linux/drivers/parisc/pdc_stable.c
<<
>>
Prefs
   1/* 
   2 *    Interfaces to retrieve and set PDC Stable options (firmware)
   3 *
   4 *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
   5 *
   6 *    This program is free software; you can redistribute it and/or modify
   7 *    it under the terms of the GNU General Public License, version 2, as
   8 *    published by the Free Software Foundation.
   9 *
  10 *    This program is distributed in the hope that it will be useful,
  11 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 *    GNU General Public License for more details.
  14 *
  15 *    You should have received a copy of the GNU General Public License
  16 *    along with this program; if not, write to the Free Software
  17 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18 *
  19 *
  20 *    DEV NOTE: the PDC Procedures reference states that:
  21 *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
  22 *    96 bytes of Stable Storage is optional [...]. Failure to provide the
  23 *    optional locations from 96 to 192 results in the loss of certain
  24 *    functionality during boot."
  25 *
  26 *    Since locations between 96 and 192 are the various paths, most (if not
  27 *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
  28 *    following code can deal with just 96 bytes of Stable Storage, and all
  29 *    sizes between 96 and 192 bytes (provided they are multiple of struct
  30 *    device_path size, eg: 128, 160 and 192) to provide full information.
  31 *    One last word: there's one path we can always count on: the primary path.
  32 *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
  33 *
  34 *    The first OS-dependent area should always be available. Obviously, this is
  35 *    not true for the other one. Also bear in mind that reading/writing from/to
  36 *    osdep2 is much more expensive than from/to osdep1.
  37 *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
  38 *    2 bytes of storage available right after OSID. That's a total of 4 bytes
  39 *    sacrificed: -ETOOLAZY :P
  40 *
  41 *    The current policy wrt file permissions is:
  42 *      - write: root only
  43 *      - read: (reading triggers PDC calls) ? root only : everyone
  44 *    The rationale is that PDC calls could hog (DoS) the machine.
  45 *
  46 *      TODO:
  47 *      - timer/fastsize write calls
  48 */
  49
  50#undef PDCS_DEBUG
  51#ifdef PDCS_DEBUG
  52#define DPRINTK(fmt, args...)   printk(KERN_DEBUG fmt, ## args)
  53#else
  54#define DPRINTK(fmt, args...)
  55#endif
  56
  57#include <linux/module.h>
  58#include <linux/init.h>
  59#include <linux/kernel.h>
  60#include <linux/string.h>
  61#include <linux/capability.h>
  62#include <linux/ctype.h>
  63#include <linux/sysfs.h>
  64#include <linux/kobject.h>
  65#include <linux/device.h>
  66#include <linux/errno.h>
  67#include <linux/spinlock.h>
  68
  69#include <asm/pdc.h>
  70#include <asm/page.h>
  71#include <linux/uaccess.h>
  72#include <asm/hardware.h>
  73
  74#define PDCS_VERSION    "0.30"
  75#define PDCS_PREFIX     "PDC Stable Storage"
  76
  77#define PDCS_ADDR_PPRI  0x00
  78#define PDCS_ADDR_OSID  0x40
  79#define PDCS_ADDR_OSD1  0x48
  80#define PDCS_ADDR_DIAG  0x58
  81#define PDCS_ADDR_FSIZ  0x5C
  82#define PDCS_ADDR_PCON  0x60
  83#define PDCS_ADDR_PALT  0x80
  84#define PDCS_ADDR_PKBD  0xA0
  85#define PDCS_ADDR_OSD2  0xE0
  86
  87MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
  88MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
  89MODULE_LICENSE("GPL");
  90MODULE_VERSION(PDCS_VERSION);
  91
  92/* holds Stable Storage size. Initialized once and for all, no lock needed */
  93static unsigned long pdcs_size __read_mostly;
  94
  95/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
  96static u16 pdcs_osid __read_mostly;
  97
  98/* This struct defines what we need to deal with a parisc pdc path entry */
  99struct pdcspath_entry {
 100        rwlock_t rw_lock;               /* to protect path entry access */
 101        short ready;                    /* entry record is valid if != 0 */
 102        unsigned long addr;             /* entry address in stable storage */
 103        char *name;                     /* entry name */
 104        struct device_path devpath;     /* device path in parisc representation */
 105        struct device *dev;             /* corresponding device */
 106        struct kobject kobj;
 107};
 108
 109struct pdcspath_attribute {
 110        struct attribute attr;
 111        ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
 112        ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
 113};
 114
 115#define PDCSPATH_ENTRY(_addr, _name) \
 116struct pdcspath_entry pdcspath_entry_##_name = { \
 117        .ready = 0, \
 118        .addr = _addr, \
 119        .name = __stringify(_name), \
 120};
 121
 122#define PDCS_ATTR(_name, _mode, _show, _store) \
 123struct kobj_attribute pdcs_attr_##_name = { \
 124        .attr = {.name = __stringify(_name), .mode = _mode}, \
 125        .show = _show, \
 126        .store = _store, \
 127};
 128
 129#define PATHS_ATTR(_name, _mode, _show, _store) \
 130struct pdcspath_attribute paths_attr_##_name = { \
 131        .attr = {.name = __stringify(_name), .mode = _mode}, \
 132        .show = _show, \
 133        .store = _store, \
 134};
 135
 136#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
 137#define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
 138
 139/**
 140 * pdcspath_fetch - This function populates the path entry structs.
