linux/drivers/staging/lustre/lustre/include/lu_object.h
<<
>>
Prefs
   1/*
   2 * GPL HEADER START
   3 *
   4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 only,
   8 * as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 * General Public License version 2 for more details (a copy is included
  14 * in the LICENSE file that accompanied this code).
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * version 2 along with this program; If not, see
  18 * http://www.gnu.org/licenses/gpl-2.0.html
  19 *
  20 * GPL HEADER END
  21 */
  22/*
  23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
  24 * Use is subject to license terms.
  25 *
  26 * Copyright (c) 2011, 2015, Intel Corporation.
  27 */
  28/*
  29 * This file is part of Lustre, http://www.lustre.org/
  30 * Lustre is a trademark of Sun Microsystems, Inc.
  31 */
  32
  33#ifndef __LUSTRE_LU_OBJECT_H
  34#define __LUSTRE_LU_OBJECT_H
  35
  36#include <stdarg.h>
  37#include <linux/percpu_counter.h>
  38#include "../../include/linux/libcfs/libcfs.h"
  39#include "lustre/lustre_idl.h"
  40#include "lu_ref.h"
  41
  42struct seq_file;
  43struct lustre_cfg;
  44struct lprocfs_stats;
  45
  46/** \defgroup lu lu
  47 * lu_* data-types represent server-side entities shared by data and meta-data
  48 * stacks.
  49 *
  50 * Design goals:
  51 *
  52 * -# support for layering.
  53 *
  54 *     Server side object is split into layers, one per device in the
  55 *     corresponding device stack. Individual layer is represented by struct
  56 *     lu_object. Compound layered object --- by struct lu_object_header. Most
  57 *     interface functions take lu_object as an argument and operate on the
  58 *     whole compound object. This decision was made due to the following
  59 *     reasons:
  60 *
  61 *      - it's envisaged that lu_object will be used much more often than
  62 *      lu_object_header;
  63 *
  64 *      - we want lower (non-top) layers to be able to initiate operations
  65 *      on the whole object.
  66 *
  67 *     Generic code supports layering more complex than simple stacking, e.g.,
  68 *     it is possible that at some layer object "spawns" multiple sub-objects
  69 *     on the lower layer.
  70 *
  71 * -# fid-based identification.
  72 *
  73 *     Compound object is uniquely identified by its fid. Objects are indexed
  74 *     by their fids (hash table is used for index).
  75 *
  76 * -# caching and life-cycle management.
  77 *
  78 *     Object's life-time is controlled by reference counting. When reference
  79 *     count drops to 0, object is returned to cache. Cached objects still
  80 *     retain their identity (i.e., fid), and can be recovered from cache.
  81 *
  82 *     Objects are kept in the global LRU list, and lu_site_purge() function
  83 *     can be used to reclaim given number of unused objects from the tail of
  84 *     the LRU.
  85 *
  86 * -# avoiding recursion.
  87 *
  88 *     Generic code tries to replace recursion through layers by iterations
  89 *     where possible. Additionally to the end of reducing stack consumption,
  90 *     data, when practically possible, are allocated through lu_context_key
  91 *     interface rather than on stack.
  92 * @{
  93 */
  94
  95struct lu_site;
  96struct lu_object;
  97struct lu_device;
  98struct lu_object_header;
  99struct lu_context;
 100struct lu_env;
 101
 102/**
 103 * Operations common for data and meta-data devices.
 104 */
 105struct lu_device_operations {
 106        /**
 107         * Allocate object for the given device (without lower-layer
 108         * parts). This is called by lu_object_operations::loo_object_init()
 109         * from the parent layer, and should setup at least lu_object::lo_dev
 110         * and lu_object::lo_ops fields of resulting lu_object.
 111         *
 112         * Object creation protocol.
 113         *
 114         * Due to design goal of avoiding recursion, object creation (see
 115         * lu_object_alloc()) is somewhat involved:
 116         *
 117         *  - first, lu_device_operations::ldo_object_alloc() method of the
 118         *  top-level device in the stack is called. It should allocate top
 119         *  level object (including lu_object_header), but without any
 120         *  lower-layer sub-object(s).
 121         *
 122         *  - then lu_object_alloc() sets fid in the header of newly created
 123         *  object.
 124         *
 125         *  - then lu_object_operations::loo_object_init() is called. It has
 126         *  to allocate lower-layer object(s). To do this,
 127         *  lu_object_operations::loo_object_init() calls ldo_object_alloc()
 128         *  of the lower-layer device(s).
 129         *
 130         *  - for all new objects allocated by
 131         *  lu_object_operations::loo_object_init() (and inserted into object
 132         *  stack), lu_object_operations::loo_object_init() is called again
 133         *  repeatedly, until no new objects are created.
 134         *
 135         * \post ergo(!IS_ERR(result), result->lo_dev == d &&
 136         *                           result->lo_ops != NULL);
 137         */
 138        struct lu_object *(*ldo_object_alloc)(const struct lu_env *env,
 139                                              const struct lu_object_header *h,
 140                                              struct lu_device *d);
 141        /**
 142         * process config specific for device.
 143         */
 144        int (*ldo_process_config)(const struct lu_env *env,
 145                                  struct lu_device *, struct lustre_cfg *);
 146        int (*ldo_recovery_complete)(const struct lu_env *,
 147                                     struct lu_device *);
 148
 149        /**
 150         * initialize local objects for device. this method called after layer
 151         * has been initialized (after LCFG_SETUP stage) and before it starts
 152         * serving user requests.
 153         */
 154
 155        int (*ldo_prepare)(const struct lu_env *,
 156                           struct lu_device *parent,
 157                           struct lu_device *dev);
 158
 159};
 160
 161/**
 162 * For lu_object_conf flags
 163 */
 164enum loc_flags {
 165        /* This is a new object to be allocated, or the file
 166         * corresponding to the object does not exists.
