linux/fs/aio.c
<<
>>
Prefs
   1/*
   2 *      An async IO implementation for Linux
   3 *      Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *      Implements an efficient asynchronous io interface.
   6 *
   7 *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *
   9 *      See ../COPYING for licensing terms.
  10 */
  11#define pr_fmt(fmt) "%s: " fmt, __func__
  12
  13#include <linux/kernel.h>
  14#include <linux/init.h>
  15#include <linux/errno.h>
  16#include <linux/time.h>
  17#include <linux/aio_abi.h>
  18#include <linux/export.h>
  19#include <linux/syscalls.h>
  20#include <linux/backing-dev.h>
  21#include <linux/uio.h>
  22
  23#include <linux/sched/signal.h>
  24#include <linux/fs.h>
  25#include <linux/file.h>
  26#include <linux/mm.h>
  27#include <linux/mman.h>
  28#include <linux/mmu_context.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/timer.h>
  32#include <linux/aio.h>
  33#include <linux/highmem.h>
  34#include <linux/workqueue.h>
  35#include <linux/security.h>
  36#include <linux/eventfd.h>
  37#include <linux/blkdev.h>
  38#include <linux/compat.h>
  39#include <linux/migrate.h>
  40#include <linux/ramfs.h>
  41#include <linux/percpu-refcount.h>
  42#include <linux/mount.h>
  43
  44#include <asm/kmap_types.h>
  45#include <linux/uaccess.h>
  46
  47#include "internal.h"
  48
  49#define AIO_RING_MAGIC                  0xa10a10a1
  50#define AIO_RING_COMPAT_FEATURES        1
  51#define AIO_RING_INCOMPAT_FEATURES      0
  52struct aio_ring {
  53        unsigned        id;     /* kernel internal index number */
  54        unsigned        nr;     /* number of io_events */
  55        unsigned        head;   /* Written to by userland or under ring_lock
  56                                 * mutex by aio_read_events_ring(). */
  57        unsigned        tail;
  58
  59        unsigned        magic;
  60        unsigned        compat_features;
  61        unsigned        incompat_features;
  62        unsigned        header_length;  /* size of aio_ring */
  63
  64
  65        struct io_event         io_events[0];
  66}; /* 128 bytes + ring size */
  67
  68#define AIO_RING_PAGES  8
  69
  70struct kioctx_table {
  71        struct rcu_head rcu;
  72        unsigned        nr;
  73        struct kioctx   *table[];
  74};
  75
  76struct kioctx_cpu {
  77        unsigned                reqs_available;
  78};
  79
  80struct ctx_rq_wait {
  81        struct completion comp;
  82        atomic_t count;
  83};
  84
  85struct kioctx {
  86        struct percpu_ref       users;
  87        atomic_t                dead;
  88
  89        struct percpu_ref       reqs;
  90
  91        unsigned long           user_id;
  92
  93        struct __percpu kioctx_cpu *cpu;
  94
  95        /*
  96         * For percpu reqs_available, number of slots we move to/from global
  97         * counter at a time:
  98         */
  99        unsigned                req_batch;
 100        /*
 101         * This is what userspace passed to io_setup(), it's not used for
 102         * anything but counting against the global max_reqs quota.
 103         *
 104         * The real limit is nr_events - 1, which will be larger (see
 105         * aio_setup_ring())
 106         */
 107        unsigned                max_reqs;
 108
 109        /* Size of ringbuffer, in units of struct io_event */
 110        unsigned                nr_events;
 111
 112        unsigned long           mmap_base;
 113        unsigned long           mmap_size;
 114
 115        struct page             **ring_pages;
 116        long                    nr_pages;
 117
 118        struct work_struct      free_work;
 119
 120        /*
 121         * signals when all in-flight requests are done
 122         */
 123        struct ctx_rq_wait      *rq_wait;
 124
 125        struct {
 126                /*
 127                 * This counts the number of available slots in the ringbuffer,
 128                 * so we avoid overflowing it: it's decremented (if positive)
 129                 * when allocating a kiocb and incremented when the resulting
 130                 * io_event is pulled off the ringbuffer.
 131                 *
 132                 * We batch accesses to it with a percpu version.
 133                 */
 134                atomic_t        reqs_available;
 135        } ____cacheline_aligned_in_smp;
 136
 137        struct {
 138                spinlock_t      ctx_lock;
 139                struct list_head active_reqs;   /* used for cancellation */
 140        } ____cacheline_aligned_in_smp;
 141
 142        struct {
 143                struct mutex    ring_lock;
 144                wait_queue_head_t wait;
 145        } ____cacheline_aligned_in_smp;
 146
 147        struct {
 148                unsigned        tail;
 149                unsigned        completed_events;
 150                spinlock_t      completion_lock;
 151        } ____cacheline_aligned_in_smp;
 152
 153        struct page             *internal_pages[AIO_RING_PAGES];
 154        struct file             *aio_ring_file;
 155
 156        unsigned                id;
 157};
 158
 159/*
 160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
 161 * cancelled or completed (this makes a certain amount of sense because
 162 * successful cancellation - io_cancel() - does deliver the completion to
 163 * userspace).
 164 *
 165 * And since most things don't implement kiocb cancellation and we'd really like
 166 * kiocb completion to be lockless when possible, we use ki_cancel to
 167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
 168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
 169 */
 170#define KIOCB_CANCELLED         ((void *) (~0ULL))
 171
 172struct aio_kiocb {
 173        struct kiocb            common;
 174
 175        struct kioctx           *ki_ctx;
 176        kiocb_cancel_fn         *ki_cancel;
 177
 178        struct iocb __user      *ki_user_iocb;  /* user's aiocb */
 179        __u64                   ki_user_data;   /* user's data for completion */
 180
 181        struct list_head        ki_list;        /* the aio core uses this
 182                                                 * for cancellation */
 183
 184        /*
 185         * If the aio_resfd field of the userspace iocb is not zero,
 186         * this is the underlying eventfd context to deliver events to.
 187         */
 188        struct eventfd_ctx      *ki_eventfd;
 189};
 190
 191/*------ sysctl variables----*/
 192static DEFINE_SPINLOCK(aio_nr_lock);
 193unsigned long aio_nr;           /* current system wide number of aio requests */
 194unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 195/*----end sysctl variables---*/
 196
 197static struct kmem_cache        *kiocb_cachep;
 198static struct kmem_cache        *kioctx_cachep;
 199
 200static struct vfsmount *aio_mnt;
 201
 202static const struct file_operations aio_ring_fops;
 203static const struct address_space_operations aio_ctx_aops;
 204
 205static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 206{
 207        struct qstr this = QSTR_INIT("[aio]", 5);
 208        struct file *file;
 209        struct path path;
 210        struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 211        if (IS_ERR(inode))
 212                return ERR_CAST(inode);
 213
 214        inode->i_mapping->a_ops = &aio_ctx_aops;
 215        inode->i_mapping->private_data = ctx;
 216        inode->i_size = PAGE_SIZE * nr_pages;
 217
 218        path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
 219        if (!path.dentry) {
 220                iput(inode);
 221                return ERR_PTR(-ENOMEM);
 222        }
 223        path.mnt = mntget(aio_mnt);
 224
 225        d_instantiate(path.dentry, inode);
 226        file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
 227        if (IS_ERR(file)) {
 228                path_put(&path);
 229                return file;
 230        }
 231
 232        file->f_flags = O_RDWR;
 233        return file;
 234}
 235
 236static struct dentry *aio_mount(struct file_system_type *fs_type,
 237                                int flags, const char *dev_name, void *data)
 238{
 239        static const struct dentry_operations ops = {
 240                .d_dname        = simple_dname,
 241        };
 242        struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
 243                                           AIO_RING_MAGIC);
 244
 245        if (!IS_ERR(root))
 246                root->d_sb->s_iflags |= SB_I_NOEXEC;
 247        return root;
 248}
 249
 250/* aio_setup
 251 *      Creates the slab caches used by the aio routines, panic on
 252 *      failure as this is done early during the boot sequence.
