linux/drivers/perf/arm_pmu.c
<<
>>
Prefs
   1#undef DEBUG
   2
   3/*
   4 * ARM performance counter support.
   5 *
   6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
   7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
   8 *
   9 * This code is based on the sparc64 perf event code, which is in turn based
  10 * on the x86 code.
  11 */
  12#define pr_fmt(fmt) "hw perfevents: " fmt
  13
  14#include <linux/bitmap.h>
  15#include <linux/cpumask.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/export.h>
  18#include <linux/kernel.h>
  19#include <linux/perf/arm_pmu.h>
  20#include <linux/platform_device.h>
  21#include <linux/slab.h>
  22#include <linux/sched/clock.h>
  23#include <linux/spinlock.h>
  24#include <linux/irq.h>
  25#include <linux/irqdesc.h>
  26
  27#include <asm/irq_regs.h>
  28
  29static int
  30armpmu_map_cache_event(const unsigned (*cache_map)
  31                                      [PERF_COUNT_HW_CACHE_MAX]
  32                                      [PERF_COUNT_HW_CACHE_OP_MAX]
  33                                      [PERF_COUNT_HW_CACHE_RESULT_MAX],
  34                       u64 config)
  35{
  36        unsigned int cache_type, cache_op, cache_result, ret;
  37
  38        cache_type = (config >>  0) & 0xff;
  39        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  40                return -EINVAL;
  41
  42        cache_op = (config >>  8) & 0xff;
  43        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  44                return -EINVAL;
  45
  46        cache_result = (config >> 16) & 0xff;
  47        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  48                return -EINVAL;
  49
  50        ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  51
  52        if (ret == CACHE_OP_UNSUPPORTED)
  53                return -ENOENT;
  54
  55        return ret;
  56}
  57
  58static int
  59armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  60{
  61        int mapping;
  62
  63        if (config >= PERF_COUNT_HW_MAX)
  64                return -EINVAL;
  65
  66        mapping = (*event_map)[config];
  67        return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  68}
  69
  70static int
  71armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  72{
  73        return (int)(config & raw_event_mask);
  74}
  75
  76int
  77armpmu_map_event(struct perf_event *event,
  78                 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  79                 const unsigned (*cache_map)
  80                                [PERF_COUNT_HW_CACHE_MAX]
  81                                [PERF_COUNT_HW_CACHE_OP_MAX]
  82                                [PERF_COUNT_HW_CACHE_RESULT_MAX],
  83                 u32 raw_event_mask)
  84{
  85        u64 config = event->attr.config;
  86        int type = event->attr.type;
  87
  88        if (type == event->pmu->type)
  89                return armpmu_map_raw_event(raw_event_mask, config);
  90
  91        switch (type) {
  92        case PERF_TYPE_HARDWARE:
  93                return armpmu_map_hw_event(event_map, config);
  94        case PERF_TYPE_HW_CACHE:
  95                return armpmu_map_cache_event(cache_map, config);
  96        case PERF_TYPE_RAW:
  97                return armpmu_map_raw_event(raw_event_mask, config);
  98        }
  99
 100        return -ENOENT;
 101}
 102
 103int armpmu_event_set_period(struct perf_event *event)
 104{
 105        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 106        struct hw_perf_event *hwc = &event->hw;
 107        s64 left = local64_read(&hwc->period_left);
 108        s64 period = hwc->sample_period;
 109        int ret = 0;
 110
 111        if (unlikely(left <= -period)) {
 112                left = period;
 113                local64_set(&hwc->period_left, left);
 114                hwc->last_period = period;
 115                ret = 1;
 116        }
 117
 118        if (unlikely(left <= 0)) {
 119                left += period;
 120                local64_set(&hwc->period_left, left);
 121                hwc->last_period = period;
 122                ret = 1;
 123        }
 124
 125        /*
 126         * Limit the maximum period to prevent the counter value
 127         * from overtaking the one we are about to program. In
 128         * effect we are reducing max_period to account for
 129         * interrupt latency (and we are being very conservative).