 167         */
 168        LOC_F_NEW       = 0x00000001,
 169};
 170
 171/**
 172 * Object configuration, describing particulars of object being created. On
 173 * server this is not used, as server objects are full identified by fid. On
 174 * client configuration contains struct lustre_md.
 175 */
 176struct lu_object_conf {
 177        /**
 178         * Some hints for obj find and alloc.
 179         */
 180        enum loc_flags     loc_flags;
 181};
 182
 183/**
 184 * Type of "printer" function used by lu_object_operations::loo_object_print()
 185 * method.
 186 *
 187 * Printer function is needed to provide some flexibility in (semi-)debugging
 188 * output: possible implementations: printk, CDEBUG, sysfs/seq_file
 189 */
 190typedef int (*lu_printer_t)(const struct lu_env *env,
 191                            void *cookie, const char *format, ...)
 192        __printf(3, 4);
 193
 194/**
 195 * Operations specific for particular lu_object.
 196 */
 197struct lu_object_operations {
 198        /**
 199         * Allocate lower-layer parts of the object by calling
 200         * lu_device_operations::ldo_object_alloc() of the corresponding
 201         * underlying device.
 202         *
 203         * This method is called once for each object inserted into object
 204         * stack. It's responsibility of this method to insert lower-layer
 205         * object(s) it create into appropriate places of object stack.
 206         */
 207        int (*loo_object_init)(const struct lu_env *env,
 208                               struct lu_object *o,
 209                               const struct lu_object_conf *conf);
 210        /**
 211         * Called (in top-to-bottom order) during object allocation after all
 212         * layers were allocated and initialized. Can be used to perform
 213         * initialization depending on lower layers.
 214         */
 215        int (*loo_object_start)(const struct lu_env *env,
 216                                struct lu_object *o);
 217        /**
 218         * Called before lu_object_operations::loo_object_free() to signal
 219         * that object is being destroyed. Dual to
 220         * lu_object_operations::loo_object_init().
 221         */
 222        void (*loo_object_delete)(const struct lu_env *env,
 223                                  struct lu_object *o);
 224        /**
 225         * Dual to lu_device_operations::ldo_object_alloc(). Called when
 226         * object is removed from memory.
 227         */
 228        void (*loo_object_free)(const struct lu_env *env,
 229                                struct lu_object *o);
 230        /**
 231         * Called when last active reference to the object is released (and
 232         * object returns to the cache). This method is optional.
 233         */
 234        void (*loo_object_release)(const struct lu_env *env,
 235                                   struct lu_object *o);
 236        /**
 237         * Optional debugging helper. Print given object.
 238         */
 239        int (*loo_object_print)(const struct lu_env *env, void *cookie,
 240                                lu_printer_t p, const struct lu_object *o);
 241        /**
 242         * Optional debugging method. Returns true iff method is internally
 243         * consistent.
 244         */
 245        int (*loo_object_invariant)(const struct lu_object *o);
 246};
 247
 248/**
 249 * Type of lu_device.
 250 */
 251struct lu_device_type;
 252
 253/**
 254 * Device: a layer in the server side abstraction stacking.
 255 */
 256struct lu_device {
 257        /**
 258         * reference count. This is incremented, in particular, on each object
 259         * created at this layer.
 260         *
 261         * \todo XXX which means that atomic_t is probably too small.
 262         */
 263        atomic_t                       ld_ref;
 264        /**
 265         * Pointer to device type. Never modified once set.
 266         */
 267        struct lu_device_type       *ld_type;
 268        /**
 269         * Operation vector for this device.
 270         */
 271        const struct lu_device_operations *ld_ops;
 272        /**
 273         * Stack this device belongs to.
 274         */
 275        struct lu_site              *ld_site;
 276
 277        /** \todo XXX: temporary back pointer into obd. */
 278        struct obd_device                *ld_obd;
 279        /**
 280         * A list of references to this object, for debugging.
 281         */
 282        struct lu_ref                 ld_reference;
 283        /**
 284         * Link the device to the site.
 285         **/
 286        struct list_head                         ld_linkage;
 287};
 288
 289struct lu_device_type_operations;
 290
 291/**
 292 * Tag bits for device type. They are used to distinguish certain groups of
 293 * device types.
 294 */
 295enum lu_device_tag {
 296        /** this is meta-data device */
 297        LU_DEVICE_MD = (1 << 0),
 298        /** this is data device */
 299        LU_DEVICE_DT = (1 << 1),
 300        /** data device in the client stack */
 301        LU_DEVICE_CL = (1 << 2)
 302};
 303
 304/**
 305 * Type of device.
 306 */
 307struct lu_device_type {
 308        /**
 309         * Tag bits. Taken from enum lu_device_tag. Never modified once set.
 310         */
 311        __u32                              ldt_tags;
 312        /**
 313         * Name of this class. Unique system-wide. Never modified once set.
 314         */
 315        char                               *ldt_name;
 316        /**
 317         * Operations for this type.
 318         */
 319        const struct lu_device_type_operations *ldt_ops;
 320        /**
 321         * \todo XXX: temporary pointer to associated obd_type.
 322         */
 323        struct obd_type                 *ldt_obd_type;
 324        /**
 325         * \todo XXX: temporary: context tags used by obd_*() calls.
 326         */
 327        __u32                              ldt_ctx_tags;
 328        /**
 329         * Number of existing device type instances.
 330         */
 331        atomic_t                                ldt_device_nr;
 332        /**
 333         * Linkage into a global list of all device types.
 334         *
 335         * \see lu_device_types.
 336         */
 337        struct list_head                              ldt_linkage;
 338};
 339
 340/**
 341 * Operations on a device type.
 342 */
 343struct lu_device_type_operations {
 344        /**
 345         * Allocate new device.
 346         */
 347        struct lu_device *(*ldto_device_alloc)(const struct lu_env *env,
 348                                               struct lu_device_type *t,
 349                                               struct lustre_cfg *lcfg);
 350        /**
 351         * Free device. Dual to
 352         * lu_device_type_operations::ldto_device_alloc(). Returns pointer to
 353         * the next device in the stack.
