1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66#include <linux/types.h>
67#include <linux/slab.h>
68#include <linux/export.h>
69#include <linux/etherdevice.h>
70#include <linux/pci.h>
71#include <linux/acpi.h>
72#include "iwl-drv.h"
73#include "iwl-modparams.h"
74#include "iwl-nvm-parse.h"
75#include "iwl-prph.h"
76#include "iwl-io.h"
77#include "iwl-csr.h"
78
79
80enum wkp_nvm_offsets {
81
82 HW_ADDR = 0x15,
83
84
85 NVM_SW_SECTION = 0x1C0,
86 NVM_VERSION = 0,
87 RADIO_CFG = 1,
88 SKU = 2,
89 N_HW_ADDRS = 3,
90 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
91
92
93 NVM_CALIB_SECTION = 0x2B8,
94 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
95};
96
97enum ext_nvm_offsets {
98
99 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
100
101
102 NVM_VERSION_EXT_NVM = 0,
103 RADIO_CFG_FAMILY_EXT_NVM = 0,
104 SKU_FAMILY_8000 = 2,
105 N_HW_ADDRS_FAMILY_8000 = 3,
106
107
108 NVM_CHANNELS_EXTENDED = 0,
109 NVM_LAR_OFFSET_OLD = 0x4C7,
110 NVM_LAR_OFFSET = 0x507,
111 NVM_LAR_ENABLED = 0x7,
112};
113
114
115enum nvm_sku_bits {
116 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
117 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
118 NVM_SKU_CAP_11N_ENABLE = BIT(2),
119 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
120 NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
121};
122
123
124
125
126static const u8 iwl_nvm_channels[] = {
127
128 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
129
130 36, 40, 44 , 48, 52, 56, 60, 64,
131 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
132 149, 153, 157, 161, 165
133};
134
135static const u8 iwl_ext_nvm_channels[] = {
136
137 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
138
139 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
140 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
141 149, 153, 157, 161, 165, 169, 173, 177, 181
142};
143
144#define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
145#define IWL_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
146#define NUM_2GHZ_CHANNELS 14
147#define NUM_2GHZ_CHANNELS_EXT 14
148#define FIRST_2GHZ_HT_MINUS 5
149#define LAST_2GHZ_HT_PLUS 9
150#define LAST_5GHZ_HT 165
151#define LAST_5GHZ_HT_FAMILY_8000 181
152#define N_HW_ADDR_MASK 0xF
153
154
155static struct ieee80211_rate iwl_cfg80211_rates[] = {
156 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
157 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
159 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
160 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
161 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
162 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
163 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
164 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
165 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
166 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
167 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
168 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
169 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
170 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
171};
172#define RATES_24_OFFS 0
173#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
174#define RATES_52_OFFS 4
175#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191enum iwl_nvm_channel_flags {
192 NVM_CHANNEL_VALID = BIT(0),
193 NVM_CHANNEL_IBSS = BIT(1),
194 NVM_CHANNEL_ACTIVE = BIT(3),
195 NVM_CHANNEL_RADAR = BIT(4),
196 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
197 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
198 NVM_CHANNEL_WIDE = BIT(8),
199 NVM_CHANNEL_40MHZ = BIT(9),
200 NVM_CHANNEL_80MHZ = BIT(10),
201 NVM_CHANNEL_160MHZ = BIT(11),
202};
203
204#define CHECK_AND_PRINT_I(x) \
205 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
206
207static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
208 u16 nvm_flags, const struct iwl_cfg *cfg)
209{
210 u32 flags = IEEE80211_CHAN_NO_HT40;
211 u32 last_5ghz_ht = LAST_5GHZ_HT;
212
213 if (cfg->ext_nvm)
214 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
215
216 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
217 if (ch_num <= LAST_2GHZ_HT_PLUS)
218 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
219 if (ch_num >= FIRST_2GHZ_HT_MINUS)
220 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
221 } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
222 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
223 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
224 else
225 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
226 }
