linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include <linux/mm.h>
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "print-tree.h"
  27#include "locking.h"
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30                      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32                      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33                      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35                          struct btrfs_fs_info *fs_info,
  36                          struct extent_buffer *dst,
  37                          struct extent_buffer *src, int empty);
  38static int balance_node_right(struct btrfs_trans_handle *trans,
  39                              struct btrfs_fs_info *fs_info,
  40                              struct extent_buffer *dst_buf,
  41                              struct extent_buffer *src_buf);
  42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  43                    int level, int slot);
  44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  45                                 struct extent_buffer *eb);
  46
  47struct btrfs_path *btrfs_alloc_path(void)
  48{
  49        return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  50}
  51
  52/*
  53 * set all locked nodes in the path to blocking locks.  This should
  54 * be done before scheduling
  55 */
  56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  57{
  58        int i;
  59        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60                if (!p->nodes[i] || !p->locks[i])
  61                        continue;
  62                btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  63                if (p->locks[i] == BTRFS_READ_LOCK)
  64                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  65                else if (p->locks[i] == BTRFS_WRITE_LOCK)
  66                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  67        }
  68}
  69
  70/*
  71 * reset all the locked nodes in the patch to spinning locks.
  72 *
  73 * held is used to keep lockdep happy, when lockdep is enabled
  74 * we set held to a blocking lock before we go around and
  75 * retake all the spinlocks in the path.  You can safely use NULL
  76 * for held
  77 */
  78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  79                                        struct extent_buffer *held, int held_rw)
  80{
  81        int i;
  82
  83        if (held) {
  84                btrfs_set_lock_blocking_rw(held, held_rw);
  85                if (held_rw == BTRFS_WRITE_LOCK)
  86                        held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  87                else if (held_rw == BTRFS_READ_LOCK)
  88                        held_rw = BTRFS_READ_LOCK_BLOCKING;
  89        }
  90        btrfs_set_path_blocking(p);
  91
  92        for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  93                if (p->nodes[i] && p->locks[i]) {
  94                        btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  95                        if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  96                                p->locks[i] = BTRFS_WRITE_LOCK;
  97                        else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  98                                p->locks[i] = BTRFS_READ_LOCK;
  99                }
 100        }
 101
 102        if (held)
 103                btrfs_clear_lock_blocking_rw(held, held_rw);
 104}
 105
 106/* this also releases the path */
 107void btrfs_free_path(struct btrfs_path *p)
 108{
 109        if (!p)
 110                return;
 111        btrfs_release_path(p);
 112        kmem_cache_free(btrfs_path_cachep, p);
 113}
 114
 115/*
 116 * path release drops references on the extent buffers in the path
 117 * and it drops any locks held by this path
 118 *
 119 * It is safe to call this on paths that no locks or extent buffers held.
 120 */
 121noinline void btrfs_release_path(struct btrfs_path *p)
 122{
 123        int i;
 124
 125        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 126                p->slots[i] = 0;
 127                if (!p->nodes[i])
 128                        continue;
 129                if (p->locks[i]) {
 130                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 131                        p->locks[i] = 0;
 132                }
 133                free_extent_buffer(p->nodes[i]);
 134                p->nodes[i] = NULL;
 135        }
 136}
 137
 138/*
 139 * safely gets a reference on the root node of a tree.  A lock
 140 * is not taken, so a concurrent writer may put a different node
 141 * at the root of the tree.  See btrfs_lock_root_node for the
 142 * looping required.
 143 *
 144 * The extent buffer returned by this has a reference taken, so
 145 * it won't disappear.  It may stop being the root of the tree
 146 * at any time because there are no locks held.
 147 */
 148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 149{
 150        struct extent_buffer *eb;
 151
 152        while (1) {
 153                rcu_read_lock();
 154                eb = rcu_dereference(root->node);
 155
 156                /*
 157                 * RCU really hurts here, we could free up the root node because
 158                 * it was COWed but we may not get the new root node yet so do
 159                 * the inc_not_zero dance and if it doesn't work then
 160                 * synchronize_rcu and try again.
 161                 */
 162                if (atomic_inc_not_zero(&eb->refs)) {
 163                        rcu_read_unlock();
 164                        break;
 165                }
 166                rcu_read_unlock();
 167                synchronize_rcu();
 168        }
 169        return eb;
 170}
 171
 172/* loop around taking references on and locking the root node of the
 173 * tree until you end up with a lock on the root.  A locked buffer
 174 * is returned, with a reference held.
 175 */
 176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 177{
 178        struct extent_buffer *eb;
 179
 180        while (1) {
 181                eb = btrfs_root_node(root);
 182                btrfs_tree_lock(eb);
 183                if (eb == root->node)
 184                        break;
 185                btrfs_tree_unlock(eb);
 186                free_extent_buffer(eb);
 187        }
 188        return eb;
 189}
 190
 191/* loop around taking references on and locking the root node of the
 192 * tree until you end up with a lock on the root.  A locked buffer
 193 * is returned, with a reference held.
 194 */
 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 196{
 197        struct extent_buffer *eb;
 198
 199        while (1) {
 200                eb = btrfs_root_node(root);
 201                btrfs_tree_read_lock(eb);
 202                if (eb == root->node)
 203                        break;
 204                btrfs_tree_read_unlock(eb);
 205                free_extent_buffer(eb);
 206        }
 207        return eb;
 208}
 209
 210/* cowonly root (everything not a reference counted cow subvolume), just get
 211 * put onto a simple dirty list.  transaction.c walks this to make sure they
 212 * get properly updated on disk.
 213 */
 214static void add_root_to_dirty_list(struct btrfs_root *root)
 215{
 216        struct btrfs_fs_info *fs_info = root->fs_info;
 217
 218        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 219            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 220                return;
 221
 222        spin_lock(&fs_info->trans_lock);
 223        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 224                /* Want the extent tree to be the last on the list */
 225                if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 226                        list_move_tail(&root->dirty_list,
 227                                       &fs_info->dirty_cowonly_roots);
 228                else
 229                        list_move(&root->dirty_list,
 230                                  &fs_info->dirty_cowonly_roots);
 231        }
 232        spin_unlock(&fs_info->trans_lock);
 233}
 234
 235/*
 236 * used by snapshot creation to make a copy of a root for a tree with
 237 * a given objectid.  The buffer with the new root node is returned in
 238 * cow_ret, and this func returns zero on success or a negative error code.