 354         */
 355        struct lu_device *(*ldto_device_free)(const struct lu_env *,
 356                                              struct lu_device *);
 357
 358        /**
 359         * Initialize the devices after allocation
 360         */
 361        int  (*ldto_device_init)(const struct lu_env *env,
 362                                 struct lu_device *, const char *,
 363                                 struct lu_device *);
 364        /**
 365         * Finalize device. Dual to
 366         * lu_device_type_operations::ldto_device_init(). Returns pointer to
 367         * the next device in the stack.
 368         */
 369        struct lu_device *(*ldto_device_fini)(const struct lu_env *env,
 370                                              struct lu_device *);
 371        /**
 372         * Initialize device type. This is called on module load.
 373         */
 374        int  (*ldto_init)(struct lu_device_type *t);
 375        /**
 376         * Finalize device type. Dual to
 377         * lu_device_type_operations::ldto_init(). Called on module unload.
 378         */
 379        void (*ldto_fini)(struct lu_device_type *t);
 380        /**
 381         * Called when the first device is created.
 382         */
 383        void (*ldto_start)(struct lu_device_type *t);
 384        /**
 385         * Called when number of devices drops to 0.
 386         */
 387        void (*ldto_stop)(struct lu_device_type *t);
 388};
 389
 390static inline int lu_device_is_md(const struct lu_device *d)
 391{
 392        return ergo(d, d->ld_type->ldt_tags & LU_DEVICE_MD);
 393}
 394
 395/**
 396 * Common object attributes.
 397 */
 398struct lu_attr {
 399        /** size in bytes */
 400        __u64     la_size;
 401        /** modification time in seconds since Epoch */
 402        s64       la_mtime;
 403        /** access time in seconds since Epoch */
 404        s64       la_atime;
 405        /** change time in seconds since Epoch */
 406        s64       la_ctime;
 407        /** 512-byte blocks allocated to object */
 408        __u64     la_blocks;
 409        /** permission bits and file type */
 410        __u32     la_mode;
 411        /** owner id */
 412        __u32     la_uid;
 413        /** group id */
 414        __u32     la_gid;
 415        /** object flags */
 416        __u32     la_flags;
 417        /** number of persistent references to this object */
 418        __u32     la_nlink;
 419        /** blk bits of the object*/
 420        __u32     la_blkbits;
 421        /** blk size of the object*/
 422        __u32     la_blksize;
 423        /** real device */
 424        __u32     la_rdev;
 425        /**
 426         * valid bits
 427         *
 428         * \see enum la_valid
 429         */
 430        __u64     la_valid;
 431};
 432
 433/** Bit-mask of valid attributes */
 434enum la_valid {
 435        LA_ATIME = 1 << 0,
 436        LA_MTIME = 1 << 1,
 437        LA_CTIME = 1 << 2,
 438        LA_SIZE  = 1 << 3,
 439        LA_MODE  = 1 << 4,
 440        LA_UID   = 1 << 5,
 441        LA_GID   = 1 << 6,
 442        LA_BLOCKS = 1 << 7,
 443        LA_TYPE   = 1 << 8,
 444        LA_FLAGS  = 1 << 9,
 445        LA_NLINK  = 1 << 10,
 446        LA_RDEV   = 1 << 11,
 447        LA_BLKSIZE = 1 << 12,
 448        LA_KILL_SUID = 1 << 13,
 449        LA_KILL_SGID = 1 << 14,
 450};
 451
 452/**
 453 * Layer in the layered object.
 454 */
 455struct lu_object {
 456        /**
 457         * Header for this object.
 458         */
 459        struct lu_object_header    *lo_header;
 460        /**
 461         * Device for this layer.
 462         */
 463        struct lu_device                  *lo_dev;
 464        /**
 465         * Operations for this object.
 466         */
 467        const struct lu_object_operations *lo_ops;
 468        /**
 469         * Linkage into list of all layers.
 470         */
 471        struct list_head                         lo_linkage;
 472        /**
 473         * Link to the device, for debugging.
 474         */
 475        struct lu_ref_link                 lo_dev_ref;
 476};
 477
 478enum lu_object_header_flags {
 479        /**
 480         * Don't keep this object in cache. Object will be destroyed as soon
 481         * as last reference to it is released. This flag cannot be cleared
 482         * once set.
 483         */
 484        LU_OBJECT_HEARD_BANSHEE = 0,
 485        /**
 486         * Mark this object has already been taken out of cache.
 487         */
 488        LU_OBJECT_UNHASHED = 1,
 489};
 490
 491enum lu_object_header_attr {
 492        LOHA_EXISTS   = 1 << 0,
 493        LOHA_REMOTE   = 1 << 1,
 494        /**
 495         * UNIX file type is stored in S_IFMT bits.
 496         */
 497        LOHA_FT_START = 001 << 12, /**< S_IFIFO */
 498        LOHA_FT_END   = 017 << 12, /**< S_IFMT */
 499};
 500
 501/**
 502 * "Compound" object, consisting of multiple layers.
 503 *
 504 * Compound object with given fid is unique with given lu_site.
 505 *
 506 * Note, that object does *not* necessary correspond to the real object in the
 507 * persistent storage: object is an anchor for locking and method calling, so
 508 * it is created for things like not-yet-existing child created by mkdir or
 509 * create calls. lu_object_operations::loo_exists() can be used to check
 510 * whether object is backed by persistent storage entity.
 511 */
 512struct lu_object_header {
 513        /**
 514         * Fid, uniquely identifying this object.
 515         */
 516        struct lu_fid           loh_fid;
 517        /**
 518         * Object flags from enum lu_object_header_flags. Set and checked
 519         * atomically.
 520         */
 521        unsigned long     loh_flags;
 522        /**
 523         * Object reference count. Protected by lu_site::ls_guard.