 130         */
 131        if (left > (armpmu->max_period >> 1))
 132                left = armpmu->max_period >> 1;
 133
 134        local64_set(&hwc->prev_count, (u64)-left);
 135
 136        armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
 137
 138        perf_event_update_userpage(event);
 139
 140        return ret;
 141}
 142
 143u64 armpmu_event_update(struct perf_event *event)
 144{
 145        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 146        struct hw_perf_event *hwc = &event->hw;
 147        u64 delta, prev_raw_count, new_raw_count;
 148
 149again:
 150        prev_raw_count = local64_read(&hwc->prev_count);
 151        new_raw_count = armpmu->read_counter(event);
 152
 153        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 154                             new_raw_count) != prev_raw_count)
 155                goto again;
 156
 157        delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
 158
 159        local64_add(delta, &event->count);
 160        local64_sub(delta, &hwc->period_left);
 161
 162        return new_raw_count;
 163}
 164
 165static void
 166armpmu_read(struct perf_event *event)
 167{
 168        armpmu_event_update(event);
 169}
 170
 171static void
 172armpmu_stop(struct perf_event *event, int flags)
 173{
 174        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 175        struct hw_perf_event *hwc = &event->hw;
 176
 177        /*
 178         * ARM pmu always has to update the counter, so ignore
 179         * PERF_EF_UPDATE, see comments in armpmu_start().
 180         */
 181        if (!(hwc->state & PERF_HES_STOPPED)) {
 182                armpmu->disable(event);
 183                armpmu_event_update(event);
 184                hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 185        }
 186}
 187
 188static void armpmu_start(struct perf_event *event, int flags)
 189{
 190        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 191        struct hw_perf_event *hwc = &event->hw;
 192
 193        /*
 194         * ARM pmu always has to reprogram the period, so ignore
 195         * PERF_EF_RELOAD, see the comment below.
 196         */
 197        if (flags & PERF_EF_RELOAD)
 198                WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 199
 200        hwc->state = 0;
 201        /*
 202         * Set the period again. Some counters can't be stopped, so when we
 203         * were stopped we simply disabled the IRQ source and the counter
 204         * may have been left counting. If we don't do this step then we may
 205         * get an interrupt too soon or *way* too late if the overflow has
 206         * happened since disabling.
 207         */
 208        armpmu_event_set_period(event);
 209        armpmu->enable(event);
 210}
 211
 212static void
 213armpmu_del(struct perf_event *event, int flags)
 214{
 215        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 216        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 217        struct hw_perf_event *hwc = &event->hw;
 218        int idx = hwc->idx;
 219
 220        armpmu_stop(event, PERF_EF_UPDATE);
 221        hw_events->events[idx] = NULL;
 222        clear_bit(idx, hw_events->used_mask);
 223        if (armpmu->clear_event_idx)
 224                armpmu->clear_event_idx(hw_events, event);
 225
 226        perf_event_update_userpage(event);
 227}
 228
 229static int
 230armpmu_add(struct perf_event *event, int flags)
 231{
 232        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 233        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 234        struct hw_perf_event *hwc = &event->hw;
 235        int idx;
 236
 237        /* An event following a process won't be stopped earlier */
 238        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 239                return -ENOENT;
 240
 241        /* If we don't have a space for the counter then finish early. */
 242        idx = armpmu->get_event_idx(hw_events, event);
 243        if (idx < 0)
 244                return idx;
 245
 246        /*
 247         * If there is an event in the counter we are going to use then make
 248         * sure it is disabled.
 249         */
 250        event->hw.idx = idx;
 251        armpmu->disable(event);
 252        hw_events->events[idx] = event;
 253
 254        hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 255        if (flags & PERF_EF_START)
 256                armpmu_start(event, PERF_EF_RELOAD);
 257
 258        /* Propagate our changes to the userspace mapping. */
 259        perf_event_update_userpage(event);
 260
 261        return 0;
 262}
 263
 264static int
 265validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
 266                               struct perf_event *event)
 267{
 268        struct arm_pmu *armpmu;
 269
 270        if (is_software_event(event))
 271                return 1;
 272
 273        /*
 274         * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
 275         * core perf code won't check that the pmu->ctx == leader->ctx
 276         * until after pmu->event_init(event).
 277         */
 278        if (event->pmu != pmu)
 279                return 0;
 280
 281        if (event->state < PERF_EVENT_STATE_OFF)
 282                return 1;
 283
 284        if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
 285                return 1;
 286
 287        armpmu = to_arm_pmu(event->pmu);
 288        return armpmu->get_event_idx(hw_events, event) >= 0;
 289}
 290
 291static int
 292validate_group(struct perf_event *event)
 293{
 294        struct perf_event *sibling, *leader = event->group_leader;
 295        struct pmu_hw_events fake_pmu;
 296
 297        /*
 298         * Initialise the fake PMU. We only need to populate the
 299         * used_mask for the purposes of validation.
