linux/drivers/pinctrl/core.c
<<
>>
Prefs
   1/*
   2 * Core driver for the pin control subsystem
   3 *
   4 * Copyright (C) 2011-2012 ST-Ericsson SA
   5 * Written on behalf of Linaro for ST-Ericsson
   6 * Based on bits of regulator core, gpio core and clk core
   7 *
   8 * Author: Linus Walleij <linus.walleij@linaro.org>
   9 *
  10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11 *
  12 * License terms: GNU General Public License (GPL) version 2
  13 */
  14#define pr_fmt(fmt) "pinctrl core: " fmt
  15
  16#include <linux/kernel.h>
  17#include <linux/kref.h>
  18#include <linux/export.h>
  19#include <linux/init.h>
  20#include <linux/device.h>
  21#include <linux/slab.h>
  22#include <linux/err.h>
  23#include <linux/list.h>
  24#include <linux/sysfs.h>
  25#include <linux/debugfs.h>
  26#include <linux/seq_file.h>
  27#include <linux/pinctrl/consumer.h>
  28#include <linux/pinctrl/pinctrl.h>
  29#include <linux/pinctrl/machine.h>
  30
  31#ifdef CONFIG_GPIOLIB
  32#include <asm-generic/gpio.h>
  33#endif
  34
  35#include "core.h"
  36#include "devicetree.h"
  37#include "pinmux.h"
  38#include "pinconf.h"
  39
  40
  41static bool pinctrl_dummy_state;
  42
  43/* Mutex taken to protect pinctrl_list */
  44static DEFINE_MUTEX(pinctrl_list_mutex);
  45
  46/* Mutex taken to protect pinctrl_maps */
  47DEFINE_MUTEX(pinctrl_maps_mutex);
  48
  49/* Mutex taken to protect pinctrldev_list */
  50static DEFINE_MUTEX(pinctrldev_list_mutex);
  51
  52/* Global list of pin control devices (struct pinctrl_dev) */
  53static LIST_HEAD(pinctrldev_list);
  54
  55/* List of pin controller handles (struct pinctrl) */
  56static LIST_HEAD(pinctrl_list);
  57
  58/* List of pinctrl maps (struct pinctrl_maps) */
  59LIST_HEAD(pinctrl_maps);
  60
  61
  62/**
  63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  64 *
  65 * Usually this function is called by platforms without pinctrl driver support
  66 * but run with some shared drivers using pinctrl APIs.
  67 * After calling this function, the pinctrl core will return successfully
  68 * with creating a dummy state for the driver to keep going smoothly.
  69 */
  70void pinctrl_provide_dummies(void)
  71{
  72        pinctrl_dummy_state = true;
  73}
  74
  75const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  76{
  77        /* We're not allowed to register devices without name */
  78        return pctldev->desc->name;
  79}
  80EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  81
  82const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  83{
  84        return dev_name(pctldev->dev);
  85}
  86EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  87
  88void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  89{
  90        return pctldev->driver_data;
  91}
  92EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  93
  94/**
  95 * get_pinctrl_dev_from_devname() - look up pin controller device
  96 * @devname: the name of a device instance, as returned by dev_name()
  97 *
  98 * Looks up a pin control device matching a certain device name or pure device
  99 * pointer, the pure device pointer will take precedence.
 100 */
 101struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 102{
 103        struct pinctrl_dev *pctldev = NULL;
 104
 105        if (!devname)
 106                return NULL;
 107
 108        mutex_lock(&pinctrldev_list_mutex);
 109
 110        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 111                if (!strcmp(dev_name(pctldev->dev), devname)) {
 112                        /* Matched on device name */
 113                        mutex_unlock(&pinctrldev_list_mutex);
 114                        return pctldev;
 115                }
 116        }
 117
 118        mutex_unlock(&pinctrldev_list_mutex);
 119
 120        return NULL;
 121}
 122
 123struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 124{
 125        struct pinctrl_dev *pctldev;
 126
 127        mutex_lock(&pinctrldev_list_mutex);
 128
 129        list_for_each_entry(pctldev, &pinctrldev_list, node)
 130                if (pctldev->dev->of_node == np) {
 131                        mutex_unlock(&pinctrldev_list_mutex);
 132                        return pctldev;
 133                }
 134
 135        mutex_unlock(&pinctrldev_list_mutex);
 136
 137        return NULL;
 138}
 139
 140/**
 141 * pin_get_from_name() - look up a pin number from a name
 142 * @pctldev: the pin control device to lookup the pin on
 143 * @name: the name of the pin to look up
 144 */
 145int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 146{
 147        unsigned i, pin;
 148
 149        /* The pin number can be retrived from the pin controller descriptor */
 150        for (i = 0; i < pctldev->desc->npins; i++) {
 151                struct pin_desc *desc;
 152
 153                pin = pctldev->desc->pins[i].number;
 154                desc = pin_desc_get(pctldev, pin);
 155                /* Pin space may be sparse */
 156                if (desc && !strcmp(name, desc->name))
 157                        return pin;
 158        }
 159
 160        return -EINVAL;
 161}
 162
 163/**
 164 * pin_get_name_from_id() - look up a pin name from a pin id
 165 * @pctldev: the pin control device to lookup the pin on
 166 * @name: the name of the pin to look up
 167 */
 168const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 169{
 170        const struct pin_desc *desc;
 171
 172        desc = pin_desc_get(pctldev, pin);
 173        if (!desc) {
 174                dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 175                        pin);
 176                return NULL;
 177        }
 178
 179        return desc->name;
 180}
 181
 182/**
 183 * pin_is_valid() - check if pin exists on controller
 184 * @pctldev: the pin control device to check the pin on
 185 * @pin: pin to check, use the local pin controller index number
 186 *
 187 * This tells us whether a certain pin exist on a certain pin controller or
 188 * not. Pin lists may be sparse, so some pins may not exist.
 189 */
 190bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
 191{
 192        struct pin_desc *pindesc;
 193
 194        if (pin < 0)
 195                return false;
 196
 197        mutex_lock(&pctldev->mutex);
 198        pindesc = pin_desc_get(pctldev, pin);
 199        mutex_unlock(&pctldev->mutex);
 200
 201        return pindesc != NULL;
 202}
 203EXPORT_SYMBOL_GPL(pin_is_valid);
 204
 205/* Deletes a range of pin descriptors */
 206static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 207                                  const struct pinctrl_pin_desc *pins,
 208                                  unsigned num_pins)
 209{
 210        int i;
 211
 212        for (i = 0; i < num_pins; i++) {
 213                struct pin_desc *pindesc;
 214
 215                pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 216                                            pins[i].number);
 217                if (pindesc) {
 218                        radix_tree_delete(&pctldev->pin_desc_tree,
 219                                          pins[i].number);
 220                        if (pindesc->dynamic_name)
 221                                kfree(pindesc->name);
 222                }
 223                kfree(pindesc);
 224        }
 225}
 226
 227static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 228                                    const struct pinctrl_pin_desc *pin)
 229{
 230        struct pin_desc *pindesc;
 231
 232        pindesc = pin_desc_get(pctldev, pin->number);
 233        if (pindesc) {
 234                dev_err(pctldev->dev, "pin %d already registered\n",
 235                        pin->number);
 236                return -EINVAL;
 237        }
 238
 239        pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 240        if (!pindesc)
 241                return -ENOMEM;
 242
 243        /* Set owner */
 244        pindesc->pctldev = pctldev;
 245
 246        /* Copy basic pin info */
 247        if (pin->name) {
 248                pindesc->name = pin->name;
 249        } else {
 250                pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
 251                if (!pindesc->name) {
 252                        kfree(pindesc);
 253                        return -ENOMEM;
 254                }
 255                pindesc->dynamic_name = true;
 256        }
 257
 258        pindesc->drv_data = pin->drv_data;
 259
 260        radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
 261        pr_debug("registered pin %d (%s) on %s\n",
 262                 pin->number, pindesc->name, pctldev->desc->name);
 263        return 0;
 264}
 265
 266static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 267                                 struct pinctrl_pin_desc const *pins,
 268                                 unsigned num_descs)
 269{
 270        unsigned i;
 271        int ret = 0;
 272
 273        for (i = 0; i < num_descs; i++) {
 274                ret = pinctrl_register_one_pin(pctldev, &pins[i]);
 275                if (ret)
 276                        return ret;
 277        }
 278
 279        return 0;
 280}
 281
 282/**
 283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 284 * @range: GPIO range used for the translation
 285 * @gpio: gpio pin to translate to a pin number
 286 *
 287 * Finds the pin number for a given GPIO using the specified GPIO range
 288 * as a base for translation. The distinction between linear GPIO ranges
 289 * and pin list based GPIO ranges is managed correctly by this function.
