linux/drivers/sbus/char/jsflash.c
<<
>>
Prefs
   1/*
   2 * drivers/sbus/char/jsflash.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds    (drivers/char/mem.c)
   5 *  Copyright (C) 1997  Eddie C. Dost           (drivers/sbus/char/flash.c)
   6 *  Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz>   (drivers/block/nbd.c)
   7 *  Copyright (C) 1999-2000 Pete Zaitcev
   8 *
   9 * This driver is used to program OS into a Flash SIMM on
  10 * Krups and Espresso platforms.
  11 *
  12 * TODO: do not allow erase/programming if file systems are mounted.
  13 * TODO: Erase/program both banks of a 8MB SIMM.
  14 *
  15 * It is anticipated that programming an OS Flash will be a routine
  16 * procedure. In the same time it is exceedingly dangerous because
  17 * a user can program its OBP flash with OS image and effectively
  18 * kill the machine.
  19 *
  20 * This driver uses an interface different from Eddie's flash.c
  21 * as a silly safeguard.
  22 *
  23 * XXX The flash.c manipulates page caching characteristics in a certain
  24 * dubious way; also it assumes that remap_pfn_range() can remap
  25 * PCI bus locations, which may be false. ioremap() must be used
  26 * instead. We should discuss this.
  27 */
  28
  29#include <linux/module.h>
  30#include <linux/mutex.h>
  31#include <linux/types.h>
  32#include <linux/errno.h>
  33#include <linux/miscdevice.h>
  34#include <linux/fcntl.h>
  35#include <linux/poll.h>
  36#include <linux/init.h>
  37#include <linux/string.h>
  38#include <linux/genhd.h>
  39#include <linux/blkdev.h>
  40#include <linux/uaccess.h>
  41#include <asm/pgtable.h>
  42#include <asm/io.h>
  43#include <asm/pcic.h>
  44#include <asm/oplib.h>
  45
  46#include <asm/jsflash.h>                /* ioctl arguments. <linux/> ?? */
  47#define JSFIDSZ         (sizeof(struct jsflash_ident_arg))
  48#define JSFPRGSZ        (sizeof(struct jsflash_program_arg))
  49
  50/*
  51 * Our device numbers have no business in system headers.
  52 * The only thing a user knows is the device name /dev/jsflash.
  53 *
  54 * Block devices are laid out like this:
  55 *   minor+0    - Bootstrap, for 8MB SIMM 0x20400000[0x800000]
  56 *   minor+1    - Filesystem to mount, normally 0x20400400[0x7ffc00]
  57 *   minor+2    - Whole flash area for any case... 0x20000000[0x01000000]
  58 * Total 3 minors per flash device.
  59 *
  60 * It is easier to have static size vectors, so we define
  61 * a total minor range JSF_MAX, which must cover all minors.
  62 */
  63/* character device */
  64#define JSF_MINOR       178     /* 178 is registered with hpa */
  65/* block device */
  66#define JSF_MAX          3      /* 3 minors wasted total so far. */
  67#define JSF_NPART        3      /* 3 minors per flash device */
  68#define JSF_PART_BITS    2      /* 2 bits of minors to cover JSF_NPART */
  69#define JSF_PART_MASK    0x3    /* 2 bits mask */
  70
  71static DEFINE_MUTEX(jsf_mutex);
  72
  73/*
  74 * Access functions.
  75 * We could ioremap(), but it's easier this way.
  76 */
  77static unsigned int jsf_inl(unsigned long addr)
  78{
  79        unsigned long retval;
  80
  81        __asm__ __volatile__("lda [%1] %2, %0\n\t" :
  82                                "=r" (retval) :
  83                                "r" (addr), "i" (ASI_M_BYPASS));
  84        return retval;
  85}
  86
  87static void jsf_outl(unsigned long addr, __u32 data)
  88{
  89
  90        __asm__ __volatile__("sta %0, [%1] %2\n\t" : :
  91                                "r" (data), "r" (addr), "i" (ASI_M_BYPASS) :
  92                                "memory");
  93}
  94
  95/*
  96 * soft carrier
  97 */
  98
  99struct jsfd_part {
 100        unsigned long dbase;
 101        unsigned long dsize;
 102};
 103
 104struct jsflash {
 105        unsigned long base;
 106        unsigned long size;
 107        unsigned long busy;             /* In use? */
 108        struct jsflash_ident_arg id;
 109        /* int mbase; */                /* Minor base, typically zero */
 110        struct jsfd_part dv[JSF_NPART];
 111};
 112
 113/*
 114 * We do not map normal memory or obio as a safety precaution.