 141 * @entry: A pointer to an allocated pdcspath_entry.
 142 * 
 143 * The general idea is that you don't read from the Stable Storage every time
 144 * you access the files provided by the facilities. We store a copy of the
 145 * content of the stable storage WRT various paths in these structs. We read
 146 * these structs when reading the files, and we will write to these structs when
 147 * writing to the files, and only then write them back to the Stable Storage.
 148 *
 149 * This function expects to be called with @entry->rw_lock write-hold.
 150 */
 151static int
 152pdcspath_fetch(struct pdcspath_entry *entry)
 153{
 154        struct device_path *devpath;
 155
 156        if (!entry)
 157                return -EINVAL;
 158
 159        devpath = &entry->devpath;
 160        
 161        DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
 162                        entry, devpath, entry->addr);
 163
 164        /* addr, devpath and count must be word aligned */
 165        if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
 166                return -EIO;
 167                
 168        /* Find the matching device.
 169           NOTE: hardware_path overlays with device_path, so the nice cast can
 170           be used */
 171        entry->dev = hwpath_to_device((struct hardware_path *)devpath);
 172
 173        entry->ready = 1;
 174        
 175        DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
 176        
 177        return 0;
 178}
 179
 180/**
 181 * pdcspath_store - This function writes a path to stable storage.
 182 * @entry: A pointer to an allocated pdcspath_entry.
 183 * 
 184 * It can be used in two ways: either by passing it a preset devpath struct
 185 * containing an already computed hardware path, or by passing it a device
 186 * pointer, from which it'll find out the corresponding hardware path.
 187 * For now we do not handle the case where there's an error in writing to the
 188 * Stable Storage area, so you'd better not mess up the data :P
 189 *
 190 * This function expects to be called with @entry->rw_lock write-hold.
 191 */
 192static void
 193pdcspath_store(struct pdcspath_entry *entry)
 194{
 195        struct device_path *devpath;
 196
 197        BUG_ON(!entry);
 198
 199        devpath = &entry->devpath;
 200        
 201        /* We expect the caller to set the ready flag to 0 if the hardware
 202           path struct provided is invalid, so that we know we have to fill it.
 203           First case, we don't have a preset hwpath... */
 204        if (!entry->ready) {
 205                /* ...but we have a device, map it */
 206                BUG_ON(!entry->dev);
 207                device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
 208        }
 209        /* else, we expect the provided hwpath to be valid. */
 210        
 211        DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
 212                        entry, devpath, entry->addr);
 213
 214        /* addr, devpath and count must be word aligned */
 215        if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
 216                WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
 217                                "It is likely that the Stable Storage data has been corrupted.\n"
 218                                "Please check it carefully upon next reboot.\n", __func__);
 219                
 220        /* kobject is already registered */
 221        entry->ready = 2;
 222        
 223        DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
 224}
 225
 226/**
 227 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
 228 * @entry: An allocated and populated pdscpath_entry struct.
 229 * @buf: The output buffer to write to.
 230 * 
 231 * We will call this function to format the output of the hwpath attribute file.