 290 *
 291 * This function assumes the gpio is part of the specified GPIO range, use
 292 * only after making sure this is the case (e.g. by calling it on the
 293 * result of successful pinctrl_get_device_gpio_range calls)!
 294 */
 295static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 296                                unsigned int gpio)
 297{
 298        unsigned int offset = gpio - range->base;
 299        if (range->pins)
 300                return range->pins[offset];
 301        else
 302                return range->pin_base + offset;
 303}
 304
 305/**
 306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 307 * @pctldev: pin controller device to check
 308 * @gpio: gpio pin to check taken from the global GPIO pin space
 309 *
 310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 311 * controller, return the range or NULL
 312 */
 313static struct pinctrl_gpio_range *
 314pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 315{
 316        struct pinctrl_gpio_range *range = NULL;
 317
 318        mutex_lock(&pctldev->mutex);
 319        /* Loop over the ranges */
 320        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 321                /* Check if we're in the valid range */
 322                if (gpio >= range->base &&
 323                    gpio < range->base + range->npins) {
 324                        mutex_unlock(&pctldev->mutex);
 325                        return range;
 326                }
 327        }
 328        mutex_unlock(&pctldev->mutex);
 329        return NULL;
 330}
 331
 332/**
 333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 334 * the same GPIO chip are in range
 335 * @gpio: gpio pin to check taken from the global GPIO pin space
 336 *
 337 * This function is complement of pinctrl_match_gpio_range(). If the return
 338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 340 * of the same GPIO chip don't have back-end pinctrl interface.
 341 * If the return value is true, it means that pinctrl device is ready & the
 342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 343 * is false, it means that pinctrl device may not be ready.
 344 */
 345#ifdef CONFIG_GPIOLIB
 346static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 347{
 348        struct pinctrl_dev *pctldev;
 349        struct pinctrl_gpio_range *range = NULL;
 350        struct gpio_chip *chip = gpio_to_chip(gpio);
 351
 352        if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
 353                return false;
 354
 355        mutex_lock(&pinctrldev_list_mutex);
 356
 357        /* Loop over the pin controllers */
 358        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 359                /* Loop over the ranges */
 360                mutex_lock(&pctldev->mutex);
 361                list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 362                        /* Check if any gpio range overlapped with gpio chip */
 363                        if (range->base + range->npins - 1 < chip->base ||
 364                            range->base > chip->base + chip->ngpio - 1)
 365                                continue;
 366                        mutex_unlock(&pctldev->mutex);
 367                        mutex_unlock(&pinctrldev_list_mutex);
 368                        return true;
 369                }
 370                mutex_unlock(&pctldev->mutex);
 371        }
 372
 373        mutex_unlock(&pinctrldev_list_mutex);
 374
 375        return false;
 376}
 377#else
 378static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 379#endif
 380
 381/**
 382 * pinctrl_get_device_gpio_range() - find device for GPIO range
 383 * @gpio: the pin to locate the pin controller for
 384 * @outdev: the pin control device if found
 385 * @outrange: the GPIO range if found
 386 *
 387 * Find the pin controller handling a certain GPIO pin from the pinspace of
 388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 390 * may still have not been registered.
 391 */
 392static int pinctrl_get_device_gpio_range(unsigned gpio,
 393                                         struct pinctrl_dev **outdev,
 394                                         struct pinctrl_gpio_range **outrange)
 395{
 396        struct pinctrl_dev *pctldev = NULL;
 397
 398        mutex_lock(&pinctrldev_list_mutex);
 399
 400        /* Loop over the pin controllers */
 401        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 402                struct pinctrl_gpio_range *range;
 403
 404                range = pinctrl_match_gpio_range(pctldev, gpio);
 405                if (range) {
 406                        *outdev = pctldev;
 407                        *outrange = range;
 408                        mutex_unlock(&pinctrldev_list_mutex);
 409                        return 0;
 410                }
 411        }
 412
 413        mutex_unlock(&pinctrldev_list_mutex);
 414
 415        return -EPROBE_DEFER;
 416}
 417
 418/**
 419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 420 * @pctldev: pin controller device to add the range to
 421 * @range: the GPIO range to add
 422 *
 423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 424 * this to register handled ranges after registering your pin controller.
 425 */
 426void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 427                            struct pinctrl_gpio_range *range)
 428{
 429        mutex_lock(&pctldev->mutex);
 430        list_add_tail(&range->node, &pctldev->gpio_ranges);
 431        mutex_unlock(&pctldev->mutex);
 432}
 433EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 434
 435void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 436                             struct pinctrl_gpio_range *ranges,
 437                             unsigned nranges)
 438{
 439        int i;
 440
 441        for (i = 0; i < nranges; i++)
 442                pinctrl_add_gpio_range(pctldev, &ranges[i]);
 443}
 444EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 445
 446struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 447                struct pinctrl_gpio_range *range)
 448{
 449        struct pinctrl_dev *pctldev;
 450
 451        pctldev = get_pinctrl_dev_from_devname(devname);
 452
 453        /*
 454         * If we can't find this device, let's assume that is because
 455         * it has not probed yet, so the driver trying to register this
 456         * range need to defer probing.
 457         */
 458        if (!pctldev) {
 459                return ERR_PTR(-EPROBE_DEFER);
 460        }
 461        pinctrl_add_gpio_range(pctldev, range);
 462
 463        return pctldev;
 464}
 465EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 466
 467int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 468                                const unsigned **pins, unsigned *num_pins)
 469{
 470        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 471        int gs;
 472
 473        if (!pctlops->get_group_pins)
 474                return -EINVAL;
 475
 476        gs = pinctrl_get_group_selector(pctldev, pin_group);
 477        if (gs < 0)
 478                return gs;
 479
 480        return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 481}
 482EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 483
 484struct pinctrl_gpio_range *
 485pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 486                                        unsigned int pin)
 487{
 488        struct pinctrl_gpio_range *range;
 489
 490        /* Loop over the ranges */
 491        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 492                /* Check if we're in the valid range */
 493                if (range->pins) {
 494                        int a;
 495                        for (a = 0; a < range->npins; a++) {
 496                                if (range->pins[a] == pin)
 497                                        return range;
 498                        }
 499                } else if (pin >= range->pin_base &&
 500                           pin < range->pin_base + range->npins)
 501                        return range;
 502        }
 503
 504        return NULL;
 505}
 506EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 507
 508/**
 509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 510 * @pctldev: the pin controller device to look in
 511 * @pin: a controller-local number to find the range for
 512 */
 513struct pinctrl_gpio_range *
 514pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 515                                 unsigned int pin)
 516{
 517        struct pinctrl_gpio_range *range;
 518
 519        mutex_lock(&pctldev->mutex);
 520        range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 521        mutex_unlock(&pctldev->mutex);
 522
 523        return range;
 524}
 525EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 526
 527/**
 528 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
 529 * @pctldev: pin controller device to remove the range from
 530 * @range: the GPIO range to remove
 531 */
 532void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 533                               struct pinctrl_gpio_range *range)
 534{
 535        mutex_lock(&pctldev->mutex);
 536        list_del(&range->node);
 537        mutex_unlock(&pctldev->mutex);
 538}
 539EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 540
 541#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
 542
 543/**
 544 * pinctrl_generic_get_group_count() - returns the number of pin groups
 545 * @pctldev: pin controller device
 546 */
 547int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
 548{
 549        return pctldev->num_groups;
 550}
 551EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
 552
 553/**
 554 * pinctrl_generic_get_group_name() - returns the name of a pin group
 555 * @pctldev: pin controller device
 556 * @selector: group number
 557 */
 558const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
 559                                           unsigned int selector)
 560{
 561        struct group_desc *group;
 562
 563        group = radix_tree_lookup(&pctldev->pin_group_tree,
 564                                  selector);
 565        if (!group)
 566                return NULL;
 567
 568        return group->name;
 569}
 570EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
 571
 572/**
 573 * pinctrl_generic_get_group_pins() - gets the pin group pins
 574 * @pctldev: pin controller device
 575 * @selector: group number
 576 * @pins: pins in the group
 577 * @num_pins: number of pins in the group
 578 */
 579int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
 580                                   unsigned int selector,
 581                                   const unsigned int **pins,
 582                                   unsigned int *num_pins)
 583{
 584        struct group_desc *group;
 585
 586        group = radix_tree_lookup(&pctldev->pin_group_tree,
 587                                  selector);
 588        if (!group) {
 589                dev_err(pctldev->dev, "%s could not find pingroup%i\n",
 590                        __func__, selector);
 591                return -EINVAL;
 592        }
 593
 594        *pins = group->pins;
 595        *num_pins = group->num_pins;
 596
 597        return 0;
 598}
 599EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
 600
 601/**
 602 * pinctrl_generic_get_group() - returns a pin group based on the number
 603 * @pctldev: pin controller device
 604 * @gselector: group number
 605 */
 606struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
 607                                             unsigned int selector)
 608{
 609        struct group_desc *group;
 610
 611        group = radix_tree_lookup(&pctldev->pin_group_tree,
 612                                  selector);
 613        if (!group)
 614                return NULL;
 615
 616        return group;
 617}
 618EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
 619
 620/**
 621 * pinctrl_generic_add_group() - adds a new pin group
 622 * @pctldev: pin controller device
 623 * @name: name of the pin group
 624 * @pins: pins in the pin group
 625 * @num_pins: number of pins in the pin group
 626 * @data: pin controller driver specific data
 627 *
 628 * Note that the caller must take care of locking.