 115 * But offsets are real, for ease of userland programming.
 116 */
 117#define JSF_BASE_TOP    0x30000000
 118#define JSF_BASE_ALL    0x20000000
 119
 120#define JSF_BASE_JK     0x20400000
 121
 122/*
 123 */
 124static struct gendisk *jsfd_disk[JSF_MAX];
 125
 126/*
 127 * Let's pretend we may have several of these...
 128 */
 129static struct jsflash jsf0;
 130
 131/*
 132 * Wait for AMD to finish its embedded algorithm.
 133 * We use the Toggle bit DQ6 (0x40) because it does not
 134 * depend on the data value as /DATA bit DQ7 does.
 135 *
 136 * XXX Do we need any timeout here? So far it never hanged, beware broken hw.
 137 */
 138static void jsf_wait(unsigned long p) {
 139        unsigned int x1, x2;
 140
 141        for (;;) {
 142                x1 = jsf_inl(p);
 143                x2 = jsf_inl(p);
 144                if ((x1 & 0x40404040) == (x2 & 0x40404040)) return;
 145        }
 146}
 147
 148/*
 149 * Programming will only work if Flash is clean,
 150 * we leave it to the programmer application.
 151 *
 152 * AMD must be programmed one byte at a time;
 153 * thus, Simple Tech SIMM must be written 4 bytes at a time.
 154 *
 155 * Write waits for the chip to become ready after the write
 156 * was finished. This is done so that application would read
 157 * consistent data after the write is done.
 158 */
 159static void jsf_write4(unsigned long fa, u32 data) {
 160
 161        jsf_outl(fa, 0xAAAAAAAA);               /* Unlock 1 Write 1 */
 162        jsf_outl(fa, 0x55555555);               /* Unlock 1 Write 2 */
 163        jsf_outl(fa, 0xA0A0A0A0);               /* Byte Program */
 164        jsf_outl(fa, data);
 165
 166        jsf_wait(fa);
 167}
 168
 169/*
 170 */
 171static void jsfd_read(char *buf, unsigned long p, size_t togo) {
 172        union byte4 {
 173                char s[4];
 174                unsigned int n;
 175        } b;
 176
 177        while (togo >= 4) {
 178                togo -= 4;
 179                b.n = jsf_inl(p);
 180                memcpy(buf, b.s, 4);
 181                p += 4;
 182                buf += 4;
 183        }
 184}
 185
 186static int jsfd_queue;
 187
 188static struct request *jsfd_next_request(void)
 189{
 190        struct request_queue *q;
 191        struct request *rq;
 192        int old_pos = jsfd_queue;
 193
 194        do {
 195                q = jsfd_disk[jsfd_queue]->queue;
 196                if (++jsfd_queue == JSF_MAX)
 197                        jsfd_queue = 0;
 198                if (q) {
 199                        rq = blk_fetch_request(q);
 200                        if (rq)
 201                                return rq;
 202                }
 203        } while (jsfd_queue != old_pos);
 204
 205        return NULL;
 206}
 207
 208static void jsfd_request(void)
 209{
 210        struct request *req;
 211
 212        req = jsfd_next_request();
 213        while (req) {
 214                struct jsfd_part *jdp = req->rq_disk->private_data;
 215                unsigned long offset = blk_rq_pos(req) << 9;
 216                size_t len = blk_rq_cur_bytes(req);
 217                blk_status_t err = BLK_STS_IOERR;
 218
 219                if ((offset + len) > jdp->dsize)
 220                        goto end;
 221
 222                if (rq_data_dir(req) != READ) {
 223                        printk(KERN_ERR "jsfd: write\n");
 224                        goto end;
 225                }
 226
 227                if ((jdp->dbase & 0xff000000) != 0x20000000) {
 228                        printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase);
 229                        goto end;
 230                }
 231
 232                jsfd_read(bio_data(req->bio), jdp->dbase + offset, len);
 233                err = BLK_STS_OK;
 234        end:
 235                if (!__blk_end_request_cur(req, err))
 236                        req = jsfd_next_request();
 237        }
 238}
 239
 240static void jsfd_do_request(struct request_queue *q)
 241{
 242        jsfd_request();
 243}
 244
 245/*
 246 * The memory devices use the full 32/64 bits of the offset, and so we cannot
 247 * check against negative addresses: they are ok. The return value is weird,
 248 * though, in that case (0).
 249 *
 250 * also note that seeking relative to the "end of file" isn't supported:
 251 * it has no meaning, so it returns -EINVAL.