 232 */
 233static ssize_t
 234pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
 235{
 236        char *out = buf;
 237        struct device_path *devpath;
 238        short i;
 239
 240        if (!entry || !buf)
 241                return -EINVAL;
 242
 243        read_lock(&entry->rw_lock);
 244        devpath = &entry->devpath;
 245        i = entry->ready;
 246        read_unlock(&entry->rw_lock);
 247
 248        if (!i) /* entry is not ready */
 249                return -ENODATA;
 250        
 251        for (i = 0; i < 6; i++) {
 252                if (devpath->bc[i] >= 128)
 253                        continue;
 254                out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
 255        }
 256        out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
 257        
 258        return out - buf;
 259}
 260
 261/**
 262 * pdcspath_hwpath_write - This function handles hardware path modifying.
 263 * @entry: An allocated and populated pdscpath_entry struct.
 264 * @buf: The input buffer to read from.
 265 * @count: The number of bytes to be read.
 266 * 
 267 * We will call this function to change the current hardware path.
 268 * Hardware paths are to be given '/'-delimited, without brackets.
 269 * We make sure that the provided path actually maps to an existing
 270 * device, BUT nothing would prevent some foolish user to set the path to some
 271 * PCI bridge or even a CPU...
 272 * A better work around would be to make sure we are at the end of a device tree
 273 * for instance, but it would be IMHO beyond the simple scope of that driver.
 274 * The aim is to provide a facility. Data correctness is left to userland.
 275 */
 276static ssize_t
 277pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
 278{
 279        struct hardware_path hwpath;
 280        unsigned short i;
 281        char in[64], *temp;
 282        struct device *dev;
 283        int ret;
 284
 285        if (!entry || !buf || !count)
 286                return -EINVAL;
 287
 288        /* We'll use a local copy of buf */
 289        count = min_t(size_t, count, sizeof(in)-1);
 290        strncpy(in, buf, count);
 291        in[count] = '\0';
 292        
 293        /* Let's clean up the target. 0xff is a blank pattern */
 294        memset(&hwpath, 0xff, sizeof(hwpath));
 295        
 296        /* First, pick the mod field (the last one of the input string) */
 297        if (!(temp = strrchr(in, '/')))
 298                return -EINVAL;
 299                        
 300        hwpath.mod = simple_strtoul(temp+1, NULL, 10);
 301        in[temp-in] = '\0';     /* truncate the remaining string. just precaution */
 302        DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
 303        
 304        /* Then, loop for each delimiter, making sure we don't have too many.
 305           we write the bc fields in a down-top way. No matter what, we stop
 306           before writing the last field. If there are too many fields anyway,
 307           then the user is a moron and it'll be caught up later when we'll
 308           check the consistency of the given hwpath. */
 309        for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
 310                hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
 311                in[temp-in] = '\0';
 312                DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
 313        }
 314        
 315        /* Store the final field */             
 316        hwpath.bc[i] = simple_strtoul(in, NULL, 10);
 317        DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
 318        
 319        /* Now we check that the user isn't trying to lure us */
 320        if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
 321                printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
 322                        "hardware path: %s\n", __func__, entry->name, buf);
 323                return -EINVAL;
 324        }
 325        
 326        /* So far so good, let's get in deep */
 327        write_lock(&entry->rw_lock);
 328        entry->ready = 0;
 329        entry->dev = dev;
 330        
 331        /* Now, dive in. Write back to the hardware */
 332        pdcspath_store(entry);
 333        
 334        /* Update the symlink to the real device */
 335        sysfs_remove_link(&entry->kobj, "device");
 336        write_unlock(&entry->rw_lock);
 337
 338        ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
 339        WARN_ON(ret);
 340
 341        printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
 342                entry->name, buf);
 343        
 344        return count;
 345}
 346
 347/**
 348 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
 349 * @entry: An allocated and populated pdscpath_entry struct.
 350 * @buf: The output buffer to write to.
 351 * 
 352 * We will call this function to format the output of the layer attribute file.
 353 */
 354static ssize_t
 355pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
 356{
 357        char *out = buf;
 358        struct device_path *devpath;
 359        short i;
 360
 361        if (!entry || !buf)
 362                return -EINVAL;
 363        
 364        read_lock(&entry->rw_lock);
 365        devpath = &entry->devpath;
 366        i = entry->ready;
 367        read_unlock(&entry->rw_lock);
 368
 369        if (!i) /* entry is not ready */
 370                return -ENODATA;
 371        
 372        for (i = 0; i < 6 && devpath->layers[i]; i++)
 373                out += sprintf(out, "%u ", devpath->layers[i]);
 374
 375        out += sprintf(out, "\n");
 376        
 377        return out - buf;
 378}
 379
 380/**
 381 * pdcspath_layer_write - This function handles extended layer modifying.