 629 */
 630int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
 631                              int *pins, int num_pins, void *data)
 632{
 633        struct group_desc *group;
 634
 635        group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
 636        if (!group)
 637                return -ENOMEM;
 638
 639        group->name = name;
 640        group->pins = pins;
 641        group->num_pins = num_pins;
 642        group->data = data;
 643
 644        radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
 645                          group);
 646
 647        pctldev->num_groups++;
 648
 649        return 0;
 650}
 651EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
 652
 653/**
 654 * pinctrl_generic_remove_group() - removes a numbered pin group
 655 * @pctldev: pin controller device
 656 * @selector: group number
 657 *
 658 * Note that the caller must take care of locking.
 659 */
 660int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
 661                                 unsigned int selector)
 662{
 663        struct group_desc *group;
 664
 665        group = radix_tree_lookup(&pctldev->pin_group_tree,
 666                                  selector);
 667        if (!group)
 668                return -ENOENT;
 669
 670        radix_tree_delete(&pctldev->pin_group_tree, selector);
 671        devm_kfree(pctldev->dev, group);
 672
 673        pctldev->num_groups--;
 674
 675        return 0;
 676}
 677EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
 678
 679/**
 680 * pinctrl_generic_free_groups() - removes all pin groups
 681 * @pctldev: pin controller device
 682 *
 683 * Note that the caller must take care of locking. The pinctrl groups
 684 * are allocated with devm_kzalloc() so no need to free them here.
 685 */
 686static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 687{
 688        struct radix_tree_iter iter;
 689        void **slot;
 690
 691        radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
 692                radix_tree_delete(&pctldev->pin_group_tree, iter.index);
 693
 694        pctldev->num_groups = 0;
 695}
 696
 697#else
 698static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 699{
 700}
 701#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
 702
 703/**
 704 * pinctrl_get_group_selector() - returns the group selector for a group
 705 * @pctldev: the pin controller handling the group
 706 * @pin_group: the pin group to look up
 707 */
 708int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 709                               const char *pin_group)
 710{
 711        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 712        unsigned ngroups = pctlops->get_groups_count(pctldev);
 713        unsigned group_selector = 0;
 714
 715        while (group_selector < ngroups) {
 716                const char *gname = pctlops->get_group_name(pctldev,
 717                                                            group_selector);
 718                if (!strcmp(gname, pin_group)) {
 719                        dev_dbg(pctldev->dev,
 720                                "found group selector %u for %s\n",
 721                                group_selector,
 722                                pin_group);
 723                        return group_selector;
 724                }
 725
 726                group_selector++;
 727        }
 728
 729        dev_err(pctldev->dev, "does not have pin group %s\n",
 730                pin_group);
 731
 732        return -EINVAL;
 733}
 734
 735/**
 736 * pinctrl_request_gpio() - request a single pin to be used as GPIO
 737 * @gpio: the GPIO pin number from the GPIO subsystem number space
 738 *
 739 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 740 * as part of their gpio_request() semantics, platforms and individual drivers
 741 * shall *NOT* request GPIO pins to be muxed in.
 742 */
 743int pinctrl_request_gpio(unsigned gpio)
 744{
 745        struct pinctrl_dev *pctldev;
 746        struct pinctrl_gpio_range *range;
 747        int ret;
 748        int pin;
 749
 750        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 751        if (ret) {
 752                if (pinctrl_ready_for_gpio_range(gpio))
 753                        ret = 0;
 754                return ret;
 755        }
 756
 757        mutex_lock(&pctldev->mutex);
 758
 759        /* Convert to the pin controllers number space */
 760        pin = gpio_to_pin(range, gpio);
 761
 762        ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 763
 764        mutex_unlock(&pctldev->mutex);
 765
 766        return ret;
 767}
 768EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
 769
 770/**
 771 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
 772 * @gpio: the GPIO pin number from the GPIO subsystem number space
 773 *
 774 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 775 * as part of their gpio_free() semantics, platforms and individual drivers
 776 * shall *NOT* request GPIO pins to be muxed out.
 777 */
 778void pinctrl_free_gpio(unsigned gpio)
 779{
 780        struct pinctrl_dev *pctldev;
 781        struct pinctrl_gpio_range *range;
 782        int ret;
 783        int pin;
 784
 785        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 786        if (ret) {
 787                return;
 788        }
 789        mutex_lock(&pctldev->mutex);
 790
 791        /* Convert to the pin controllers number space */
 792        pin = gpio_to_pin(range, gpio);
 793
 794        pinmux_free_gpio(pctldev, pin, range);
 795
 796        mutex_unlock(&pctldev->mutex);
 797}
 798EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
 799
 800static int pinctrl_gpio_direction(unsigned gpio, bool input)
 801{
 802        struct pinctrl_dev *pctldev;
 803        struct pinctrl_gpio_range *range;
 804        int ret;
 805        int pin;
 806
 807        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 808        if (ret) {
 809                return ret;
 810        }
 811
 812        mutex_lock(&pctldev->mutex);
 813
 814        /* Convert to the pin controllers number space */
 815        pin = gpio_to_pin(range, gpio);
 816        ret = pinmux_gpio_direction(pctldev, range, pin, input);
 817
 818        mutex_unlock(&pctldev->mutex);
 819
 820        return ret;
 821}
 822
 823/**
 824 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 825 * @gpio: the GPIO pin number from the GPIO subsystem number space
 826 *
 827 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 828 * as part of their gpio_direction_input() semantics, platforms and individual
 829 * drivers shall *NOT* touch pin control GPIO calls.
 830 */
 831int pinctrl_gpio_direction_input(unsigned gpio)
 832{
 833        return pinctrl_gpio_direction(gpio, true);
 834}
 835EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 836
 837/**
 838 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 839 * @gpio: the GPIO pin number from the GPIO subsystem number space
 840 *
 841 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 842 * as part of their gpio_direction_output() semantics, platforms and individual
 843 * drivers shall *NOT* touch pin control GPIO calls.
 844 */
 845int pinctrl_gpio_direction_output(unsigned gpio)
 846{
 847        return pinctrl_gpio_direction(gpio, false);
 848}
 849EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 850
 851/**
 852 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
 853 * @gpio: the GPIO pin number from the GPIO subsystem number space
 854 * @config: the configuration to apply to the GPIO
 855 *
 856 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
 857 * they need to call the underlying pin controller to change GPIO config
 858 * (for example set debounce time).