 524         */
 525        atomic_t           loh_ref;
 526        /**
 527         * Common object attributes, cached for efficiency. From enum
 528         * lu_object_header_attr.
 529         */
 530        __u32             loh_attr;
 531        /**
 532         * Linkage into per-site hash table. Protected by lu_site::ls_guard.
 533         */
 534        struct hlist_node       loh_hash;
 535        /**
 536         * Linkage into per-site LRU list. Protected by lu_site::ls_guard.
 537         */
 538        struct list_head             loh_lru;
 539        /**
 540         * Linkage into list of layers. Never modified once set (except lately
 541         * during object destruction). No locking is necessary.
 542         */
 543        struct list_head             loh_layers;
 544        /**
 545         * A list of references to this object, for debugging.
 546         */
 547        struct lu_ref     loh_reference;
 548};
 549
 550struct fld;
 551
 552struct lu_site_bkt_data {
 553        /**
 554         * number of object in this bucket on the lsb_lru list.
 555         */
 556        long                    lsb_lru_len;
 557        /**
 558         * LRU list, updated on each access to object. Protected by
 559         * bucket lock of lu_site::ls_obj_hash.
 560         *
 561         * "Cold" end of LRU is lu_site::ls_lru.next. Accessed object are
 562         * moved to the lu_site::ls_lru.prev (this is due to the non-existence
 563         * of list_for_each_entry_safe_reverse()).
 564         */
 565        struct list_head                lsb_lru;
 566        /**
 567         * Wait-queue signaled when an object in this site is ultimately
 568         * destroyed (lu_object_free()). It is used by lu_object_find() to
 569         * wait before re-trying when object in the process of destruction is
 570         * found in the hash table.
 571         *
 572         * \see htable_lookup().
 573         */
 574        wait_queue_head_t              lsb_marche_funebre;
 575};
 576
 577enum {
 578        LU_SS_CREATED    = 0,
 579        LU_SS_CACHE_HIT,
 580        LU_SS_CACHE_MISS,
 581        LU_SS_CACHE_RACE,
 582        LU_SS_CACHE_DEATH_RACE,
 583        LU_SS_LRU_PURGED,
 584        LU_SS_LAST_STAT
 585};
 586
 587/**
 588 * lu_site is a "compartment" within which objects are unique, and LRU
 589 * discipline is maintained.
 590 *
 591 * lu_site exists so that multiple layered stacks can co-exist in the same
 592 * address space.
 593 *
 594 * lu_site has the same relation to lu_device as lu_object_header to
 595 * lu_object.
 596 */
 597struct lu_site {
 598        /**
 599         * objects hash table
 600         */
 601        struct cfs_hash        *ls_obj_hash;
 602        /**
 603         * index of bucket on hash table while purging
 604         */
 605        unsigned int            ls_purge_start;
 606        /**
 607         * Top-level device for this stack.
 608         */
 609        struct lu_device         *ls_top_dev;
 610        /**
 611         * Bottom-level device for this stack
 612         */
 613        struct lu_device        *ls_bottom_dev;
 614        /**
 615         * Linkage into global list of sites.
 616         */
 617        struct list_head                ls_linkage;
 618        /**
 619         * List for lu device for this site, protected
 620         * by ls_ld_lock.
 621         **/
 622        struct list_head                ls_ld_linkage;
 623        spinlock_t              ls_ld_lock;
 624
 625        /**
 626         * Lock to serialize site purge.
 627         */
 628        struct mutex            ls_purge_mutex;
 629
 630        /**
 631         * lu_site stats
 632         */
 633        struct lprocfs_stats    *ls_stats;
 634        /**
 635         * XXX: a hack! fld has to find md_site via site, remove when possible
 636         */
 637        struct seq_server_site  *ld_seq_site;
 638        /**
 639         * Number of objects in lsb_lru_lists - used for shrinking
 640         */
 641        struct percpu_counter    ls_lru_len_counter;
 642};
 643
 644static inline struct lu_site_bkt_data *
 645lu_site_bkt_from_fid(struct lu_site *site, struct lu_fid *fid)
 646{
 647        struct cfs_hash_bd bd;
 648
 649        cfs_hash_bd_get(site->ls_obj_hash, fid, &bd);
 650        return cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
 651}
 652
 653static inline struct seq_server_site *lu_site2seq(const struct lu_site *s)
 654{
 655        return s->ld_seq_site;
 656}
 657
 658/** \name ctors
 659 * Constructors/destructors.
 660 * @{
 661 */
 662
 663int lu_site_init(struct lu_site *s, struct lu_device *d);
 664void lu_site_fini(struct lu_site *s);
 665int lu_site_init_finish(struct lu_site *s);
 666void lu_stack_fini(const struct lu_env *env, struct lu_device *top);
 667void lu_device_get(struct lu_device *d);
 668void lu_device_put(struct lu_device *d);
 669int lu_device_init(struct lu_device *d, struct lu_device_type *t);
 670void lu_device_fini(struct lu_device *d);
 671int lu_object_header_init(struct lu_object_header *h);
 672void lu_object_header_fini(struct lu_object_header *h);
 673int lu_object_init(struct lu_object *o,
 674                   struct lu_object_header *h, struct lu_device *d);
 675void lu_object_fini(struct lu_object *o);
 676void lu_object_add_top(struct lu_object_header *h, struct lu_object *o);
 677void lu_object_add(struct lu_object *before, struct lu_object *o);
 678
 679/**
 680 * Helpers to initialize and finalize device types.
 681 */
 682
 683int  lu_device_type_init(struct lu_device_type *ldt);
 684void lu_device_type_fini(struct lu_device_type *ldt);
 685
 686/** @} ctors */
 687
 688/** \name caching
 689 * Caching and reference counting.
 690 * @{
 691 */
 692
 693/**
 694 * Acquire additional reference to the given object. This function is used to
 695 * attain additional reference. To acquire initial reference use
 696 * lu_object_find().
