf_offset;
1837        u64 tsf = 0;
1838        int r;
1839        bool start_mci_reset = false;
1840        bool save_fullsleep = ah->chip_fullsleep;
1841
1842        if (ath9k_hw_mci_is_enabled(ah)) {
1843                start_mci_reset = ar9003_mci_start_reset(ah, chan);
1844                if (start_mci_reset)
1845                        return 0;
1846        }
1847
1848        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1849                return -EIO;
1850
1851        if (ah->curchan && !ah->chip_fullsleep)
1852                ath9k_hw_getnf(ah, ah->curchan);
1853
1854        ah->caldata = caldata;
1855        if (caldata && (chan->channel != caldata->channel ||
1856                        chan->channelFlags != caldata->channelFlags)) {
1857                /* Operating channel changed, reset channel calibration data */
1858                memset(caldata, 0, sizeof(*caldata));
1859                ath9k_init_nfcal_hist_buffer(ah, chan);
1860        } else if (caldata) {
1861                clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1862        }
1863        ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1864
1865        if (fastcc) {
1866                r = ath9k_hw_do_fastcc(ah, chan);
1867                if (!r)
1868                        return r;
1869        }
1870
1871        if (ath9k_hw_mci_is_enabled(ah))
1872                ar9003_mci_stop_bt(ah, save_fullsleep);
1873
1874        saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1875        if (saveDefAntenna == 0)
1876                saveDefAntenna = 1;
1877
1878        macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1879
1880        /* Save TSF before chip reset, a cold reset clears it */
1881        getrawmonotonic(&tsf_ts);
1882        tsf = ath9k_hw_gettsf64(ah);
1883
1884        saveLedState = REG_READ(ah, AR_CFG_LED) &
1885                (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1886                 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1887
1888        ath9k_hw_mark_phy_inactive(ah);
1889
1890        ah->paprd_table_write_done = false;
1891
1892        /* Only required on the first reset */
1893        if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1894                REG_WRITE(ah,
1895                          AR9271_RESET_POWER_DOWN_CONTROL,
1896                          AR9271_RADIO_RF_RST);
1897                udelay(50);
1898        }
1899
1900        if (!ath9k_hw_chip_reset(ah, chan)) {
1901                ath_err(common, "Chip reset failed\n");
1902                return -EINVAL;
1903        }
1904
1905        /* Only required on the first reset */
1906        if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1907                ah->htc_reset_init = false;
1908                REG_WRITE(ah,
1909                          AR9271_RESET_POWER_DOWN_CONTROL,
1910                          AR9271_GATE_MAC_CTL);
1911                udelay(50);
1912        }
1913
1914        /* Restore TSF */
1915        tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1916        ath9k_hw_settsf64(ah, tsf + tsf_offset);
1917
1918        if (AR_SREV_9280_20_OR_LATER(ah))
1919                REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1920
1921        if (!AR_SREV_9300_20_OR_LATER(ah))
1922                ar9002_hw_enable_async_fifo(ah);
1923
1924        r = ath9k_hw_process_ini(ah, chan);
1925        if (r)
1926                return r;
1927
1928        ath9k_hw_set_rfmode(ah, chan);
1929
1930        if (ath9k_hw_mci_is_enabled(ah))
1931                ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1932
1933        /*
1934         * Some AR91xx SoC devices frequently fail to accept TSF writes
1935         * right after the chip reset. When that happens, write a new
1936         * value after the initvals have been applied.
1937         */
1938        if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1939                tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1940                ath9k_hw_settsf64(ah, tsf + tsf_offset);
1941        }
1942
1943        ath9k_hw_init_mfp(ah);
1944
1945        ath9k_hw_set_delta_slope(ah, chan);
1946        ath9k_hw_spur_mitigate_freq(ah, chan);
1947        ah->eep_ops->set_board_values(ah, chan);
1948
1949        ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1950
1951        r = ath9k_hw_rf_set_freq(ah, chan);
1952        if (r)
1953                return r;
1954
1955        ath9k_hw_set_clockrate(ah);
1956
1957        ath9k_hw_init_queues(ah);
1958        ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1959        ath9k_hw_ani_cache_ini_regs(ah);
1960        ath9k_hw_init_qos(ah);
1961
1962        if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1963                ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
1964
1965        ath9k_hw_init_global_settings(ah);
1966
1967        if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1968                REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1969                            AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1970                REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1971                              AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1972                REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1973                            AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1974        }
1975
1976        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1977
1978        ath9k_hw_set_dma(ah);
1979
1980        if (!ath9k_hw_mci_is_enabled(ah))
1981                REG_WRITE(ah, AR_OBS, 8);
1982
1983        ENABLE_REG_RMW_BUFFER(ah);
1984        if (ah->config.rx_intr_mitigation) {
1985                REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1986                REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1987        }
1988
1989        if (ah->config.tx_intr_mitigation) {
1990                REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1991                REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1992        }
1993        REG_RMW_BUFFER_FLUSH(ah);
1994
1995        ath9k_hw_init_bb(ah, chan);
1996
1997        if (caldata) {
1998                clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1999                clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2000        }
2001        if (!ath9k_hw_init_cal(ah, chan))
2002                return -EIO;
2003
2004        if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2005                return -EIO;
2006
2007        ENABLE_REGWRITE_BUFFER(ah);
2008
2009        ath9k_hw_restore_chainmask(ah);
2010        REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2011
2012        REGWRITE_BUFFER_FLUSH(ah);
2013
2014        ath9k_hw_gen_timer_start_tsf2(ah);
2015
2016        ath9k_hw_init_desc(ah);
2017
2018        if (ath9k_hw_btcoex_is_enabled(ah))
2019                ath9k_hw_btcoex_enable(ah);
2020
2021        if (ath9k_hw_mci_is_enabled(ah))
2022                ar9003_mci_check_bt(ah);
2023
2024        if (AR_SREV_9300_20_OR_LATER(ah)) {
2025                ath9k_hw_loadnf(ah, chan);
2026                ath9k_hw_start_nfcal(ah, true);
2027        }
2028
2029        if (AR_SREV_9300_20_OR_LATER(ah))
2030                ar9003_hw_bb_watchdog_config(ah);
2031
2032        if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2033                ar9003_hw_disable_phy_restart(ah);
2034
2035        ath9k_hw_apply_gpio_override(ah);
2036
2037        if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2038                REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2039
2040        if (ah->hw->conf.radar_enabled) {
2041                /* set HW specific DFS configuration */
2042                ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2043                ath9k_hw_set_radar_params(ah);
2044        }
2045
2046        return 0;
2047}
2048EXPORT_SYMBOL(ath9k_hw_reset);
2049
2050/******************************/
2051/* Power Management (Chipset) */
2052/******************************/
2053
2054/*
2055 * Notify Power Mgt is disabled in self-generated frames.