 859 */
 860int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
 861{
 862        unsigned long configs[] = { config };
 863        struct pinctrl_gpio_range *range;
 864        struct pinctrl_dev *pctldev;
 865        int ret, pin;
 866
 867        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 868        if (ret)
 869                return ret;
 870
 871        mutex_lock(&pctldev->mutex);
 872        pin = gpio_to_pin(range, gpio);
 873        ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
 874        mutex_unlock(&pctldev->mutex);
 875
 876        return ret;
 877}
 878EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
 879
 880static struct pinctrl_state *find_state(struct pinctrl *p,
 881                                        const char *name)
 882{
 883        struct pinctrl_state *state;
 884
 885        list_for_each_entry(state, &p->states, node)
 886                if (!strcmp(state->name, name))
 887                        return state;
 888
 889        return NULL;
 890}
 891
 892static struct pinctrl_state *create_state(struct pinctrl *p,
 893                                          const char *name)
 894{
 895        struct pinctrl_state *state;
 896
 897        state = kzalloc(sizeof(*state), GFP_KERNEL);
 898        if (!state)
 899                return ERR_PTR(-ENOMEM);
 900
 901        state->name = name;
 902        INIT_LIST_HEAD(&state->settings);
 903
 904        list_add_tail(&state->node, &p->states);
 905
 906        return state;
 907}
 908
 909static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
 910                       struct pinctrl_map const *map)
 911{
 912        struct pinctrl_state *state;
 913        struct pinctrl_setting *setting;
 914        int ret;
 915
 916        state = find_state(p, map->name);
 917        if (!state)
 918                state = create_state(p, map->name);
 919        if (IS_ERR(state))
 920                return PTR_ERR(state);
 921
 922        if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 923                return 0;
 924
 925        setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 926        if (!setting)
 927                return -ENOMEM;
 928
 929        setting->type = map->type;
 930
 931        if (pctldev)
 932                setting->pctldev = pctldev;
 933        else
 934                setting->pctldev =
 935                        get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 936        if (!setting->pctldev) {
 937                kfree(setting);
 938                /* Do not defer probing of hogs (circular loop) */
 939                if (!strcmp(map->ctrl_dev_name, map->dev_name))
 940                        return -ENODEV;
 941                /*
 942                 * OK let us guess that the driver is not there yet, and
 943                 * let's defer obtaining this pinctrl handle to later...
 944                 */
 945                dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 946                        map->ctrl_dev_name);
 947                return -EPROBE_DEFER;
 948        }
 949
 950        setting->dev_name = map->dev_name;
 951
 952        switch (map->type) {
 953        case PIN_MAP_TYPE_MUX_GROUP:
 954                ret = pinmux_map_to_setting(map, setting);
 955                break;
 956        case PIN_MAP_TYPE_CONFIGS_PIN:
 957        case PIN_MAP_TYPE_CONFIGS_GROUP:
 958                ret = pinconf_map_to_setting(map, setting);
 959                break;
 960        default:
 961                ret = -EINVAL;
 962                break;
 963        }
 964        if (ret < 0) {
 965                kfree(setting);
 966                return ret;
 967        }
 968
 969        list_add_tail(&setting->node, &state->settings);
 970
 971        return 0;
 972}
 973
 974static struct pinctrl *find_pinctrl(struct device *dev)
 975{
 976        struct pinctrl *p;
 977
 978        mutex_lock(&pinctrl_list_mutex);
 979        list_for_each_entry(p, &pinctrl_list, node)
 980                if (p->dev == dev) {
 981                        mutex_unlock(&pinctrl_list_mutex);
 982                        return p;
 983                }
 984
 985        mutex_unlock(&pinctrl_list_mutex);
 986        return NULL;
 987}
 988
 989static void pinctrl_free(struct pinctrl *p, bool inlist);
 990
 991static struct pinctrl *create_pinctrl(struct device *dev,
 992                                      struct pinctrl_dev *pctldev)
 993{
 994        struct pinctrl *p;
 995        const char *devname;
 996        struct pinctrl_maps *maps_node;
 997        int i;
 998        struct pinctrl_map const *map;
 999        int ret;
1000
1001        /*
1002         * create the state cookie holder struct pinctrl for each
1003         * mapping, this is what consumers will get when requesting
1004         * a pin control handle with pinctrl_get()
1005         */
1006        p = kzalloc(sizeof(*p), GFP_KERNEL);
1007        if (!p)
1008                return ERR_PTR(-ENOMEM);
1009        p->dev = dev;
1010        INIT_LIST_HEAD(&p->states);
1011        INIT_LIST_HEAD(&p->dt_maps);
1012
1013        ret = pinctrl_dt_to_map(p, pctldev);
1014        if (ret < 0) {
1015                kfree(p);
1016                return ERR_PTR(ret);
1017        }
1018
1019        devname = dev_name(dev);
1020
1021        mutex_lock(&pinctrl_maps_mutex);
1022        /* Iterate over the pin control maps to locate the right ones */
1023        for_each_maps(maps_node, i, map) {
1024                /* Map must be for this device */
1025                if (strcmp(map->dev_name, devname))
1026                        continue;
1027                /*
1028                 * If pctldev is not null, we are claiming hog for it,
1029                 * that means, setting that is served by pctldev by itself.
1030                 *
1031                 * Thus we must skip map that is for this device but is served
1032                 * by other device.
1033                 */
1034                if (pctldev &&
1035                    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1036                        continue;
1037
1038                ret = add_setting(p, pctldev, map);
1039                /*
1040                 * At this point the adding of a setting may:
1041                 *
1042                 * - Defer, if the pinctrl device is not yet available
1043                 * - Fail, if the pinctrl device is not yet available,
1044                 *   AND the setting is a hog. We cannot defer that, since
1045                 *   the hog will kick in immediately after the device
1046                 *   is registered.
1047                 *
1048                 * If the error returned was not -EPROBE_DEFER then we
1049                 * accumulate the errors to see if we end up with
1050                 * an -EPROBE_DEFER later, as that is the worst case.
1051                 */
1052                if (ret == -EPROBE_DEFER) {
1053                        pinctrl_free(p, false);
1054                        mutex_unlock(&pinctrl_maps_mutex);
1055                        return ERR_PTR(ret);
1056                }
1057        }
1058        mutex_unlock(&pinctrl_maps_mutex);
1059
1060        if (ret < 0) {
1061                /* If some other error than deferral occurred, return here */
1062                pinctrl_free(p, false);
1063                return ERR_PTR(ret);
1064        }
1065
1066        kref_init(&p->users);
1067
1068        /* Add the pinctrl handle to the global list */
1069        mutex_lock(&pinctrl_list_mutex);
1070        list_add_tail(&p->node, &pinctrl_list);
1071        mutex_unlock(&pinctrl_list_mutex);
1072
1073        return p;
1074}
1075
1076/**
1077 * pinctrl_get() - retrieves the pinctrl handle for a device
1078 * @dev: the device to obtain the handle for
1079 */
1080struct pinctrl *pinctrl_get(struct device *dev)
1081{
1082        struct pinctrl *p;
1083
1084        if (WARN_ON(!dev))
1085                return ERR_PTR(-EINVAL);
1086
1087        /*
1088         * See if somebody else (such as the device core) has already
1089         * obtained a handle to the pinctrl for this device. In that case,
1090         * return another pointer to it.
1091         */
1092        p = find_pinctrl(dev);
1093        if (p) {
1094                dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1095                kref_get(&p->users);
1096                return p;
1097        }
1098
1099        return create_pinctrl(dev, NULL);
1100}
1101EXPORT_SYMBOL_GPL(pinctrl_get);
1102
1103static void pinctrl_free_setting(bool disable_setting,
1104                                 struct pinctrl_setting *setting)
1105{
1106        switch (setting->type) {
1107        case PIN_MAP_TYPE_MUX_GROUP:
1108                if (disable_setting)
1109                        pinmux_disable_setting(setting);
1110                pinmux_free_setting(setting);
1111                break;
1112        case PIN_MAP_TYPE_CONFIGS_PIN:
1113        case PIN_MAP_TYPE_CONFIGS_GROUP:
1114                pinconf_free_setting(setting);
1115                break;
1116        default:
1117                break;
1118        }
1119}
1120
1121static void pinctrl_free(struct pinctrl *p, bool inlist)
1122{
1123        struct pinctrl_state *state, *n1;
1124        struct pinctrl_setting *setting, *n2;
1125
1126        mutex_lock(&pinctrl_list_mutex);
1127        list_for_each_entry_safe(state, n1, &p->states, node) {
1128                list_for_each_entry_safe(setting, n2, &state->settings, node) {
1129                        pinctrl_free_setting(state == p->state, setting);
1130                        list_del(&setting->node);
1131                        kfree(setting);
1132                }
1133                list_del(&state->node);
1134                kfree(state);
1135        }
1136
1137        pinctrl_dt_free_maps(p);
1138
1139        if (inlist)
1140                list_del(&p->node);
1141        kfree(p);
1142        mutex_unlock(&pinctrl_list_mutex);
1143}
1144
1145/**
1146 * pinctrl_release() - release the pinctrl handle
1147 * @kref: the kref in the pinctrl being released
1148 */
1149static void pinctrl_release(struct kref *kref)
1150{
1151        struct pinctrl *p = container_of(kref, struct pinctrl, users);
1152
1153        pinctrl_free(p, true);
1154}
1155
1156/**
1157 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1158 * @p: the pinctrl handle to release
1159 */
1160void pinctrl_put(struct pinctrl *p)
1161{
1162        kref_put(&p->users, pinctrl_release);
1163}
1164EXPORT_SYMBOL_GPL(pinctrl_put);
1165
1166/**
1167 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1168 * @p: the pinctrl handle to retrieve the state from
1169 * @name: the state name to retrieve
1170 */
1171struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1172                                                 const char *name)
1173{
1174        struct pinctrl_state *state;
1175
1176        state = find_state(p, name);
1177        if (!state) {
1178                if (pinctrl_dummy_state) {
1179                        /* create dummy state */
1180                        dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1181                                name);
1182                        state = create_state(p, name);
1183                } else
1184                        state = ERR_PTR(-ENODEV);
1185        }
1186
1187        return state;
1188}
1189EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1190
1191/**
1192 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1193 * @p: the pinctrl handle for the device that requests configuration
1194 * @state: the state handle to select/activate/program
1195 */
1196int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1197{
1198        struct pinctrl_setting *setting, *setting2;
1199        struct pinctrl_state *old_state = p->state;
1200        int ret;
1201
1202        if (p->state == state)
1203                return 0;
1204
1205        if (p->state) {
1206                /*
1207                 * For each pinmux setting in the old state, forget SW's record
1208                 * of mux owner for that pingroup. Any pingroups which are
1209                 * still owned by the new state will be re-acquired by the call
1210                 * to pinmux_enable_setting() in the loop below.