 382 * @entry: An allocated and populated pdscpath_entry struct.
 383 * @buf: The input buffer to read from.
 384 * @count: The number of bytes to be read.
 385 * 
 386 * We will call this function to change the current layer value.
 387 * Layers are to be given '.'-delimited, without brackets.
 388 * XXX beware we are far less checky WRT input data provided than for hwpath.
 389 * Potential harm can be done, since there's no way to check the validity of
 390 * the layer fields.
 391 */
 392static ssize_t
 393pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
 394{
 395        unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
 396        unsigned short i;
 397        char in[64], *temp;
 398
 399        if (!entry || !buf || !count)
 400                return -EINVAL;
 401
 402        /* We'll use a local copy of buf */
 403        count = min_t(size_t, count, sizeof(in)-1);
 404        strncpy(in, buf, count);
 405        in[count] = '\0';
 406        
 407        /* Let's clean up the target. 0 is a blank pattern */
 408        memset(&layers, 0, sizeof(layers));
 409        
 410        /* First, pick the first layer */
 411        if (unlikely(!isdigit(*in)))
 412                return -EINVAL;
 413        layers[0] = simple_strtoul(in, NULL, 10);
 414        DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
 415        
 416        temp = in;
 417        for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
 418                if (unlikely(!isdigit(*(++temp))))
 419                        return -EINVAL;
 420                layers[i] = simple_strtoul(temp, NULL, 10);
 421                DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
 422        }
 423                
 424        /* So far so good, let's get in deep */
 425        write_lock(&entry->rw_lock);
 426        
 427        /* First, overwrite the current layers with the new ones, not touching
 428           the hardware path. */
 429        memcpy(&entry->devpath.layers, &layers, sizeof(layers));
 430        
 431        /* Now, dive in. Write back to the hardware */
 432        pdcspath_store(entry);
 433        write_unlock(&entry->rw_lock);
 434        
 435        printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
 436                entry->name, buf);
 437        
 438        return count;
 439}
 440
 441/**
 442 * pdcspath_attr_show - Generic read function call wrapper.
 443 * @kobj: The kobject to get info from.
 444 * @attr: The attribute looked upon.
 445 * @buf: The output buffer.
 446 */
 447static ssize_t
 448pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
 449{
 450        struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
 451        struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
 452        ssize_t ret = 0;
 453
 454        if (pdcs_attr->show)
 455                ret = pdcs_attr->show(entry, buf);
 456
 457        return ret;
 458}
 459
 460/**
 461 * pdcspath_attr_store - Generic write function call wrapper.
 462 * @kobj: The kobject to write info to.
 463 * @attr: The attribute to be modified.
 464 * @buf: The input buffer.
 465 * @count: The size of the buffer.
 466 */
 467static ssize_t
 468pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
 469                        const char *buf, size_t count)
 470{
 471        struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
 472        struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
 473        ssize_t ret = 0;
 474
 475        if (!capable(CAP_SYS_ADMIN))
 476                return -EACCES;
 477
 478        if (pdcs_attr->store)
 479                ret = pdcs_attr->store(entry, buf, count);
 480
 481        return ret;
 482}
 483
 484static const struct sysfs_ops pdcspath_attr_ops = {
 485        .show = pdcspath_attr_show,
 486        .store = pdcspath_attr_store,
 487};
 488
 489/* These are the two attributes of any PDC path. */
 490static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
 491static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
 492
 493static struct attribute *paths_subsys_attrs[] = {
 494        &paths_attr_hwpath.attr,
 495        &paths_attr_layer.attr,
 496        NULL,
 497};
 498
 499/* Specific kobject type for our PDC paths */
 500static struct kobj_type ktype_pdcspath = {
 501        .sysfs_ops = &pdcspath_attr_ops,
 502        .default_attrs = paths_subsys_attrs,
 503};
 504
 505/* We hard define the 4 types of path we expect to find */
 506static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
 507static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
 508static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
 509static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
 510
 511/* An array containing all PDC paths we will deal with */
 512static struct pdcspath_entry *pdcspath_entries[] = {
 513        &pdcspath_entry_primary,
 514        &pdcspath_entry_alternative,
 515        &pdcspath_entry_console,
 516        &pdcspath_entry_keyboard,
 517        NULL,
 518};
 519
 520
 521/* For more insight of what's going on here, refer to PDC Procedures doc,
 522 * Section PDC_STABLE */
 523
 524/**
 525 * pdcs_size_read - Stable Storage size output.