 252 */
 253static loff_t jsf_lseek(struct file * file, loff_t offset, int orig)
 254{
 255        loff_t ret;
 256
 257        mutex_lock(&jsf_mutex);
 258        switch (orig) {
 259                case 0:
 260                        file->f_pos = offset;
 261                        ret = file->f_pos;
 262                        break;
 263                case 1:
 264                        file->f_pos += offset;
 265                        ret = file->f_pos;
 266                        break;
 267                default:
 268                        ret = -EINVAL;
 269        }
 270        mutex_unlock(&jsf_mutex);
 271        return ret;
 272}
 273
 274/*
 275 * OS SIMM Cannot be read in other size but a 32bits word.
 276 */
 277static ssize_t jsf_read(struct file * file, char __user * buf, 
 278    size_t togo, loff_t *ppos)
 279{
 280        unsigned long p = *ppos;
 281        char __user *tmp = buf;
 282
 283        union byte4 {
 284                char s[4];
 285                unsigned int n;
 286        } b;
 287
 288        if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) {
 289                return 0;
 290        }
 291
 292        if ((p + togo) < p      /* wrap */
 293           || (p + togo) >= JSF_BASE_TOP) {
 294                togo = JSF_BASE_TOP - p;
 295        }
 296
 297        if (p < JSF_BASE_ALL && togo != 0) {
 298#if 0 /* __bzero XXX */
 299                size_t x = JSF_BASE_ALL - p;
 300                if (x > togo) x = togo;
 301                clear_user(tmp, x);
 302                tmp += x;
 303                p += x;
 304                togo -= x;
 305#else
 306                /*
 307                 * Implementation of clear_user() calls __bzero
 308                 * without regard to modversions,
 309                 * so we cannot build a module.
 310                 */
 311                return 0;
 312#endif
 313        }
 314
 315        while (togo >= 4) {
 316                togo -= 4;
 317                b.n = jsf_inl(p);
 318                if (copy_to_user(tmp, b.s, 4))
 319                        return -EFAULT;
 320                tmp += 4;
 321                p += 4;
 322        }
 323
 324        /*
 325         * XXX Small togo may remain if 1 byte is ordered.
 326         * It would be nice if we did a word size read and unpacked it.
 327         */
 328
 329        *ppos = p;
 330        return tmp-buf;
 331}
 332
 333static ssize_t jsf_write(struct file * file, const char __user * buf,
 334    size_t count, loff_t *ppos)
 335{
 336        return -ENOSPC;
 337}
 338
 339/*
 340 */
 341static int jsf_ioctl_erase(unsigned long arg)
 342{
 343        unsigned long p;
 344
 345        /* p = jsf0.base;       hits wrong bank */
 346        p = 0x20400000;
 347
 348        jsf_outl(p, 0xAAAAAAAA);                /* Unlock 1 Write 1 */
 349        jsf_outl(p, 0x55555555);                /* Unlock 1 Write 2 */
 350        jsf_outl(p, 0x80808080);                /* Erase setup */
 351        jsf_outl(p, 0xAAAAAAAA);                /* Unlock 2 Write 1 */
 352        jsf_outl(p, 0x55555555);                /* Unlock 2 Write 2 */
 353        jsf_outl(p, 0x10101010);                /* Chip erase */
 354
 355#if 0
 356        /*
 357         * This code is ok, except that counter based timeout
 358         * has no place in this world. Let's just drop timeouts...
 359         */
 360        {
 361                int i;
 362                __u32 x;
 363                for (i = 0; i < 1000000; i++) {
 364                        x = jsf_inl(p);
 365                        if ((x & 0x80808080) == 0x80808080) break;
 366                }
 367                if ((x & 0x80808080) != 0x80808080) {
 368                        printk("jsf0: erase timeout with 0x%08x\n", x);
 369                } else {
 370                        printk("jsf0: erase done with 0x%08x\n", x);
 371                }
 372        }
 373#else
 374        jsf_wait(p);
 375#endif
 376
 377        return 0;
 378}
 379
 380/*
 381 * Program a block of flash.
 382 * Very simple because we can do it byte by byte anyway.