 239 */
 240int btrfs_copy_root(struct btrfs_trans_handle *trans,
 241                      struct btrfs_root *root,
 242                      struct extent_buffer *buf,
 243                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 244{
 245        struct btrfs_fs_info *fs_info = root->fs_info;
 246        struct extent_buffer *cow;
 247        int ret = 0;
 248        int level;
 249        struct btrfs_disk_key disk_key;
 250
 251        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 252                trans->transid != fs_info->running_transaction->transid);
 253        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 254                trans->transid != root->last_trans);
 255
 256        level = btrfs_header_level(buf);
 257        if (level == 0)
 258                btrfs_item_key(buf, &disk_key, 0);
 259        else
 260                btrfs_node_key(buf, &disk_key, 0);
 261
 262        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 263                        &disk_key, level, buf->start, 0);
 264        if (IS_ERR(cow))
 265                return PTR_ERR(cow);
 266
 267        copy_extent_buffer_full(cow, buf);
 268        btrfs_set_header_bytenr(cow, cow->start);
 269        btrfs_set_header_generation(cow, trans->transid);
 270        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 271        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 272                                     BTRFS_HEADER_FLAG_RELOC);
 273        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 274                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 275        else
 276                btrfs_set_header_owner(cow, new_root_objectid);
 277
 278        write_extent_buffer_fsid(cow, fs_info->fsid);
 279
 280        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 281        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 282                ret = btrfs_inc_ref(trans, root, cow, 1);
 283        else
 284                ret = btrfs_inc_ref(trans, root, cow, 0);
 285
 286        if (ret)
 287                return ret;
 288
 289        btrfs_mark_buffer_dirty(cow);
 290        *cow_ret = cow;
 291        return 0;
 292}
 293
 294enum mod_log_op {
 295        MOD_LOG_KEY_REPLACE,
 296        MOD_LOG_KEY_ADD,
 297        MOD_LOG_KEY_REMOVE,
 298        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 299        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 300        MOD_LOG_MOVE_KEYS,
 301        MOD_LOG_ROOT_REPLACE,
 302};
 303
 304struct tree_mod_move {
 305        int dst_slot;
 306        int nr_items;
 307};
 308
 309struct tree_mod_root {
 310        u64 logical;
 311        u8 level;
 312};
 313
 314struct tree_mod_elem {
 315        struct rb_node node;
 316        u64 logical;
 317        u64 seq;
 318        enum mod_log_op op;
 319
 320        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 321        int slot;
 322
 323        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 324        u64 generation;
 325
 326        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 327        struct btrfs_disk_key key;
 328        u64 blockptr;
 329
 330        /* this is used for op == MOD_LOG_MOVE_KEYS */
 331        struct tree_mod_move move;
 332
 333        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 334        struct tree_mod_root old_root;
 335};
 336
 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 338{
 339        read_lock(&fs_info->tree_mod_log_lock);
 340}
 341
 342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 343{
 344        read_unlock(&fs_info->tree_mod_log_lock);
 345}
 346
 347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 348{
 349        write_lock(&fs_info->tree_mod_log_lock);
 350}
 351
 352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 353{
 354        write_unlock(&fs_info->tree_mod_log_lock);
 355}
 356
 357/*
 358 * Pull a new tree mod seq number for our operation.
 359 */
 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 361{
 362        return atomic64_inc_return(&fs_info->tree_mod_seq);
 363}
 364
 365/*
 366 * This adds a new blocker to the tree mod log's blocker list if the @elem
 367 * passed does not already have a sequence number set. So when a caller expects
 368 * to record tree modifications, it should ensure to set elem->seq to zero
 369 * before calling btrfs_get_tree_mod_seq.
 370 * Returns a fresh, unused tree log modification sequence number, even if no new
 371 * blocker was added.
 372 */
 373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 374                           struct seq_list *elem)
 375{
 376        tree_mod_log_write_lock(fs_info);
 377        spin_lock(&fs_info->tree_mod_seq_lock);
 378        if (!elem->seq) {
 379                elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 380                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 381        }
 382        spin_unlock(&fs_info->tree_mod_seq_lock);
 383        tree_mod_log_write_unlock(fs_info);
 384
 385        return elem->seq;
 386}
 387
 388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 389                            struct seq_list *elem)
 390{
 391        struct rb_root *tm_root;
 392        struct rb_node *node;
 393        struct rb_node *next;
 394        struct seq_list *cur_elem;
 395        struct tree_mod_elem *tm;
 396        u64 min_seq = (u64)-1;
 397        u64 seq_putting = elem->seq;
 398
 399        if (!seq_putting)
 400                return;
 401
 402        spin_lock(&fs_info->tree_mod_seq_lock);
 403        list_del(&elem->list);
 404        elem->seq = 0;
 405
 406        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 407                if (cur_elem->seq < min_seq) {
 408                        if (seq_putting > cur_elem->seq) {
 409                                /*
 410                                 * blocker with lower sequence number exists, we
 411                                 * cannot remove anything from the log
 412                                 */
 413                                spin_unlock(&fs_info->tree_mod_seq_lock);
 414                                return;
 415                        }
 416                        min_seq = cur_elem->seq;
 417                }
 418        }
 419        spin_unlock(&fs_info->tree_mod_seq_lock);
 420
 421        /*
 422         * anything that's lower than the lowest existing (read: blocked)
 423         * sequence number can be removed from the tree.
 424         */
 425        tree_mod_log_write_lock(fs_info);
 426        tm_root = &fs_info->tree_mod_log;
 427        for (node = rb_first(tm_root); node; node = next) {
 428                next = rb_next(node);
 429                tm = rb_entry(node, struct tree_mod_elem, node);
 430                if (tm->seq > min_seq)
 431                        continue;
 432                rb_erase(node, tm_root);
 433                kfree(tm);
 434        }
 435        tree_mod_log_write_unlock(fs_info);
 436}
 437
 438/*
 439 * key order of the log:
 440 *       node/leaf start address -> sequence
 441 *
 442 * The 'start address' is the logical address of the *new* root node
 443 * for root replace operations, or the logical address of the affected
 444 * block for all other operations.
 445 *
 446 * Note: must be called with write lock (tree_mod_log_write_lock).
 447 */
 448static noinline int
 449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 450{
 451        struct rb_root *tm_root;
 452        struct rb_node **new;
 453        struct rb_node *parent = NULL;
 454        struct tree_mod_elem *cur;
 455
 456        tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 457
 458        tm_root = &fs_info->tree_mod_log;
 459        new = &tm_root->rb_node;
 460        while (*new) {
 461                cur = rb_entry(*new, struct tree_mod_elem, node);
 462                parent = *new;
 463                if (cur->logical < tm->logical)
 464                        new = &((*new)->rb_left);
 465                else if (cur->logical > tm->logical)
 466                        new = &((*new)->rb_right);
 467                else if (cur->seq < tm->seq)
 468                        new = &((*new)->rb_left);
 469                else if (cur->seq > tm->seq)
 470                        new = &((*new)->rb_right);
 471                else
 472                        return -EEXIST;
 473        }
 474
 475        rb_link_node(&tm->node, parent, new);
 476        rb_insert_color(&tm->node, tm_root);
 477        return 0;
 478}
 479
 480/*
 481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 483 * this until all tree mod log insertions are recorded in the rb tree and then
 484 * call tree_mod_log_write_unlock() to release.
 485 */
 486static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 487                                    struct extent_buffer *eb) {
 488        smp_mb();
 489        if (list_empty(&(fs_info)->tree_mod_seq_list))
 490                return 1;
 491        if (eb && btrfs_header_level(eb) == 0)
 492                return 1;
 493
 494        tree_mod_log_write_lock(fs_info);
 495        if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 496                tree_mod_log_write_unlock(fs_info);
 497                return 1;
 498        }
 499
 500        return 0;
 501}
 502
 503/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 504static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 505                                    struct extent_buffer *eb)
 506{
 507        smp_mb();
 508        if (list_empty(&(fs_info)->tree_mod_seq_list))
 509                return 0;
 510        if (eb && btrfs_header_level(eb) == 0)
 511                return 0;
 512
 513        return 1;
 514}
 515
 516static struct tree_mod_elem *
 517alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 518                    enum mod_log_op op, gfp_t flags)
 519{
 520        struct tree_mod_elem *tm;
 521
 522        tm = kzalloc(sizeof(*tm), flags);
 523        if (!tm)
 524                return NULL;
 525
 526        tm->logical = eb->start;
 527        if (op != MOD_LOG_KEY_ADD) {
 528                btrfs_node_key(eb, &tm->key, slot);
 529                tm->blockptr = btrfs_node_blockptr(eb, slot);
 530        }
 531        tm->op = op;
 532        tm->slot = slot;
 533        tm->generation = btrfs_node_ptr_generation(eb, slot);
 534        RB_CLEAR_NODE(&tm->node);
 535
 536        return tm;
 537}
 538
 539static noinline int
 540tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 541                        struct extent_buffer *eb, int slot,
 542                        enum mod_log_op op, gfp_t flags)
 543{
 544        struct tree_mod_elem *tm;
 545        int ret;
 546
 547        if (!tree_mod_need_log(fs_info, eb))
 548                return 0;
 549
 550        tm = alloc_tree_mod_elem(eb, slot, op, flags);
 551        if (!tm)
 552                return -ENOMEM;
 553
 554        if (tree_mod_dont_log(fs_info, eb)) {
 555                kfree(tm);
 556                return 0;
 557        }
 558
 559        ret = __tree_mod_log_insert(fs_info, tm);
 560        tree_mod_log_write_unlock(fs_info);
 561        if (ret)
 562                kfree(tm);
 563
 564        return ret;
 565}
 566
 567static noinline int
 568tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 569                         struct extent_buffer *eb, int dst_slot, int src_slot,
 570                         int nr_items)
 571{
 572        struct tree_mod_elem *tm = NULL;
 573        struct tree_mod_elem **tm_list = NULL;
 574        int ret = 0;
 575        int i;
 576        int locked = 0;
 577
 578        if (!tree_mod_need_log(fs_info, eb))
 579                return 0;
 580
 581        tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 582        if (!tm_list)
 583                return -ENOMEM;
 584
 585        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 586        if (!tm) {
 587                ret = -ENOMEM;
 588                goto free_tms;
 589        }
 590
 591        tm->logical = eb->start;
 592        tm->slot = src_slot;
 593        tm->move.dst_slot = dst_slot;
 594        tm->move.nr_items = nr_items;
 595        tm->op = MOD_LOG_MOVE_KEYS;
 596
 597        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 598                tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 599                    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 600                if (!tm_list[i]) {
 601                        ret = -ENOMEM;
 602                        goto free_tms;
 603                }
 604        }
 605
 606        if (tree_mod_dont_log(fs_info, eb))
 607                goto free_tms;
 608        locked = 1;
 609
 610        /*
 611         * When we override something during the move, we log these removals.