227 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
228 flags |= IEEE80211_CHAN_NO_80MHZ;
229 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
230 flags |= IEEE80211_CHAN_NO_160MHZ;
231
232 if (!(nvm_flags & NVM_CHANNEL_IBSS))
233 flags |= IEEE80211_CHAN_NO_IR;
234
235 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
236 flags |= IEEE80211_CHAN_NO_IR;
237
238 if (nvm_flags & NVM_CHANNEL_RADAR)
239 flags |= IEEE80211_CHAN_RADAR;
240
241 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
242 flags |= IEEE80211_CHAN_INDOOR_ONLY;
243
244
245
246
247 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
248 (flags & IEEE80211_CHAN_NO_IR))
249 flags |= IEEE80211_CHAN_IR_CONCURRENT;
250
251 return flags;
252}
253
254static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
255 struct iwl_nvm_data *data,
256 const __le16 * const nvm_ch_flags,
257 bool lar_supported)
258{
259 int ch_idx;
260 int n_channels = 0;
261 struct ieee80211_channel *channel;
262 u16 ch_flags;
263 bool is_5ghz;
264 int num_of_ch, num_2ghz_channels;
265 const u8 *nvm_chan;
266
267 if (!cfg->ext_nvm) {
268 num_of_ch = IWL_NUM_CHANNELS;
269 nvm_chan = &iwl_nvm_channels[0];
270 num_2ghz_channels = NUM_2GHZ_CHANNELS;
271 } else {
272 num_of_ch = IWL_NUM_CHANNELS_EXT;
273 nvm_chan = &iwl_ext_nvm_channels[0];
274 num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
275 }
276
277 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
278 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
279
280 if (ch_idx >= num_2ghz_channels &&
281 !data->sku_cap_band_52GHz_enable)
282 continue;
283
284 if (ch_flags & NVM_CHANNEL_160MHZ)
285 data->vht160_supported = true;
286
287 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
288
289
290
291
292
293 IWL_DEBUG_EEPROM(dev,
294 "Ch. %d Flags %x [%sGHz] - No traffic\n",
295 nvm_chan[ch_idx],
296 ch_flags,
297 (ch_idx >= num_2ghz_channels) ?
298 "5.2" : "2.4");
299 continue;
300 }
301
302 channel = &data->channels[n_channels];
303 n_channels++;
304
305 channel->hw_value = nvm_chan[ch_idx];
306 channel->band = (ch_idx < num_2ghz_channels) ?
307 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
308 channel->center_freq =
309 ieee80211_channel_to_frequency(
310 channel->hw_value, channel->band);
311
312
313
314
315
316
317
318 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
319 is_5ghz = channel->band == NL80211_BAND_5GHZ;
320
321
322 if (!lar_supported)
323 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
324 ch_idx, is_5ghz,
325 ch_flags, cfg);
326 else
327 channel->flags = 0;
328
329 IWL_DEBUG_EEPROM(dev,
330 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n",
331 channel->hw_value,
332 is_5ghz ? "5.2" : "2.4",
333 ch_flags,
334 CHECK_AND_PRINT_I(VALID),
335 CHECK_AND_PRINT_I(IBSS),
336 CHECK_AND_PRINT_I(ACTIVE),
337 CHECK_AND_PRINT_I(RADAR),
338 CHECK_AND_PRINT_I(INDOOR_ONLY),
339 CHECK_AND_PRINT_I(GO_CONCURRENT),
340 CHECK_AND_PRINT_I(WIDE),
341 CHECK_AND_PRINT_I(40MHZ),
342 CHECK_AND_PRINT_I(80MHZ),
343 CHECK_AND_PRINT_I(160MHZ),
344 channel->max_power,
345 ((ch_flags & NVM_CHANNEL_IBSS) &&
346 !(ch_flags & NVM_CHANNEL_RADAR))
347 ? "" : "not ");
348 }
349
350 return n_channels;
351}
352
353static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
354 struct iwl_nvm_data *data,
355 struct ieee80211_sta_vht_cap *vht_cap,
356 u8 tx_chains, u8 rx_chains)
357{
358 int num_rx_ants = num_of_ant(rx_chains);
359 int num_tx_ants = num_of_ant(tx_chains);
360 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
361 IEEE80211_VHT_MAX_AMPDU_1024K);
362
363 vht_cap->vht_supported = true;
364
365 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
366 IEEE80211_VHT_CAP_RXSTBC_1 |
367 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
368 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
369 max_ampdu_exponent <<
370 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
371
372 if (data->vht160_supported)
373 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
374 IEEE80211_VHT_CAP_SHORT_GI_160;
375
376 if (cfg->vht_mu_mimo_supported)
377 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
378
379 if (cfg->ht_params->ldpc)
380 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
381
382 if (data->sku_cap_mimo_disabled) {
383 num_rx_ants = 1;
384 num_tx_ants = 1;
385 }
386
387 if (num_tx_ants > 1)
388 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
389 else
390 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
391
392 switch (iwlwifi_mod_params.amsdu_size) {
393 case IWL_AMSDU_DEF:
394 if (cfg->mq_rx_supported)
395 vht_cap->cap |=
396 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