 253 */
 254static int __init aio_setup(void)
 255{
 256        static struct file_system_type aio_fs = {
 257                .name           = "aio",
 258                .mount          = aio_mount,
 259                .kill_sb        = kill_anon_super,
 260        };
 261        aio_mnt = kern_mount(&aio_fs);
 262        if (IS_ERR(aio_mnt))
 263                panic("Failed to create aio fs mount.");
 264
 265        kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 266        kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 267
 268        pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
 269
 270        return 0;
 271}
 272__initcall(aio_setup);
 273
 274static void put_aio_ring_file(struct kioctx *ctx)
 275{
 276        struct file *aio_ring_file = ctx->aio_ring_file;
 277        struct address_space *i_mapping;
 278
 279        if (aio_ring_file) {
 280                truncate_setsize(file_inode(aio_ring_file), 0);
 281
 282                /* Prevent further access to the kioctx from migratepages */
 283                i_mapping = aio_ring_file->f_mapping;
 284                spin_lock(&i_mapping->private_lock);
 285                i_mapping->private_data = NULL;
 286                ctx->aio_ring_file = NULL;
 287                spin_unlock(&i_mapping->private_lock);
 288
 289                fput(aio_ring_file);
 290        }
 291}
 292
 293static void aio_free_ring(struct kioctx *ctx)
 294{
 295        int i;
 296
 297        /* Disconnect the kiotx from the ring file.  This prevents future
 298         * accesses to the kioctx from page migration.
 299         */
 300        put_aio_ring_file(ctx);
 301
 302        for (i = 0; i < ctx->nr_pages; i++) {
 303                struct page *page;
 304                pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 305                                page_count(ctx->ring_pages[i]));
 306                page = ctx->ring_pages[i];
 307                if (!page)
 308                        continue;
 309                ctx->ring_pages[i] = NULL;
 310                put_page(page);
 311        }
 312
 313        if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 314                kfree(ctx->ring_pages);
 315                ctx->ring_pages = NULL;
 316        }
 317}
 318
 319static int aio_ring_mremap(struct vm_area_struct *vma)
 320{
 321        struct file *file = vma->vm_file;
 322        struct mm_struct *mm = vma->vm_mm;
 323        struct kioctx_table *table;
 324        int i, res = -EINVAL;
 325
 326        spin_lock(&mm->ioctx_lock);
 327        rcu_read_lock();
 328        table = rcu_dereference(mm->ioctx_table);
 329        for (i = 0; i < table->nr; i++) {
 330                struct kioctx *ctx;
 331
 332                ctx = table->table[i];
 333                if (ctx && ctx->aio_ring_file == file) {
 334                        if (!atomic_read(&ctx->dead)) {
 335                                ctx->user_id = ctx->mmap_base = vma->vm_start;
 336                                res = 0;
 337                        }
 338                        break;
 339                }
 340        }
 341
 342        rcu_read_unlock();
 343        spin_unlock(&mm->ioctx_lock);
 344        return res;
 345}
 346
 347static const struct vm_operations_struct aio_ring_vm_ops = {
 348        .mremap         = aio_ring_mremap,
 349#if IS_ENABLED(CONFIG_MMU)
 350        .fault          = filemap_fault,
 351        .map_pages      = filemap_map_pages,
 352        .page_mkwrite   = filemap_page_mkwrite,
 353#endif
 354};
 355
 356static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 357{
 358        vma->vm_flags |= VM_DONTEXPAND;
 359        vma->vm_ops = &aio_ring_vm_ops;
 360        return 0;
 361}
 362
 363static const struct file_operations aio_ring_fops = {
 364        .mmap = aio_ring_mmap,
 365};
 366
 367#if IS_ENABLED(CONFIG_MIGRATION)
 368static int aio_migratepage(struct address_space *mapping, struct page *new,
 369                        struct page *old, enum migrate_mode mode)
 370{
 371        struct kioctx *ctx;
 372        unsigned long flags;
 373        pgoff_t idx;
 374        int rc;
 375
 376        rc = 0;
 377
 378        /* mapping->private_lock here protects against the kioctx teardown.  */
 379        spin_lock(&mapping->private_lock);
 380        ctx = mapping->private_data;
 381        if (!ctx) {
 382                rc = -EINVAL;
 383                goto out;
 384        }
 385
 386        /* The ring_lock mutex.  The prevents aio_read_events() from writing
 387         * to the ring's head, and prevents page migration from mucking in
 388         * a partially initialized kiotx.
 389         */
 390        if (!mutex_trylock(&ctx->ring_lock)) {
 391                rc = -EAGAIN;
 392                goto out;
 393        }
 394
 395        idx = old->index;
 396        if (idx < (pgoff_t)ctx->nr_pages) {
 397                /* Make sure the old page hasn't already been changed */
 398                if (ctx->ring_pages[idx] != old)
 399                        rc = -EAGAIN;
 400        } else
 401                rc = -EINVAL;
 402
 403        if (rc != 0)
 404                goto out_unlock;
 405
 406        /* Writeback must be complete */
 407        BUG_ON(PageWriteback(old));
 408        get_page(new);
 409
 410        rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
 411        if (rc != MIGRATEPAGE_SUCCESS) {
 412                put_page(new);
 413                goto out_unlock;
 414        }
 415
 416        /* Take completion_lock to prevent other writes to the ring buffer
 417         * while the old page is copied to the new.  This prevents new
 418         * events from being lost.