 612         * This can only happen when we move towards the beginning of the
 613         * buffer, i.e. dst_slot < src_slot.
 614         */
 615        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 616                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 617                if (ret)
 618                        goto free_tms;
 619        }
 620
 621        ret = __tree_mod_log_insert(fs_info, tm);
 622        if (ret)
 623                goto free_tms;
 624        tree_mod_log_write_unlock(fs_info);
 625        kfree(tm_list);
 626
 627        return 0;
 628free_tms:
 629        for (i = 0; i < nr_items; i++) {
 630                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 631                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 632                kfree(tm_list[i]);
 633        }
 634        if (locked)
 635                tree_mod_log_write_unlock(fs_info);
 636        kfree(tm_list);
 637        kfree(tm);
 638
 639        return ret;
 640}
 641
 642static inline int
 643__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 644                       struct tree_mod_elem **tm_list,
 645                       int nritems)
 646{
 647        int i, j;
 648        int ret;
 649
 650        for (i = nritems - 1; i >= 0; i--) {
 651                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 652                if (ret) {
 653                        for (j = nritems - 1; j > i; j--)
 654                                rb_erase(&tm_list[j]->node,
 655                                         &fs_info->tree_mod_log);
 656                        return ret;
 657                }
 658        }
 659
 660        return 0;
 661}
 662
 663static noinline int
 664tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 665                         struct extent_buffer *old_root,
 666                         struct extent_buffer *new_root,
 667                         int log_removal)
 668{
 669        struct tree_mod_elem *tm = NULL;
 670        struct tree_mod_elem **tm_list = NULL;
 671        int nritems = 0;
 672        int ret = 0;
 673        int i;
 674
 675        if (!tree_mod_need_log(fs_info, NULL))
 676                return 0;
 677
 678        if (log_removal && btrfs_header_level(old_root) > 0) {
 679                nritems = btrfs_header_nritems(old_root);
 680                tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 681                                  GFP_NOFS);
 682                if (!tm_list) {
 683                        ret = -ENOMEM;
 684                        goto free_tms;
 685                }
 686                for (i = 0; i < nritems; i++) {
 687                        tm_list[i] = alloc_tree_mod_elem(old_root, i,
 688                            MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 689                        if (!tm_list[i]) {
 690                                ret = -ENOMEM;
 691                                goto free_tms;
 692                        }
 693                }
 694        }
 695
 696        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 697        if (!tm) {
 698                ret = -ENOMEM;
 699                goto free_tms;
 700        }
 701
 702        tm->logical = new_root->start;
 703        tm->old_root.logical = old_root->start;
 704        tm->old_root.level = btrfs_header_level(old_root);
 705        tm->generation = btrfs_header_generation(old_root);
 706        tm->op = MOD_LOG_ROOT_REPLACE;
 707
 708        if (tree_mod_dont_log(fs_info, NULL))
 709                goto free_tms;
 710
 711        if (tm_list)
 712                ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 713        if (!ret)
 714                ret = __tree_mod_log_insert(fs_info, tm);
 715
 716        tree_mod_log_write_unlock(fs_info);
 717        if (ret)
 718                goto free_tms;
 719        kfree(tm_list);
 720
 721        return ret;
 722
 723free_tms:
 724        if (tm_list) {
 725                for (i = 0; i < nritems; i++)
 726                        kfree(tm_list[i]);
 727                kfree(tm_list);
 728        }
 729        kfree(tm);
 730
 731        return ret;
 732}
 733
 734static struct tree_mod_elem *
 735__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 736                      int smallest)
 737{
 738        struct rb_root *tm_root;
 739        struct rb_node *node;
 740        struct tree_mod_elem *cur = NULL;
 741        struct tree_mod_elem *found = NULL;
 742
 743        tree_mod_log_read_lock(fs_info);
 744        tm_root = &fs_info->tree_mod_log;
 745        node = tm_root->rb_node;
 746        while (node) {
 747                cur = rb_entry(node, struct tree_mod_elem, node);
 748                if (cur->logical < start) {
 749                        node = node->rb_left;
 750                } else if (cur->logical > start) {
 751                        node = node->rb_right;
 752                } else if (cur->seq < min_seq) {
 753                        node = node->rb_left;
 754                } else if (!smallest) {
 755                        /* we want the node with the highest seq */
 756                        if (found)
 757                                BUG_ON(found->seq > cur->seq);
 758                        found = cur;
 759                        node = node->rb_left;
 760                } else if (cur->seq > min_seq) {
 761                        /* we want the node with the smallest seq */
 762                        if (found)
 763                                BUG_ON(found->seq < cur->seq);
 764                        found = cur;
 765                        node = node->rb_right;
 766                } else {
 767                        found = cur;
 768                        break;
 769                }
 770        }
 771        tree_mod_log_read_unlock(fs_info);
 772
 773        return found;
 774}
 775
 776/*
 777 * this returns the element from the log with the smallest time sequence
 778 * value that's in the log (the oldest log item). any element with a time
 779 * sequence lower than min_seq will be ignored.
 780 */
 781static struct tree_mod_elem *
 782tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 783                           u64 min_seq)
 784{
 785        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 786}
 787
 788/*
 789 * this returns the element from the log with the largest time sequence
 790 * value that's in the log (the most recent log item). any element with
 791 * a time sequence lower than min_seq will be ignored.