1211                 */
1212                list_for_each_entry(setting, &p->state->settings, node) {
1213                        if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1214                                continue;
1215                        pinmux_disable_setting(setting);
1216                }
1217        }
1218
1219        p->state = NULL;
1220
1221        /* Apply all the settings for the new state */
1222        list_for_each_entry(setting, &state->settings, node) {
1223                switch (setting->type) {
1224                case PIN_MAP_TYPE_MUX_GROUP:
1225                        ret = pinmux_enable_setting(setting);
1226                        break;
1227                case PIN_MAP_TYPE_CONFIGS_PIN:
1228                case PIN_MAP_TYPE_CONFIGS_GROUP:
1229                        ret = pinconf_apply_setting(setting);
1230                        break;
1231                default:
1232                        ret = -EINVAL;
1233                        break;
1234                }
1235
1236                if (ret < 0) {
1237                        goto unapply_new_state;
1238                }
1239        }
1240
1241        p->state = state;
1242
1243        return 0;
1244
1245unapply_new_state:
1246        dev_err(p->dev, "Error applying setting, reverse things back\n");
1247
1248        list_for_each_entry(setting2, &state->settings, node) {
1249                if (&setting2->node == &setting->node)
1250                        break;
1251                /*
1252                 * All we can do here is pinmux_disable_setting.
1253                 * That means that some pins are muxed differently now
1254                 * than they were before applying the setting (We can't
1255                 * "unmux a pin"!), but it's not a big deal since the pins
1256                 * are free to be muxed by another apply_setting.
1257                 */
1258                if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1259                        pinmux_disable_setting(setting2);
1260        }
1261
1262        /* There's no infinite recursive loop here because p->state is NULL */
1263        if (old_state)
1264                pinctrl_select_state(p, old_state);
1265
1266        return ret;
1267}
1268EXPORT_SYMBOL_GPL(pinctrl_select_state);
1269
1270static void devm_pinctrl_release(struct device *dev, void *res)
1271{
1272        pinctrl_put(*(struct pinctrl **)res);
1273}
1274
1275/**
1276 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1277 * @dev: the device to obtain the handle for
1278 *
1279 * If there is a need to explicitly destroy the returned struct pinctrl,
1280 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1281 */
1282struct pinctrl *devm_pinctrl_get(struct device *dev)
1283{
1284        struct pinctrl **ptr, *p;
1285
1286        ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1287        if (!ptr)
1288                return ERR_PTR(-ENOMEM);
1289
1290        p = pinctrl_get(dev);
1291        if (!IS_ERR(p)) {
1292                *ptr = p;
1293                devres_add(dev, ptr);
1294        } else {
1295                devres_free(ptr);
1296        }
1297
1298        return p;
1299}
1300EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1301
1302static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1303{
1304        struct pinctrl **p = res;
1305
1306        return *p == data;
1307}
1308
1309/**
1310 * devm_pinctrl_put() - Resource managed pinctrl_put()
1311 * @p: the pinctrl handle to release
1312 *
1313 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1314 * this function will not need to be called and the resource management
1315 * code will ensure that the resource is freed.
1316 */
1317void devm_pinctrl_put(struct pinctrl *p)
1318{
1319        WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1320                               devm_pinctrl_match, p));
1321}
1322EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1323
1324int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1325                         bool dup)
1326{
1327        int i, ret;
1328        struct pinctrl_maps *maps_node;
1329
1330        pr_debug("add %u pinctrl maps\n", num_maps);
1331
1332        /* First sanity check the new mapping */
1333        for (i = 0; i < num_maps; i++) {
1334                if (!maps[i].dev_name) {
1335                        pr_err("failed to register map %s (%d): no device given\n",
1336                               maps[i].name, i);
1337                        return -EINVAL;
1338                }
1339
1340                if (!maps[i].name) {
1341                        pr_err("failed to register map %d: no map name given\n",
1342                               i);
1343                        return -EINVAL;
1344                }
1345
1346                if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1347                                !maps[i].ctrl_dev_name) {
1348                        pr_err("failed to register map %s (%d): no pin control device given\n",
1349                               maps[i].name, i);
1350                        return -EINVAL;
1351                }
1352
1353                switch (maps[i].type) {
1354                case PIN_MAP_TYPE_DUMMY_STATE:
1355                        break;
1356                case PIN_MAP_TYPE_MUX_GROUP:
1357                        ret = pinmux_validate_map(&maps[i], i);
1358                        if (ret < 0)
1359                                return ret;
1360                        break;
1361                case PIN_MAP_TYPE_CONFIGS_PIN:
1362                case PIN_MAP_TYPE_CONFIGS_GROUP:
1363                        ret = pinconf_validate_map(&maps[i], i);
1364                        if (ret < 0)
1365                                return ret;
1366                        break;
1367                default:
1368                        pr_err("failed to register map %s (%d): invalid type given\n",
1369                               maps[i].name, i);
1370                        return -EINVAL;
1371                }
1372        }
1373
1374        maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1375        if (!maps_node)
1376                return -ENOMEM;
1377
1378        maps_node->num_maps = num_maps;
1379        if (dup) {
1380                maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1381                                          GFP_KERNEL);
1382                if (!maps_node->maps) {
1383                        pr_err("failed to duplicate mapping table\n");
1384                        kfree(maps_node);
1385                        return -ENOMEM;
1386                }
1387        } else {
1388                maps_node->maps = maps;
1389        }
1390
1391        mutex_lock(&pinctrl_maps_mutex);
1392        list_add_tail(&maps_node->node, &pinctrl_maps);
1393        mutex_unlock(&pinctrl_maps_mutex);
1394
1395        return 0;
1396}
1397
1398/**
1399 * pinctrl_register_mappings() - register a set of pin controller mappings
1400 * @maps: the pincontrol mappings table to register. This should probably be
1401 *      marked with __initdata so it can be discarded after boot. This
1402 *      function will perform a shallow copy for the mapping entries.
1403 * @num_maps: the number of maps in the mapping table
1404 */
1405int pinctrl_register_mappings(struct pinctrl_map const *maps,
1406                              unsigned num_maps)
1407{
1408        return pinctrl_register_map(maps, num_maps, true);
1409}
1410
1411void pinctrl_unregister_map(struct pinctrl_map const *map)
1412{
1413        struct pinctrl_maps *maps_node;
1414
1415        mutex_lock(&pinctrl_maps_mutex);
1416        list_for_each_entry(maps_node, &pinctrl_maps, node) {
1417                if (maps_node->maps == map) {
1418                        list_del(&maps_node->node);
1419                        kfree(maps_node);
1420                        mutex_unlock(&pinctrl_maps_mutex);
1421                        return;
1422                }
1423        }
1424        mutex_unlock(&pinctrl_maps_mutex);
1425}
1426
1427/**
1428 * pinctrl_force_sleep() - turn a given controller device into sleep state
1429 * @pctldev: pin controller device
1430 */
1431int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1432{
1433        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1434                return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1435        return 0;
1436}
1437EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1438
1439/**
1440 * pinctrl_force_default() - turn a given controller device into default state
1441 * @pctldev: pin controller device
1442 */
1443int pinctrl_force_default(struct pinctrl_dev *pctldev)
1444{
1445        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1446                return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1447        return 0;
1448}
1449EXPORT_SYMBOL_GPL(pinctrl_force_default);
1450
1451/**
1452 * pinctrl_init_done() - tell pinctrl probe is done
1453 *
1454 * We'll use this time to switch the pins from "init" to "default" unless the
1455 * driver selected some other state.