 419         */
 420        spin_lock_irqsave(&ctx->completion_lock, flags);
 421        migrate_page_copy(new, old);
 422        BUG_ON(ctx->ring_pages[idx] != old);
 423        ctx->ring_pages[idx] = new;
 424        spin_unlock_irqrestore(&ctx->completion_lock, flags);
 425
 426        /* The old page is no longer accessible. */
 427        put_page(old);
 428
 429out_unlock:
 430        mutex_unlock(&ctx->ring_lock);
 431out:
 432        spin_unlock(&mapping->private_lock);
 433        return rc;
 434}
 435#endif
 436
 437static const struct address_space_operations aio_ctx_aops = {
 438        .set_page_dirty = __set_page_dirty_no_writeback,
 439#if IS_ENABLED(CONFIG_MIGRATION)
 440        .migratepage    = aio_migratepage,
 441#endif
 442};
 443
 444static int aio_setup_ring(struct kioctx *ctx)
 445{
 446        struct aio_ring *ring;
 447        unsigned nr_events = ctx->max_reqs;
 448        struct mm_struct *mm = current->mm;
 449        unsigned long size, unused;
 450        int nr_pages;
 451        int i;
 452        struct file *file;
 453
 454        /* Compensate for the ring buffer's head/tail overlap entry */
 455        nr_events += 2; /* 1 is required, 2 for good luck */
 456
 457        size = sizeof(struct aio_ring);
 458        size += sizeof(struct io_event) * nr_events;
 459
 460        nr_pages = PFN_UP(size);
 461        if (nr_pages < 0)
 462                return -EINVAL;
 463
 464        file = aio_private_file(ctx, nr_pages);
 465        if (IS_ERR(file)) {
 466                ctx->aio_ring_file = NULL;
 467                return -ENOMEM;
 468        }
 469
 470        ctx->aio_ring_file = file;
 471        nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 472                        / sizeof(struct io_event);
 473
 474        ctx->ring_pages = ctx->internal_pages;
 475        if (nr_pages > AIO_RING_PAGES) {
 476                ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 477                                          GFP_KERNEL);
 478                if (!ctx->ring_pages) {
 479                        put_aio_ring_file(ctx);
 480                        return -ENOMEM;
 481                }
 482        }
 483
 484        for (i = 0; i < nr_pages; i++) {
 485                struct page *page;
 486                page = find_or_create_page(file->f_mapping,
 487                                           i, GFP_HIGHUSER | __GFP_ZERO);
 488                if (!page)
 489                        break;
 490                pr_debug("pid(%d) page[%d]->count=%d\n",
 491                         current->pid, i, page_count(page));
 492                SetPageUptodate(page);
 493                unlock_page(page);
 494
 495                ctx->ring_pages[i] = page;
 496        }
 497        ctx->nr_pages = i;
 498
 499        if (unlikely(i != nr_pages)) {
 500                aio_free_ring(ctx);
 501                return -ENOMEM;
 502        }
 503
 504        ctx->mmap_size = nr_pages * PAGE_SIZE;
 505        pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 506
 507        if (down_write_killable(&mm->mmap_sem)) {
 508                ctx->mmap_size = 0;
 509                aio_free_ring(ctx);
 510                return -EINTR;
 511        }
 512
 513        ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
 514                                       PROT_READ | PROT_WRITE,
 515                                       MAP_SHARED, 0, &unused, NULL);
 516        up_write(&mm->mmap_sem);
 517        if (IS_ERR((void *)ctx->mmap_base)) {
 518                ctx->mmap_size = 0;
 519                aio_free_ring(ctx);
 520                return -ENOMEM;
 521        }
 522
 523        pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 524
 525        ctx->user_id = ctx->mmap_base;
 526        ctx->nr_events = nr_events; /* trusted copy */
 527
 528        ring = kmap_atomic(ctx->ring_pages[0]);
 529        ring->nr = nr_events;   /* user copy */
 530        ring->id = ~0U;
 531        ring->head = ring->tail = 0;
 532        ring->magic = AIO_RING_MAGIC;
 533        ring->compat_features = AIO_RING_COMPAT_FEATURES;
 534        ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 535        ring->header_length = sizeof(struct aio_ring);
 536        kunmap_atomic(ring);
 537        flush_dcache_page(ctx->ring_pages[0]);
 538
 539        return 0;
 540}
 541
 542#define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
 543#define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 544#define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 545
 546void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
 547{
 548        struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
 549        struct kioctx *ctx = req->ki_ctx;
 550        unsigned long flags;
 551
 552        spin_lock_irqsave(&ctx->ctx_lock, flags);
 553
 554        if (!req->ki_list.next)
 555                list_add(&req->ki_list, &ctx->active_reqs);
 556
 557        req->ki_cancel = cancel;
 558
 559        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 560}
 561EXPORT_SYMBOL(kiocb_set_cancel_fn);
 562
 563static int kiocb_cancel(struct aio_kiocb *kiocb)
 564{
 565        kiocb_cancel_fn *old, *cancel;
 566
 567        /*
 568         * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
 569         * actually has a cancel function, hence the cmpxchg()
 570         */
 571
 572        cancel = ACCESS_ONCE(kiocb->ki_cancel);
 573        do {
 574                if (!cancel || cancel == KIOCB_CANCELLED)
 575                        return -EINVAL;
 576
 577                old = cancel;
 578                cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
 579        } while (cancel != old);
 580
 581        return cancel(&kiocb->common);
 582}
 583
 584static void free_ioctx(struct work_struct *work)
 585{
 586        struct kioctx *ctx = container_of(work, struct kioctx, free_work);
 587
 588        pr_debug("freeing %p\n", ctx);
 589
 590        aio_free_ring(ctx);
 591        free_percpu(ctx->cpu);
 592        percpu_ref_exit(&ctx->reqs);
 593        percpu_ref_exit(&ctx->users);
 594        kmem_cache_free(kioctx_cachep, ctx);
 595}
 596
 597static void free_ioctx_reqs(struct percpu_ref *ref)
 598{
 599        struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 600
 601        /* At this point we know that there are no any in-flight requests */
 602        if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
 603                complete(&ctx->rq_wait->comp);
 604
 605        INIT_WORK(&ctx->free_work, free_ioctx);
 606        schedule_work(&ctx->free_work);
 607}
 608
 609/*
 610 * When this function runs, the kioctx has been removed from the "hash table"
 611 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 612 * now it's safe to cancel any that need to be.
 613 */
 614static void free_ioctx_users(struct percpu_ref *ref)
 615{
 616        struct kioctx *ctx = container_of(ref, struct kioctx, users);
 617        struct aio_kiocb *req;
 618
 619        spin_lock_irq(&ctx->ctx_lock);
 620
 621        while (!list_empty(&ctx->active_reqs)) {
 622                req = list_first_entry(&ctx->active_reqs,
 623                                       struct aio_kiocb, ki_list);
 624
 625                list_del_init(&req->ki_list);
 626                kiocb_cancel(req);
 627        }
 628
 629        spin_unlock_irq(&ctx->ctx_lock);
 630
 631        percpu_ref_kill(&ctx->reqs);
 632        percpu_ref_put(&ctx->reqs);
 633}
 634
 635static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 636{
 637        unsigned i, new_nr;
 638        struct kioctx_table *table, *old;
 639        struct aio_ring *ring;
 640
 641        spin_lock(&mm->ioctx_lock);
 642        table = rcu_dereference_raw(mm->ioctx_table);
 643
 644        while (1) {
 645                if (table)
 646                        for (i = 0; i < table->nr; i++)
 647                                if (!table->table[i]) {
 648                                        ctx->id = i;
 649                                        table->table[i] = ctx;
 650                                        spin_unlock(&mm->ioctx_lock);
 651
 652                                        /* While kioctx setup is in progress,
 653                                         * we are protected from page migration
 654                                         * changes ring_pages by ->ring_lock.
 655                                         */
 656                                        ring = kmap_atomic(ctx->ring_pages[0]);
 657                                        ring->id = ctx->id;
 658                                        kunmap_atomic(ring);
 659                                        return 0;
 660                                }
 661
 662                new_nr = (table ? table->nr : 1) * 4;
 663                spin_unlock(&mm->ioctx_lock);
 664
 665                table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 666                                new_nr, GFP_KERNEL);
 667                if (!table)
 668                        return -ENOMEM;
 669
 670                table->nr = new_nr;
 671
 672                spin_lock(&mm->ioctx_lock);
 673                old = rcu_dereference_raw(mm->ioctx_table);
 674
 675                if (!old) {
 676                        rcu_assign_pointer(mm->ioctx_table, table);
 677                } else if (table->nr > old->nr) {
 678                        memcpy(table->table, old->table,
 679                               old->nr * sizeof(struct kioctx *));
 680
 681                        rcu_assign_pointer(mm->ioctx_table, table);
 682                        kfree_rcu(old, rcu);
 683                } else {
 684                        kfree(table);
 685                        table = old;
 686                }
 687        }
 688}
 689
 690static void aio_nr_sub(unsigned nr)
 691{
 692        spin_lock(&aio_nr_lock);
 693        if (WARN_ON(aio_nr - nr > aio_nr))
 694                aio_nr = 0;
 695        else
 696                aio_nr -= nr;
 697        spin_unlock(&aio_nr_lock);
 698}
 699
 700/* ioctx_alloc
 701 *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 702 */
 703static struct kioctx *ioctx_alloc(unsigned nr_events)
 704{
 705        struct mm_struct *mm = current->mm;
 706        struct kioctx *ctx;
 707        int err = -ENOMEM;
 708
 709        /*
 710         * We keep track of the number of available ringbuffer slots, to prevent
 711         * overflow (reqs_available), and we also use percpu counters for this.