 792 */
 793static struct tree_mod_elem *
 794tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 795{
 796        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 797}
 798
 799static noinline int
 800tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 801                     struct extent_buffer *src, unsigned long dst_offset,
 802                     unsigned long src_offset, int nr_items)
 803{
 804        int ret = 0;
 805        struct tree_mod_elem **tm_list = NULL;
 806        struct tree_mod_elem **tm_list_add, **tm_list_rem;
 807        int i;
 808        int locked = 0;
 809
 810        if (!tree_mod_need_log(fs_info, NULL))
 811                return 0;
 812
 813        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 814                return 0;
 815
 816        tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 817                          GFP_NOFS);
 818        if (!tm_list)
 819                return -ENOMEM;
 820
 821        tm_list_add = tm_list;
 822        tm_list_rem = tm_list + nr_items;
 823        for (i = 0; i < nr_items; i++) {
 824                tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 825                    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 826                if (!tm_list_rem[i]) {
 827                        ret = -ENOMEM;
 828                        goto free_tms;
 829                }
 830
 831                tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 832                    MOD_LOG_KEY_ADD, GFP_NOFS);
 833                if (!tm_list_add[i]) {
 834                        ret = -ENOMEM;
 835                        goto free_tms;
 836                }
 837        }
 838
 839        if (tree_mod_dont_log(fs_info, NULL))
 840                goto free_tms;
 841        locked = 1;
 842
 843        for (i = 0; i < nr_items; i++) {
 844                ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 845                if (ret)
 846                        goto free_tms;
 847                ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 848                if (ret)
 849                        goto free_tms;
 850        }
 851
 852        tree_mod_log_write_unlock(fs_info);
 853        kfree(tm_list);
 854
 855        return 0;
 856
 857free_tms:
 858        for (i = 0; i < nr_items * 2; i++) {
 859                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 860                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 861                kfree(tm_list[i]);
 862        }
 863        if (locked)
 864                tree_mod_log_write_unlock(fs_info);
 865        kfree(tm_list);
 866
 867        return ret;
 868}
 869
 870static inline void
 871tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 872                     int dst_offset, int src_offset, int nr_items)
 873{
 874        int ret;
 875        ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 876                                       nr_items);
 877        BUG_ON(ret < 0);
 878}
 879
 880static noinline void
 881tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 882                          struct extent_buffer *eb, int slot, int atomic)
 883{
 884        int ret;
 885
 886        ret = tree_mod_log_insert_key(fs_info, eb, slot,
 887                                        MOD_LOG_KEY_REPLACE,
 888                                        atomic ? GFP_ATOMIC : GFP_NOFS);
 889        BUG_ON(ret < 0);
 890}
 891
 892static noinline int
 893tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 894{
 895        struct tree_mod_elem **tm_list = NULL;
 896        int nritems = 0;
 897        int i;
 898        int ret = 0;
 899
 900        if (btrfs_header_level(eb) == 0)
 901                return 0;
 902
 903        if (!tree_mod_need_log(fs_info, NULL))
 904                return 0;
 905
 906        nritems = btrfs_header_nritems(eb);
 907        tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 908        if (!tm_list)
 909                return -ENOMEM;
 910
 911        for (i = 0; i < nritems; i++) {
 912                tm_list[i] = alloc_tree_mod_elem(eb, i,
 913                    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 914                if (!tm_list[i]) {
 915                        ret = -ENOMEM;
 916                        goto free_tms;
 917                }
 918        }
 919
 920        if (tree_mod_dont_log(fs_info, eb))
 921                goto free_tms;
 922
 923        ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 924        tree_mod_log_write_unlock(fs_info);
 925        if (ret)
 926                goto free_tms;
 927        kfree(tm_list);
 928
 929        return 0;
 930
 931free_tms:
 932        for (i = 0; i < nritems; i++)
 933                kfree(tm_list[i]);
 934        kfree(tm_list);
 935
 936        return ret;
 937}
 938
 939static noinline void
 940tree_mod_log_set_root_pointer(struct btrfs_root *root,
 941                              struct extent_buffer *new_root_node,
 942                              int log_removal)
 943{
 944        int ret;
 945        ret = tree_mod_log_insert_root(root->fs_info, root->node,
 946                                       new_root_node, log_removal);
 947        BUG_ON(ret < 0);
 948}
 949
 950/*
 951 * check if the tree block can be shared by multiple trees
 952 */
 953int btrfs_block_can_be_shared(struct btrfs_root *root,
 954                              struct extent_buffer *buf)
 955{
 956        /*
 957         * Tree blocks not in reference counted trees and tree roots
 958         * are never shared. If a block was allocated after the last
 959         * snapshot and the block was not allocated by tree relocation,
 960         * we know the block is not shared.
 961         */
 962        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 963            buf != root->node && buf != root->commit_root &&
 964            (btrfs_header_generation(buf) <=
 965             btrfs_root_last_snapshot(&root->root_item) ||
 966             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 967                return 1;
 968#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 969        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 970            btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 971                return 1;
 972#endif
 973        return 0;
 974}
 975
 976static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 977                                       struct btrfs_root *root,
 978                                       struct extent_buffer *buf,
 979                                       struct extent_buffer *cow,
 980                                       int *last_ref)
 981{
 982        struct btrfs_fs_info *fs_info = root->fs_info;
 983        u64 refs;
 984        u64 owner;
 985        u64 flags;
 986        u64 new_flags = 0;
 987        int ret;
 988
 989        /*
 990         * Backrefs update rules:
 991         *
 992         * Always use full backrefs for extent pointers in tree block
 993         * allocated by tree relocation.
 994         *
 995         * If a shared tree block is no longer referenced by its owner
 996         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 997         * use full backrefs for extent pointers in tree block.
 998         *
 999         * If a tree block is been relocating
1000         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001         * use full backrefs for extent pointers in tree block.
1002         * The reason for this is some operations (such as drop tree)
1003         * are only allowed for blocks use full backrefs.
1004         */
1005
1006        if (btrfs_block_can_be_shared(root, buf)) {
1007                ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1008                                               btrfs_header_level(buf), 1,
1009                                               &refs, &flags);
1010                if (ret)
1011                        return ret;
1012                if (refs == 0) {
1013                        ret = -EROFS;
1014                        btrfs_handle_fs_error(fs_info, ret, NULL);
1015                        return ret;
1016                }
1017        } else {
1018                refs = 1;
1019                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022                else
1023                        flags = 0;
1024        }
1025
1026        owner = btrfs_header_owner(buf);
1027        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030        if (refs > 1) {
1031                if ((owner == root->root_key.objectid ||
1032                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034                        ret = btrfs_inc_ref(trans, root, buf, 1);
1035                        BUG_ON(ret); /* -ENOMEM */
1036
1037                        if (root->root_key.objectid ==
1038                            BTRFS_TREE_RELOC_OBJECTID) {
1039                                ret = btrfs_dec_ref(trans, root, buf, 0);
1040                                BUG_ON(ret); /* -ENOMEM */
1041                                ret = btrfs_inc_ref(trans, root, cow, 1);
1042                                BUG_ON(ret); /* -ENOMEM */
1043                        }
1044                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045                } else {
1046
1047                        if (root->root_key.objectid ==
1048                            BTRFS_TREE_RELOC_OBJECTID)
1049                                ret = btrfs_inc_ref(trans, root, cow, 1);
1050                        else
1051                                ret = btrfs_inc_ref(trans, root, cow, 0);
1052                        BUG_ON(ret); /* -ENOMEM */
1053                }
1054                if (new_flags != 0) {
1055                        int level = btrfs_header_level(buf);
1056
1057                        ret = btrfs_set_disk_extent_flags(trans, fs_info,
1058                                                          buf->start,
1059                                                          buf->len,
1060                                                          new_flags, level, 0);
1061                        if (ret)
1062                                return ret;
1063                }
1064        } else {
1065                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066                        if (root->root_key.objectid ==
1067                            BTRFS_TREE_RELOC_OBJECTID)
1068                                ret = btrfs_inc_ref(trans, root, cow, 1);
1069                        else
1070                                ret = btrfs_inc_ref(trans, root, cow, 0);
1071                        BUG_ON(ret); /* -ENOMEM */
1072                        ret = btrfs_dec_ref(trans, root, buf, 1);
1073                        BUG_ON(ret); /* -ENOMEM */
1074                }
1075                clean_tree_block(fs_info, buf);
1076                *last_ref = 1;
1077        }
1078        return 0;
1079}
1080
1081/*
1082 * does the dirty work in cow of a single block.  The parent block (if