 697 */
 698static inline void lu_object_get(struct lu_object *o)
 699{
 700        LASSERT(atomic_read(&o->lo_header->loh_ref) > 0);
 701        atomic_inc(&o->lo_header->loh_ref);
 702}
 703
 704/**
 705 * Return true of object will not be cached after last reference to it is
 706 * released.
 707 */
 708static inline int lu_object_is_dying(const struct lu_object_header *h)
 709{
 710        return test_bit(LU_OBJECT_HEARD_BANSHEE, &h->loh_flags);
 711}
 712
 713void lu_object_put(const struct lu_env *env, struct lu_object *o);
 714void lu_object_unhash(const struct lu_env *env, struct lu_object *o);
 715int lu_site_purge_objects(const struct lu_env *env, struct lu_site *s, int nr,
 716                          bool canblock);
 717
 718static inline int lu_site_purge(const struct lu_env *env, struct lu_site *s,
 719                                int nr)
 720{
 721        return lu_site_purge_objects(env, s, nr, true);
 722}
 723
 724void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
 725                   lu_printer_t printer);
 726struct lu_object *lu_object_find_at(const struct lu_env *env,
 727                                    struct lu_device *dev,
 728                                    const struct lu_fid *f,
 729                                    const struct lu_object_conf *conf);
 730struct lu_object *lu_object_find_slice(const struct lu_env *env,
 731                                       struct lu_device *dev,
 732                                       const struct lu_fid *f,
 733                                       const struct lu_object_conf *conf);
 734/** @} caching */
 735
 736/** \name helpers
 737 * Helpers.
 738 * @{
 739 */
 740
 741/**
 742 * First (topmost) sub-object of given compound object
 743 */
 744static inline struct lu_object *lu_object_top(struct lu_object_header *h)
 745{
 746        LASSERT(!list_empty(&h->loh_layers));
 747        return container_of0(h->loh_layers.next, struct lu_object, lo_linkage);
 748}
 749
 750/**
 751 * Next sub-object in the layering
 752 */
 753static inline struct lu_object *lu_object_next(const struct lu_object *o)
 754{
 755        return container_of0(o->lo_linkage.next, struct lu_object, lo_linkage);
 756}
 757
 758/**
 759 * Pointer to the fid of this object.
 760 */
 761static inline const struct lu_fid *lu_object_fid(const struct lu_object *o)
 762{
 763        return &o->lo_header->loh_fid;
 764}
 765
 766/**
 767 * return device operations vector for this object
 768 */
 769static inline const struct lu_device_operations *
 770lu_object_ops(const struct lu_object *o)
 771{
 772        return o->lo_dev->ld_ops;
 773}
 774
 775/**
 776 * Given a compound object, find its slice, corresponding to the device type
 777 * \a dtype.
 778 */
 779struct lu_object *lu_object_locate(struct lu_object_header *h,
 780                                   const struct lu_device_type *dtype);
 781
 782/**
 783 * Printer function emitting messages through libcfs_debug_msg().
 784 */
 785int lu_cdebug_printer(const struct lu_env *env,
 786                      void *cookie, const char *format, ...);
 787
 788/**
 789 * Print object description followed by a user-supplied message.
 790 */
 791#define LU_OBJECT_DEBUG(mask, env, object, format, ...)            \
 792do {                                                                  \
 793        if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) {                \
 794                LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL);        \
 795                lu_object_print(env, &msgdata, lu_cdebug_printer, object);\
 796                CDEBUG(mask, format "\n", ## __VA_ARGS__);                  \
 797        }                                                                \
 798} while (0)
 799
 800/**
 801 * Print short object description followed by a user-supplied message.
 802 */
 803#define LU_OBJECT_HEADER(mask, env, object, format, ...)                \
 804do {                                                                \
 805        if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) {              \
 806                LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL);        \
 807                lu_object_header_print(env, &msgdata, lu_cdebug_printer,\
 808                                       (object)->lo_header);        \
 809                lu_cdebug_printer(env, &msgdata, "\n");          \
 810                CDEBUG(mask, format, ## __VA_ARGS__);             \
 811        }                                                              \
 812} while (0)
 813
 814void lu_object_print       (const struct lu_env *env, void *cookie,
 815                            lu_printer_t printer, const struct lu_object *o);
 816void lu_object_header_print(const struct lu_env *env, void *cookie,
 817                            lu_printer_t printer,
 818                            const struct lu_object_header *hdr);
 819
 820/**
 821 * Check object consistency.
 822 */
 823int lu_object_invariant(const struct lu_object *o);
 824
 825/**
 826 * Check whether object exists, no matter on local or remote storage.
 827 * Note: LOHA_EXISTS will be set once some one created the object,
 828 * and it does not needs to be committed to storage.
 829 */
 830#define lu_object_exists(o) ((o)->lo_header->loh_attr & LOHA_EXISTS)
 831
 832/**
 833 * Check whether object on the remote storage.
 834 */
 835#define lu_object_remote(o) unlikely((o)->lo_header->loh_attr & LOHA_REMOTE)
 836
 837static inline int lu_object_assert_exists(const struct lu_object *o)
 838{
 839        return lu_object_exists(o);
 840}
 841
 842static inline int lu_object_assert_not_exists(const struct lu_object *o)
 843{
 844        return !lu_object_exists(o);
 845}
 846
 847/**
 848 * Attr of this object.