 383 */
 384static int jsf_ioctl_program(void __user *arg)
 385{
 386        struct jsflash_program_arg abuf;
 387        char __user *uptr;
 388        unsigned long p;
 389        unsigned int togo;
 390        union {
 391                unsigned int n;
 392                char s[4];
 393        } b;
 394
 395        if (copy_from_user(&abuf, arg, JSFPRGSZ))
 396                return -EFAULT; 
 397        p = abuf.off;
 398        togo = abuf.size;
 399        if ((togo & 3) || (p & 3)) return -EINVAL;
 400
 401        uptr = (char __user *) (unsigned long) abuf.data;
 402        while (togo != 0) {
 403                togo -= 4;
 404                if (copy_from_user(&b.s[0], uptr, 4))
 405                        return -EFAULT;
 406                jsf_write4(p, b.n);
 407                p += 4;
 408                uptr += 4;
 409        }
 410
 411        return 0;
 412}
 413
 414static long jsf_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
 415{
 416        mutex_lock(&jsf_mutex);
 417        int error = -ENOTTY;
 418        void __user *argp = (void __user *)arg;
 419
 420        if (!capable(CAP_SYS_ADMIN)) {
 421                mutex_unlock(&jsf_mutex);
 422                return -EPERM;
 423        }
 424        switch (cmd) {
 425        case JSFLASH_IDENT:
 426                if (copy_to_user(argp, &jsf0.id, JSFIDSZ)) {
 427                        mutex_unlock(&jsf_mutex);
 428                        return -EFAULT;
 429                }
 430                break;
 431        case JSFLASH_ERASE:
 432                error = jsf_ioctl_erase(arg);
 433                break;
 434        case JSFLASH_PROGRAM:
 435                error = jsf_ioctl_program(argp);
 436                break;
 437        }
 438
 439        mutex_unlock(&jsf_mutex);
 440        return error;
 441}
 442
 443static int jsf_mmap(struct file * file, struct vm_area_struct * vma)
 444{
 445        return -ENXIO;
 446}
 447
 448static int jsf_open(struct inode * inode, struct file * filp)
 449{
 450        mutex_lock(&jsf_mutex);
 451        if (jsf0.base == 0) {
 452                mutex_unlock(&jsf_mutex);
 453                return -ENXIO;
 454        }
 455        if (test_and_set_bit(0, (void *)&jsf0.busy) != 0) {
 456                mutex_unlock(&jsf_mutex);
 457                return -EBUSY;
 458        }
 459
 460        mutex_unlock(&jsf_mutex);
 461        return 0;       /* XXX What security? */
 462}
 463
 464static int jsf_release(struct inode *inode, struct file *file)
 465{
 466        jsf0.busy = 0;
 467        return 0;
 468}
 469
 470static const struct file_operations jsf_fops = {
 471        .owner =        THIS_MODULE,
 472        .llseek =       jsf_lseek,
 473        .read =         jsf_read,
 474        .write =        jsf_write,
 475        .unlocked_ioctl =       jsf_ioctl,
 476        .mmap =         jsf_mmap,
 477        .open =         jsf_open,
 478        .release =      jsf_release,
 479};
 480
 481static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops };
 482
 483static const struct block_device_operations jsfd_fops = {
 484        .owner =        THIS_MODULE,
 485};
 486
 487static int jsflash_init(void)
 488{
 489        int rc;
 490        struct jsflash *jsf;
 491        phandle node;
 492        char banner[128];
 493        struct linux_prom_registers reg0;
 494
 495        node = prom_getchild(prom_root_node);
 496        node = prom_searchsiblings(node, "flash-memory");
 497        if (node != 0 && (s32)node != -1) {
 498                if (prom_getproperty(node, "reg",
 499                    (char *)&reg0, sizeof(reg0)) == -1) {
 500                        printk("jsflash: no \"reg\" property\n");
 501                        return -ENXIO;
 502                }
 503                if (reg0.which_io != 0) {
 504                        printk("jsflash: bus number nonzero: 0x%x:%x\n",
 505                            reg0.which_io, reg0.phys_addr);
 506                        return -ENXIO;
 507                }
 508                /*
 509                 * Flash may be somewhere else, for instance on Ebus.
 510                 * So, don't do the following check for IIep flash space.