1083 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084 * dirty and returned locked.  If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094                             struct btrfs_root *root,
1095                             struct extent_buffer *buf,
1096                             struct extent_buffer *parent, int parent_slot,
1097                             struct extent_buffer **cow_ret,
1098                             u64 search_start, u64 empty_size)
1099{
1100        struct btrfs_fs_info *fs_info = root->fs_info;
1101        struct btrfs_disk_key disk_key;
1102        struct extent_buffer *cow;
1103        int level, ret;
1104        int last_ref = 0;
1105        int unlock_orig = 0;
1106        u64 parent_start = 0;
1107
1108        if (*cow_ret == buf)
1109                unlock_orig = 1;
1110
1111        btrfs_assert_tree_locked(buf);
1112
1113        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1114                trans->transid != fs_info->running_transaction->transid);
1115        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116                trans->transid != root->last_trans);
1117
1118        level = btrfs_header_level(buf);
1119
1120        if (level == 0)
1121                btrfs_item_key(buf, &disk_key, 0);
1122        else
1123                btrfs_node_key(buf, &disk_key, 0);
1124
1125        if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1126                parent_start = parent->start;
1127
1128        cow = btrfs_alloc_tree_block(trans, root, parent_start,
1129                        root->root_key.objectid, &disk_key, level,
1130                        search_start, empty_size);
1131        if (IS_ERR(cow))
1132                return PTR_ERR(cow);
1133
1134        /* cow is set to blocking by btrfs_init_new_buffer */
1135
1136        copy_extent_buffer_full(cow, buf);
1137        btrfs_set_header_bytenr(cow, cow->start);
1138        btrfs_set_header_generation(cow, trans->transid);
1139        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1140        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1141                                     BTRFS_HEADER_FLAG_RELOC);
1142        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1143                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1144        else
1145                btrfs_set_header_owner(cow, root->root_key.objectid);
1146
1147        write_extent_buffer_fsid(cow, fs_info->fsid);
1148
1149        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1150        if (ret) {
1151                btrfs_abort_transaction(trans, ret);
1152                return ret;
1153        }
1154
1155        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1156                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1157                if (ret) {
1158                        btrfs_abort_transaction(trans, ret);
1159                        return ret;
1160                }
1161        }
1162
1163        if (buf == root->node) {
1164                WARN_ON(parent && parent != buf);
1165                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1166                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1167                        parent_start = buf->start;
1168
1169                extent_buffer_get(cow);
1170                tree_mod_log_set_root_pointer(root, cow, 1);
1171                rcu_assign_pointer(root->node, cow);
1172
1173                btrfs_free_tree_block(trans, root, buf, parent_start,
1174                                      last_ref);
1175                free_extent_buffer(buf);
1176                add_root_to_dirty_list(root);
1177        } else {
1178                WARN_ON(trans->transid != btrfs_header_generation(parent));
1179                tree_mod_log_insert_key(fs_info, parent, parent_slot,
1180                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1181                btrfs_set_node_blockptr(parent, parent_slot,
1182                                        cow->start);
1183                btrfs_set_node_ptr_generation(parent, parent_slot,
1184                                              trans->transid);
1185                btrfs_mark_buffer_dirty(parent);
1186                if (last_ref) {
1187                        ret = tree_mod_log_free_eb(fs_info, buf);
1188                        if (ret) {
1189                                btrfs_abort_transaction(trans, ret);
1190                                return ret;
1191                        }
1192                }
1193                btrfs_free_tree_block(trans, root, buf, parent_start,
1194                                      last_ref);
1195        }
1196        if (unlock_orig)
1197                btrfs_tree_unlock(buf);
1198        free_extent_buffer_stale(buf);
1199        btrfs_mark_buffer_dirty(cow);
1200        *cow_ret = cow;
1201        return 0;
1202}
1203
1204/*
1205 * returns the logical address of the oldest predecessor of the given root.
1206 * entries older than time_seq are ignored.
1207 */
1208static struct tree_mod_elem *
1209__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1210                           struct extent_buffer *eb_root, u64 time_seq)
1211{
1212        struct tree_mod_elem *tm;
1213        struct tree_mod_elem *found = NULL;
1214        u64 root_logical = eb_root->start;
1215        int looped = 0;
1216
1217        if (!time_seq)
1218                return NULL;
1219
1220        /*
1221         * the very last operation that's logged for a root is the
1222         * replacement operation (if it is replaced at all). this has
1223         * the logical address of the *new* root, making it the very
1224         * first operation that's logged for this root.
1225         */
1226        while (1) {
1227                tm = tree_mod_log_search_oldest(fs_info, root_logical,
1228                                                time_seq);
1229                if (!looped && !tm)
1230                        return NULL;
1231                /*
1232                 * if there are no tree operation for the oldest root, we simply
1233                 * return it. this should only happen if that (old) root is at
1234                 * level 0.
1235                 */
1236                if (!tm)
1237                        break;
1238
1239                /*
1240                 * if there's an operation that's not a root replacement, we
1241                 * found the oldest version of our root. normally, we'll find a
1242                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1243                 */
1244                if (tm->op != MOD_LOG_ROOT_REPLACE)
1245                        break;
1246
1247                found = tm;
1248                root_logical = tm->old_root.logical;
1249                looped = 1;
1250        }
1251
1252        /* if there's no old root to return, return what we found instead */
1253        if (!found)
1254                found = tm;
1255
1256        return found;
1257}
1258
1259/*
1260 * tm is a pointer to the first operation to rewind within eb. then, all
1261 * previous operations will be rewound (until we reach something older than
1262 * time_seq).
1263 */
1264static void
1265__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1266                      u64 time_seq, struct tree_mod_elem *first_tm)
1267{
1268        u32 n;
1269        struct rb_node *next;
1270        struct tree_mod_elem *tm = first_tm;
1271        unsigned long o_dst;
1272        unsigned long o_src;
1273        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1274
1275        n = btrfs_header_nritems(eb);
1276        tree_mod_log_read_lock(fs_info);
1277        while (tm && tm->seq >= time_seq) {
1278                /*
1279                 * all the operations are recorded with the operator used for
1280                 * the modification. as we're going backwards, we do the
1281                 * opposite of each operation here.
1282                 */
1283                switch (tm->op) {
1284                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1285                        BUG_ON(tm->slot < n);
1286                        /* Fallthrough */
1287                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1288                case MOD_LOG_KEY_REMOVE:
1289                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1290                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1291                        btrfs_set_node_ptr_generation(eb, tm->slot,
1292                                                      tm->generation);
1293                        n++;
1294                        break;
1295                case MOD_LOG_KEY_REPLACE:
1296                        BUG_ON(tm->slot >= n);
1297                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1298                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1299                        btrfs_set_node_ptr_generation(eb, tm->slot,
1300                                                      tm->generation);
1301                        break;
1302                case MOD_LOG_KEY_ADD:
1303                        /* if a move operation is needed it's in the log */
1304                        n--;
1305                        break;
1306                case MOD_LOG_MOVE_KEYS:
1307                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1308                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1309                        memmove_extent_buffer(eb, o_dst, o_src,
1310                                              tm->move.nr_items * p_size);
1311                        break;
1312                case MOD_LOG_ROOT_REPLACE:
1313                        /*
1314                         * this operation is special. for roots, this must be
1315                         * handled explicitly before rewinding.
1316                         * for non-roots, this operation may exist if the node
1317                         * was a root: root A -> child B; then A gets empty and
1318                         * B is promoted to the new root. in the mod log, we'll
1319                         * have a root-replace operation for B, a tree block
1320                         * that is no root. we simply ignore that operation.
1321                         */
1322                        break;
1323                }
1324                next = rb_next(&tm->node);
1325                if (!next)
1326                        break;
1327                tm = rb_entry(next, struct tree_mod_elem, node);
1328                if (tm->logical != first_tm->logical)
1329                        break;
1330        }
1331        tree_mod_log_read_unlock(fs_info);
1332        btrfs_set_header_nritems(eb, n);
1333}
1334
1335/*
1336 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1337 * is returned. If rewind operations happen, a fresh buffer is returned. The
1338 * returned buffer is always read-locked. If the returned buffer is not the
1339 * input buffer, the lock on the input buffer is released and the input buffer
1340 * is freed (its refcount is decremented).