2056 * If requested, force chip to sleep.
2057 */
2058static void ath9k_set_power_sleep(struct ath_hw *ah)
2059{
2060        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2061
2062        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2063                REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2064                REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2065                REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2066                /* xxx Required for WLAN only case ? */
2067                REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2068                udelay(100);
2069        }
2070
2071        /*
2072         * Clear the RTC force wake bit to allow the
2073         * mac to go to sleep.
2074         */
2075        REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2076
2077        if (ath9k_hw_mci_is_enabled(ah))
2078                udelay(100);
2079
2080        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2081                REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2082
2083        /* Shutdown chip. Active low */
2084        if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2085                REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2086                udelay(2);
2087        }
2088
2089        /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2090        if (AR_SREV_9300_20_OR_LATER(ah))
2091                REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2092}
2093
2094/*
2095 * Notify Power Management is enabled in self-generating
2096 * frames. If request, set power mode of chip to
2097 * auto/normal.  Duration in units of 128us (1/8 TU).
2098 */
2099static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2100{
2101        struct ath9k_hw_capabilities *pCap = &ah->caps;
2102
2103        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2104
2105        if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2106                /* Set WakeOnInterrupt bit; clear ForceWake bit */
2107                REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2108                          AR_RTC_FORCE_WAKE_ON_INT);
2109        } else {
2110
2111                /* When chip goes into network sleep, it could be waken
2112                 * up by MCI_INT interrupt caused by BT's HW messages
2113                 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2114                 * rate (~100us). This will cause chip to leave and
2115                 * re-enter network sleep mode frequently, which in
2116                 * consequence will have WLAN MCI HW to generate lots of
2117                 * SYS_WAKING and SYS_SLEEPING messages which will make
2118                 * BT CPU to busy to process.
2119                 */
2120                if (ath9k_hw_mci_is_enabled(ah))
2121                        REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2122                                    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2123                /*
2124                 * Clear the RTC force wake bit to allow the
2125                 * mac to go to sleep.
2126                 */
2127                REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2128
2129                if (ath9k_hw_mci_is_enabled(ah))
2130                        udelay(30);
2131        }
2132
2133        /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2134        if (AR_SREV_9300_20_OR_LATER(ah))
2135                REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2136}
2137
2138static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2139{
2140        u32 val;
2141        int i;
2142
2143        /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2144        if (AR_SREV_9300_20_OR_LATER(ah)) {
2145                REG_WRITE(ah, AR_WA, ah->WARegVal);
2146                udelay(10);
2147        }
2148
2149        if ((REG_READ(ah, AR_RTC_STATUS) &
2150             AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2151                if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2152                        return false;
2153                }
2154                if (!AR_SREV_9300_20_OR_LATER(ah))
2155                        ath9k_hw_init_pll(ah, NULL);
2156        }
2157        if (AR_SREV_9100(ah))
2158                REG_SET_BIT(ah, AR_RTC_RESET,
2159                            AR_RTC_RESET_EN);
2160
2161        REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2162                    AR_RTC_FORCE_WAKE_EN);
2163        if (AR_SREV_9100(ah))
2164                mdelay(10);
2165        else
2166                udelay(50);
2167
2168        for (i = POWER_UP_TIME / 50; i > 0; i--) {
2169                val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2170                if (val == AR_RTC_STATUS_ON)
2171                        break;
2172                udelay(50);
2173                REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2174                            AR_RTC_FORCE_WAKE_EN);
2175        }
2176        if (i == 0) {
2177                ath_err(ath9k_hw_common(ah),
2178                        "Failed to wakeup in %uus\n",
2179                        POWER_UP_TIME / 20);
2180                return false;
2181        }
2182
2183        if (ath9k_hw_mci_is_enabled(ah))
2184                ar9003_mci_set_power_awake(ah);
2185
2186        REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2187
2188        return true;
2189}
2190
2191bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2192{
2193        struct ath_common *common = ath9k_hw_common(ah);
2194        int status = true;
2195        static const char *modes[] = {
2196                "AWAKE",
2197                "FULL-SLEEP",
2198                "NETWORK SLEEP",
2199                "UNDEFINED"
2200        };
2201
2202        if (ah->power_mode == mode)
2203                return status;
2204
2205        ath_dbg(common, RESET, "%s -> %s\n",
2206                modes[ah->power_mode], modes[mode]);
2207
2208        switch (mode) {
2209        case ATH9K_PM_AWAKE:
2210                status = ath9k_hw_set_power_awake(ah);
2211                break;
2212        case ATH9K_PM_FULL_SLEEP:
2213                if (ath9k_hw_mci_is_enabled(ah))
2214                        ar9003_mci_set_full_sleep(ah);
2215
2216                ath9k_set_power_sleep(ah);
2217                ah->chip_fullsleep = true;
2218                break;
2219        case ATH9K_PM_NETWORK_SLEEP:
2220                ath9k_set_power_network_sleep(ah);
2221                break;
2222        default:
2223                ath_err(common, "Unknown power mode %u\n", mode);
2224                return false;
2225        }
2226        ah->power_mode = mode;
2227
2228        /*
2229         * XXX: If this warning never comes up after a while then
2230         * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2231         * ath9k_hw_setpower() return type void.