1456 *
1457 * @dev: device to that's done probing
1458 */
1459int pinctrl_init_done(struct device *dev)
1460{
1461        struct dev_pin_info *pins = dev->pins;
1462        int ret;
1463
1464        if (!pins)
1465                return 0;
1466
1467        if (IS_ERR(pins->init_state))
1468                return 0; /* No such state */
1469
1470        if (pins->p->state != pins->init_state)
1471                return 0; /* Not at init anyway */
1472
1473        if (IS_ERR(pins->default_state))
1474                return 0; /* No default state */
1475
1476        ret = pinctrl_select_state(pins->p, pins->default_state);
1477        if (ret)
1478                dev_err(dev, "failed to activate default pinctrl state\n");
1479
1480        return ret;
1481}
1482
1483#ifdef CONFIG_PM
1484
1485/**
1486 * pinctrl_pm_select_state() - select pinctrl state for PM
1487 * @dev: device to select default state for
1488 * @state: state to set
1489 */
1490static int pinctrl_pm_select_state(struct device *dev,
1491                                   struct pinctrl_state *state)
1492{
1493        struct dev_pin_info *pins = dev->pins;
1494        int ret;
1495
1496        if (IS_ERR(state))
1497                return 0; /* No such state */
1498        ret = pinctrl_select_state(pins->p, state);
1499        if (ret)
1500                dev_err(dev, "failed to activate pinctrl state %s\n",
1501                        state->name);
1502        return ret;
1503}
1504
1505/**
1506 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1507 * @dev: device to select default state for
1508 */
1509int pinctrl_pm_select_default_state(struct device *dev)
1510{
1511        if (!dev->pins)
1512                return 0;
1513
1514        return pinctrl_pm_select_state(dev, dev->pins->default_state);
1515}
1516EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1517
1518/**
1519 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1520 * @dev: device to select sleep state for
1521 */
1522int pinctrl_pm_select_sleep_state(struct device *dev)
1523{
1524        if (!dev->pins)
1525                return 0;
1526
1527        return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1528}
1529EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1530
1531/**
1532 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1533 * @dev: device to select idle state for
1534 */
1535int pinctrl_pm_select_idle_state(struct device *dev)
1536{
1537        if (!dev->pins)
1538                return 0;
1539
1540        return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1541}
1542EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1543#endif
1544
1545#ifdef CONFIG_DEBUG_FS
1546
1547static int pinctrl_pins_show(struct seq_file *s, void *what)
1548{
1549        struct pinctrl_dev *pctldev = s->private;
1550        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1551        unsigned i, pin;
1552
1553        seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1554
1555        mutex_lock(&pctldev->mutex);
1556
1557        /* The pin number can be retrived from the pin controller descriptor */
1558        for (i = 0; i < pctldev->desc->npins; i++) {
1559                struct pin_desc *desc;
1560
1561                pin = pctldev->desc->pins[i].number;
1562                desc = pin_desc_get(pctldev, pin);
1563                /* Pin space may be sparse */
1564                if (!desc)
1565                        continue;
1566
1567                seq_printf(s, "pin %d (%s) ", pin, desc->name);
1568
1569                /* Driver-specific info per pin */
1570                if (ops->pin_dbg_show)
1571                        ops->pin_dbg_show(pctldev, s, pin);
1572
1573                seq_puts(s, "\n");
1574        }
1575
1576        mutex_unlock(&pctldev->mutex);
1577
1578        return 0;
1579}
1580
1581static int pinctrl_groups_show(struct seq_file *s, void *what)
1582{
1583        struct pinctrl_dev *pctldev = s->private;
1584        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1585        unsigned ngroups, selector = 0;
1586
1587        mutex_lock(&pctldev->mutex);
1588
1589        ngroups = ops->get_groups_count(pctldev);
1590
1591        seq_puts(s, "registered pin groups:\n");
1592        while (selector < ngroups) {
1593                const unsigned *pins = NULL;
1594                unsigned num_pins = 0;
1595                const char *gname = ops->get_group_name(pctldev, selector);
1596                const char *pname;
1597                int ret = 0;
1598                int i;
1599
1600                if (ops->get_group_pins)
1601                        ret = ops->get_group_pins(pctldev, selector,
1602                                                  &pins, &num_pins);
1603                if (ret)
1604                        seq_printf(s, "%s [ERROR GETTING PINS]\n",
1605                                   gname);
1606                else {
1607                        seq_printf(s, "group: %s\n", gname);
1608                        for (i = 0; i < num_pins; i++) {
1609                                pname = pin_get_name(pctldev, pins[i]);
1610                                if (WARN_ON(!pname)) {
1611                                        mutex_unlock(&pctldev->mutex);
1612                                        return -EINVAL;
1613                                }
1614                                seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1615                        }
1616                        seq_puts(s, "\n");
1617                }
1618                selector++;
1619        }
1620
1621        mutex_unlock(&pctldev->mutex);
1622
1623        return 0;
1624}
1625
1626static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1627{
1628        struct pinctrl_dev *pctldev = s->private;
1629        struct pinctrl_gpio_range *range = NULL;
1630
1631        seq_puts(s, "GPIO ranges handled:\n");
1632
1633        mutex_lock(&pctldev->mutex);
1634
1635        /* Loop over the ranges */
1636        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1637                if (range->pins) {
1638                        int a;
1639                        seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1640                                range->id, range->name,
1641                                range->base, (range->base + range->npins - 1));
1642                        for (a = 0; a < range->npins - 1; a++)
1643                                seq_printf(s, "%u, ", range->pins[a]);
1644                        seq_printf(s, "%u}\n", range->pins[a]);
1645                }
1646                else
1647                        seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1648                                range->id, range->name,
1649                                range->base, (range->base + range->npins - 1),
1650                                range->pin_base,
1651                                (range->pin_base + range->npins - 1));
1652        }
1653
1654        mutex_unlock(&pctldev->mutex);
1655
1656        return 0;
1657}
1658
1659static int pinctrl_devices_show(struct seq_file *s, void *what)
1660{
1661        struct pinctrl_dev *pctldev;
1662
1663        seq_puts(s, "name [pinmux] [pinconf]\n");
1664
1665        mutex_lock(&pinctrldev_list_mutex);
1666
1667        list_for_each_entry(pctldev, &pinctrldev_list, node) {
1668                seq_printf(s, "%s ", pctldev->desc->name);
1669                if (pctldev->desc->pmxops)
1670                        seq_puts(s, "yes ");
1671                else
1672                        seq_puts(s, "no ");
1673                if (pctldev->desc->confops)
1674                        seq_puts(s, "yes");
1675                else
1676                        seq_puts(s, "no");
1677                seq_puts(s, "\n");
1678        }
1679
1680        mutex_unlock(&pinctrldev_list_mutex);
1681
1682        return 0;
1683}
1684
1685static inline const char *map_type(enum pinctrl_map_type type)
1686{
1687        static const char * const names[] = {
1688                "INVALID",
1689                "DUMMY_STATE",
1690                "MUX_GROUP",
1691                "CONFIGS_PIN",
1692                "CONFIGS_GROUP",
1693        };
1694
1695        if (type >= ARRAY_SIZE(names))
1696                return "UNKNOWN";
1697
1698        return names[type];
1699}
1700
1701static int pinctrl_maps_show(struct seq_file *s, void *what)
1702{
1703        struct pinctrl_maps *maps_node;
1704        int i;
1705        struct pinctrl_map const *map;
1706
1707        seq_puts(s, "Pinctrl maps:\n");
1708
1709        mutex_lock(&pinctrl_maps_mutex);
1710        for_each_maps(maps_node, i, map) {
1711                seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1712                           map->dev_name, map->name, map_type(map->type),
1713                           map->type);
1714
1715                if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1716                        seq_printf(s, "controlling device %s\n",
1717                                   map->ctrl_dev_name);
1718
1719                switch (map->type) {
1720                case PIN_MAP_TYPE_MUX_GROUP:
1721                        pinmux_show_map(s, map);
1722                        break;
1723                case PIN_MAP_TYPE_CONFIGS_PIN:
1724                case PIN_MAP_TYPE_CONFIGS_GROUP:
1725                        pinconf_show_map(s, map);
1726                        break;
1727                default:
1728                        break;
1729                }
1730
1731                seq_putc(s, '\n');
1732        }
1733        mutex_unlock(&pinctrl_maps_mutex);
1734
1735        return 0;
1736}
1737
1738static int pinctrl_show(struct seq_file *s, void *what)