 526 * @buf: The output buffer to write to.
 527 */
 528static ssize_t pdcs_size_read(struct kobject *kobj,
 529                              struct kobj_attribute *attr,
 530                              char *buf)
 531{
 532        char *out = buf;
 533
 534        if (!buf)
 535                return -EINVAL;
 536
 537        /* show the size of the stable storage */
 538        out += sprintf(out, "%ld\n", pdcs_size);
 539
 540        return out - buf;
 541}
 542
 543/**
 544 * pdcs_auto_read - Stable Storage autoboot/search flag output.
 545 * @buf: The output buffer to write to.
 546 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
 547 */
 548static ssize_t pdcs_auto_read(struct kobject *kobj,
 549                              struct kobj_attribute *attr,
 550                              char *buf, int knob)
 551{
 552        char *out = buf;
 553        struct pdcspath_entry *pathentry;
 554
 555        if (!buf)
 556                return -EINVAL;
 557
 558        /* Current flags are stored in primary boot path entry */
 559        pathentry = &pdcspath_entry_primary;
 560
 561        read_lock(&pathentry->rw_lock);
 562        out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
 563                                        "On" : "Off");
 564        read_unlock(&pathentry->rw_lock);
 565
 566        return out - buf;
 567}
 568
 569/**
 570 * pdcs_autoboot_read - Stable Storage autoboot flag output.
 571 * @buf: The output buffer to write to.
 572 */
 573static ssize_t pdcs_autoboot_read(struct kobject *kobj,
 574                                  struct kobj_attribute *attr, char *buf)
 575{
 576        return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
 577}
 578
 579/**
 580 * pdcs_autosearch_read - Stable Storage autoboot flag output.
 581 * @buf: The output buffer to write to.
 582 */
 583static ssize_t pdcs_autosearch_read(struct kobject *kobj,
 584                                    struct kobj_attribute *attr, char *buf)
 585{
 586        return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
 587}
 588
 589/**
 590 * pdcs_timer_read - Stable Storage timer count output (in seconds).
 591 * @buf: The output buffer to write to.
 592 *
 593 * The value of the timer field correponds to a number of seconds in powers of 2.
 594 */
 595static ssize_t pdcs_timer_read(struct kobject *kobj,
 596                               struct kobj_attribute *attr, char *buf)
 597{
 598        char *out = buf;
 599        struct pdcspath_entry *pathentry;
 600
 601        if (!buf)
 602                return -EINVAL;
 603
 604        /* Current flags are stored in primary boot path entry */
 605        pathentry = &pdcspath_entry_primary;
 606
 607        /* print the timer value in seconds */
 608        read_lock(&pathentry->rw_lock);
 609        out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
 610                                (1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
 611        read_unlock(&pathentry->rw_lock);
 612
 613        return out - buf;
 614}
 615
 616/**
 617 * pdcs_osid_read - Stable Storage OS ID register output.
 618 * @buf: The output buffer to write to.
 619 */
 620static ssize_t pdcs_osid_read(struct kobject *kobj,
 621                              struct kobj_attribute *attr, char *buf)
 622{
 623        char *out = buf;
 624
 625        if (!buf)
 626                return -EINVAL;
 627
 628        out += sprintf(out, "%s dependent data (0x%.4x)\n",
 629                os_id_to_string(pdcs_osid), pdcs_osid);
 630
 631        return out - buf;
 632}
 633
 634/**
 635 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
 636 * @buf: The output buffer to write to.
 637 *
 638 * This can hold 16 bytes of OS-Dependent data.
 639 */
 640static ssize_t pdcs_osdep1_read(struct kobject *kobj,
 641                                struct kobj_attribute *attr, char *buf)
 642{
 643        char *out = buf;
 644        u32 result[4];
 645
 646        if (!buf)
 647                return -EINVAL;
 648
 649        if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
 650                return -EIO;
 651
 652        out += sprintf(out, "0x%.8x\n", result[0]);
 653        out += sprintf(out, "0x%.8x\n", result[1]);
 654        out += sprintf(out, "0x%.8x\n", result[2]);
 655        out += sprintf(out, "0x%.8x\n", result[3]);
 656
 657        return out - buf;
 658}
 659
 660/**
 661 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
 662 * @buf: The output buffer to write to.