2232         */
2233
2234        if (!(ah->ah_flags & AH_UNPLUGGED))
2235                ATH_DBG_WARN_ON_ONCE(!status);
2236
2237        return status;
2238}
2239EXPORT_SYMBOL(ath9k_hw_setpower);
2240
2241/*******************/
2242/* Beacon Handling */
2243/*******************/
2244
2245void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2246{
2247        int flags = 0;
2248
2249        ENABLE_REGWRITE_BUFFER(ah);
2250
2251        switch (ah->opmode) {
2252        case NL80211_IFTYPE_ADHOC:
2253                REG_SET_BIT(ah, AR_TXCFG,
2254                            AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2255        case NL80211_IFTYPE_MESH_POINT:
2256        case NL80211_IFTYPE_AP:
2257                REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2258                REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2259                          TU_TO_USEC(ah->config.dma_beacon_response_time));
2260                REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2261                          TU_TO_USEC(ah->config.sw_beacon_response_time));
2262                flags |=
2263                        AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2264                break;
2265        default:
2266                ath_dbg(ath9k_hw_common(ah), BEACON,
2267                        "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2268                return;
2269                break;
2270        }
2271
2272        REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2273        REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2274        REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2275
2276        REGWRITE_BUFFER_FLUSH(ah);
2277
2278        REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2279}
2280EXPORT_SYMBOL(ath9k_hw_beaconinit);
2281
2282void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2283                                    const struct ath9k_beacon_state *bs)
2284{
2285        u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2286        struct ath9k_hw_capabilities *pCap = &ah->caps;
2287        struct ath_common *common = ath9k_hw_common(ah);
2288
2289        ENABLE_REGWRITE_BUFFER(ah);
2290
2291        REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2292        REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2293        REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2294
2295        REGWRITE_BUFFER_FLUSH(ah);
2296
2297        REG_RMW_FIELD(ah, AR_RSSI_THR,
2298                      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2299
2300        beaconintval = bs->bs_intval;
2301
2302        if (bs->bs_sleepduration > beaconintval)
2303                beaconintval = bs->bs_sleepduration;
2304
2305        dtimperiod = bs->bs_dtimperiod;
2306        if (bs->bs_sleepduration > dtimperiod)
2307                dtimperiod = bs->bs_sleepduration;
2308
2309        if (beaconintval == dtimperiod)
2310                nextTbtt = bs->bs_nextdtim;
2311        else
2312                nextTbtt = bs->bs_nexttbtt;
2313
2314        ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2315        ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2316        ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2317        ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2318
2319        ENABLE_REGWRITE_BUFFER(ah);
2320
2321        REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2322        REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2323
2324        REG_WRITE(ah, AR_SLEEP1,
2325                  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2326                  | AR_SLEEP1_ASSUME_DTIM);
2327
2328        if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2329                beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2330        else
2331                beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2332
2333        REG_WRITE(ah, AR_SLEEP2,
2334                  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2335
2336        REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2337        REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2338
2339        REGWRITE_BUFFER_FLUSH(ah);
2340
2341        REG_SET_BIT(ah, AR_TIMER_MODE,
2342                    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2343                    AR_DTIM_TIMER_EN);
2344
2345        /* TSF Out of Range Threshold */
2346        REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2347}
2348EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2349
2350/*******************/
2351/* HW Capabilities */
2352/*******************/
2353
2354static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2355{
2356        eeprom_chainmask &= chip_chainmask;
2357        if (eeprom_chainmask)
2358                return eeprom_chainmask;
2359        else
2360                return chip_chainmask;
2361}
2362
2363/**
2364 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2365 * @ah: the atheros hardware data structure
2366 *
2367 * We enable DFS support upstream on chipsets which have passed a series
2368 * of tests. The testing requirements are going to be documented. Desired
2369 * test requirements are documented at:
2370 *
2371 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2372 *
2373 * Once a new chipset gets properly tested an individual commit can be used
2374 * to document the testing for DFS for that chipset.