1739{
1740        struct pinctrl *p;
1741        struct pinctrl_state *state;
1742        struct pinctrl_setting *setting;
1743
1744        seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1745
1746        mutex_lock(&pinctrl_list_mutex);
1747
1748        list_for_each_entry(p, &pinctrl_list, node) {
1749                seq_printf(s, "device: %s current state: %s\n",
1750                           dev_name(p->dev),
1751                           p->state ? p->state->name : "none");
1752
1753                list_for_each_entry(state, &p->states, node) {
1754                        seq_printf(s, "  state: %s\n", state->name);
1755
1756                        list_for_each_entry(setting, &state->settings, node) {
1757                                struct pinctrl_dev *pctldev = setting->pctldev;
1758
1759                                seq_printf(s, "    type: %s controller %s ",
1760                                           map_type(setting->type),
1761                                           pinctrl_dev_get_name(pctldev));
1762
1763                                switch (setting->type) {
1764                                case PIN_MAP_TYPE_MUX_GROUP:
1765                                        pinmux_show_setting(s, setting);
1766                                        break;
1767                                case PIN_MAP_TYPE_CONFIGS_PIN:
1768                                case PIN_MAP_TYPE_CONFIGS_GROUP:
1769                                        pinconf_show_setting(s, setting);
1770                                        break;
1771                                default:
1772                                        break;
1773                                }
1774                        }
1775                }
1776        }
1777
1778        mutex_unlock(&pinctrl_list_mutex);
1779
1780        return 0;
1781}
1782
1783static int pinctrl_pins_open(struct inode *inode, struct file *file)
1784{
1785        return single_open(file, pinctrl_pins_show, inode->i_private);
1786}
1787
1788static int pinctrl_groups_open(struct inode *inode, struct file *file)
1789{
1790        return single_open(file, pinctrl_groups_show, inode->i_private);
1791}
1792
1793static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1794{
1795        return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1796}
1797
1798static int pinctrl_devices_open(struct inode *inode, struct file *file)
1799{
1800        return single_open(file, pinctrl_devices_show, NULL);
1801}
1802
1803static int pinctrl_maps_open(struct inode *inode, struct file *file)
1804{
1805        return single_open(file, pinctrl_maps_show, NULL);
1806}
1807
1808static int pinctrl_open(struct inode *inode, struct file *file)
1809{
1810        return single_open(file, pinctrl_show, NULL);
1811}
1812
1813static const struct file_operations pinctrl_pins_ops = {
1814        .open           = pinctrl_pins_open,
1815        .read           = seq_read,
1816        .llseek         = seq_lseek,
1817        .release        = single_release,
1818};
1819
1820static const struct file_operations pinctrl_groups_ops = {
1821        .open           = pinctrl_groups_open,
1822        .read           = seq_read,
1823        .llseek         = seq_lseek,
1824        .release        = single_release,
1825};
1826
1827static const struct file_operations pinctrl_gpioranges_ops = {
1828        .open           = pinctrl_gpioranges_open,
1829        .read           = seq_read,
1830        .llseek         = seq_lseek,
1831        .release        = single_release,
1832};
1833
1834static const struct file_operations pinctrl_devices_ops = {
1835        .open           = pinctrl_devices_open,
1836        .read           = seq_read,
1837        .llseek         = seq_lseek,
1838        .release        = single_release,
1839};
1840
1841static const struct file_operations pinctrl_maps_ops = {
1842        .open           = pinctrl_maps_open,
1843        .read           = seq_read,
1844        .llseek         = seq_lseek,
1845        .release        = single_release,
1846};
1847
1848static const struct file_operations pinctrl_ops = {
1849        .open           = pinctrl_open,
1850        .read           = seq_read,
1851        .llseek         = seq_lseek,
1852        .release        = single_release,
1853};
1854
1855static struct dentry *debugfs_root;
1856
1857static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1858{
1859        struct dentry *device_root;
1860
1861        device_root = debugfs_create_dir(dev_name(pctldev->dev),
1862                                         debugfs_root);
1863        pctldev->device_root = device_root;
1864
1865        if (IS_ERR(device_root) || !device_root) {
1866                pr_warn("failed to create debugfs directory for %s\n",
1867                        dev_name(pctldev->dev));
1868                return;
1869        }
1870        debugfs_create_file("pins", S_IFREG | S_IRUGO,
1871                            device_root, pctldev, &pinctrl_pins_ops);
1872        debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1873                            device_root, pctldev, &pinctrl_groups_ops);
1874        debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1875                            device_root, pctldev, &pinctrl_gpioranges_ops);
1876        if (pctldev->desc->pmxops)
1877                pinmux_init_device_debugfs(device_root, pctldev);
1878        if (pctldev->desc->confops)
1879                pinconf_init_device_debugfs(device_root, pctldev);
1880}
1881
1882static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1883{
1884        debugfs_remove_recursive(pctldev->device_root);
1885}
1886
1887static void pinctrl_init_debugfs(void)
1888{
1889        debugfs_root = debugfs_create_dir("pinctrl", NULL);
1890        if (IS_ERR(debugfs_root) || !debugfs_root) {
1891                pr_warn("failed to create debugfs directory\n");
1892                debugfs_root = NULL;
1893                return;
1894        }
1895
1896        debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1897                            debugfs_root, NULL, &pinctrl_devices_ops);
1898        debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1899                            debugfs_root, NULL, &pinctrl_maps_ops);
1900        debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1901                            debugfs_root, NULL, &pinctrl_ops);
1902}
1903
1904#else /* CONFIG_DEBUG_FS */
1905
1906static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1907{
1908}
1909
1910static void pinctrl_init_debugfs(void)
1911{
1912}
1913
1914static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1915{
1916}
1917
1918#endif
1919
1920static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1921{
1922        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1923
1924        if (!ops ||
1925            !ops->get_groups_count ||
1926            !ops->get_group_name)
1927                return -EINVAL;
1928
1929        return 0;
1930}
1931
1932/**
1933 * pinctrl_init_controller() - init a pin controller device
1934 * @pctldesc: descriptor for this pin controller
1935 * @dev: parent device for this pin controller
1936 * @driver_data: private pin controller data for this pin controller
1937 */
1938static struct pinctrl_dev *
1939pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1940                        void *driver_data)
1941{
1942        struct pinctrl_dev *pctldev;
1943        int ret;
1944
1945        if (!pctldesc)
1946                return ERR_PTR(-EINVAL);
1947        if (!pctldesc->name)
1948                return ERR_PTR(-EINVAL);
1949
1950        pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1951        if (!pctldev)
1952                return ERR_PTR(-ENOMEM);
1953
1954        /* Initialize pin control device struct */
1955        pctldev->owner = pctldesc->owner;
1956        pctldev->desc = pctldesc;
1957        pctldev->driver_data = driver_data;
1958        INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1959#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1960        INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1961#endif
1962#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1963        INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1964#endif
1965        INIT_LIST_HEAD(&pctldev->gpio_ranges);
1966        INIT_LIST_HEAD(&pctldev->node);
1967        pctldev->dev = dev;
1968        mutex_init(&pctldev->mutex);
1969
1970        /* check core ops for sanity */
1971        ret = pinctrl_check_ops(pctldev);
1972        if (ret) {
1973                dev_err(dev, "pinctrl ops lacks necessary functions\n");
1974                goto out_err;
1975        }
1976
1977        /* If we're implementing pinmuxing, check the ops for sanity */
1978        if (pctldesc->pmxops) {
1979                ret = pinmux_check_ops(pctldev);
1980                if (ret)
1981                        goto out_err;
1982        }
1983
1984        /* If we're implementing pinconfig, check the ops for sanity */
1985        if (pctldesc->confops) {
1986                ret = pinconf_check_ops(pctldev);
1987                if (ret)
1988                        goto out_err;
1989        }
1990
1991        /* Register all the pins */
1992        dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1993        ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1994        if (ret) {
1995                dev_err(dev, "error during pin registration\n");
1996                pinctrl_free_pindescs(pctldev, pctldesc->pins,
1997                                      pctldesc->npins);
1998                goto out_err;
1999        }
2000
2001        return pctldev;
2002