 712         *
 713         * So since up to half the slots might be on other cpu's percpu counters
 714         * and unavailable, double nr_events so userspace sees what they
 715         * expected: additionally, we move req_batch slots to/from percpu
 716         * counters at a time, so make sure that isn't 0:
 717         */
 718        nr_events = max(nr_events, num_possible_cpus() * 4);
 719        nr_events *= 2;
 720
 721        /* Prevent overflows */
 722        if (nr_events > (0x10000000U / sizeof(struct io_event))) {
 723                pr_debug("ENOMEM: nr_events too high\n");
 724                return ERR_PTR(-EINVAL);
 725        }
 726
 727        if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
 728                return ERR_PTR(-EAGAIN);
 729
 730        ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 731        if (!ctx)
 732                return ERR_PTR(-ENOMEM);
 733
 734        ctx->max_reqs = nr_events;
 735
 736        spin_lock_init(&ctx->ctx_lock);
 737        spin_lock_init(&ctx->completion_lock);
 738        mutex_init(&ctx->ring_lock);
 739        /* Protect against page migration throughout kiotx setup by keeping
 740         * the ring_lock mutex held until setup is complete. */
 741        mutex_lock(&ctx->ring_lock);
 742        init_waitqueue_head(&ctx->wait);
 743
 744        INIT_LIST_HEAD(&ctx->active_reqs);
 745
 746        if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 747                goto err;
 748
 749        if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 750                goto err;
 751
 752        ctx->cpu = alloc_percpu(struct kioctx_cpu);
 753        if (!ctx->cpu)
 754                goto err;
 755
 756        err = aio_setup_ring(ctx);
 757        if (err < 0)
 758                goto err;
 759
 760        atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 761        ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 762        if (ctx->req_batch < 1)
 763                ctx->req_batch = 1;
 764
 765        /* limit the number of system wide aios */
 766        spin_lock(&aio_nr_lock);
 767        if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
 768            aio_nr + nr_events < aio_nr) {
 769                spin_unlock(&aio_nr_lock);
 770                err = -EAGAIN;
 771                goto err_ctx;
 772        }
 773        aio_nr += ctx->max_reqs;
 774        spin_unlock(&aio_nr_lock);
 775
 776        percpu_ref_get(&ctx->users);    /* io_setup() will drop this ref */
 777        percpu_ref_get(&ctx->reqs);     /* free_ioctx_users() will drop this */
 778
 779        err = ioctx_add_table(ctx, mm);
 780        if (err)
 781                goto err_cleanup;
 782
 783        /* Release the ring_lock mutex now that all setup is complete. */
 784        mutex_unlock(&ctx->ring_lock);
 785
 786        pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 787                 ctx, ctx->user_id, mm, ctx->nr_events);
 788        return ctx;
 789
 790err_cleanup:
 791        aio_nr_sub(ctx->max_reqs);
 792err_ctx:
 793        atomic_set(&ctx->dead, 1);
 794        if (ctx->mmap_size)
 795                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 796        aio_free_ring(ctx);
 797err:
 798        mutex_unlock(&ctx->ring_lock);
 799        free_percpu(ctx->cpu);
 800        percpu_ref_exit(&ctx->reqs);
 801        percpu_ref_exit(&ctx->users);
 802        kmem_cache_free(kioctx_cachep, ctx);
 803        pr_debug("error allocating ioctx %d\n", err);
 804        return ERR_PTR(err);
 805}
 806
 807/* kill_ioctx
 808 *      Cancels all outstanding aio requests on an aio context.  Used
 809 *      when the processes owning a context have all exited to encourage
 810 *      the rapid destruction of the kioctx.
 811 */
 812static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 813                      struct ctx_rq_wait *wait)
 814{
 815        struct kioctx_table *table;
 816
 817        spin_lock(&mm->ioctx_lock);
 818        if (atomic_xchg(&ctx->dead, 1)) {
 819                spin_unlock(&mm->ioctx_lock);
 820                return -EINVAL;
 821        }
 822
 823        table = rcu_dereference_raw(mm->ioctx_table);
 824        WARN_ON(ctx != table->table[ctx->id]);
 825        table->table[ctx->id] = NULL;
 826        spin_unlock(&mm->ioctx_lock);
 827
 828        /* percpu_ref_kill() will do the necessary call_rcu() */
 829        wake_up_all(&ctx->wait);
 830
 831        /*
 832         * It'd be more correct to do this in free_ioctx(), after all
 833         * the outstanding kiocbs have finished - but by then io_destroy
 834         * has already returned, so io_setup() could potentially return
 835         * -EAGAIN with no ioctxs actually in use (as far as userspace
 836         *  could tell).
 837         */
 838        aio_nr_sub(ctx->max_reqs);
 839
 840        if (ctx->mmap_size)
 841                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 842
 843        ctx->rq_wait = wait;
 844        percpu_ref_kill(&ctx->users);
 845        return 0;
 846}
 847
 848/*
 849 * exit_aio: called when the last user of mm goes away.  At this point, there is
 850 * no way for any new requests to be submited or any of the io_* syscalls to be
 851 * called on the context.
 852 *
 853 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 854 * them.
 855 */
 856void exit_aio(struct mm_struct *mm)
 857{
 858        struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 859        struct ctx_rq_wait wait;
 860        int i, skipped;
 861
 862        if (!table)
 863                return;
 864
 865        atomic_set(&wait.count, table->nr);
 866        init_completion(&wait.comp);
 867
 868        skipped = 0;
 869        for (i = 0; i < table->nr; ++i) {
 870                struct kioctx *ctx = table->table[i];
 871
 872                if (!ctx) {
 873                        skipped++;
 874                        continue;
 875                }
 876
 877                /*
 878                 * We don't need to bother with munmap() here - exit_mmap(mm)
 879                 * is coming and it'll unmap everything. And we simply can't,
 880                 * this is not necessarily our ->mm.
 881                 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 882                 * that it needs to unmap the area, just set it to 0.
 883                 */
 884                ctx->mmap_size = 0;
 885                kill_ioctx(mm, ctx, &wait);
 886        }
 887
 888        if (!atomic_sub_and_test(skipped, &wait.count)) {
 889                /* Wait until all IO for the context are done. */
 890                wait_for_completion(&wait.comp);
 891        }
 892
 893        RCU_INIT_POINTER(mm->ioctx_table, NULL);
 894        kfree(table);
 895}
 896
 897static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 898{
 899        struct kioctx_cpu *kcpu;
 900        unsigned long flags;
 901
 902        local_irq_save(flags);
 903        kcpu = this_cpu_ptr(ctx->cpu);
 904        kcpu->reqs_available += nr;
 905
 906        while (kcpu->reqs_available >= ctx->req_batch * 2) {
 907                kcpu->reqs_available -= ctx->req_batch;
 908                atomic_add(ctx->req_batch, &ctx->reqs_available);
 909        }
 910
 911        local_irq_restore(flags);
 912}
 913
 914static bool get_reqs_available(struct kioctx *ctx)
 915{
 916        struct kioctx_cpu *kcpu;
 917        bool ret = false;
 918        unsigned long flags;
 919
 920        local_irq_save(flags);
 921        kcpu = this_cpu_ptr(ctx->cpu);
 922        if (!kcpu->reqs_available) {
 923                int old, avail = atomic_read(&ctx->reqs_available);
 924
 925                do {
 926                        if (avail < ctx->req_batch)
 927                                goto out;
 928
 929                        old = avail;
 930                        avail = atomic_cmpxchg(&ctx->reqs_available,
 931                                               avail, avail - ctx->req_batch);
 932                } while (avail != old);
 933
 934                kcpu->reqs_available += ctx->req_batch;
 935        }
 936
 937        ret = true;
 938        kcpu->reqs_available--;
 939out:
 940        local_irq_restore(flags);
 941        return ret;
 942}
 943
 944/* refill_reqs_available
 945 *      Updates the reqs_available reference counts used for tracking the
 946 *      number of free slots in the completion ring.  This can be called
 947 *      from aio_complete() (to optimistically update reqs_available) or
 948 *      from aio_get_req() (the we're out of events case).  It must be
 949 *      called holding ctx->completion_lock.