2375 */
2376static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2377{
2378
2379        switch (ah->hw_version.macVersion) {
2380        /* for temporary testing DFS with 9280 */
2381        case AR_SREV_VERSION_9280:
2382        /* AR9580 will likely be our first target to get testing on */
2383        case AR_SREV_VERSION_9580:
2384                return true;
2385        default:
2386                return false;
2387        }
2388}
2389
2390static void ath9k_gpio_cap_init(struct ath_hw *ah)
2391{
2392        struct ath9k_hw_capabilities *pCap = &ah->caps;
2393
2394        if (AR_SREV_9271(ah)) {
2395                pCap->num_gpio_pins = AR9271_NUM_GPIO;
2396                pCap->gpio_mask = AR9271_GPIO_MASK;
2397        } else if (AR_DEVID_7010(ah)) {
2398                pCap->num_gpio_pins = AR7010_NUM_GPIO;
2399                pCap->gpio_mask = AR7010_GPIO_MASK;
2400        } else if (AR_SREV_9287(ah)) {
2401                pCap->num_gpio_pins = AR9287_NUM_GPIO;
2402                pCap->gpio_mask = AR9287_GPIO_MASK;
2403        } else if (AR_SREV_9285(ah)) {
2404                pCap->num_gpio_pins = AR9285_NUM_GPIO;
2405                pCap->gpio_mask = AR9285_GPIO_MASK;
2406        } else if (AR_SREV_9280(ah)) {
2407                pCap->num_gpio_pins = AR9280_NUM_GPIO;
2408                pCap->gpio_mask = AR9280_GPIO_MASK;
2409        } else if (AR_SREV_9300(ah)) {
2410                pCap->num_gpio_pins = AR9300_NUM_GPIO;
2411                pCap->gpio_mask = AR9300_GPIO_MASK;
2412        } else if (AR_SREV_9330(ah)) {
2413                pCap->num_gpio_pins = AR9330_NUM_GPIO;
2414                pCap->gpio_mask = AR9330_GPIO_MASK;
2415        } else if (AR_SREV_9340(ah)) {
2416                pCap->num_gpio_pins = AR9340_NUM_GPIO;
2417                pCap->gpio_mask = AR9340_GPIO_MASK;
2418        } else if (AR_SREV_9462(ah)) {
2419                pCap->num_gpio_pins = AR9462_NUM_GPIO;
2420                pCap->gpio_mask = AR9462_GPIO_MASK;
2421        } else if (AR_SREV_9485(ah)) {
2422                pCap->num_gpio_pins = AR9485_NUM_GPIO;
2423                pCap->gpio_mask = AR9485_GPIO_MASK;
2424        } else if (AR_SREV_9531(ah)) {
2425                pCap->num_gpio_pins = AR9531_NUM_GPIO;
2426                pCap->gpio_mask = AR9531_GPIO_MASK;
2427        } else if (AR_SREV_9550(ah)) {
2428                pCap->num_gpio_pins = AR9550_NUM_GPIO;
2429                pCap->gpio_mask = AR9550_GPIO_MASK;
2430        } else if (AR_SREV_9561(ah)) {
2431                pCap->num_gpio_pins = AR9561_NUM_GPIO;
2432                pCap->gpio_mask = AR9561_GPIO_MASK;
2433        } else if (AR_SREV_9565(ah)) {
2434                pCap->num_gpio_pins = AR9565_NUM_GPIO;
2435                pCap->gpio_mask = AR9565_GPIO_MASK;
2436        } else if (AR_SREV_9580(ah)) {
2437                pCap->num_gpio_pins = AR9580_NUM_GPIO;
2438                pCap->gpio_mask = AR9580_GPIO_MASK;
2439        } else {
2440                pCap->num_gpio_pins = AR_NUM_GPIO;
2441                pCap->gpio_mask = AR_GPIO_MASK;
2442        }
2443}
2444
2445int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2446{
2447        struct ath9k_hw_capabilities *pCap = &ah->caps;
2448        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2449        struct ath_common *common = ath9k_hw_common(ah);
2450
2451        u16 eeval;
2452        u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2453
2454        eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2455        regulatory->current_rd = eeval;
2456
2457        if (ah->opmode != NL80211_IFTYPE_AP &&
2458            ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2459                if (regulatory->current_rd == 0x64 ||
2460                    regulatory->current_rd == 0x65)
2461                        regulatory->current_rd += 5;
2462                else if (regulatory->current_rd == 0x41)
2463                        regulatory->current_rd = 0x43;
2464                ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2465                        regulatory->current_rd);
2466        }
2467
2468        eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2469
2470        if (eeval & AR5416_OPFLAGS_11A) {
2471                if (ah->disable_5ghz)
2472                        ath_warn(common, "disabling 5GHz band\n");
2473                else
2474                        pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2475        }
2476
2477        if (eeval & AR5416_OPFLAGS_11G) {
2478                if (ah->disable_2ghz)
2479                        ath_warn(common, "disabling 2GHz band\n");
2480                else
2481                        pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2482        }
2483
2484        if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2485                ath_err(common, "both bands are disabled\n");
2486                return -EINVAL;
2487        }
2488
2489        ath9k_gpio_cap_init(ah);
2490
2491        if (AR_SREV_9485(ah) ||
2492            AR_SREV_9285(ah) ||
2493            AR_SREV_9330(ah) ||
2494            AR_SREV_9565(ah))
2495                pCap->chip_chainmask = 1;
2496        else if (!AR_SREV_9280_20_OR_LATER(ah))
2497                pCap->chip_chainmask = 7;
2498        else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2499                 AR_SREV_9340(ah) ||
2500                 AR_SREV_9462(ah) ||
2501                 AR_SREV_9531(ah))
2502                pCap->chip_chainmask = 3;
2503        else
2504                pCap->chip_chainmask = 7;
2505
2506        pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2507        /*
2508         * For AR9271 we will temporarilly uses the rx chainmax as read from
2509         * the EEPROM.