 663 *
 664 * I have NFC how to interpret the content of that register ;-).
 665 */
 666static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
 667                                    struct kobj_attribute *attr, char *buf)
 668{
 669        char *out = buf;
 670        u32 result;
 671
 672        if (!buf)
 673                return -EINVAL;
 674
 675        /* get diagnostic */
 676        if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
 677                return -EIO;
 678
 679        out += sprintf(out, "0x%.4x\n", (result >> 16));
 680
 681        return out - buf;
 682}
 683
 684/**
 685 * pdcs_fastsize_read - Stable Storage FastSize register output.
 686 * @buf: The output buffer to write to.
 687 *
 688 * This register holds the amount of system RAM to be tested during boot sequence.
 689 */
 690static ssize_t pdcs_fastsize_read(struct kobject *kobj,
 691                                  struct kobj_attribute *attr, char *buf)
 692{
 693        char *out = buf;
 694        u32 result;
 695
 696        if (!buf)
 697                return -EINVAL;
 698
 699        /* get fast-size */
 700        if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
 701                return -EIO;
 702
 703        if ((result & 0x0F) < 0x0E)
 704                out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
 705        else
 706                out += sprintf(out, "All");
 707        out += sprintf(out, "\n");
 708        
 709        return out - buf;
 710}
 711
 712/**
 713 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
 714 * @buf: The output buffer to write to.
 715 *
 716 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
 717 */
 718static ssize_t pdcs_osdep2_read(struct kobject *kobj,
 719                                struct kobj_attribute *attr, char *buf)
 720{
 721        char *out = buf;
 722        unsigned long size;
 723        unsigned short i;
 724        u32 result;
 725
 726        if (unlikely(pdcs_size <= 224))
 727                return -ENODATA;
 728
 729        size = pdcs_size - 224;
 730
 731        if (!buf)
 732                return -EINVAL;
 733
 734        for (i=0; i<size; i+=4) {
 735                if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
 736                                        sizeof(result)) != PDC_OK))
 737                        return -EIO;
 738                out += sprintf(out, "0x%.8x\n", result);
 739        }
 740
 741        return out - buf;
 742}
 743
 744/**
 745 * pdcs_auto_write - This function handles autoboot/search flag modifying.
 746 * @buf: The input buffer to read from.
 747 * @count: The number of bytes to be read.
 748 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
 749 * 
 750 * We will call this function to change the current autoboot flag.
 751 * We expect a precise syntax:
 752 *      \"n\" (n == 0 or 1) to toggle AutoBoot Off or On
 753 */
 754static ssize_t pdcs_auto_write(struct kobject *kobj,
 755                               struct kobj_attribute *attr, const char *buf,
 756                               size_t count, int knob)
 757{
 758        struct pdcspath_entry *pathentry;
 759        unsigned char flags;
 760        char in[8], *temp;
 761        char c;
 762
 763        if (!capable(CAP_SYS_ADMIN))
 764                return -EACCES;
 765
 766        if (!buf || !count)
 767                return -EINVAL;
 768
 769        /* We'll use a local copy of buf */
 770        count = min_t(size_t, count, sizeof(in)-1);
 771        strncpy(in, buf, count);
 772        in[count] = '\0';
 773
 774        /* Current flags are stored in primary boot path entry */
 775        pathentry = &pdcspath_entry_primary;
 776        
 777        /* Be nice to the existing flag record */
 778        read_lock(&pathentry->rw_lock);
 779        flags = pathentry->devpath.flags;
 780        read_unlock(&pathentry->rw_lock);
 781        
 782        DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
 783
 784        temp = skip_spaces(in);
 785
 786        c = *temp++ - '0';
 787        if ((c != 0) && (c != 1))
 788                goto parse_error;
 789        if (c == 0)
 790                flags &= ~knob;
 791        else
 792                flags |= knob;
 793        
 794        DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
 795                
 796        /* So far so good, let's get in deep */
 797        write_lock(&pathentry->rw_lock);
 798        
 799        /* Change the path entry flags first */
 800        pathentry->devpath.flags = flags;
 801                
 802        /* Now, dive in. Write back to the hardware */
 803        pdcspath_store(pathentry);
 804        write_unlock(&pathentry->rw_lock);
 805        
 806        printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
 807                (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
 808                (flags & knob) ? "On" : "Off");
 809        
 810        return count;
 811
 812parse_error:
 813        printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
 814        return -EINVAL;
 815}
 816
 817/**
 818 * pdcs_autoboot_write - This function handles autoboot flag modifying.