397 else
398 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
399 break;
400 case IWL_AMSDU_4K:
401 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
402 break;
403 case IWL_AMSDU_8K:
404 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
405 break;
406 case IWL_AMSDU_12K:
407 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
408 break;
409 default:
410 break;
411 }
412
413 vht_cap->vht_mcs.rx_mcs_map =
414 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
415 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
416 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
417 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
418 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
419 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
420 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
421 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
422
423 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
424 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
425
426 vht_cap->vht_mcs.rx_mcs_map |=
427 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
428 }
429
430 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
431}
432
433void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
434 struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
435 u8 tx_chains, u8 rx_chains, bool lar_supported)
436{
437 int n_channels;
438 int n_used = 0;
439 struct ieee80211_supported_band *sband;
440
441 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
442 lar_supported);
443 sband = &data->bands[NL80211_BAND_2GHZ];
444 sband->band = NL80211_BAND_2GHZ;
445 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
446 sband->n_bitrates = N_RATES_24;
447 n_used += iwl_init_sband_channels(data, sband, n_channels,
448 NL80211_BAND_2GHZ);
449 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
450 tx_chains, rx_chains);
451
452 sband = &data->bands[NL80211_BAND_5GHZ];
453 sband->band = NL80211_BAND_5GHZ;
454 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
455 sband->n_bitrates = N_RATES_52;
456 n_used += iwl_init_sband_channels(data, sband, n_channels,
457 NL80211_BAND_5GHZ);
458 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
459 tx_chains, rx_chains);
460 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
461 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
462 tx_chains, rx_chains);
463
464 if (n_channels != n_used)
465 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
466 n_used, n_channels);
467}
468IWL_EXPORT_SYMBOL(iwl_init_sbands);
469
470static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
471 const __le16 *phy_sku)
472{
473 if (!cfg->ext_nvm)
474 return le16_to_cpup(nvm_sw + SKU);
475
476 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
477}
478
479static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
480{
481 if (!cfg->ext_nvm)
482 return le16_to_cpup(nvm_sw + NVM_VERSION);
483 else
484 return le32_to_cpup((__le32 *)(nvm_sw +
485 NVM_VERSION_EXT_NVM));
486}
487
488static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
489 const __le16 *phy_sku)
490{
491 if (!cfg->ext_nvm)
492 return le16_to_cpup(nvm_sw + RADIO_CFG);
493
494 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
495
496}
497
498static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
499{
500 int n_hw_addr;
501
502 if (!cfg->ext_nvm)
503 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
504
505 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
506
507 return n_hw_addr & N_HW_ADDR_MASK;
508}
509
510static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
511 struct iwl_nvm_data *data,
512 u32 radio_cfg)
513{
514 if (!cfg->ext_nvm) {
515 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
516 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
517 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
518 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
519 return;
520 }
521
522
523 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
524 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
525 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
526 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
527 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
528 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
529}
530
531static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
532{
533 const u8 *hw_addr;
534
535 hw_addr = (const u8 *)&mac_addr0;
536 dest[0] = hw_addr[3];
537 dest[1] = hw_addr[2];
538 dest[2] = hw_addr[1];
539 dest[3] = hw_addr[0];
540
541 hw_addr = (const u8 *)&mac_addr1;
542 dest[4] = hw_addr[1];