 300         */
 301        memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
 302
 303        if (!validate_event(event->pmu, &fake_pmu, leader))
 304                return -EINVAL;
 305
 306        list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
 307                if (!validate_event(event->pmu, &fake_pmu, sibling))
 308                        return -EINVAL;
 309        }
 310
 311        if (!validate_event(event->pmu, &fake_pmu, event))
 312                return -EINVAL;
 313
 314        return 0;
 315}
 316
 317static struct arm_pmu_platdata *armpmu_get_platdata(struct arm_pmu *armpmu)
 318{
 319        struct platform_device *pdev = armpmu->plat_device;
 320
 321        return pdev ? dev_get_platdata(&pdev->dev) : NULL;
 322}
 323
 324static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
 325{
 326        struct arm_pmu *armpmu;
 327        struct arm_pmu_platdata *plat;
 328        int ret;
 329        u64 start_clock, finish_clock;
 330
 331        /*
 332         * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
 333         * the handlers expect a struct arm_pmu*. The percpu_irq framework will
 334         * do any necessary shifting, we just need to perform the first
 335         * dereference.
 336         */
 337        armpmu = *(void **)dev;
 338
 339        plat = armpmu_get_platdata(armpmu);
 340
 341        start_clock = sched_clock();
 342        if (plat && plat->handle_irq)
 343                ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
 344        else
 345                ret = armpmu->handle_irq(irq, armpmu);
 346        finish_clock = sched_clock();
 347
 348        perf_sample_event_took(finish_clock - start_clock);
 349        return ret;
 350}
 351
 352static int
 353event_requires_mode_exclusion(struct perf_event_attr *attr)
 354{
 355        return attr->exclude_idle || attr->exclude_user ||
 356               attr->exclude_kernel || attr->exclude_hv;
 357}
 358
 359static int
 360__hw_perf_event_init(struct perf_event *event)
 361{
 362        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 363        struct hw_perf_event *hwc = &event->hw;
 364        int mapping;
 365
 366        mapping = armpmu->map_event(event);
 367
 368        if (mapping < 0) {
 369                pr_debug("event %x:%llx not supported\n", event->attr.type,
 370                         event->attr.config);
 371                return mapping;
 372        }
 373
 374        /*
 375         * We don't assign an index until we actually place the event onto
 376         * hardware. Use -1 to signify that we haven't decided where to put it
 377         * yet. For SMP systems, each core has it's own PMU so we can't do any
 378         * clever allocation or constraints checking at this point.
 379         */
 380        hwc->idx                = -1;
 381        hwc->config_base        = 0;
 382        hwc->config             = 0;
 383        hwc->event_base         = 0;
 384
 385        /*
 386         * Check whether we need to exclude the counter from certain modes.
 387         */
 388        if ((!armpmu->set_event_filter ||
 389             armpmu->set_event_filter(hwc, &event->attr)) &&
 390             event_requires_mode_exclusion(&event->attr)) {
 391                pr_debug("ARM performance counters do not support "
 392                         "mode exclusion\n");
 393                return -EOPNOTSUPP;
 394        }
 395
 396        /*
 397         * Store the event encoding into the config_base field.
 398         */
 399        hwc->config_base            |= (unsigned long)mapping;
 400
 401        if (!is_sampling_event(event)) {
 402                /*
 403                 * For non-sampling runs, limit the sample_period to half
 404                 * of the counter width. That way, the new counter value
 405                 * is far less likely to overtake the previous one unless
 406                 * you have some serious IRQ latency issues.
 407                 */
 408                hwc->sample_period  = armpmu->max_period >> 1;
 409                hwc->last_period    = hwc->sample_period;
 410                local64_set(&hwc->period_left, hwc->sample_period);
 411        }
 412
 413        if (event->group_leader != event) {
 414                if (validate_group(event) != 0)
 415                        return -EINVAL;
 416        }
 417
 418        return 0;
 419}
 420
 421static int armpmu_event_init(struct perf_event *event)
 422{
 423        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 424
 425        /*
 426         * Reject CPU-affine events for CPUs that are of a different class to
 427         * that which this PMU handles. Process-following events (where
 428         * event->cpu == -1) can be migrated between CPUs, and thus we have to
 429         * reject them later (in armpmu_add) if they're scheduled on a
 430         * different class of CPU.