2510         */
2511        if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2512            !(eeval & AR5416_OPFLAGS_11A) &&
2513            !(AR_SREV_9271(ah)))
2514                /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2515                pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2516        else if (AR_SREV_9100(ah))
2517                pCap->rx_chainmask = 0x7;
2518        else
2519                /* Use rx_chainmask from EEPROM. */
2520                pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2521
2522        pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2523        pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2524        ah->txchainmask = pCap->tx_chainmask;
2525        ah->rxchainmask = pCap->rx_chainmask;
2526
2527        ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2528
2529        /* enable key search for every frame in an aggregate */
2530        if (AR_SREV_9300_20_OR_LATER(ah))
2531                ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2532
2533        common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2534
2535        if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2536                pCap->hw_caps |= ATH9K_HW_CAP_HT;
2537        else
2538                pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2539
2540        if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2541                pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2542        else
2543                pCap->rts_aggr_limit = (8 * 1024);
2544
2545#ifdef CONFIG_ATH9K_RFKILL
2546        ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2547        if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2548                ah->rfkill_gpio =
2549                        MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2550                ah->rfkill_polarity =
2551                        MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2552
2553                pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2554        }
2555#endif
2556        if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2557                pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2558        else
2559                pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2560
2561        if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2562                pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2563        else
2564                pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2565
2566        if (AR_SREV_9300_20_OR_LATER(ah)) {
2567                pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2568                if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2569                    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2570                        pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2571
2572                pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2573                pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2574                pCap->rx_status_len = sizeof(struct ar9003_rxs);
2575                pCap->tx_desc_len = sizeof(struct ar9003_txc);
2576                pCap->txs_len = sizeof(struct ar9003_txs);
2577        } else {
2578                pCap->tx_desc_len = sizeof(struct ath_desc);
2579                if (AR_SREV_9280_20(ah))
2580                        pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2581        }
2582
2583        if (AR_SREV_9300_20_OR_LATER(ah))
2584                pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2585
2586        if (AR_SREV_9561(ah))
2587                ah->ent_mode = 0x3BDA000;
2588        else if (AR_SREV_9300_20_OR_LATER(ah))
2589                ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2590
2591        if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2592                pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2593
2594        if (AR_SREV_9285(ah)) {
2595                if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2596                        ant_div_ctl1 =
2597                                ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2598                        if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2599                                pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2600                                ath_info(common, "Enable LNA combining\n");
2601                        }
2602                }
2603        }
2604
2605        if (AR_SREV_9300_20_OR_LATER(ah)) {
2606                if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2607                        pCap->hw_caps |= ATH9K_HW_CAP_APM;
2608        }
2609
2610        if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2611                ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2612                if ((ant_div_ctl1 >> 0x6) == 0x3) {
2613                        pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2614                        ath_info(common, "Enable LNA combining\n");
2615                }
2616        }
2617
2618        if (ath9k_hw_dfs_tested(ah))
2619                pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2620
2621        tx_chainmask = pCap->tx_chainmask;
2622        rx_chainmask = pCap->rx_chainmask;
2623        while (tx_chainmask || rx_chainmask) {
2624                if (tx_chainmask & BIT(0))
2625                        pCap->max_txchains++;
2626                if (rx_chainmask & BIT(0))
2627                        pCap->max_rxchains++;
2628
2629                tx_chainmask >>= 1;
2630                rx_chainmask >>= 1;
2631        }
2632
2633        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2634                if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2635                        pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2636
2637                if (AR_SREV_9462_20_OR_LATER(ah))
2638                        pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2639        }
2640
2641        if (AR_SREV_9300_20_OR_LATER(ah) &&
2642            ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2643                        pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2644
2645#ifdef CONFIG_ATH9K_WOW
2646        if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2647                ah->wow.max_patterns = MAX_NUM_PATTERN;
2648        else
2649                ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2650#endif
2651
2652        return 0;
2653}
2654
2655/****************************/
2656/* GPIO / RFKILL / Antennae */
2657/****************************/
2658
2659static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2660{
2661        int addr;
2662        u32 gpio_shift, tmp;
2663
2664        if (gpio > 11)
2665                addr = AR_GPIO_OUTPUT_MUX3;
2666        else if (gpio > 5)
2667                addr = AR_GPIO_OUTPUT_MUX2;
2668        else
2669                addr = AR_GPIO_OUTPUT_MUX1;
2670
2671        gpio_shift = (gpio % 6) * 5;
2672
2673        if (AR_SREV_9280_20_OR_LATER(ah) ||
2674            (addr != AR_GPIO_OUTPUT_MUX1)) {
2675                REG_RMW(ah, addr, (type << gpio_shift),
2676                        (0x1f << gpio_shift));
2677        } else {
2678                tmp = REG_READ(ah, addr);
2679                tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2680                tmp &= ~(0x1f << gpio_shift);
2681                tmp |= (type << gpio_shift);
2682                REG_WRITE(ah, addr, tmp);
2683        }
2684}
2685
2686/* BSP should set the corresponding MUX register correctly.
2687 */
2688static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2689                                  const char *label)
2690{
2691        if (ah->caps.gpio_requested & BIT(gpio))
2692                return;
2693
2694        /* may be requested by BSP, free anyway */
2695        gpio_free(gpio);
2696
2697        if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label))
2698                return;
2699
2700        ah->caps.gpio_requested |= BIT(gpio);
2701}
2702
2703static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2704                                   u32 ah_signal_type)
2705{
2706        u32 gpio_set, gpio_shift = gpio;
2707
2708        if (AR_DEVID_7010(ah)) {
2709                gpio_set = out ?
2710                        AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2711                REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2712                        AR7010_GPIO_OE_MASK << gpio_shift);
2713        } else if (AR_SREV_SOC(ah)) {
2714                gpio_set = out ? 1 : 0;
2715                REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2716                        gpio_set << gpio_shift);
2717        } else {
2718                gpio_shift = gpio << 1;
2719                gpio_set = out ?