 950 */
 951static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 952                                  unsigned tail)
 953{
 954        unsigned events_in_ring, completed;
 955
 956        /* Clamp head since userland can write to it. */
 957        head %= ctx->nr_events;
 958        if (head <= tail)
 959                events_in_ring = tail - head;
 960        else
 961                events_in_ring = ctx->nr_events - (head - tail);
 962
 963        completed = ctx->completed_events;
 964        if (events_in_ring < completed)
 965                completed -= events_in_ring;
 966        else
 967                completed = 0;
 968
 969        if (!completed)
 970                return;
 971
 972        ctx->completed_events -= completed;
 973        put_reqs_available(ctx, completed);
 974}
 975
 976/* user_refill_reqs_available
 977 *      Called to refill reqs_available when aio_get_req() encounters an
 978 *      out of space in the completion ring.
 979 */
 980static void user_refill_reqs_available(struct kioctx *ctx)
 981{
 982        spin_lock_irq(&ctx->completion_lock);
 983        if (ctx->completed_events) {
 984                struct aio_ring *ring;
 985                unsigned head;
 986
 987                /* Access of ring->head may race with aio_read_events_ring()
 988                 * here, but that's okay since whether we read the old version
 989                 * or the new version, and either will be valid.  The important
 990                 * part is that head cannot pass tail since we prevent
 991                 * aio_complete() from updating tail by holding
 992                 * ctx->completion_lock.  Even if head is invalid, the check
 993                 * against ctx->completed_events below will make sure we do the
 994                 * safe/right thing.
 995                 */
 996                ring = kmap_atomic(ctx->ring_pages[0]);
 997                head = ring->head;
 998                kunmap_atomic(ring);
 999
1000                refill_reqs_available(ctx, head, ctx->tail);
1001        }
1002
1003        spin_unlock_irq(&ctx->completion_lock);
1004}
1005
1006/* aio_get_req
1007 *      Allocate a slot for an aio request.
1008 * Returns NULL if no requests are free.
1009 */
1010static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1011{
1012        struct aio_kiocb *req;
1013
1014        if (!get_reqs_available(ctx)) {
1015                user_refill_reqs_available(ctx);
1016                if (!get_reqs_available(ctx))
1017                        return NULL;
1018        }
1019
1020        req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1021        if (unlikely(!req))
1022                goto out_put;
1023
1024        percpu_ref_get(&ctx->reqs);
1025
1026        req->ki_ctx = ctx;
1027        return req;
1028out_put:
1029        put_reqs_available(ctx, 1);
1030        return NULL;
1031}
1032
1033static void kiocb_free(struct aio_kiocb *req)
1034{
1035        if (req->common.ki_filp)
1036                fput(req->common.ki_filp);
1037        if (req->ki_eventfd != NULL)
1038                eventfd_ctx_put(req->ki_eventfd);
1039        kmem_cache_free(kiocb_cachep, req);
1040}
1041
1042static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1043{
1044        struct aio_ring __user *ring  = (void __user *)ctx_id;
1045        struct mm_struct *mm = current->mm;
1046        struct kioctx *ctx, *ret = NULL;
1047        struct kioctx_table *table;
1048        unsigned id;
1049
1050        if (get_user(id, &ring->id))
1051                return NULL;
1052
1053        rcu_read_lock();
1054        table = rcu_dereference(mm->ioctx_table);
1055
1056        if (!table || id >= table->nr)
1057                goto out;
1058
1059        ctx = table->table[id];
1060        if (ctx && ctx->user_id == ctx_id) {
1061                percpu_ref_get(&ctx->users);
1062                ret = ctx;
1063        }
1064out:
1065        rcu_read_unlock();
1066        return ret;
1067}
1068
1069/* aio_complete
1070 *      Called when the io request on the given iocb is complete.
1071 */
1072static void aio_complete(struct kiocb *kiocb, long res, long res2)
1073{
1074        struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1075        struct kioctx   *ctx = iocb->ki_ctx;
1076        struct aio_ring *ring;
1077        struct io_event *ev_page, *event;
1078        unsigned tail, pos, head;
1079        unsigned long   flags;
1080
1081        if (kiocb->ki_flags & IOCB_WRITE) {
1082                struct file *file = kiocb->ki_filp;
1083
1084                /*
1085                 * Tell lockdep we inherited freeze protection from submission
1086                 * thread.
1087                 */
1088                if (S_ISREG(file_inode(file)->i_mode))
1089                        __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1090                file_end_write(file);
1091        }
1092
1093        /*
1094         * Special case handling for sync iocbs:
1095         *  - events go directly into the iocb for fast handling
1096         *  - the sync task with the iocb in its stack holds the single iocb
1097         *    ref, no other paths have a way to get another ref
1098         *  - the sync task helpfully left a reference to itself in the iocb
1099         */
1100        BUG_ON(is_sync_kiocb(kiocb));
1101
1102        if (iocb->ki_list.next) {
1103                unsigned long flags;
1104
1105                spin_lock_irqsave(&ctx->ctx_lock, flags);
1106                list_del(&iocb->ki_list);
1107                spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1108        }
1109
1110        /*
1111         * Add a completion event to the ring buffer. Must be done holding
1112         * ctx->completion_lock to prevent other code from messing with the tail
1113         * pointer since we might be called from irq context.
1114         */
1115        spin_lock_irqsave(&ctx->completion_lock, flags);
1116
1117        tail = ctx->tail;
1118        pos = tail + AIO_EVENTS_OFFSET;
1119
1120        if (++tail >= ctx->nr_events)
1121                tail = 0;
1122
1123        ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1124        event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1125
1126        event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1127        event->data = iocb->ki_user_data;
1128        event->res = res;
1129        event->res2 = res2;
1130
1131        kunmap_atomic(ev_page);
1132        flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1133
1134        pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1135                 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1136                 res, res2);
1137
1138        /* after flagging the request as done, we
1139         * must never even look at it again
1140         */
1141        smp_wmb();      /* make event visible before updating tail */
1142
1143        ctx->tail = tail;
1144
1145        ring = kmap_atomic(ctx->ring_pages[0]);
1146        head = ring->head;
1147        ring->tail = tail;
1148        kunmap_atomic(ring);
1149        flush_dcache_page(ctx->ring_pages[0]);
1150
1151        ctx->completed_events++;
1152        if (ctx->completed_events > 1)
1153                refill_reqs_available(ctx, head, tail);
1154        spin_unlock_irqrestore(&ctx->completion_lock, flags);
1155
1156        pr_debug("added to ring %p at [%u]\n", iocb, tail);
1157
1158        /*
1159         * Check if the user asked us to deliver the result through an
1160         * eventfd. The eventfd_signal() function is safe to be called
1161         * from IRQ context.