 431         */
 432        if (event->cpu != -1 &&
 433                !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
 434                return -ENOENT;
 435
 436        /* does not support taken branch sampling */
 437        if (has_branch_stack(event))
 438                return -EOPNOTSUPP;
 439
 440        if (armpmu->map_event(event) == -ENOENT)
 441                return -ENOENT;
 442
 443        return __hw_perf_event_init(event);
 444}
 445
 446static void armpmu_enable(struct pmu *pmu)
 447{
 448        struct arm_pmu *armpmu = to_arm_pmu(pmu);
 449        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 450        int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 451
 452        /* For task-bound events we may be called on other CPUs */
 453        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 454                return;
 455
 456        if (enabled)
 457                armpmu->start(armpmu);
 458}
 459
 460static void armpmu_disable(struct pmu *pmu)
 461{
 462        struct arm_pmu *armpmu = to_arm_pmu(pmu);
 463
 464        /* For task-bound events we may be called on other CPUs */
 465        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 466                return;
 467
 468        armpmu->stop(armpmu);
 469}
 470
 471/*
 472 * In heterogeneous systems, events are specific to a particular
 473 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
 474 * the same microarchitecture.
 475 */
 476static int armpmu_filter_match(struct perf_event *event)
 477{
 478        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 479        unsigned int cpu = smp_processor_id();
 480        return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
 481}
 482
 483static ssize_t armpmu_cpumask_show(struct device *dev,
 484                                   struct device_attribute *attr, char *buf)
 485{
 486        struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
 487        return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
 488}
 489
 490static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
 491
 492static struct attribute *armpmu_common_attrs[] = {
 493        &dev_attr_cpus.attr,
 494        NULL,
 495};
 496
 497static struct attribute_group armpmu_common_attr_group = {
 498        .attrs = armpmu_common_attrs,
 499};
 500
 501/* Set at runtime when we know what CPU type we are. */
 502static struct arm_pmu *__oprofile_cpu_pmu;
 503
 504/*
 505 * Despite the names, these two functions are CPU-specific and are used
 506 * by the OProfile/perf code.
 507 */
 508const char *perf_pmu_name(void)
 509{
 510        if (!__oprofile_cpu_pmu)
 511                return NULL;
 512
 513        return __oprofile_cpu_pmu->name;
 514}
 515EXPORT_SYMBOL_GPL(perf_pmu_name);
 516
 517int perf_num_counters(void)
 518{
 519        int max_events = 0;
 520
 521        if (__oprofile_cpu_pmu != NULL)
 522                max_events = __oprofile_cpu_pmu->num_events;
 523
 524        return max_events;
 525}
 526EXPORT_SYMBOL_GPL(perf_num_counters);
 527
 528void armpmu_free_irq(struct arm_pmu *armpmu, int cpu)
 529{
 530        struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
 531        int irq = per_cpu(hw_events->irq, cpu);
 532
 533        if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
 534                return;
 535
 536        if (irq_is_percpu(irq)) {
 537                free_percpu_irq(irq, &hw_events->percpu_pmu);
 538                cpumask_clear(&armpmu->active_irqs);
 539                return;
 540        }
 541
 542        free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
 543}
 544
 545void armpmu_free_irqs(struct arm_pmu *armpmu)
 546{
 547        int cpu;
 548
 549        for_each_cpu(cpu, &armpmu->supported_cpus)
 550                armpmu_free_irq(armpmu, cpu);
 551}
 552
 553int armpmu_request_irq(struct arm_pmu *armpmu, int cpu)
 554{
 555        int err = 0;
 556        struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
 557        const irq_handler_t handler = armpmu_dispatch_irq;
 558        int irq = per_cpu(hw_events->irq, cpu);
 559        if (!irq)
 560                return 0;
 561
 562        if (irq_is_percpu(irq) && cpumask_empty(&armpmu->active_irqs)) {
 563                err = request_percpu_irq(irq, handler, "arm-pmu",
 564                                         &hw_events->percpu_pmu);
 565        } else if (irq_is_percpu(irq)) {
 566                int other_cpu = cpumask_first(&armpmu->active_irqs);
 567                int other_irq = per_cpu(hw_events->irq, other_cpu);
 568
 569                if (irq != other_irq) {
 570                        pr_warn("mismatched PPIs detected.\n");
 571                        err = -EINVAL;
 572                        goto err_out;
 573                }
 574        } else {
 575                struct arm_pmu_platdata *platdata = armpmu_get_platdata(armpmu);
 576                unsigned long irq_flags;
 577
 578                err = irq_force_affinity(irq, cpumask_of(cpu));
 579
 580                if (err && num_possible_cpus() > 1) {
 581                        pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