543 dest[5] = hw_addr[0];
544}
545
546void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
547 struct iwl_nvm_data *data)
548{
549 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
550 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
551
552 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
553
554
555
556
557 if (is_valid_ether_addr(data->hw_addr))
558 return;
559
560 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
561 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
562
563 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
564}
565IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
566
567static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
568 const struct iwl_cfg *cfg,
569 struct iwl_nvm_data *data,
570 const __le16 *mac_override,
571 const __le16 *nvm_hw)
572{
573 const u8 *hw_addr;
574
575 if (mac_override) {
576 static const u8 reserved_mac[] = {
577 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
578 };
579
580 hw_addr = (const u8 *)(mac_override +
581 MAC_ADDRESS_OVERRIDE_EXT_NVM);
582
583
584
585
586
587 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
588
589
590
591
592
593 if (is_valid_ether_addr(data->hw_addr) &&
594 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
595 return;
596
597 IWL_ERR(trans,
598 "mac address from nvm override section is not valid\n");
599 }
600
601 if (nvm_hw) {
602
603 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
604 WFMP_MAC_ADDR_0));
605 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
606 WFMP_MAC_ADDR_1));
607
608 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
609
610 return;
611 }
612
613 IWL_ERR(trans, "mac address is not found\n");
614}
615
616static int iwl_set_hw_address(struct iwl_trans *trans,
617 const struct iwl_cfg *cfg,
618 struct iwl_nvm_data *data, const __le16 *nvm_hw,
619 const __le16 *mac_override)
620{
621 if (cfg->mac_addr_from_csr) {
622 iwl_set_hw_address_from_csr(trans, data);
623 } else if (!cfg->ext_nvm) {
624 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
625
626
627 data->hw_addr[0] = hw_addr[1];
628 data->hw_addr[1] = hw_addr[0];
629 data->hw_addr[2] = hw_addr[3];
630 data->hw_addr[3] = hw_addr[2];
631 data->hw_addr[4] = hw_addr[5];
632 data->hw_addr[5] = hw_addr[4];
633 } else {
634 iwl_set_hw_address_family_8000(trans, cfg, data,
635 mac_override, nvm_hw);
636 }
637
638 if (!is_valid_ether_addr(data->hw_addr)) {
639 IWL_ERR(trans, "no valid mac address was found\n");
640 return -EINVAL;
641 }
642
643 IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
644
645 return 0;
646}
647
648struct iwl_nvm_data *
649iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
650 const __le16 *nvm_hw, const __le16 *nvm_sw,
651 const __le16 *nvm_calib, const __le16 *regulatory,
652 const __le16 *mac_override, const __le16 *phy_sku,
653 u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
654{
655 struct device *dev = trans->dev;
656 struct iwl_nvm_data *data;
657 bool lar_enabled;
658 u32 sku, radio_cfg;
659 u16 lar_config;
660 const __le16 *ch_section;
661
662 if (!cfg->ext_nvm)
663 data = kzalloc(sizeof(*data) +
664 sizeof(struct ieee80211_channel) *
665 IWL_NUM_CHANNELS,
666 GFP_KERNEL);
667 else
668 data = kzalloc(sizeof(*data) +
669 sizeof(struct ieee80211_channel) *
670 IWL_NUM_CHANNELS_EXT,
671 GFP_KERNEL);
672 if (!data)
673 return NULL;
674
675 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
676
677 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
678 iwl_set_radio_cfg(cfg, data, radio_cfg);
679 if (data->valid_tx_ant)
680 tx_chains &= data->valid_tx_ant;
681 if (data->valid_rx_ant)
682 rx_chains &= data->valid_rx_ant;
683
684 sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
685 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
686 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
687 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
688 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
689 data->sku_cap_11n_enable = false;
690 data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
691 (sku & NVM_SKU_CAP_11AC_ENABLE);
692 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
693
694 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
695
696 if (!cfg->ext_nvm) {
697
698 if (!nvm_calib) {
699 IWL_ERR(trans,
700 "Can't parse empty Calib NVM sections\n");
701 kfree(data);
702 return NULL;
703 }
704
705 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
706 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
707 lar_enabled = true;
708 ch_section = &nvm_sw[NVM_CHANNELS];
709 } else {
710 u16 lar_offset = data->nvm_version < 0xE39 ?