2720                        AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2721                REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2722                        AR_GPIO_OE_OUT_DRV << gpio_shift);
2723
2724                if (out)
2725                        ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2726        }
2727}
2728
2729static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2730                                  const char *label, u32 ah_signal_type)
2731{
2732        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2733
2734        if (BIT(gpio) & ah->caps.gpio_mask)
2735                ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2736        else if (AR_SREV_SOC(ah))
2737                ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2738        else
2739                WARN_ON(1);
2740}
2741
2742void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2743{
2744        ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2745}
2746EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2747
2748void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2749                               u32 ah_signal_type)
2750{
2751        ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2752}
2753EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2754
2755void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2756{
2757        if (!AR_SREV_SOC(ah))
2758                return;
2759
2760        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2761
2762        if (ah->caps.gpio_requested & BIT(gpio)) {
2763                gpio_free(gpio);
2764                ah->caps.gpio_requested &= ~BIT(gpio);
2765        }
2766}
2767EXPORT_SYMBOL(ath9k_hw_gpio_free);
2768
2769u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2770{
2771        u32 val = 0xffffffff;
2772
2773#define MS_REG_READ(x, y) \
2774        (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2775
2776        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2777
2778        if (BIT(gpio) & ah->caps.gpio_mask) {
2779                if (AR_SREV_9271(ah))
2780                        val = MS_REG_READ(AR9271, gpio);
2781                else if (AR_SREV_9287(ah))
2782                        val = MS_REG_READ(AR9287, gpio);
2783                else if (AR_SREV_9285(ah))
2784                        val = MS_REG_READ(AR9285, gpio);
2785                else if (AR_SREV_9280(ah))
2786                        val = MS_REG_READ(AR928X, gpio);
2787                else if (AR_DEVID_7010(ah))
2788                        val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2789                else if (AR_SREV_9300_20_OR_LATER(ah))
2790                        val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2791                else
2792                        val = MS_REG_READ(AR, gpio);
2793        } else if (BIT(gpio) & ah->caps.gpio_requested) {
2794                val = gpio_get_value(gpio) & BIT(gpio);
2795        } else {
2796                WARN_ON(1);
2797        }
2798
2799        return !!val;
2800}
2801EXPORT_SYMBOL(ath9k_hw_gpio_get);
2802
2803void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2804{
2805        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2806
2807        if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2808                val = !val;
2809        else
2810                val = !!val;
2811
2812        if (BIT(gpio) & ah->caps.gpio_mask) {
2813                u32 out_addr = AR_DEVID_7010(ah) ?
2814                        AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2815
2816                REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2817        } else if (BIT(gpio) & ah->caps.gpio_requested) {
2818                gpio_set_value(gpio, val);
2819        } else {
2820                WARN_ON(1);
2821        }
2822}
2823EXPORT_SYMBOL(ath9k_hw_set_gpio);
2824
2825void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2826{
2827        REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2828}
2829EXPORT_SYMBOL(ath9k_hw_setantenna);
2830
2831/*********************/
2832/* General Operation */
2833/*********************/
2834
2835u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2836{
2837        u32 bits = REG_READ(ah, AR_RX_FILTER);
2838        u32 phybits = REG_READ(ah, AR_PHY_ERR);
2839
2840        if (phybits & AR_PHY_ERR_RADAR)
2841                bits |= ATH9K_RX_FILTER_PHYRADAR;
2842        if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2843                bits |= ATH9K_RX_FILTER_PHYERR;
2844
2845        return bits;
2846}
2847EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2848
2849void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2850{
2851        u32 phybits;
2852
2853        ENABLE_REGWRITE_BUFFER(ah);
2854
2855        REG_WRITE(ah, AR_RX_FILTER, bits);
2856
2857        phybits = 0;
2858        if (bits & ATH9K_RX_FILTER_PHYRADAR)
2859                phybits |= AR_PHY_ERR_RADAR;
2860        if (bits & ATH9K_RX_FILTER_PHYERR)
2861                phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2862        REG_WRITE(ah, AR_PHY_ERR, phybits);
2863
2864        if (phybits)
2865                REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2866        else
2867                REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2868
2869        REGWRITE_BUFFER_FLUSH(ah);
2870}
2871EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2872
2873bool ath9k_hw_phy_disable(struct ath_hw *ah)
2874{
2875        if (ath9k_hw_mci_is_enabled(ah))
2876                ar9003_mci_bt_gain_ctrl(ah);
2877
2878        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2879                return false;
2880
2881        ath9k_hw_init_pll(ah, NULL);
2882        ah->htc_reset_init = true;
2883        return true;
2884}
2885EXPORT_SYMBOL(ath9k_hw_phy_disable);
2886
2887bool ath9k_hw_disable(struct ath_hw *ah)
2888{
2889        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2890                return false;
2891
2892        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2893                return false;
2894
2895        ath9k_hw_init_pll(ah, NULL);
2896        return true;
2897}
2898EXPORT_SYMBOL(ath9k_hw_disable);
2899
2900static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2901{
2902        enum eeprom_param gain_param;
2903
2904        if (IS_CHAN_2GHZ(chan))
2905                gain_param = EEP_ANTENNA_GAIN_2G;
2906        else
2907                gain_param = EEP_ANTENNA_GAIN_5G;
2908
2909        return ah->eep_ops->get_eeprom(ah, gain_param);
2910}
2911
2912void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2913                            bool test)
2914{
2915        struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2916        struct ieee80211_channel *channel;
2917        int chan_pwr, new_pwr;
2918
2919        if (!chan)
2920                return;
2921
2922        channel = chan->chan;
2923        chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2924        new_pwr = min_t(int, chan_pwr, reg->power_limit);
2925
2926        ah->eep_ops->set_txpower(ah, chan,
2927                                 ath9k_regd_get_ctl(reg, chan),
2928                                 get_antenna_gain(ah, chan), new_pwr, test);
2929}
2930
2931void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2932{
2933        struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2934        struct ath9k_channel *chan = ah->curchan;
2935        struct ieee80211_channel *channel = chan->chan;
2936
2937        reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2938        if (test)
2939                channel->max_power = MAX_RATE_POWER / 2;
2940
2941        ath9k_hw_apply_txpower(ah, chan, test);
2942
2943        if (test)
2944                channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2945}
2946EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2947
2948void ath9k_hw_setopmode(struct ath_hw *ah)
2949{
2950        ath9k_hw_set_operating_mode(ah, ah->opmode);
2951}
2952EXPORT_SYMBOL(ath9k_hw_setopmode);
2953
2954void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2955{
2956        REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2957        REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2958}
2959EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2960
2961void ath9k_hw_write_associd(struct ath_hw *ah)
2962{
2963        struct ath_common *common = ath9k_hw_common(ah);
2964