 819 * @buf: The input buffer to read from.
 820 * @count: The number of bytes to be read.
 821 *
 822 * We will call this function to change the current boot flags.
 823 * We expect a precise syntax:
 824 *      \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
 825 */
 826static ssize_t pdcs_autoboot_write(struct kobject *kobj,
 827                                   struct kobj_attribute *attr,
 828                                   const char *buf, size_t count)
 829{
 830        return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
 831}
 832
 833/**
 834 * pdcs_autosearch_write - This function handles autosearch flag modifying.
 835 * @buf: The input buffer to read from.
 836 * @count: The number of bytes to be read.
 837 *
 838 * We will call this function to change the current boot flags.
 839 * We expect a precise syntax:
 840 *      \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
 841 */
 842static ssize_t pdcs_autosearch_write(struct kobject *kobj,
 843                                     struct kobj_attribute *attr,
 844                                     const char *buf, size_t count)
 845{
 846        return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
 847}
 848
 849/**
 850 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
 851 * @buf: The input buffer to read from.
 852 * @count: The number of bytes to be read.
 853 *
 854 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
 855 * write approach. It's up to userspace to deal with it when constructing
 856 * its input buffer.
 857 */
 858static ssize_t pdcs_osdep1_write(struct kobject *kobj,
 859                                 struct kobj_attribute *attr,
 860                                 const char *buf, size_t count)
 861{
 862        u8 in[16];
 863
 864        if (!capable(CAP_SYS_ADMIN))
 865                return -EACCES;
 866
 867        if (!buf || !count)
 868                return -EINVAL;
 869
 870        if (unlikely(pdcs_osid != OS_ID_LINUX))
 871                return -EPERM;
 872
 873        if (count > 16)
 874                return -EMSGSIZE;
 875
 876        /* We'll use a local copy of buf */
 877        memset(in, 0, 16);
 878        memcpy(in, buf, count);
 879
 880        if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
 881                return -EIO;
 882
 883        return count;
 884}
 885
 886/**
 887 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
 888 * @buf: The input buffer to read from.
 889 * @count: The number of bytes to be read.
 890 *
 891 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
 892 * byte-by-byte write approach. It's up to userspace to deal with it when
 893 * constructing its input buffer.
 894 */
 895static ssize_t pdcs_osdep2_write(struct kobject *kobj,
 896                                 struct kobj_attribute *attr,
 897                                 const char *buf, size_t count)
 898{
 899        unsigned long size;
 900        unsigned short i;
 901        u8 in[4];
 902
 903        if (!capable(CAP_SYS_ADMIN))
 904                return -EACCES;
 905
 906        if (!buf || !count)
 907                return -EINVAL;
 908
 909        if (unlikely(pdcs_size <= 224))
 910                return -ENOSYS;
 911
 912        if (unlikely(pdcs_osid != OS_ID_LINUX))
 913                return -EPERM;
 914
 915        size = pdcs_size - 224;
 916
 917        if (count > size)
 918                return -EMSGSIZE;
 919
 920        /* We'll use a local copy of buf */
 921
 922        for (i=0; i<count; i+=4) {
 923                memset(in, 0, 4);
 924                memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
 925                if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
 926                                        sizeof(in)) != PDC_OK))
 927                        return -EIO;
 928        }
 929
 930        return count;
 931}
 932
 933/* The remaining attributes. */
 934static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
 935static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
 936static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
 937static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
 938static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
 939static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
 940static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
 941static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
 942static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
 943
 944static struct attribute *pdcs_subsys_attrs[] = {
 945        &pdcs_attr_size.attr,
 946        &pdcs_attr_autoboot.attr,
 947        &pdcs_attr_autosearch.attr,
 948        &pdcs_attr_timer.attr,
 949        &pdcs_attr_osid.attr,
 950        &pdcs_attr_osdep1.attr,
 951        &pdcs_attr_diagnostic.attr,
 952        &pdcs_attr_fastsize.attr,
 953        &pdcs_attr_osdep2.attr,
 954        NULL,
 955};
 956
 957static const struct attribute_group pdcs_attr_group = {
 958        .attrs = pdcs_subsys_attrs,
 959};
 960
 961static struct kobject *stable_kobj;
 962static struct kset *paths_kset;
 963
 964/**
 965 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
 966 * 
 967 * It creates kobjects corresponding to each path entry with nice sysfs
 968 * links to the real device. This is where the magic takes place: when
 969 * registering the subsystem attributes during module init, each kobject hereby
 970 * created will show in the sysfs tree as a folder containing files as defined
 971 * by path_subsys_attr[].