 849 */
 850static inline __u32 lu_object_attr(const struct lu_object *o)
 851{
 852        LASSERT(lu_object_exists(o) != 0);
 853        return o->lo_header->loh_attr;
 854}
 855
 856static inline void lu_object_ref_add(struct lu_object *o,
 857                                     const char *scope,
 858                                     const void *source)
 859{
 860        lu_ref_add(&o->lo_header->loh_reference, scope, source);
 861}
 862
 863static inline void lu_object_ref_add_at(struct lu_object *o,
 864                                        struct lu_ref_link *link,
 865                                        const char *scope,
 866                                        const void *source)
 867{
 868        lu_ref_add_at(&o->lo_header->loh_reference, link, scope, source);
 869}
 870
 871static inline void lu_object_ref_del(struct lu_object *o,
 872                                     const char *scope, const void *source)
 873{
 874        lu_ref_del(&o->lo_header->loh_reference, scope, source);
 875}
 876
 877static inline void lu_object_ref_del_at(struct lu_object *o,
 878                                        struct lu_ref_link *link,
 879                                        const char *scope, const void *source)
 880{
 881        lu_ref_del_at(&o->lo_header->loh_reference, link, scope, source);
 882}
 883
 884/** input params, should be filled out by mdt */
 885struct lu_rdpg {
 886        /** hash */
 887        __u64              rp_hash;
 888        /** count in bytes */
 889        unsigned int        rp_count;
 890        /** number of pages */
 891        unsigned int        rp_npages;
 892        /** requested attr */
 893        __u32              rp_attrs;
 894        /** pointers to pages */
 895        struct page        **rp_pages;
 896};
 897
 898enum lu_xattr_flags {
 899        LU_XATTR_REPLACE = (1 << 0),
 900        LU_XATTR_CREATE  = (1 << 1)
 901};
 902
 903/** @} helpers */
 904
 905/** \name lu_context
 906 * @{
 907 */
 908
 909/** For lu_context health-checks */
 910enum lu_context_state {
 911        LCS_INITIALIZED = 1,
 912        LCS_ENTERED,
 913        LCS_LEFT,
 914        LCS_FINALIZED
 915};
 916
 917/**
 918 * lu_context. Execution context for lu_object methods. Currently associated
 919 * with thread.
 920 *
 921 * All lu_object methods, except device and device type methods (called during
 922 * system initialization and shutdown) are executed "within" some
 923 * lu_context. This means, that pointer to some "current" lu_context is passed
 924 * as an argument to all methods.
 925 *
 926 * All service ptlrpc threads create lu_context as part of their
 927 * initialization. It is possible to create "stand-alone" context for other
 928 * execution environments (like system calls).
 929 *
 930 * lu_object methods mainly use lu_context through lu_context_key interface
 931 * that allows each layer to associate arbitrary pieces of data with each
 932 * context (see pthread_key_create(3) for similar interface).
 933 *
 934 * On a client, lu_context is bound to a thread, see cl_env_get().
 935 *
 936 * \see lu_context_key
 937 */
 938struct lu_context {
 939        /**
 940         * lu_context is used on the client side too. Yet we don't want to
 941         * allocate values of server-side keys for the client contexts and
 942         * vice versa.
 943         *
 944         * To achieve this, set of tags in introduced. Contexts and keys are
 945         * marked with tags. Key value are created only for context whose set
 946         * of tags has non-empty intersection with one for key. Tags are taken
 947         * from enum lu_context_tag.
 948         */
 949        __u32             lc_tags;
 950        enum lu_context_state  lc_state;
 951        /**
 952         * Pointer to the home service thread. NULL for other execution
 953         * contexts.
 954         */
 955        struct ptlrpc_thread  *lc_thread;
 956        /**
 957         * Pointer to an array with key values. Internal implementation
 958         * detail.
 959         */
 960        void             **lc_value;
 961        /**
 962         * Linkage into a list of all remembered contexts. Only
 963         * `non-transient' contexts, i.e., ones created for service threads
 964         * are placed here.
 965         */
 966        struct list_head             lc_remember;
 967        /**
 968         * Version counter used to skip calls to lu_context_refill() when no
 969         * keys were registered.
 970         */
 971        unsigned int            lc_version;
 972        /**
 973         * Debugging cookie.
 974         */
 975        unsigned int            lc_cookie;
 976};
 977
 978/**
 979 * lu_context_key interface. Similar to pthread_key.
 980 */
 981
 982enum lu_context_tag {
 983        /**
 984         * Thread on md server
 985         */
 986        LCT_MD_THREAD = 1 << 0,
 987        /**
 988         * Thread on dt server
 989         */
 990        LCT_DT_THREAD = 1 << 1,
 991        /**
 992         * Context for transaction handle
 993         */
 994        LCT_TX_HANDLE = 1 << 2,
 995        /**
 996         * Thread on client
 997         */
 998        LCT_CL_THREAD = 1 << 3,
 999        /**
1000         * A per-request session on a server, and a per-system-call session on
1001         * a client.
1002         */
1003        LCT_SESSION   = 1 << 4,
1004        /**
1005         * A per-request data on OSP device
1006         */
1007        LCT_OSP_THREAD = 1 << 5,
1008        /**
1009         * MGS device thread
1010         */
1011        LCT_MG_THREAD = 1 << 6,
1012        /**
1013         * Context for local operations
1014         */
1015        LCT_LOCAL = 1 << 7,
1016        /**
1017         * session for server thread
1018         **/
1019        LCT_SERVER_SESSION = BIT(8),
1020        /**
1021         * Set when at least one of keys, having values in this context has
1022         * non-NULL lu_context_key::lct_exit() method. This is used to
1023         * optimize lu_context_exit() call.
1024         */
1025        LCT_HAS_EXIT  = 1 << 28,
1026        /**
1027         * Don't add references for modules creating key values in that context.
1028         * This is only for contexts used internally by lu_object framework.
1029         */
1030        LCT_NOREF     = 1 << 29,
1031        /**
1032         * Key is being prepared for retiring, don't create new values for it.
1033         */
1034        LCT_QUIESCENT = 1 << 30,
1035        /**
1036         * Context should be remembered.
1037         */
1038        LCT_REMEMBER  = 1 << 31,
1039        /**
1040         * Contexts usable in cache shrinker thread.
1041         */
1042        LCT_SHRINKER  = LCT_MD_THREAD | LCT_DT_THREAD | LCT_CL_THREAD |
1043                        LCT_NOREF
1044};
1045
1046/**
1047 * Key. Represents per-context value slot.