2965        REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2966        REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2967                  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2968}
2969EXPORT_SYMBOL(ath9k_hw_write_associd);
2970
2971#define ATH9K_MAX_TSF_READ 10
2972
2973u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2974{
2975        u32 tsf_lower, tsf_upper1, tsf_upper2;
2976        int i;
2977
2978        tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2979        for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2980                tsf_lower = REG_READ(ah, AR_TSF_L32);
2981                tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2982                if (tsf_upper2 == tsf_upper1)
2983                        break;
2984                tsf_upper1 = tsf_upper2;
2985        }
2986
2987        WARN_ON( i == ATH9K_MAX_TSF_READ );
2988
2989        return (((u64)tsf_upper1 << 32) | tsf_lower);
2990}
2991EXPORT_SYMBOL(ath9k_hw_gettsf64);
2992
2993void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2994{
2995        REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2996        REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2997}
2998EXPORT_SYMBOL(ath9k_hw_settsf64);
2999
3000void ath9k_hw_reset_tsf(struct ath_hw *ah)
3001{
3002        if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3003                           AH_TSF_WRITE_TIMEOUT))
3004                ath_dbg(ath9k_hw_common(ah), RESET,
3005                        "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3006
3007        REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3008}
3009EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3010
3011void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3012{
3013        if (set)
3014                ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3015        else
3016                ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3017}
3018EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3019
3020void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3021{
3022        u32 macmode;
3023
3024        if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3025                macmode = AR_2040_JOINED_RX_CLEAR;
3026        else
3027                macmode = 0;
3028
3029        REG_WRITE(ah, AR_2040_MODE, macmode);
3030}
3031
3032/* HW Generic timers configuration */
3033
3034static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3035{
3036        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3037        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3038        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3039        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3040        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3041        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3042        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3043        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3044        {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3045        {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3046                                AR_NDP2_TIMER_MODE, 0x0002},
3047        {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3048                                AR_NDP2_TIMER_MODE, 0x0004},
3049        {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3050                                AR_NDP2_TIMER_MODE, 0x0008},
3051        {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3052                                AR_NDP2_TIMER_MODE, 0x0010},
3053        {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3054                                AR_NDP2_TIMER_MODE, 0x0020},
3055        {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3056                                AR_NDP2_TIMER_MODE, 0x0040},
3057        {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3058                                AR_NDP2_TIMER_MODE, 0x0080}
3059};
3060
3061/* HW generic timer primitives */
3062
3063u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3064{
3065        return REG_READ(ah, AR_TSF_L32);
3066}
3067EXPORT_SYMBOL(ath9k_hw_gettsf32);
3068
3069void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3070{
3071        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3072
3073        if (timer_table->tsf2_enabled) {
3074                REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3075                REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3076        }
3077}
3078
3079struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3080                                          void (*trigger)(void *),
3081                                          void (*overflow)(void *),
3082                                          void *arg,
3083                                          u8 timer_index)
3084{
3085        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3086        struct ath_gen_timer *timer;
3087
3088        if ((timer_index < AR_FIRST_NDP_TIMER) ||
3089            (timer_index >= ATH_MAX_GEN_TIMER))
3090                return NULL;
3091
3092        if ((timer_index > AR_FIRST_NDP_TIMER) &&
3093            !AR_SREV_9300_20_OR_LATER(ah))
3094                return NULL;
3095
3096        timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3097        if (timer == NULL)
3098                return NULL;
3099
3100        /* allocate a hardware generic timer slot */
3101        timer_table->timers[timer_index] = timer;
3102        timer->index = timer_index;
3103        timer->trigger = trigger;
3104        timer->overflow = overflow;
3105        timer->arg = arg;
3106
3107        if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3108                timer_table->tsf2_enabled = true;
3109                ath9k_hw_gen_timer_start_tsf2(ah);
3110        }
3111
3112        return timer;
3113}
3114EXPORT_SYMBOL(ath_gen_timer_alloc);
3115
3116void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3117                              struct ath_gen_timer *timer,
3118                              u32 timer_next,
3119                              u32 timer_period)
3120{
3121        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3122        u32 mask = 0;
3123
3124        timer_table->timer_mask |= BIT(timer->index);
3125
3126        /*
3127         * Program generic timer registers
3128         */
3129        REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3130                 timer_next);
3131        REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3132                  timer_period);
3133        REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3134                    gen_tmr_configuration[timer->index].mode_mask);
3135
3136        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3137                /*
3138                 * Starting from AR9462, each generic timer can select which tsf
3139                 * to use. But we still follow the old rule, 0 - 7 use tsf and
3140                 * 8 - 15  use tsf2.
3141                 */
3142                if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3143                        REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3144                                       (1 << timer->index));
3145                else
3146                        REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3147                                       (1 << timer->index));
3148        }
3149
3150        if (timer->trigger)
3151                mask |= SM(AR_GENTMR_BIT(timer->index),
3152                           AR_IMR_S5_GENTIMER_TRIG);
3153        if (timer->overflow)
3154                mask |= SM(AR_GENTMR_BIT(timer->index),
3155                           AR_IMR_S5_GENTIMER_THRESH);
3156
3157        REG_SET_BIT(ah, AR_IMR_S5, mask);
3158
3159        if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3160                ah->imask |= ATH9K_INT_GENTIMER;
3161                ath9k_hw_set_interrupts(ah);
3162        }
3163}
3164EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3165
3166void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3167{
3168        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3169
3170        /* Clear generic timer enable bits. */
3171        REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3172                        gen_tmr_configuration[timer->index].mode_mask);
3173
3174        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3175                /*
3176                 * Need to switch back to TSF if it was using TSF2.