2003out_err:
2004        mutex_destroy(&pctldev->mutex);
2005        kfree(pctldev);
2006        return ERR_PTR(ret);
2007}
2008
2009static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2010{
2011        pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2012        if (PTR_ERR(pctldev->p) == -ENODEV) {
2013                dev_dbg(pctldev->dev, "no hogs found\n");
2014
2015                return 0;
2016        }
2017
2018        if (IS_ERR(pctldev->p)) {
2019                dev_err(pctldev->dev, "error claiming hogs: %li\n",
2020                        PTR_ERR(pctldev->p));
2021
2022                return PTR_ERR(pctldev->p);
2023        }
2024
2025        kref_get(&pctldev->p->users);
2026        pctldev->hog_default =
2027                pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2028        if (IS_ERR(pctldev->hog_default)) {
2029                dev_dbg(pctldev->dev,
2030                        "failed to lookup the default state\n");
2031        } else {
2032                if (pinctrl_select_state(pctldev->p,
2033                                         pctldev->hog_default))
2034                        dev_err(pctldev->dev,
2035                                "failed to select default state\n");
2036        }
2037
2038        pctldev->hog_sleep =
2039                pinctrl_lookup_state(pctldev->p,
2040                                     PINCTRL_STATE_SLEEP);
2041        if (IS_ERR(pctldev->hog_sleep))
2042                dev_dbg(pctldev->dev,
2043                        "failed to lookup the sleep state\n");
2044
2045        return 0;
2046}
2047
2048int pinctrl_enable(struct pinctrl_dev *pctldev)
2049{
2050        int error;
2051
2052        error = pinctrl_claim_hogs(pctldev);
2053        if (error) {
2054                dev_err(pctldev->dev, "could not claim hogs: %i\n",
2055                        error);
2056                mutex_destroy(&pctldev->mutex);
2057                kfree(pctldev);
2058
2059                return error;
2060        }
2061
2062        mutex_lock(&pinctrldev_list_mutex);
2063        list_add_tail(&pctldev->node, &pinctrldev_list);
2064        mutex_unlock(&pinctrldev_list_mutex);
2065
2066        pinctrl_init_device_debugfs(pctldev);
2067
2068        return 0;
2069}
2070EXPORT_SYMBOL_GPL(pinctrl_enable);
2071
2072/**
2073 * pinctrl_register() - register a pin controller device
2074 * @pctldesc: descriptor for this pin controller
2075 * @dev: parent device for this pin controller
2076 * @driver_data: private pin controller data for this pin controller
2077 *
2078 * Note that pinctrl_register() is known to have problems as the pin
2079 * controller driver functions are called before the driver has a
2080 * struct pinctrl_dev handle. To avoid issues later on, please use the
2081 * new pinctrl_register_and_init() below instead.
2082 */
2083struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2084                                    struct device *dev, void *driver_data)
2085{
2086        struct pinctrl_dev *pctldev;
2087        int error;
2088
2089        pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2090        if (IS_ERR(pctldev))
2091                return pctldev;
2092
2093        error = pinctrl_enable(pctldev);
2094        if (error)
2095                return ERR_PTR(error);
2096
2097        return pctldev;
2098
2099}
2100EXPORT_SYMBOL_GPL(pinctrl_register);
2101
2102/**
2103 * pinctrl_register_and_init() - register and init pin controller device
2104 * @pctldesc: descriptor for this pin controller
2105 * @dev: parent device for this pin controller
2106 * @driver_data: private pin controller data for this pin controller
2107 * @pctldev: pin controller device
2108 *
2109 * Note that pinctrl_enable() still needs to be manually called after
2110 * this once the driver is ready.
2111 */
2112int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2113                              struct device *dev, void *driver_data,
2114                              struct pinctrl_dev **pctldev)
2115{
2116        struct pinctrl_dev *p;
2117
2118        p = pinctrl_init_controller(pctldesc, dev, driver_data);
2119        if (IS_ERR(p))
2120                return PTR_ERR(p);
2121
2122        /*
2123         * We have pinctrl_start() call functions in the pin controller
2124         * driver with create_pinctrl() for at least dt_node_to_map(). So
2125         * let's make sure pctldev is properly initialized for the
2126         * pin controller driver before we do anything.
2127         */
2128        *pctldev = p;
2129
2130        return 0;
2131}
2132EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2133
2134/**
2135 * pinctrl_unregister() - unregister pinmux
2136 * @pctldev: pin controller to unregister
2137 *
2138 * Called by pinmux drivers to unregister a pinmux.
2139 */
2140void pinctrl_unregister(struct pinctrl_dev *pctldev)
2141{
2142        struct pinctrl_gpio_range *range, *n;
2143
2144        if (!pctldev)
2145                return;
2146
2147        mutex_lock(&pctldev->mutex);
2148        pinctrl_remove_device_debugfs(pctldev);
2149        mutex_unlock(&pctldev->mutex);
2150
2151        if (!IS_ERR_OR_NULL(pctldev->p))
2152                pinctrl_put(pctldev->p);
2153
2154        mutex_lock(&pinctrldev_list_mutex);
2155        mutex_lock(&pctldev->mutex);
2156        /* TODO: check that no pinmuxes are still active? */
2157        list_del(&pctldev->node);
2158        pinmux_generic_free_functions(pctldev);
2159        pinctrl_generic_free_groups(pctldev);
2160        /* Destroy descriptor tree */
2161        pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2162                              pctldev->desc->npins);
2163        /* remove gpio ranges map */
2164        list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2165                list_del(&range->node);
2166
2167        mutex_unlock(&pctldev->mutex);
2168        mutex_destroy(&pctldev->mutex);
2169        kfree(pctldev);
2170        mutex_unlock(&pinctrldev_list_mutex);
2171}
2172EXPORT_SYMBOL_GPL(pinctrl_unregister);
2173
2174static void devm_pinctrl_dev_release(struct device *dev, void *res)
2175{
2176        struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2177
2178        pinctrl_unregister(pctldev);
2179}
2180
2181static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2182{
2183        struct pctldev **r = res;
2184
2185        if (WARN_ON(!r || !*r))
2186                return 0;
2187
2188        return *r == data;
2189}
2190
2191/**
2192 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2193 * @dev: parent device for this pin controller
2194 * @pctldesc: descriptor for this pin controller
2195 * @driver_data: private pin controller data for this pin controller
2196 *
2197 * Returns an error pointer if pincontrol register failed. Otherwise
2198 * it returns valid pinctrl handle.
2199 *
2200 * The pinctrl device will be automatically released when the device is unbound.
2201 */
2202struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2203                                          struct pinctrl_desc *pctldesc,
2204                                          void *driver_data)
2205{
2206        struct pinctrl_dev **ptr, *pctldev;
2207
2208        ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2209        if (!ptr)
2210                return ERR_PTR(-ENOMEM);
2211
2212        pctldev = pinctrl_register(pctldesc, dev, driver_data);
2213        if (IS_ERR(pctldev)) {
2214                devres_free(ptr);
2215                return pctldev;
2216        }
2217
2218        *ptr = pctldev;
2219        devres_add(dev, ptr);
2220
2221        return pctldev;
2222}
2223EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2224
2225/**
2226 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2227 * @dev: parent device for this pin controller
2228 * @pctldesc: descriptor for this pin controller
2229 * @driver_data: private pin controller data for this pin controller
2230 *
2231 * Returns an error pointer if pincontrol register failed. Otherwise
2232 * it returns valid pinctrl handle.
2233 *
2234 * The pinctrl device will be automatically released when the device is unbound.
2235 */
2236int devm_pinctrl_register_and_init(struct device *dev,
2237                                   struct pinctrl_desc *pctldesc,
2238                                   void *driver_data,
2239                                   struct pinctrl_dev **pctldev)
2240{
2241        struct pinctrl_dev **ptr;
2242        int error;
2243
2244        ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2245        if (!ptr)
2246                return -ENOMEM;
2247
2248        error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2249        if (error) {
2250                devres_free(ptr);
2251                return error;
2252        }
2253
2254        *ptr = *pctldev;
2255        devres_add(dev, ptr);
2256
2257        return 0;
2258}
2259EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2260
2261/**
2262 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2263 * @dev: device for which which resource was allocated
2264 * @pctldev: the pinctrl device to unregister.
2265 */
2266void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2267{
2268        WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2269                               devm_pinctrl_dev_match, pctldev));
2270}
2271EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2272
2273static int __init pinctrl_init(void)
2274{
2275        pr_info("initialized pinctrl subsystem\n");
2276        pinctrl_init_debugfs();
2277        return 0;
2278}
2279
2280/* init early since many drivers really need to initialized pinmux early */
2281core_initcall(pinctrl_init);
2282