711 NVM_LAR_OFFSET_OLD :
712 NVM_LAR_OFFSET;
713
714 lar_config = le16_to_cpup(regulatory + lar_offset);
715 data->lar_enabled = !!(lar_config &
716 NVM_LAR_ENABLED);
717 lar_enabled = data->lar_enabled;
718 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED];
719 }
720
721
722 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
723 kfree(data);
724 return NULL;
725 }
726
727 iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
728 lar_fw_supported && lar_enabled);
729 data->calib_version = 255;
730
731 return data;
732}
733IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
734
735static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
736 int ch_idx, u16 nvm_flags,
737 const struct iwl_cfg *cfg)
738{
739 u32 flags = NL80211_RRF_NO_HT40;
740 u32 last_5ghz_ht = LAST_5GHZ_HT;
741
742 if (cfg->ext_nvm)
743 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
744
745 if (ch_idx < NUM_2GHZ_CHANNELS &&
746 (nvm_flags & NVM_CHANNEL_40MHZ)) {
747 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
748 flags &= ~NL80211_RRF_NO_HT40PLUS;
749 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
750 flags &= ~NL80211_RRF_NO_HT40MINUS;
751 } else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
752 (nvm_flags & NVM_CHANNEL_40MHZ)) {
753 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
754 flags &= ~NL80211_RRF_NO_HT40PLUS;
755 else
756 flags &= ~NL80211_RRF_NO_HT40MINUS;
757 }
758
759 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
760 flags |= NL80211_RRF_NO_80MHZ;
761 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
762 flags |= NL80211_RRF_NO_160MHZ;
763
764 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
765 flags |= NL80211_RRF_NO_IR;
766
767 if (nvm_flags & NVM_CHANNEL_RADAR)
768 flags |= NL80211_RRF_DFS;
769
770 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
771 flags |= NL80211_RRF_NO_OUTDOOR;
772
773
774
775
776 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
777 (flags & NL80211_RRF_NO_IR))
778 flags |= NL80211_RRF_GO_CONCURRENT;
779
780 return flags;
781}
782
783struct ieee80211_regdomain *
784iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
785 int num_of_ch, __le32 *channels, u16 fw_mcc)
786{
787 int ch_idx;
788 u16 ch_flags;
789 u32 reg_rule_flags, prev_reg_rule_flags = 0;
790 const u8 *nvm_chan = cfg->ext_nvm ?
791 iwl_ext_nvm_channels : iwl_nvm_channels;
792 struct ieee80211_regdomain *regd;
793 int size_of_regd;
794 struct ieee80211_reg_rule *rule;
795 enum nl80211_band band;
796 int center_freq, prev_center_freq = 0;
797 int valid_rules = 0;
798 bool new_rule;
799 int max_num_ch = cfg->ext_nvm ?
800 IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS;
801
802 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
803 return ERR_PTR(-EINVAL);
804
805 if (WARN_ON(num_of_ch > max_num_ch))
806 num_of_ch = max_num_ch;
807
808 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
809 num_of_ch);
810
811
812 size_of_regd =
813 sizeof(struct ieee80211_regdomain) +
814 num_of_ch * sizeof(struct ieee80211_reg_rule);
815
816 regd = kzalloc(size_of_regd, GFP_KERNEL);
817 if (!regd)
818 return ERR_PTR(-ENOMEM);
819
820 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
821 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
822 band = (ch_idx < NUM_2GHZ_CHANNELS) ?
823 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
824 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
825 band);
826 new_rule = false;
827
828 if (!(ch_flags & NVM_CHANNEL_VALID)) {
829 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
830 "Ch. %d Flags %x [%sGHz] - No traffic\n",
831 nvm_chan[ch_idx],
832 ch_flags,
833 (ch_idx >= NUM_2GHZ_CHANNELS) ?