1341 */
1342static struct extent_buffer *
1343tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1344                    struct extent_buffer *eb, u64 time_seq)
1345{
1346        struct extent_buffer *eb_rewin;
1347        struct tree_mod_elem *tm;
1348
1349        if (!time_seq)
1350                return eb;
1351
1352        if (btrfs_header_level(eb) == 0)
1353                return eb;
1354
1355        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1356        if (!tm)
1357                return eb;
1358
1359        btrfs_set_path_blocking(path);
1360        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1361
1362        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363                BUG_ON(tm->slot != 0);
1364                eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1365                if (!eb_rewin) {
1366                        btrfs_tree_read_unlock_blocking(eb);
1367                        free_extent_buffer(eb);
1368                        return NULL;
1369                }
1370                btrfs_set_header_bytenr(eb_rewin, eb->start);
1371                btrfs_set_header_backref_rev(eb_rewin,
1372                                             btrfs_header_backref_rev(eb));
1373                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1374                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1375        } else {
1376                eb_rewin = btrfs_clone_extent_buffer(eb);
1377                if (!eb_rewin) {
1378                        btrfs_tree_read_unlock_blocking(eb);
1379                        free_extent_buffer(eb);
1380                        return NULL;
1381                }
1382        }
1383
1384        btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1385        btrfs_tree_read_unlock_blocking(eb);
1386        free_extent_buffer(eb);
1387
1388        extent_buffer_get(eb_rewin);
1389        btrfs_tree_read_lock(eb_rewin);
1390        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1391        WARN_ON(btrfs_header_nritems(eb_rewin) >
1392                BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1393
1394        return eb_rewin;
1395}
1396
1397/*
1398 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1399 * value. If there are no changes, the current root->root_node is returned. If
1400 * anything changed in between, there's a fresh buffer allocated on which the
1401 * rewind operations are done. In any case, the returned buffer is read locked.
1402 * Returns NULL on error (with no locks held).
1403 */
1404static inline struct extent_buffer *
1405get_old_root(struct btrfs_root *root, u64 time_seq)
1406{
1407        struct btrfs_fs_info *fs_info = root->fs_info;
1408        struct tree_mod_elem *tm;
1409        struct extent_buffer *eb = NULL;
1410        struct extent_buffer *eb_root;
1411        struct extent_buffer *old;
1412        struct tree_mod_root *old_root = NULL;
1413        u64 old_generation = 0;
1414        u64 logical;
1415
1416        eb_root = btrfs_read_lock_root_node(root);
1417        tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1418        if (!tm)
1419                return eb_root;
1420
1421        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1422                old_root = &tm->old_root;
1423                old_generation = tm->generation;
1424                logical = old_root->logical;
1425        } else {
1426                logical = eb_root->start;
1427        }
1428
1429        tm = tree_mod_log_search(fs_info, logical, time_seq);
1430        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1431                btrfs_tree_read_unlock(eb_root);
1432                free_extent_buffer(eb_root);
1433                old = read_tree_block(fs_info, logical, 0);
1434                if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1435                        if (!IS_ERR(old))
1436                                free_extent_buffer(old);
1437                        btrfs_warn(fs_info,
1438                                   "failed to read tree block %llu from get_old_root",
1439                                   logical);
1440                } else {
1441                        eb = btrfs_clone_extent_buffer(old);
1442                        free_extent_buffer(old);
1443                }
1444        } else if (old_root) {
1445                btrfs_tree_read_unlock(eb_root);
1446                free_extent_buffer(eb_root);
1447                eb = alloc_dummy_extent_buffer(fs_info, logical);
1448        } else {
1449                btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1450                eb = btrfs_clone_extent_buffer(eb_root);
1451                btrfs_tree_read_unlock_blocking(eb_root);
1452                free_extent_buffer(eb_root);
1453        }
1454
1455        if (!eb)
1456                return NULL;
1457        extent_buffer_get(eb);
1458        btrfs_tree_read_lock(eb);
1459        if (old_root) {
1460                btrfs_set_header_bytenr(eb, eb->start);
1461                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1462                btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1463                btrfs_set_header_level(eb, old_root->level);
1464                btrfs_set_header_generation(eb, old_generation);
1465        }
1466        if (tm)
1467                __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1468        else
1469                WARN_ON(btrfs_header_level(eb) != 0);
1470        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1471
1472        return eb;
1473}
1474
1475int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1476{
1477        struct tree_mod_elem *tm;
1478        int level;
1479        struct extent_buffer *eb_root = btrfs_root_node(root);
1480
1481        tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1482        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1483                level = tm->old_root.level;
1484        } else {
1485                level = btrfs_header_level(eb_root);
1486        }
1487        free_extent_buffer(eb_root);
1488
1489        return level;
1490}
1491
1492static inline int should_cow_block(struct btrfs_trans_handle *trans,
1493                                   struct btrfs_root *root,
1494                                   struct extent_buffer *buf)
1495{
1496        if (btrfs_is_testing(root->fs_info))
1497                return 0;
1498
1499        /* ensure we can see the force_cow */
1500        smp_rmb();
1501
1502        /*
1503         * We do not need to cow a block if
1504         * 1) this block is not created or changed in this transaction;
1505         * 2) this block does not belong to TREE_RELOC tree;
1506         * 3) the root is not forced COW.
1507         *
1508         * What is forced COW:
1509         *    when we create snapshot during committing the transaction,
1510         *    after we've finished coping src root, we must COW the shared
1511         *    block to ensure the metadata consistency.
1512         */
1513        if (btrfs_header_generation(buf) == trans->transid &&
1514            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1515            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1516              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1517            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1518                return 0;
1519        return 1;
1520}
1521
1522/*
1523 * cows a single block, see __btrfs_cow_block for the real work.
1524 * This version of it has extra checks so that a block isn't COWed more than
1525 * once per transaction, as long as it hasn't been written yet
1526 */
1527noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1528                    struct btrfs_root *root, struct extent_buffer *buf,
1529                    struct extent_buffer *parent, int parent_slot,
1530                    struct extent_buffer **cow_ret)
1531{
1532        struct btrfs_fs_info *fs_info = root->fs_info;
1533        u64 search_start;
1534        int ret;
1535
1536        if (trans->transaction != fs_info->running_transaction)
1537                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1538                       trans->transid,
1539                       fs_info->running_transaction->transid);
1540
1541        if (trans->transid != fs_info->generation)
1542                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1543                       trans->transid, fs_info->generation);
1544
1545        if (!should_cow_block(trans, root, buf)) {
1546                trans->dirty = true;
1547                *cow_ret = buf;
1548                return 0;
1549        }
1550
1551        search_start = buf->start & ~((u64)SZ_1G - 1);
1552
1553        if (parent)
1554                btrfs_set_lock_blocking(parent);
1555        btrfs_set_lock_blocking(buf);
1556
1557        ret = __btrfs_cow_block(trans, root, buf, parent,
1558                                 parent_slot, cow_ret, search_start, 0);
1559
1560        trace_btrfs_cow_block(root, buf, *cow_ret);
1561
1562        return ret;
1563}
1564
1565/*
1566 * helper function for defrag to decide if two blocks pointed to by a
1567 * node are actually close by
1568 */
1569static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1570{
1571        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1572                return 1;
1573        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1574                return 1;
1575        return 0;
1576}
1577
1578/*
1579 * compare two keys in a memcmp fashion
1580 */
1581static int comp_keys(const struct btrfs_disk_key *disk,
1582                     const struct btrfs_key *k2)
1583{
1584        struct btrfs_key k1;
1585
1586        btrfs_disk_key_to_cpu(&k1, disk);
1587
1588        return btrfs_comp_cpu_keys(&k1, k2);
1589}
1590
1591/*
1592 * same as comp_keys only with two btrfs_key's
1593 */
1594int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1595{