1162         */
1163        if (iocb->ki_eventfd != NULL)
1164                eventfd_signal(iocb->ki_eventfd, 1);
1165
1166        /* everything turned out well, dispose of the aiocb. */
1167        kiocb_free(iocb);
1168
1169        /*
1170         * We have to order our ring_info tail store above and test
1171         * of the wait list below outside the wait lock.  This is
1172         * like in wake_up_bit() where clearing a bit has to be
1173         * ordered with the unlocked test.
1174         */
1175        smp_mb();
1176
1177        if (waitqueue_active(&ctx->wait))
1178                wake_up(&ctx->wait);
1179
1180        percpu_ref_put(&ctx->reqs);
1181}
1182
1183/* aio_read_events_ring
1184 *      Pull an event off of the ioctx's event ring.  Returns the number of
1185 *      events fetched
1186 */
1187static long aio_read_events_ring(struct kioctx *ctx,
1188                                 struct io_event __user *event, long nr)
1189{
1190        struct aio_ring *ring;
1191        unsigned head, tail, pos;
1192        long ret = 0;
1193        int copy_ret;
1194
1195        /*
1196         * The mutex can block and wake us up and that will cause
1197         * wait_event_interruptible_hrtimeout() to schedule without sleeping
1198         * and repeat. This should be rare enough that it doesn't cause
1199         * peformance issues. See the comment in read_events() for more detail.
1200         */
1201        sched_annotate_sleep();
1202        mutex_lock(&ctx->ring_lock);
1203
1204        /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1205        ring = kmap_atomic(ctx->ring_pages[0]);
1206        head = ring->head;
1207        tail = ring->tail;
1208        kunmap_atomic(ring);
1209
1210        /*
1211         * Ensure that once we've read the current tail pointer, that
1212         * we also see the events that were stored up to the tail.
1213         */
1214        smp_rmb();
1215
1216        pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1217
1218        if (head == tail)
1219                goto out;
1220
1221        head %= ctx->nr_events;
1222        tail %= ctx->nr_events;
1223
1224        while (ret < nr) {
1225                long avail;
1226                struct io_event *ev;
1227                struct page *page;
1228
1229                avail = (head <= tail ?  tail : ctx->nr_events) - head;
1230                if (head == tail)
1231                        break;
1232
1233                avail = min(avail, nr - ret);
1234                avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1235                            ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1236
1237                pos = head + AIO_EVENTS_OFFSET;
1238                page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1239                pos %= AIO_EVENTS_PER_PAGE;
1240
1241                ev = kmap(page);
1242                copy_ret = copy_to_user(event + ret, ev + pos,
1243                                        sizeof(*ev) * avail);
1244                kunmap(page);
1245
1246                if (unlikely(copy_ret)) {
1247                        ret = -EFAULT;
1248                        goto out;
1249                }
1250
1251                ret += avail;
1252                head += avail;
1253                head %= ctx->nr_events;
1254        }
1255
1256        ring = kmap_atomic(ctx->ring_pages[0]);
1257        ring->head = head;
1258        kunmap_atomic(ring);
1259        flush_dcache_page(ctx->ring_pages[0]);
1260
1261        pr_debug("%li  h%u t%u\n", ret, head, tail);
1262out:
1263        mutex_unlock(&ctx->ring_lock);
1264
1265        return ret;
1266}
1267
1268static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1269                            struct io_event __user *event, long *i)
1270{
1271        long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1272
1273        if (ret > 0)
1274                *i += ret;
1275
1276        if (unlikely(atomic_read(&ctx->dead)))
1277                ret = -EINVAL;
1278
1279        if (!*i)
1280                *i = ret;
1281
1282        return ret < 0 || *i >= min_nr;
1283}
1284
1285static long read_events(struct kioctx *ctx, long min_nr, long nr,
1286                        struct io_event __user *event,
1287                        struct timespec __user *timeout)
1288{
1289        ktime_t until = KTIME_MAX;
1290        long ret = 0;
1291
1292        if (timeout) {
1293                struct timespec ts;
1294
1295                if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1296                        return -EFAULT;
1297
1298                until = timespec_to_ktime(ts);
1299        }
1300
1301        /*
1302         * Note that aio_read_events() is being called as the conditional - i.e.
1303         * we're calling it after prepare_to_wait() has set task state to
1304         * TASK_INTERRUPTIBLE.
1305         *
1306         * But aio_read_events() can block, and if it blocks it's going to flip
1307         * the task state back to TASK_RUNNING.
1308         *
1309         * This should be ok, provided it doesn't flip the state back to
1310         * TASK_RUNNING and return 0 too much - that causes us to spin. That
1311         * will only happen if the mutex_lock() call blocks, and we then find
1312         * the ringbuffer empty. So in practice we should be ok, but it's
1313         * something to be aware of when touching this code.
1314         */
1315        if (until == 0)
1316                aio_read_events(ctx, min_nr, nr, event, &ret);
1317        else
1318                wait_event_interruptible_hrtimeout(ctx->wait,
1319                                aio_read_events(ctx, min_nr, nr, event, &ret),
1320                                until);
1321
1322        if (!ret && signal_pending(current))
1323                ret = -EINTR;
1324
1325        return ret;
1326}
1327
1328/* sys_io_setup:
1329 *      Create an aio_context capable of receiving at least nr_events.
1330 *      ctxp must not point to an aio_context that already exists, and
1331 *      must be initialized to 0 prior to the call.  On successful
1332 *      creation of the aio_context, *ctxp is filled in with the resulting 
1333 *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1334 *      if the specified nr_events exceeds internal limits.  May fail 
1335 *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1336 *      of available events.  May fail with -ENOMEM if insufficient kernel
1337 *      resources are available.  May fail with -EFAULT if an invalid
1338 *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1339 *      implemented.
1340 */
1341SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1342{
1343        struct kioctx *ioctx = NULL;
1344        unsigned long ctx;
1345        long ret;
1346
1347        ret = get_user(ctx, ctxp);
1348        if (unlikely(ret))
1349                goto out;
1350
1351        ret = -EINVAL;
1352        if (unlikely(ctx || nr_events == 0)) {
1353                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1354                         ctx, nr_events);
1355                goto out;
1356        }
1357
1358        ioctx = ioctx_alloc(nr_events);
1359        ret = PTR_ERR(ioctx);
1360        if (!IS_ERR(ioctx)) {
1361                ret = put_user(ioctx->user_id, ctxp);
1362                if (ret)
1363                        kill_ioctx(current->mm, ioctx, NULL);
1364                percpu_ref_put(&ioctx->users);
1365        }
1366
1367out:
1368        return ret;
1369}
1370
1371#ifdef CONFIG_COMPAT
1372COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1373{
1374        struct kioctx *ioctx = NULL;
1375        unsigned long ctx;
1376        long ret;
1377
1378        ret = get_user(ctx, ctx32p);
1379        if (unlikely(ret))
1380                goto out;
1381
1382        ret = -EINVAL;
1383        if (unlikely(ctx || nr_events == 0)) {
1384                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1385                         ctx, nr_events);
1386                goto out;
1387        }
1388
1389        ioctx = ioctx_alloc(nr_events);
1390        ret = PTR_ERR(ioctx);
1391        if (!IS_ERR(ioctx)) {
1392                /* truncating is ok because it's a user address */
1393                ret = put_user((u32)ioctx->user_id, ctx32p);
1394                if (ret)
1395                        kill_ioctx(current->mm, ioctx, NULL);
1396                percpu_ref_put(&ioctx->users);
1397        }
1398
1399out:
1400        return ret;
1401}
1402#endif
1403
1404/* sys_io_destroy:
1405 *      Destroy the aio_context specified.  May cancel any outstanding 
1406 *      AIOs and block on completion.  Will fail with -ENOSYS if not
1407 *      implemented.  May fail with -EINVAL if the context pointed to
1408 *      is invalid.