 972 */
 973static inline int __init
 974pdcs_register_pathentries(void)
 975{
 976        unsigned short i;
 977        struct pdcspath_entry *entry;
 978        int err;
 979        
 980        /* Initialize the entries rw_lock before anything else */
 981        for (i = 0; (entry = pdcspath_entries[i]); i++)
 982                rwlock_init(&entry->rw_lock);
 983
 984        for (i = 0; (entry = pdcspath_entries[i]); i++) {
 985                write_lock(&entry->rw_lock);
 986                err = pdcspath_fetch(entry);
 987                write_unlock(&entry->rw_lock);
 988
 989                if (err < 0)
 990                        continue;
 991
 992                entry->kobj.kset = paths_kset;
 993                err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
 994                                           "%s", entry->name);
 995                if (err)
 996                        return err;
 997
 998                /* kobject is now registered */
 999                write_lock(&entry->rw_lock);
1000                entry->ready = 2;
1001                write_unlock(&entry->rw_lock);
1002                
1003                /* Add a nice symlink to the real device */
1004                if (entry->dev) {
1005                        err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
1006                        WARN_ON(err);
1007                }
1008
1009                kobject_uevent(&entry->kobj, KOBJ_ADD);
1010        }
1011        
1012        return 0;
1013}
1014
1015/**
1016 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1017 */
1018static inline void
1019pdcs_unregister_pathentries(void)
1020{
1021        unsigned short i;
1022        struct pdcspath_entry *entry;
1023        
1024        for (i = 0; (entry = pdcspath_entries[i]); i++) {
1025                read_lock(&entry->rw_lock);
1026                if (entry->ready >= 2)
1027                        kobject_put(&entry->kobj);
1028                read_unlock(&entry->rw_lock);
1029        }
1030}
1031
1032/*
1033 * For now we register the stable subsystem with the firmware subsystem
1034 * and the paths subsystem with the stable subsystem
1035 */
1036static int __init
1037pdc_stable_init(void)
1038{
1039        int rc = 0, error = 0;
1040        u32 result;
1041
1042        /* find the size of the stable storage */
1043        if (pdc_stable_get_size(&pdcs_size) != PDC_OK) 
1044                return -ENODEV;
1045
1046        /* make sure we have enough data */
1047        if (pdcs_size < 96)
1048                return -ENODATA;
1049
1050        printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1051
1052        /* get OSID */
1053        if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1054                return -EIO;
1055
1056        /* the actual result is 16 bits away */
1057        pdcs_osid = (u16)(result >> 16);
1058
1059        /* For now we'll register the directory at /sys/firmware/stable */
1060        stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1061        if (!stable_kobj) {
1062                rc = -ENOMEM;
1063                goto fail_firmreg;
1064        }
1065
1066        /* Don't forget the root entries */
1067        error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1068
1069        /* register the paths kset as a child of the stable kset */
1070        paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1071        if (!paths_kset) {
1072                rc = -ENOMEM;
1073                goto fail_ksetreg;
1074        }
1075
1076        /* now we create all "files" for the paths kset */
1077        if ((rc = pdcs_register_pathentries()))
1078                goto fail_pdcsreg;
1079
1080        return rc;
1081        
1082fail_pdcsreg:
1083        pdcs_unregister_pathentries();
1084        kset_unregister(paths_kset);
1085        
1086fail_ksetreg:
1087        kobject_put(stable_kobj);
1088        
1089fail_firmreg:
1090        printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1091        return rc;
1092}
1093
1094static void __exit
1095pdc_stable_exit(void)
1096{
1097        pdcs_unregister_pathentries();
1098        kset_unregister(paths_kset);
1099        kobject_put(stable_kobj);
1100}
1101
1102
1103module_init(pdc_stable_init);
1104module_exit(pdc_stable_exit);
1105