1596        if (k1->objectid > k2->objectid)
1597                return 1;
1598        if (k1->objectid < k2->objectid)
1599                return -1;
1600        if (k1->type > k2->type)
1601                return 1;
1602        if (k1->type < k2->type)
1603                return -1;
1604        if (k1->offset > k2->offset)
1605                return 1;
1606        if (k1->offset < k2->offset)
1607                return -1;
1608        return 0;
1609}
1610
1611/*
1612 * this is used by the defrag code to go through all the
1613 * leaves pointed to by a node and reallocate them so that
1614 * disk order is close to key order
1615 */
1616int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1617                       struct btrfs_root *root, struct extent_buffer *parent,
1618                       int start_slot, u64 *last_ret,
1619                       struct btrfs_key *progress)
1620{
1621        struct btrfs_fs_info *fs_info = root->fs_info;
1622        struct extent_buffer *cur;
1623        u64 blocknr;
1624        u64 gen;
1625        u64 search_start = *last_ret;
1626        u64 last_block = 0;
1627        u64 other;
1628        u32 parent_nritems;
1629        int end_slot;
1630        int i;
1631        int err = 0;
1632        int parent_level;
1633        int uptodate;
1634        u32 blocksize;
1635        int progress_passed = 0;
1636        struct btrfs_disk_key disk_key;
1637
1638        parent_level = btrfs_header_level(parent);
1639
1640        WARN_ON(trans->transaction != fs_info->running_transaction);
1641        WARN_ON(trans->transid != fs_info->generation);
1642
1643        parent_nritems = btrfs_header_nritems(parent);
1644        blocksize = fs_info->nodesize;
1645        end_slot = parent_nritems - 1;
1646
1647        if (parent_nritems <= 1)
1648                return 0;
1649
1650        btrfs_set_lock_blocking(parent);
1651
1652        for (i = start_slot; i <= end_slot; i++) {
1653                int close = 1;
1654
1655                btrfs_node_key(parent, &disk_key, i);
1656                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1657                        continue;
1658
1659                progress_passed = 1;
1660                blocknr = btrfs_node_blockptr(parent, i);
1661                gen = btrfs_node_ptr_generation(parent, i);
1662                if (last_block == 0)
1663                        last_block = blocknr;
1664
1665                if (i > 0) {
1666                        other = btrfs_node_blockptr(parent, i - 1);
1667                        close = close_blocks(blocknr, other, blocksize);
1668                }
1669                if (!close && i < end_slot) {
1670                        other = btrfs_node_blockptr(parent, i + 1);
1671                        close = close_blocks(blocknr, other, blocksize);
1672                }
1673                if (close) {
1674                        last_block = blocknr;
1675                        continue;
1676                }
1677
1678                cur = find_extent_buffer(fs_info, blocknr);
1679                if (cur)
1680                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1681                else
1682                        uptodate = 0;
1683                if (!cur || !uptodate) {
1684                        if (!cur) {
1685                                cur = read_tree_block(fs_info, blocknr, gen);
1686                                if (IS_ERR(cur)) {
1687                                        return PTR_ERR(cur);
1688                                } else if (!extent_buffer_uptodate(cur)) {
1689                                        free_extent_buffer(cur);
1690                                        return -EIO;
1691                                }
1692                        } else if (!uptodate) {
1693                                err = btrfs_read_buffer(cur, gen);
1694                                if (err) {
1695                                        free_extent_buffer(cur);
1696                                        return err;
1697                                }
1698                        }
1699                }
1700                if (search_start == 0)
1701                        search_start = last_block;
1702
1703                btrfs_tree_lock(cur);
1704                btrfs_set_lock_blocking(cur);
1705                err = __btrfs_cow_block(trans, root, cur, parent, i,
1706                                        &cur, search_start,
1707                                        min(16 * blocksize,
1708                                            (end_slot - i) * blocksize));
1709                if (err) {
1710                        btrfs_tree_unlock(cur);
1711                        free_extent_buffer(cur);
1712                        break;
1713                }
1714                search_start = cur->start;
1715                last_block = cur->start;
1716                *last_ret = search_start;
1717                btrfs_tree_unlock(cur);
1718                free_extent_buffer(cur);
1719        }
1720        return err;
1721}
1722
1723/*
1724 * search for key in the extent_buffer.  The items start at offset p,
1725 * and they are item_size apart.  There are 'max' items in p.
1726 *
1727 * the slot in the array is returned via slot, and it points to
1728 * the place where you would insert key if it is not found in
1729 * the array.
1730 *
1731 * slot may point to max if the key is bigger than all of the keys
1732 */
1733static noinline int generic_bin_search(struct extent_buffer *eb,
1734                                       unsigned long p, int item_size,
1735                                       const struct btrfs_key *key,
1736                                       int max, int *slot)
1737{
1738        int low = 0;
1739        int high = max;
1740        int mid;
1741        int ret;
1742        struct btrfs_disk_key *tmp = NULL;
1743        struct btrfs_disk_key unaligned;
1744        unsigned long offset;
1745        char *kaddr = NULL;
1746        unsigned long map_start = 0;
1747        unsigned long map_len = 0;
1748        int err;
1749
1750        if (low > high) {
1751                btrfs_err(eb->fs_info,
1752                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1753                          __func__, low, high, eb->start,
1754                          btrfs_header_owner(eb), btrfs_header_level(eb));
1755                return -EINVAL;
1756        }
1757
1758        while (low < high) {
1759                mid = (low + high) / 2;
1760                offset = p + mid * item_size;
1761
1762                if (!kaddr || offset < map_start ||
1763                    (offset + sizeof(struct btrfs_disk_key)) >
1764                    map_start + map_len) {
1765
1766                        err = map_private_extent_buffer(eb, offset,
1767                                                sizeof(struct btrfs_disk_key),
1768                                                &kaddr, &map_start, &map_len);
1769
1770                        if (!err) {
1771                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1772                                                        map_start);
1773                        } else if (err == 1) {
1774                                read_extent_buffer(eb, &unaligned,
1775                                                   offset, sizeof(unaligned));
1776                                tmp = &unaligned;
1777                        } else {
1778                                return err;
1779                        }
1780
1781                } else {
1782                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1783                                                        map_start);
1784                }
1785                ret = comp_keys(tmp, key);
1786
1787                if (ret < 0)
1788                        low = mid + 1;
1789                else if (ret > 0)
1790                        high = mid;
1791                else {
1792                        *slot = mid;
1793                        return 0;
1794                }
1795        }
1796        *slot = low;
1797        return 1;
1798}
1799
1800/*
1801 * simple bin_search frontend that does the right thing for
1802 * leaves vs nodes
1803 */
1804static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1805                      int level, int *slot)
1806{
1807        if (level == 0)
1808                return generic_bin_search(eb,
1809                                          offsetof(struct btrfs_leaf, items),
1810                                          sizeof(struct btrfs_item),
1811                                          key, btrfs_header_nritems(eb),
1812                                          slot);
1813        else
1814                return generic_bin_search(eb,
1815                                          offsetof(struct btrfs_node, ptrs),
1816                                          sizeof(struct btrfs_key_ptr),
1817                                          key, btrfs_header_nritems(eb),
1818                                          slot);
1819}
1820
1821int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1822                     int level, int *slot)
1823{
1824        return bin_search(eb, key, level, slot);
1825}
1826
1827static void root_add_used(struct btrfs_root *root, u32 size)
1828{
1829        spin_lock(&root->accounting_lock);
1830        btrfs_set_root_used(&root->root_item,
1831                            btrfs_root_used(&root->root_item) + size);
1832        spin_unlock(&root->accounting_lock);
1833}
1834
1835static void root_sub_used(struct btrfs_root *root, u32 size)
1836{
1837        spin_lock(&root->accounting_lock);
1838        btrfs_set_root_used(&root->root_item,
1839                            btrfs_root_used(&root->root_item) - size);
1840        spin_unlock(&root->accounting_lock);
1841}
1842
1843/* given a node and slot number, this reads the blocks it points to.  The
1844 * extent buffer is returned with a reference taken (but unlocked).