 582                                irq, cpu);
 583                        goto err_out;
 584                }
 585
 586                if (platdata && platdata->irq_flags) {
 587                        irq_flags = platdata->irq_flags;
 588                } else {
 589                        irq_flags = IRQF_PERCPU |
 590                                    IRQF_NOBALANCING |
 591                                    IRQF_NO_THREAD;
 592                }
 593
 594                err = request_irq(irq, handler, irq_flags, "arm-pmu",
 595                                  per_cpu_ptr(&hw_events->percpu_pmu, cpu));
 596        }
 597
 598        if (err)
 599                goto err_out;
 600
 601        cpumask_set_cpu(cpu, &armpmu->active_irqs);
 602        return 0;
 603
 604err_out:
 605        pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
 606        return err;
 607}
 608
 609int armpmu_request_irqs(struct arm_pmu *armpmu)
 610{
 611        int cpu, err;
 612
 613        for_each_cpu(cpu, &armpmu->supported_cpus) {
 614                err = armpmu_request_irq(armpmu, cpu);
 615                if (err)
 616                        break;
 617        }
 618
 619        return err;
 620}
 621
 622static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
 623{
 624        struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
 625        return per_cpu(hw_events->irq, cpu);
 626}
 627
 628/*
 629 * PMU hardware loses all context when a CPU goes offline.
 630 * When a CPU is hotplugged back in, since some hardware registers are
 631 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
 632 * junk values out of them.
 633 */
 634static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
 635{
 636        struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
 637        int irq;
 638
 639        if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
 640                return 0;
 641        if (pmu->reset)
 642                pmu->reset(pmu);
 643
 644        irq = armpmu_get_cpu_irq(pmu, cpu);
 645        if (irq) {
 646                if (irq_is_percpu(irq)) {
 647                        enable_percpu_irq(irq, IRQ_TYPE_NONE);
 648                        return 0;
 649                }
 650        }
 651
 652        return 0;
 653}
 654
 655static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
 656{
 657        struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
 658        int irq;
 659
 660        if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
 661                return 0;
 662
 663        irq = armpmu_get_cpu_irq(pmu, cpu);
 664        if (irq && irq_is_percpu(irq))
 665                disable_percpu_irq(irq);
 666
 667        return 0;
 668}
 669
 670#ifdef CONFIG_CPU_PM
 671static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
 672{
 673        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 674        struct perf_event *event;
 675        int idx;
 676
 677        for (idx = 0; idx < armpmu->num_events; idx++) {
 678                /*
 679                 * If the counter is not used skip it, there is no
 680                 * need of stopping/restarting it.
 681                 */
 682                if (!test_bit(idx, hw_events->used_mask))
 683                        continue;
 684
 685                event = hw_events->events[idx];
 686
 687                switch (cmd) {
 688                case CPU_PM_ENTER:
 689                        /*
 690                         * Stop and update the counter
 691                         */
 692                        armpmu_stop(event, PERF_EF_UPDATE);
 693                        break;
 694                case CPU_PM_EXIT:
 695                case CPU_PM_ENTER_FAILED:
 696                         /*
 697                          * Restore and enable the counter.
 698                          * armpmu_start() indirectly calls
 699                          *
 700                          * perf_event_update_userpage()
 701                          *
 702                          * that requires RCU read locking to be functional,
 703                          * wrap the call within RCU_NONIDLE to make the
 704                          * RCU subsystem aware this cpu is not idle from
 705                          * an RCU perspective for the armpmu_start() call
 706                          * duration.
 707                          */
 708                        RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
 709                        break;
 710                default:
 711                        break;
 712                }
 713        }
 714}
 715
 716static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
 717                             void *v)
 718{
 719        struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
 720        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 721        int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 722
 723        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 724                return NOTIFY_DONE;
 725
 726        /*
 727         * Always reset the PMU registers on power-up even if
 728         * there are no events running.