1409 */
1410SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1411{
1412        struct kioctx *ioctx = lookup_ioctx(ctx);
1413        if (likely(NULL != ioctx)) {
1414                struct ctx_rq_wait wait;
1415                int ret;
1416
1417                init_completion(&wait.comp);
1418                atomic_set(&wait.count, 1);
1419
1420                /* Pass requests_done to kill_ioctx() where it can be set
1421                 * in a thread-safe way. If we try to set it here then we have
1422                 * a race condition if two io_destroy() called simultaneously.
1423                 */
1424                ret = kill_ioctx(current->mm, ioctx, &wait);
1425                percpu_ref_put(&ioctx->users);
1426
1427                /* Wait until all IO for the context are done. Otherwise kernel
1428                 * keep using user-space buffers even if user thinks the context
1429                 * is destroyed.
1430                 */
1431                if (!ret)
1432                        wait_for_completion(&wait.comp);
1433
1434                return ret;
1435        }
1436        pr_debug("EINVAL: invalid context id\n");
1437        return -EINVAL;
1438}
1439
1440static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1441                bool vectored, bool compat, struct iov_iter *iter)
1442{
1443        void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1444        size_t len = iocb->aio_nbytes;
1445
1446        if (!vectored) {
1447                ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1448                *iovec = NULL;
1449                return ret;
1450        }
1451#ifdef CONFIG_COMPAT
1452        if (compat)
1453                return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1454                                iter);
1455#endif
1456        return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1457}
1458
1459static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1460{
1461        switch (ret) {
1462        case -EIOCBQUEUED:
1463                return ret;
1464        case -ERESTARTSYS:
1465        case -ERESTARTNOINTR:
1466        case -ERESTARTNOHAND:
1467        case -ERESTART_RESTARTBLOCK:
1468                /*
1469                 * There's no easy way to restart the syscall since other AIO's
1470                 * may be already running. Just fail this IO with EINTR.
1471                 */
1472                ret = -EINTR;
1473                /*FALLTHRU*/
1474        default:
1475                aio_complete(req, ret, 0);
1476                return 0;
1477        }
1478}
1479
1480static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1481                bool compat)
1482{
1483        struct file *file = req->ki_filp;
1484        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1485        struct iov_iter iter;
1486        ssize_t ret;
1487
1488        if (unlikely(!(file->f_mode & FMODE_READ)))
1489                return -EBADF;
1490        if (unlikely(!file->f_op->read_iter))
1491                return -EINVAL;
1492
1493        ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1494        if (ret)
1495                return ret;
1496        ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1497        if (!ret)
1498                ret = aio_ret(req, call_read_iter(file, req, &iter));
1499        kfree(iovec);
1500        return ret;
1501}
1502
1503static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1504                bool compat)
1505{
1506        struct file *file = req->ki_filp;
1507        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1508        struct iov_iter iter;
1509        ssize_t ret;
1510
1511        if (unlikely(!(file->f_mode & FMODE_WRITE)))
1512                return -EBADF;
1513        if (unlikely(!file->f_op->write_iter))
1514                return -EINVAL;
1515
1516        ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1517        if (ret)
1518                return ret;
1519        ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1520        if (!ret) {
1521                req->ki_flags |= IOCB_WRITE;
1522                file_start_write(file);
1523                ret = aio_ret(req, call_write_iter(file, req, &iter));
1524                /*
1525                 * We release freeze protection in aio_complete().  Fool lockdep
1526                 * by telling it the lock got released so that it doesn't
1527                 * complain about held lock when we return to userspace.
1528                 */
1529                if (S_ISREG(file_inode(file)->i_mode))
1530                        __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1531        }
1532        kfree(iovec);
1533        return ret;
1534}
1535
1536static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1537                         struct iocb *iocb, bool compat)
1538{
1539        struct aio_kiocb *req;
1540        struct file *file;
1541        ssize_t ret;
1542
1543        /* enforce forwards compatibility on users */
1544        if (unlikely(iocb->aio_reserved2)) {
1545                pr_debug("EINVAL: reserve field set\n");
1546                return -EINVAL;
1547        }
1548
1549        /* prevent overflows */
1550        if (unlikely(
1551            (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1552            (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1553            ((ssize_t)iocb->aio_nbytes < 0)
1554           )) {
1555                pr_debug("EINVAL: overflow check\n");
1556                return -EINVAL;
1557        }
1558
1559        req = aio_get_req(ctx);
1560        if (unlikely(!req))
1561                return -EAGAIN;
1562
1563        req->common.ki_filp = file = fget(iocb->aio_fildes);
1564        if (unlikely(!req->common.ki_filp)) {
1565                ret = -EBADF;
1566                goto out_put_req;
1567        }
1568        req->common.ki_pos = iocb->aio_offset;
1569        req->common.ki_complete = aio_complete;
1570        req->common.ki_flags = iocb_flags(req->common.ki_filp);
1571        req->common.ki_hint = file_write_hint(file);
1572
1573        if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1574                /*
1575                 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1576                 * instance of the file* now. The file descriptor must be
1577                 * an eventfd() fd, and will be signaled for each completed
1578                 * event using the eventfd_signal() function.
1579                 */
1580                req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1581                if (IS_ERR(req->ki_eventfd)) {
1582                        ret = PTR_ERR(req->ki_eventfd);
1583                        req->ki_eventfd = NULL;
1584                        goto out_put_req;
1585                }
1586
1587                req->common.ki_flags |= IOCB_EVENTFD;
1588        }
1589
1590        ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1591        if (unlikely(ret)) {
1592                pr_debug("EINVAL: aio_rw_flags\n");
1593                goto out_put_req;
1594        }
1595
1596        if ((req->common.ki_flags & IOCB_NOWAIT) &&
1597                        !(req->common.ki_flags & IOCB_DIRECT)) {
1598                ret = -EOPNOTSUPP;
1599                goto out_put_req;
1600        }
1601
1602        ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1603        if (unlikely(ret)) {
1604                pr_debug("EFAULT: aio_key\n");
1605                goto out_put_req;
1606        }
1607
1608        req->ki_user_iocb = user_iocb;
1609        req->ki_user_data = iocb->aio_data;
1610
1611        get_file(file);
1612        switch (iocb->aio_lio_opcode) {
1613        case IOCB_CMD_PREAD:
1614                ret = aio_read(&req->common, iocb, false, compat);
1615                break;
1616        case IOCB_CMD_PWRITE:
1617                ret = aio_write(&req->common, iocb, false, compat);
1618                break;
1619        case IOCB_CMD_PREADV:
1620                ret = aio_read(&req->common, iocb, true, compat);
1621                break;
1622        case IOCB_CMD_PWRITEV:
1623                ret = aio_write(&req->common, iocb, true, compat);
1624                break;
1625        default:
1626                pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1627                ret = -EINVAL;
1628                break;
1629        }
1630        fput(file);
1631
1632        if (ret && ret != -EIOCBQUEUED)
1633                goto out_put_req;
1634        return 0;
1635out_put_req:
1636        put_reqs_available(ctx, 1);
1637        percpu_ref_put(&ctx->reqs);
1638        kiocb_free(req);
1639        return ret;
1640}
1641
1642static long do_io_submit(aio_context_t ctx_id, long nr,
1643                          struct iocb __user *__user *iocbpp, bool compat)
1644{
1645        struct kioctx *ctx;
1646        long ret = 0;
1647        int i = 0;
1648        struct blk_plug plug;
1649
1650        if (unlikely(nr < 0))
1651                return -EINVAL;
1652
1653        if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1654                nr = LONG_MAX/sizeof(*iocbpp);
1655
1656        if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1657                return -EFAULT;
1658
1659        ctx = lookup_ioctx(ctx_id);
1660        if (unlikely(!ctx)) {
1661                pr_debug("EINVAL: invalid context id\n");
1662                return -EINVAL;
1663        }
1664
1665        blk_start_plug(&plug);
1666
1667        /*
1668         * AKPM: should this return a partial result if some of the IOs were
1669         * successfully submitted?