1048 *
1049 * Keys are usually registered when module owning the key is initialized, and
1050 * de-registered when module is unloaded. Once key is registered, all new
1051 * contexts with matching tags, will get key value. "Old" contexts, already
1052 * initialized at the time of key registration, can be forced to get key value
1053 * by calling lu_context_refill().
1054 *
1055 * Every key value is counted in lu_context_key::lct_used and acquires a
1056 * reference on an owning module. This means, that all key values have to be
1057 * destroyed before module can be unloaded. This is usually achieved by
1058 * stopping threads started by the module, that created contexts in their
1059 * entry functions. Situation is complicated by the threads shared by multiple
1060 * modules, like ptlrpcd daemon on a client. To work around this problem,
1061 * contexts, created in such threads, are `remembered' (see
1062 * LCT_REMEMBER)---i.e., added into a global list. When module is preparing
1063 * for unloading it does the following:
1064 *
1065 *     - marks its keys as `quiescent' (lu_context_tag::LCT_QUIESCENT)
1066 *       preventing new key values from being allocated in the new contexts,
1067 *       and
1068 *
1069 *     - scans a list of remembered contexts, destroying values of module
1070 *       keys, thus releasing references to the module.
1071 *
1072 * This is done by lu_context_key_quiesce(). If module is re-activated
1073 * before key has been de-registered, lu_context_key_revive() call clears
1074 * `quiescent' marker.
1075 *
1076 * lu_context code doesn't provide any internal synchronization for these
1077 * activities---it's assumed that startup (including threads start-up) and
1078 * shutdown are serialized by some external means.
1079 *
1080 * \see lu_context
1081 */
1082struct lu_context_key {
1083        /**
1084         * Set of tags for which values of this key are to be instantiated.
1085         */
1086        __u32 lct_tags;
1087        /**
1088         * Value constructor. This is called when new value is created for a
1089         * context. Returns pointer to new value of error pointer.
1090         */
1091        void  *(*lct_init)(const struct lu_context *ctx,
1092                           struct lu_context_key *key);
1093        /**
1094         * Value destructor. Called when context with previously allocated
1095         * value of this slot is destroyed. \a data is a value that was returned
1096         * by a matching call to lu_context_key::lct_init().
1097         */
1098        void   (*lct_fini)(const struct lu_context *ctx,
1099                           struct lu_context_key *key, void *data);
1100        /**
1101         * Optional method called on lu_context_exit() for all allocated
1102         * keys. Can be used by debugging code checking that locks are
1103         * released, etc.
1104         */
1105        void   (*lct_exit)(const struct lu_context *ctx,
1106                           struct lu_context_key *key, void *data);
1107        /**
1108         * Internal implementation detail: index within lu_context::lc_value[]
1109         * reserved for this key.
1110         */
1111        int      lct_index;
1112        /**
1113         * Internal implementation detail: number of values created for this
1114         * key.
1115         */
1116        atomic_t lct_used;
1117        /**
1118         * Internal implementation detail: module for this key.
1119         */
1120        struct module *lct_owner;
1121        /**
1122         * References to this key. For debugging.
1123         */
1124        struct lu_ref  lct_reference;
1125};
1126
1127#define LU_KEY_INIT(mod, type)                              \
1128        static void *mod##_key_init(const struct lu_context *ctx, \
1129                                    struct lu_context_key *key)   \
1130        {                                                        \
1131                type *value;                                  \
1132                                                                  \
1133                BUILD_BUG_ON(PAGE_SIZE < sizeof(*value));        \
1134                                                                  \
1135                value = kzalloc(sizeof(*value), GFP_NOFS);      \
1136                if (!value)                             \
1137                        value = ERR_PTR(-ENOMEM);                \
1138                                                                  \
1139                return value;                                \
1140        }                                                        \
1141        struct __##mod##__dummy_init {; } /* semicolon catcher */
1142
1143#define LU_KEY_FINI(mod, type)                                        \
1144        static void mod##_key_fini(const struct lu_context *ctx,            \
1145                                    struct lu_context_key *key, void *data) \
1146        {                                                                  \
1147                type *info = data;                                        \
1148                                                                            \
1149                kfree(info);                                     \
1150        }                                                                  \
1151        struct __##mod##__dummy_fini {; } /* semicolon catcher */
1152
1153#define LU_KEY_INIT_FINI(mod, type)   \
1154        LU_KEY_INIT(mod, type); \
1155        LU_KEY_FINI(mod, type)
1156
1157#define LU_CONTEXT_KEY_DEFINE(mod, tags)                \
1158        struct lu_context_key mod##_thread_key = {      \
1159                .lct_tags = tags,                      \
1160                .lct_init = mod##_key_init,          \
1161                .lct_fini = mod##_key_fini            \
1162        }
1163
1164#define LU_CONTEXT_KEY_INIT(key)                        \
1165do {                                                \
1166        (key)->lct_owner = THIS_MODULE;          \
1167} while (0)
1168
1169int lu_context_key_register(struct lu_context_key *key);
1170void lu_context_key_degister(struct lu_context_key *key);
1171void *lu_context_key_get(const struct lu_context *ctx,
1172                         const struct lu_context_key *key);
1173void lu_context_key_quiesce(struct lu_context_key *key);
1174void lu_context_key_revive(struct lu_context_key *key);
1175
1176/*
1177 * LU_KEY_INIT_GENERIC() has to be a macro to correctly determine an
1178 * owning module.