3177                 */
3178                if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3179                        REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3180                                    (1 << timer->index));
3181                }
3182        }
3183
3184        /* Disable both trigger and thresh interrupt masks */
3185        REG_CLR_BIT(ah, AR_IMR_S5,
3186                (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3187                SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3188
3189        timer_table->timer_mask &= ~BIT(timer->index);
3190
3191        if (timer_table->timer_mask == 0) {
3192                ah->imask &= ~ATH9K_INT_GENTIMER;
3193                ath9k_hw_set_interrupts(ah);
3194        }
3195}
3196EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3197
3198void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3199{
3200        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3201
3202        /* free the hardware generic timer slot */
3203        timer_table->timers[timer->index] = NULL;
3204        kfree(timer);
3205}
3206EXPORT_SYMBOL(ath_gen_timer_free);
3207
3208/*
3209 * Generic Timer Interrupts handling
3210 */
3211void ath_gen_timer_isr(struct ath_hw *ah)
3212{
3213        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3214        struct ath_gen_timer *timer;
3215        unsigned long trigger_mask, thresh_mask;
3216        unsigned int index;
3217
3218        /* get hardware generic timer interrupt status */
3219        trigger_mask = ah->intr_gen_timer_trigger;
3220        thresh_mask = ah->intr_gen_timer_thresh;
3221        trigger_mask &= timer_table->timer_mask;
3222        thresh_mask &= timer_table->timer_mask;
3223
3224        for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3225                timer = timer_table->timers[index];
3226                if (!timer)
3227                    continue;
3228                if (!timer->overflow)
3229                    continue;
3230
3231                trigger_mask &= ~BIT(index);
3232                timer->overflow(timer->arg);
3233        }
3234
3235        for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3236                timer = timer_table->timers[index];
3237                if (!timer)
3238                    continue;
3239                if (!timer->trigger)
3240                    continue;
3241                timer->trigger(timer->arg);
3242        }
3243}
3244EXPORT_SYMBOL(ath_gen_timer_isr);
3245
3246/********/
3247/* HTC  */
3248/********/
3249
3250static struct {
3251        u32 version;
3252        const char * name;
3253} ath_mac_bb_names[] = {
3254        /* Devices with external radios */
3255        { AR_SREV_VERSION_5416_PCI,     "5416" },
3256        { AR_SREV_VERSION_5416_PCIE,    "5418" },
3257        { AR_SREV_VERSION_9100,         "9100" },
3258        { AR_SREV_VERSION_9160,         "9160" },
3259        /* Single-chip solutions */
3260        { AR_SREV_VERSION_9280,         "9280" },
3261        { AR_SREV_VERSION_9285,         "9285" },
3262        { AR_SREV_VERSION_9287,         "9287" },
3263        { AR_SREV_VERSION_9271,         "9271" },
3264        { AR_SREV_VERSION_9300,         "9300" },
3265        { AR_SREV_VERSION_9330,         "9330" },
3266        { AR_SREV_VERSION_9340,         "9340" },
3267        { AR_SREV_VERSION_9485,         "9485" },
3268        { AR_SREV_VERSION_9462,         "9462" },
3269        { AR_SREV_VERSION_9550,         "9550" },
3270        { AR_SREV_VERSION_9565,         "9565" },
3271        { AR_SREV_VERSION_9531,         "9531" },
3272        { AR_SREV_VERSION_9561,         "9561" },
3273};
3274
3275/* For devices with external radios */
3276static struct {
3277        u16 version;
3278        const char * name;
3279} ath_rf_names[] = {
3280        { 0,                            "5133" },
3281        { AR_RAD5133_SREV_MAJOR,        "5133" },
3282        { AR_RAD5122_SREV_MAJOR,        "5122" },
3283        { AR_RAD2133_SREV_MAJOR,        "2133" },
3284        { AR_RAD2122_SREV_MAJOR,        "2122" }
3285};
3286
3287/*
3288 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3289 */
3290static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3291{
3292        int i;
3293
3294        for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3295                if (ath_mac_bb_names[i].version == mac_bb_version) {
3296                        return ath_mac_bb_names[i].name;
3297                }
3298        }
3299
3300        return "????";
3301}
3302
3303/*
3304 * Return the RF name. "????" is returned if the RF is unknown.
3305 * Used for devices with external radios.
3306 */
3307static const char *ath9k_hw_rf_name(u16 rf_version)
3308{
3309        int i;
3310
3311        for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3312                if (ath_rf_names[i].version == rf_version) {
3313                        return ath_rf_names[i].name;
3314                }
3315        }
3316
3317        return "????";
3318}
3319
3320void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3321{
3322        int used;
3323
3324        /* chipsets >= AR9280 are single-chip */
3325        if (AR_SREV_9280_20_OR_LATER(ah)) {
3326                used = scnprintf(hw_name, len,
3327                                 "Atheros AR%s Rev:%x",
3328                                 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3329                                 ah->hw_version.macRev);
3330        }
3331        else {
3332                used = scnprintf(hw_name, len,
3333                                 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3334                                 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3335                                 ah->hw_version.macRev,
3336                                 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3337                                                  & AR_RADIO_SREV_MAJOR)),
3338                                 ah->hw_version.phyRev);
3339        }
3340
3341        hw_name[used] = '\0';
3342}
3343EXPORT_SYMBOL(ath9k_hw_name);
3344