1670         */
1671        for (i=0; i<nr; i++) {
1672                struct iocb __user *user_iocb;
1673                struct iocb tmp;
1674
1675                if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1676                        ret = -EFAULT;
1677                        break;
1678                }
1679
1680                if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1681                        ret = -EFAULT;
1682                        break;
1683                }
1684
1685                ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1686                if (ret)
1687                        break;
1688        }
1689        blk_finish_plug(&plug);
1690
1691        percpu_ref_put(&ctx->users);
1692        return i ? i : ret;
1693}
1694
1695/* sys_io_submit:
1696 *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1697 *      the number of iocbs queued.  May return -EINVAL if the aio_context
1698 *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1699 *      *iocbpp[0] is not properly initialized, if the operation specified
1700 *      is invalid for the file descriptor in the iocb.  May fail with
1701 *      -EFAULT if any of the data structures point to invalid data.  May
1702 *      fail with -EBADF if the file descriptor specified in the first
1703 *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1704 *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1705 *      fail with -ENOSYS if not implemented.
1706 */
1707SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1708                struct iocb __user * __user *, iocbpp)
1709{
1710        return do_io_submit(ctx_id, nr, iocbpp, 0);
1711}
1712
1713#ifdef CONFIG_COMPAT
1714static inline long
1715copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1716{
1717        compat_uptr_t uptr;
1718        int i;
1719
1720        for (i = 0; i < nr; ++i) {
1721                if (get_user(uptr, ptr32 + i))
1722                        return -EFAULT;
1723                if (put_user(compat_ptr(uptr), ptr64 + i))
1724                        return -EFAULT;
1725        }
1726        return 0;
1727}
1728
1729#define MAX_AIO_SUBMITS         (PAGE_SIZE/sizeof(struct iocb *))
1730
1731COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1732                       int, nr, u32 __user *, iocb)
1733{
1734        struct iocb __user * __user *iocb64;
1735        long ret;
1736
1737        if (unlikely(nr < 0))
1738                return -EINVAL;
1739
1740        if (nr > MAX_AIO_SUBMITS)
1741                nr = MAX_AIO_SUBMITS;
1742
1743        iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1744        ret = copy_iocb(nr, iocb, iocb64);
1745        if (!ret)
1746                ret = do_io_submit(ctx_id, nr, iocb64, 1);
1747        return ret;
1748}
1749#endif
1750
1751/* lookup_kiocb
1752 *      Finds a given iocb for cancellation.
1753 */
1754static struct aio_kiocb *
1755lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1756{
1757        struct aio_kiocb *kiocb;
1758
1759        assert_spin_locked(&ctx->ctx_lock);
1760
1761        if (key != KIOCB_KEY)
1762                return NULL;
1763
1764        /* TODO: use a hash or array, this sucks. */
1765        list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1766                if (kiocb->ki_user_iocb == iocb)
1767                        return kiocb;
1768        }
1769        return NULL;
1770}
1771
1772/* sys_io_cancel:
1773 *      Attempts to cancel an iocb previously passed to io_submit.  If
1774 *      the operation is successfully cancelled, the resulting event is
1775 *      copied into the memory pointed to by result without being placed
1776 *      into the completion queue and 0 is returned.  May fail with
1777 *      -EFAULT if any of the data structures pointed to are invalid.
1778 *      May fail with -EINVAL if aio_context specified by ctx_id is
1779 *      invalid.  May fail with -EAGAIN if the iocb specified was not
1780 *      cancelled.  Will fail with -ENOSYS if not implemented.
1781 */
1782SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1783                struct io_event __user *, result)
1784{
1785        struct kioctx *ctx;
1786        struct aio_kiocb *kiocb;
1787        u32 key;
1788        int ret;
1789
1790        ret = get_user(key, &iocb->aio_key);
1791        if (unlikely(ret))
1792                return -EFAULT;
1793
1794        ctx = lookup_ioctx(ctx_id);
1795        if (unlikely(!ctx))
1796                return -EINVAL;
1797
1798        spin_lock_irq(&ctx->ctx_lock);
1799
1800        kiocb = lookup_kiocb(ctx, iocb, key);
1801        if (kiocb)
1802                ret = kiocb_cancel(kiocb);
1803        else
1804                ret = -EINVAL;
1805
1806        spin_unlock_irq(&ctx->ctx_lock);
1807
1808        if (!ret) {
1809                /*
1810                 * The result argument is no longer used - the io_event is
1811                 * always delivered via the ring buffer. -EINPROGRESS indicates
1812                 * cancellation is progress:
1813                 */
1814                ret = -EINPROGRESS;
1815        }
1816
1817        percpu_ref_put(&ctx->users);
1818
1819        return ret;
1820}
1821
1822/* io_getevents:
1823 *      Attempts to read at least min_nr events and up to nr events from
1824 *      the completion queue for the aio_context specified by ctx_id. If
1825 *      it succeeds, the number of read events is returned. May fail with
1826 *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1827 *      out of range, if timeout is out of range.  May fail with -EFAULT
1828 *      if any of the memory specified is invalid.  May return 0 or
1829 *      < min_nr if the timeout specified by timeout has elapsed
1830 *      before sufficient events are available, where timeout == NULL
1831 *      specifies an infinite timeout. Note that the timeout pointed to by
1832 *      timeout is relative.  Will fail with -ENOSYS if not implemented.
1833 */
1834SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1835                long, min_nr,
1836                long, nr,
1837                struct io_event __user *, events,
1838                struct timespec __user *, timeout)
1839{
1840        struct kioctx *ioctx = lookup_ioctx(ctx_id);
1841        long ret = -EINVAL;
1842
1843        if (likely(ioctx)) {
1844                if (likely(min_nr <= nr && min_nr >= 0))
1845                        ret = read_events(ioctx, min_nr, nr, events, timeout);
1846                percpu_ref_put(&ioctx->users);
1847        }
1848        return ret;
1849}
1850
1851#ifdef CONFIG_COMPAT
1852COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1853                       compat_long_t, min_nr,
1854                       compat_long_t, nr,
1855                       struct io_event __user *, events,
1856                       struct compat_timespec __user *, timeout)
1857{
1858        struct timespec t;
1859        struct timespec __user *ut = NULL;
1860
1861        if (timeout) {
1862                if (compat_get_timespec(&t, timeout))
1863                        return -EFAULT;
1864
1865                ut = compat_alloc_user_space(sizeof(*ut));
1866                if (copy_to_user(ut, &t, sizeof(t)))
1867                        return -EFAULT;
1868        }
1869        return sys_io_getevents(ctx_id, min_nr, nr, events, ut);
1870}
1871#endif
1872