1179 */
1180
1181#define LU_KEY_INIT_GENERIC(mod)                                        \
1182        static void mod##_key_init_generic(struct lu_context_key *k, ...) \
1183        {                                                              \
1184                struct lu_context_key *key = k;                  \
1185                va_list args;                                      \
1186                                                                        \
1187                va_start(args, k);                                    \
1188                do {                                                \
1189                        LU_CONTEXT_KEY_INIT(key);                      \
1190                        key = va_arg(args, struct lu_context_key *);    \
1191                } while (key);                            \
1192                va_end(args);                                      \
1193        }
1194
1195#define LU_TYPE_INIT(mod, ...)                                    \
1196        LU_KEY_INIT_GENERIC(mod)                                        \
1197        static int mod##_type_init(struct lu_device_type *t)        \
1198        {                                                              \
1199                mod##_key_init_generic(__VA_ARGS__, NULL);            \
1200                return lu_context_key_register_many(__VA_ARGS__, NULL); \
1201        }                                                              \
1202        struct __##mod##_dummy_type_init {; }
1203
1204#define LU_TYPE_FINI(mod, ...)                                    \
1205        static void mod##_type_fini(struct lu_device_type *t)      \
1206        {                                                              \
1207                lu_context_key_degister_many(__VA_ARGS__, NULL);        \
1208        }                                                              \
1209        struct __##mod##_dummy_type_fini {; }
1210
1211#define LU_TYPE_START(mod, ...)                          \
1212        static void mod##_type_start(struct lu_device_type *t)  \
1213        {                                                      \
1214                lu_context_key_revive_many(__VA_ARGS__, NULL);  \
1215        }                                                      \
1216        struct __##mod##_dummy_type_start {; }
1217
1218#define LU_TYPE_STOP(mod, ...)                            \
1219        static void mod##_type_stop(struct lu_device_type *t)   \
1220        {                                                      \
1221                lu_context_key_quiesce_many(__VA_ARGS__, NULL); \
1222        }                                                      \
1223        struct __##mod##_dummy_type_stop {; }
1224
1225#define LU_TYPE_INIT_FINI(mod, ...)          \
1226        LU_TYPE_INIT(mod, __VA_ARGS__);  \
1227        LU_TYPE_FINI(mod, __VA_ARGS__);  \
1228        LU_TYPE_START(mod, __VA_ARGS__);        \
1229        LU_TYPE_STOP(mod, __VA_ARGS__)
1230
1231int lu_context_init(struct lu_context *ctx, __u32 tags);
1232void lu_context_fini(struct lu_context *ctx);
1233void lu_context_enter(struct lu_context *ctx);
1234void lu_context_exit(struct lu_context *ctx);
1235int lu_context_refill(struct lu_context *ctx);
1236
1237/*
1238 * Helper functions to operate on multiple keys. These are used by the default
1239 * device type operations, defined by LU_TYPE_INIT_FINI().
1240 */
1241
1242int lu_context_key_register_many(struct lu_context_key *k, ...);
1243void lu_context_key_degister_many(struct lu_context_key *k, ...);
1244void lu_context_key_revive_many(struct lu_context_key *k, ...);
1245void lu_context_key_quiesce_many(struct lu_context_key *k, ...);
1246
1247/**
1248 * Environment.
1249 */
1250struct lu_env {
1251        /**
1252         * "Local" context, used to store data instead of stack.
1253         */
1254        struct lu_context  le_ctx;
1255        /**
1256         * "Session" context for per-request data.
1257         */
1258        struct lu_context *le_ses;
1259};
1260
1261int lu_env_init(struct lu_env *env, __u32 tags);
1262void lu_env_fini(struct lu_env *env);
1263int lu_env_refill(struct lu_env *env);
1264
1265/** @} lu_context */
1266
1267/**
1268 * Output site statistical counters into a buffer. Suitable for
1269 * ll_rd_*()-style functions.
1270 */
1271int lu_site_stats_print(const struct lu_site *s, struct seq_file *m);
1272
1273/**
1274 * Common name structure to be passed around for various name related methods.
1275 */
1276struct lu_name {
1277        const char    *ln_name;
1278        int         ln_namelen;
1279};
1280
1281/**
1282 * Validate names (path components)
1283 *
1284 * To be valid \a name must be non-empty, '\0' terminated of length \a
1285 * name_len, and not contain '/'. The maximum length of a name (before
1286 * say -ENAMETOOLONG will be returned) is really controlled by llite
1287 * and the server. We only check for something insane coming from bad
1288 * integer handling here.
1289 */
1290static inline bool lu_name_is_valid_2(const char *name, size_t name_len)
1291{
1292        return name && name_len > 0 && name_len < INT_MAX &&
1293               name[name_len] == '\0' && strlen(name) == name_len &&
1294               !memchr(name, '/', name_len);
1295}
1296
1297/**
1298 * Common buffer structure to be passed around for various xattr_{s,g}et()
1299 * methods.
1300 */
1301struct lu_buf {
1302        void   *lb_buf;
1303        size_t  lb_len;
1304};
1305
1306#define DLUBUF "(%p %zu)"
1307#define PLUBUF(buf) (buf)->lb_buf, (buf)->lb_len
1308/**
1309 * One-time initializers, called at obdclass module initialization, not
1310 * exported.
1311 */
1312
1313/**
1314 * Initialization of global lu_* data.
1315 */
1316int lu_global_init(void);
1317
1318/**
1319 * Dual to lu_global_init().
1320 */
1321void lu_global_fini(void);
1322
1323struct lu_kmem_descr {
1324        struct kmem_cache **ckd_cache;
1325        const char       *ckd_name;
1326        const size_t      ckd_size;
1327};
1328
1329int  lu_kmem_init(struct lu_kmem_descr *caches);
1330void lu_kmem_fini(struct lu_kmem_descr *caches);
1331
1332void lu_buf_free(struct lu_buf *buf);
1333void lu_buf_alloc(struct lu_buf *buf, size_t size);
1334void lu_buf_realloc(struct lu_buf *buf, size_t size);
1335
1336int lu_buf_check_and_grow(struct lu_buf *buf, size_t len);
1337struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, size_t len);
1338
1339extern __u32 lu_context_tags_default;
1340extern __u32 lu_session_tags_default;
1341
1342/** @} lu */
1343#endif /* __LUSTRE_LU_OBJECT_H */
1344