 511                 */
 512#if 0
 513                if ((reg0.phys_addr >> 24) != 0x20) {
 514                        printk("jsflash: suspicious address: 0x%x:%x\n",
 515                            reg0.which_io, reg0.phys_addr);
 516                        return -ENXIO;
 517                }
 518#endif
 519                if ((int)reg0.reg_size <= 0) {
 520                        printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size);
 521                        return -ENXIO;
 522                }
 523        } else {
 524                /* XXX Remove this code once PROLL ID12 got widespread */
 525                printk("jsflash: no /flash-memory node, use PROLL >= 12\n");
 526                prom_getproperty(prom_root_node, "banner-name", banner, 128);
 527                if (strcmp (banner, "JavaStation-NC") != 0 &&
 528                    strcmp (banner, "JavaStation-E") != 0) {
 529                        return -ENXIO;
 530                }
 531                reg0.which_io = 0;
 532                reg0.phys_addr = 0x20400000;
 533                reg0.reg_size  = 0x00800000;
 534        }
 535
 536        /* Let us be really paranoid for modifications to probing code. */
 537        if (sparc_cpu_model != sun4m) {
 538                /* We must be on sun4m because we use MMU Bypass ASI. */
 539                return -ENXIO;
 540        }
 541
 542        if (jsf0.base == 0) {
 543                jsf = &jsf0;
 544
 545                jsf->base = reg0.phys_addr;
 546                jsf->size = reg0.reg_size;
 547
 548                /* XXX Redo the userland interface. */
 549                jsf->id.off = JSF_BASE_ALL;
 550                jsf->id.size = 0x01000000;      /* 16M - all segments */
 551                strcpy(jsf->id.name, "Krups_all");
 552
 553                jsf->dv[0].dbase = jsf->base;
 554                jsf->dv[0].dsize = jsf->size;
 555                jsf->dv[1].dbase = jsf->base + 1024;
 556                jsf->dv[1].dsize = jsf->size - 1024;
 557                jsf->dv[2].dbase = JSF_BASE_ALL;
 558                jsf->dv[2].dsize = 0x01000000;
 559
 560                printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base,
 561                    (int) (jsf->size / (1024*1024)));
 562        }
 563
 564        if ((rc = misc_register(&jsf_dev)) != 0) {
 565                printk(KERN_ERR "jsf: unable to get misc minor %d\n",
 566                    JSF_MINOR);
 567                jsf0.base = 0;
 568                return rc;
 569        }
 570
 571        return 0;
 572}
 573
 574static int jsfd_init(void)
 575{
 576        static DEFINE_SPINLOCK(lock);
 577        struct jsflash *jsf;
 578        struct jsfd_part *jdp;
 579        int err;
 580        int i;
 581
 582        if (jsf0.base == 0)
 583                return -ENXIO;
 584
 585        err = -ENOMEM;
 586        for (i = 0; i < JSF_MAX; i++) {
 587                struct gendisk *disk = alloc_disk(1);
 588                if (!disk)
 589                        goto out;
 590                disk->queue = blk_init_queue(jsfd_do_request, &lock);
 591                if (!disk->queue) {
 592                        put_disk(disk);
 593                        goto out;
 594                }
 595                blk_queue_bounce_limit(disk->queue, BLK_BOUNCE_HIGH);
 596                jsfd_disk[i] = disk;
 597        }
 598
 599        if (register_blkdev(JSFD_MAJOR, "jsfd")) {
 600                err = -EIO;
 601                goto out;
 602        }
 603
 604        for (i = 0; i < JSF_MAX; i++) {
 605                struct gendisk *disk = jsfd_disk[i];
 606                if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
 607                jsf = &jsf0;    /* actually, &jsfv[i >> JSF_PART_BITS] */
 608                jdp = &jsf->dv[i&JSF_PART_MASK];
 609
 610                disk->major = JSFD_MAJOR;
 611                disk->first_minor = i;
 612                sprintf(disk->disk_name, "jsfd%d", i);
 613                disk->fops = &jsfd_fops;
 614                set_capacity(disk, jdp->dsize >> 9);
 615                disk->private_data = jdp;
 616                add_disk(disk);
 617                set_disk_ro(disk, 1);
 618        }
 619        return 0;
 620out:
 621        while (i--)
 622                put_disk(jsfd_disk[i]);
 623        return err;
 624}
 625
 626MODULE_LICENSE("GPL");
 627
 628static int __init jsflash_init_module(void) {
 629        int rc;
 630
 631        if ((rc = jsflash_init()) == 0) {
 632                jsfd_init();
 633                return 0;
 634        }
 635        return rc;
 636}
 637
 638static void __exit jsflash_cleanup_module(void)
 639{
 640        int i;
 641
 642        for (i = 0; i < JSF_MAX; i++) {
 643                if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
 644                del_gendisk(jsfd_disk[i]);
 645                blk_cleanup_queue(jsfd_disk[i]->queue);
 646                put_disk(jsfd_disk[i]);
 647        }
 648        if (jsf0.busy)
 649                printk("jsf0: cleaning busy unit\n");
 650        jsf0.base = 0;
 651        jsf0.busy = 0;
 652
 653        misc_deregister(&jsf_dev);
 654        unregister_blkdev(JSFD_MAJOR, "jsfd");
 655}
 656
 657module_init(jsflash_init_module);
 658module_exit(jsflash_cleanup_module);
 659