834 "5.2" : "2.4");
835 continue;
836 }
837
838 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
839 ch_flags, cfg);
840
841
842 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
843 center_freq - prev_center_freq > 20) {
844 valid_rules++;
845 new_rule = true;
846 }
847
848 rule = ®d->reg_rules[valid_rules - 1];
849
850 if (new_rule)
851 rule->freq_range.start_freq_khz =
852 MHZ_TO_KHZ(center_freq - 10);
853
854 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
855
856
857 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
858 rule->power_rule.max_eirp =
859 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
860
861 rule->flags = reg_rule_flags;
862
863
864 rule->flags |= NL80211_RRF_AUTO_BW;
865 rule->freq_range.max_bandwidth_khz = 0;
866
867 prev_center_freq = center_freq;
868 prev_reg_rule_flags = reg_rule_flags;
869
870 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
871 "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x) reg_flags 0x%x: %s\n",
872 center_freq,
873 band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
874 CHECK_AND_PRINT_I(VALID),
875 CHECK_AND_PRINT_I(ACTIVE),
876 CHECK_AND_PRINT_I(RADAR),
877 CHECK_AND_PRINT_I(WIDE),
878 CHECK_AND_PRINT_I(40MHZ),
879 CHECK_AND_PRINT_I(80MHZ),
880 CHECK_AND_PRINT_I(160MHZ),
881 CHECK_AND_PRINT_I(INDOOR_ONLY),
882 CHECK_AND_PRINT_I(GO_CONCURRENT),
883 ch_flags, reg_rule_flags,
884 ((ch_flags & NVM_CHANNEL_ACTIVE) &&
885 !(ch_flags & NVM_CHANNEL_RADAR))
886 ? "Ad-Hoc" : "");
887 }
888
889 regd->n_reg_rules = valid_rules;
890
891
892 regd->alpha2[0] = fw_mcc >> 8;
893 regd->alpha2[1] = fw_mcc & 0xff;
894
895 return regd;
896}
897IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
898
899#ifdef CONFIG_ACPI
900#define WRDD_METHOD "WRDD"
901#define WRDD_WIFI (0x07)
902#define WRDD_WIGIG (0x10)
903
904static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd)
905{
906 union acpi_object *mcc_pkg, *domain_type, *mcc_value;
907 u32 i;
908
909 if (wrdd->type != ACPI_TYPE_PACKAGE ||
910 wrdd->package.count < 2 ||
911 wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
912 wrdd->package.elements[0].integer.value != 0) {
913 IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n");
914 return 0;
915 }
916
917 for (i = 1 ; i < wrdd->package.count ; ++i) {
918 mcc_pkg = &wrdd->package.elements[i];
919
920 if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
921 mcc_pkg->package.count < 2 ||
922 mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
923 mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
924 mcc_pkg = NULL;
925 continue;
926 }
927
928 domain_type = &mcc_pkg->package.elements[0];
929 if (domain_type->integer.value == WRDD_WIFI)
930 break;
931
932 mcc_pkg = NULL;
933 }
934
935 if (mcc_pkg) {
936 mcc_value = &mcc_pkg->package.elements[1];
937 return mcc_value->integer.value;
938 }
939
940 return 0;
941}
942
943int iwl_get_bios_mcc(struct device *dev, char *mcc)
944{
945 acpi_handle root_handle;
946 acpi_handle handle;
947 struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
948 acpi_status status;
949 u32 mcc_val;
950
951 root_handle = ACPI_HANDLE(dev);
952 if (!root_handle) {
953 IWL_DEBUG_EEPROM(dev,
954 "Could not retrieve root port ACPI handle\n");
955 return -ENOENT;
956 }
957
958
959 status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD,
960 &handle);
961 if (ACPI_FAILURE(status)) {
962 IWL_DEBUG_EEPROM(dev, "WRD method not found\n");
963 return -ENOENT;
964 }
965
966
967 status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
968 if (ACPI_FAILURE(status)) {
969 IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n",
970 status);
971 return -ENOENT;
972 }
973
974 mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer);
975 kfree(wrdd.pointer);
976 if (!mcc_val)
977 return -ENOENT;
978
979 mcc[0] = (mcc_val >> 8) & 0xff;
980 mcc[1] = mcc_val & 0xff;
981 mcc[2] = '\0';
982 return 0;
983}
984IWL_EXPORT_SYMBOL(iwl_get_bios_mcc);
985#endif
986