 729         */
 730        if (cmd == CPU_PM_EXIT && armpmu->reset)
 731                armpmu->reset(armpmu);
 732
 733        if (!enabled)
 734                return NOTIFY_OK;
 735
 736        switch (cmd) {
 737        case CPU_PM_ENTER:
 738                armpmu->stop(armpmu);
 739                cpu_pm_pmu_setup(armpmu, cmd);
 740                break;
 741        case CPU_PM_EXIT:
 742                cpu_pm_pmu_setup(armpmu, cmd);
 743        case CPU_PM_ENTER_FAILED:
 744                armpmu->start(armpmu);
 745                break;
 746        default:
 747                return NOTIFY_DONE;
 748        }
 749
 750        return NOTIFY_OK;
 751}
 752
 753static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
 754{
 755        cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
 756        return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
 757}
 758
 759static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
 760{
 761        cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
 762}
 763#else
 764static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
 765static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
 766#endif
 767
 768static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
 769{
 770        int err;
 771
 772        err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
 773                                       &cpu_pmu->node);
 774        if (err)
 775                goto out;
 776
 777        err = cpu_pm_pmu_register(cpu_pmu);
 778        if (err)
 779                goto out_unregister;
 780
 781        return 0;
 782
 783out_unregister:
 784        cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 785                                            &cpu_pmu->node);
 786out:
 787        return err;
 788}
 789
 790static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
 791{
 792        cpu_pm_pmu_unregister(cpu_pmu);
 793        cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 794                                            &cpu_pmu->node);
 795}
 796
 797struct arm_pmu *armpmu_alloc(void)
 798{
 799        struct arm_pmu *pmu;
 800        int cpu;
 801
 802        pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
 803        if (!pmu) {
 804                pr_info("failed to allocate PMU device!\n");
 805                goto out;
 806        }
 807
 808        pmu->hw_events = alloc_percpu(struct pmu_hw_events);
 809        if (!pmu->hw_events) {
 810                pr_info("failed to allocate per-cpu PMU data.\n");
 811                goto out_free_pmu;
 812        }
 813
 814        pmu->pmu = (struct pmu) {
 815                .pmu_enable     = armpmu_enable,
 816                .pmu_disable    = armpmu_disable,
 817                .event_init     = armpmu_event_init,
 818                .add            = armpmu_add,
 819                .del            = armpmu_del,
 820                .start          = armpmu_start,
 821                .stop           = armpmu_stop,
 822                .read           = armpmu_read,
 823                .filter_match   = armpmu_filter_match,
 824                .attr_groups    = pmu->attr_groups,
 825                /*
 826                 * This is a CPU PMU potentially in a heterogeneous
 827                 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
 828                 * and we have taken ctx sharing into account (e.g. with our
 829                 * pmu::filter_match callback and pmu::event_init group
 830                 * validation).
 831                 */
 832                .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
 833        };
 834
 835        pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
 836                &armpmu_common_attr_group;
 837
 838        for_each_possible_cpu(cpu) {
 839                struct pmu_hw_events *events;
 840
 841                events = per_cpu_ptr(pmu->hw_events, cpu);
 842                raw_spin_lock_init(&events->pmu_lock);
 843                events->percpu_pmu = pmu;
 844        }
 845
 846        return pmu;
 847
 848out_free_pmu:
 849        kfree(pmu);
 850out:
 851        return NULL;
 852}
 853
 854void armpmu_free(struct arm_pmu *pmu)
 855{
 856        free_percpu(pmu->hw_events);
 857        kfree(pmu);
 858}
 859
 860int armpmu_register(struct arm_pmu *pmu)
 861{
 862        int ret;
 863
 864        ret = cpu_pmu_init(pmu);
 865        if (ret)
 866                return ret;
 867
 868        ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
 869        if (ret)
 870                goto out_destroy;
 871
 872        if (!__oprofile_cpu_pmu)
 873                __oprofile_cpu_pmu = pmu;
 874
 875        pr_info("enabled with %s PMU driver, %d counters available\n",
 876                pmu->name, pmu->num_events);
 877
 878        return 0;
 879
 880out_destroy:
 881        cpu_pmu_destroy(pmu);
 882        return ret;
 883}
 884
 885static int arm_pmu_hp_init(void)
 886{
 887        int ret;
 888
 889        ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
 890                                      "perf/arm/pmu:starting",
 891                                      arm_perf_starting_cpu,
 892                                      arm_perf_teardown_cpu);
 893        if (ret)
 894                pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
 895                       ret);
 896        return ret;
 897}
 898subsys_initcall(arm_pmu_hp_init);
 899