1845 */
1846static noinline struct extent_buffer *
1847read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1848               int slot)
1849{
1850        int level = btrfs_header_level(parent);
1851        struct extent_buffer *eb;
1852
1853        if (slot < 0 || slot >= btrfs_header_nritems(parent))
1854                return ERR_PTR(-ENOENT);
1855
1856        BUG_ON(level == 0);
1857
1858        eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1859                             btrfs_node_ptr_generation(parent, slot));
1860        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1861                free_extent_buffer(eb);
1862                eb = ERR_PTR(-EIO);
1863        }
1864
1865        return eb;
1866}
1867
1868/*
1869 * node level balancing, used to make sure nodes are in proper order for
1870 * item deletion.  We balance from the top down, so we have to make sure
1871 * that a deletion won't leave an node completely empty later on.
1872 */
1873static noinline int balance_level(struct btrfs_trans_handle *trans,
1874                         struct btrfs_root *root,
1875                         struct btrfs_path *path, int level)
1876{
1877        struct btrfs_fs_info *fs_info = root->fs_info;
1878        struct extent_buffer *right = NULL;
1879        struct extent_buffer *mid;
1880        struct extent_buffer *left = NULL;
1881        struct extent_buffer *parent = NULL;
1882        int ret = 0;
1883        int wret;
1884        int pslot;
1885        int orig_slot = path->slots[level];
1886        u64 orig_ptr;
1887
1888        if (level == 0)
1889                return 0;
1890
1891        mid = path->nodes[level];
1892
1893        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1894                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1895        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1896
1897        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1898
1899        if (level < BTRFS_MAX_LEVEL - 1) {
1900                parent = path->nodes[level + 1];
1901                pslot = path->slots[level + 1];
1902        }
1903
1904        /*
1905         * deal with the case where there is only one pointer in the root
1906         * by promoting the node below to a root
1907         */
1908        if (!parent) {
1909                struct extent_buffer *child;
1910
1911                if (btrfs_header_nritems(mid) != 1)
1912                        return 0;
1913
1914                /* promote the child to a root */
1915                child = read_node_slot(fs_info, mid, 0);
1916                if (IS_ERR(child)) {
1917                        ret = PTR_ERR(child);
1918                        btrfs_handle_fs_error(fs_info, ret, NULL);
1919                        goto enospc;
1920                }
1921
1922                btrfs_tree_lock(child);
1923                btrfs_set_lock_blocking(child);
1924                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1925                if (ret) {
1926                        btrfs_tree_unlock(child);
1927                        free_extent_buffer(child);
1928                        goto enospc;
1929                }
1930
1931                tree_mod_log_set_root_pointer(root, child, 1);
1932                rcu_assign_pointer(root->node, child);
1933
1934                add_root_to_dirty_list(root);
1935                btrfs_tree_unlock(child);
1936
1937                path->locks[level] = 0;
1938                path->nodes[level] = NULL;
1939                clean_tree_block(fs_info, mid);
1940                btrfs_tree_unlock(mid);
1941                /* once for the path */
1942                free_extent_buffer(mid);
1943
1944                root_sub_used(root, mid->len);
1945                btrfs_free_tree_block(trans, root, mid, 0, 1);
1946                /* once for the root ptr */
1947                free_extent_buffer_stale(mid);
1948                return 0;
1949        }
1950        if (btrfs_header_nritems(mid) >
1951            BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1952                return 0;
1953
1954        left = read_node_slot(fs_info, parent, pslot - 1);
1955        if (IS_ERR(left))
1956                left = NULL;
1957
1958        if (left) {
1959                btrfs_tree_lock(left);
1960                btrfs_set_lock_blocking(left);
1961                wret = btrfs_cow_block(trans, root, left,
1962                                       parent, pslot - 1, &left);
1963                if (wret) {
1964                        ret = wret;
1965                        goto enospc;
1966                }
1967        }
1968
1969        right = read_node_slot(fs_info, parent, pslot + 1);
1970        if (IS_ERR(right))
1971                right = NULL;
1972
1973        if (right) {
1974                btrfs_tree_lock(right);
1975                btrfs_set_lock_blocking(right);
1976                wret = btrfs_cow_block(trans, root, right,
1977                                       parent, pslot + 1, &right);
1978                if (wret) {
1979                        ret = wret;
1980                        goto enospc;
1981                }
1982        }
1983
1984        /* first, try to make some room in the middle buffer */
1985        if (left) {
1986                orig_slot += btrfs_header_nritems(left);
1987                wret = push_node_left(trans, fs_info, left, mid, 1);
1988                if (wret < 0)
1989                        ret = wret;
1990        }
1991
1992        /*
1993         * then try to empty the right most buffer into the middle
1994         */
1995        if (right) {
1996                wret = push_node_left(trans, fs_info, mid, right, 1);
1997                if (wret < 0 && wret != -ENOSPC)
1998                        ret = wret;
1999                if (btrfs_header_nritems(right) == 0) {
2000                        clean_tree_block(fs_info, right);
2001                        btrfs_tree_unlock(right);
2002                        del_ptr(root, path, level + 1, pslot + 1);
2003                        root_sub_used(root, right->len);
2004                        btrfs_free_tree_block(trans, root, right, 0, 1);
2005                        free_extent_buffer_stale(right);
2006                        right = NULL;
2007                } else {
2008                        struct btrfs_disk_key right_key;
2009                        btrfs_node_key(right, &right_key, 0);
2010                        tree_mod_log_set_node_key(fs_info, parent,
2011                                                  pslot + 1, 0);
2012                        btrfs_set_node_key(parent, &right_key, pslot + 1);
2013                        btrfs_mark_buffer_dirty(parent);
2014                }
2015        }
2016        if (btrfs_header_nritems(mid) == 1) {
2017                /*
2018                 * we're not allowed to leave a node with one item in the
2019                 * tree during a delete.  A deletion from lower in the tree
2020                 * could try to delete the only pointer in this node.
2021                 * So, pull some keys from the left.
2022                 * There has to be a left pointer at this point because
2023                 * otherwise we would have pulled some pointers from the
2024                 * right
2025                 */
2026                if (!left) {
2027                        ret = -EROFS;
2028                        btrfs_handle_fs_error(fs_info, ret, NULL);
2029                        goto enospc;
2030                }
2031                wret = balance_node_right(trans, fs_info, mid, left);
2032                if (wret < 0) {
2033                        ret = wret;
2034                        goto enospc;
2035                }
2036                if (wret == 1) {
2037                        wret = push_node_left(trans, fs_info, left, mid, 1);
2038                        if (wret < 0)
2039                                ret = wret;
2040                }
2041                BUG_ON(wret == 1);
2042        }
2043        if (btrfs_header_nritems(mid) == 0) {
2044                clean_tree_block(fs_info, mid);
2045                btrfs_tree_unlock(mid);
2046                del_ptr(root, path, level + 1, pslot);
2047                root_sub_used(root, mid->len);
2048                btrfs_free_tree_block(trans, root, mid, 0, 1);
2049                free_extent_buffer_stale(mid);
2050                mid = NULL;
2051        } else {
2052                /* update the parent key to reflect our changes */
2053                struct btrfs_disk_key mid_key;
2054                btrfs_node_key(mid, &mid_key, 0);
2055                tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2056                btrfs_set_node_key(parent, &mid_key, pslot);
2057                btrfs_mark_buffer_dirty(parent);
2058        }
2059
2060        /* update the path */
2061        if (left) {
2062                if (btrfs_header_nritems(left) > orig_slot) {
2063                        extent_buffer_get(left);
2064                        /* left was locked after cow */
2065                        path->nodes[level] = left;
2066                        path->slots[level + 1] -= 1;
2067                        path->slots[level] = orig_slot;
2068                        if (mid) {
2069                                btrfs_tree_unlock(mid);
2070                                free_extent_buffer(mid);
2071                        }
2072                } else {
2073                        orig_slot -= btrfs_header_nritems(left);
2074                        path->slots[level] = orig_slot;
2075                }
2076        }
2077        /* double check we haven't messed things up */
2078        if (orig_ptr !=
2079            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2080                BUG();
2081enospc:
2082        if (right) {
2083                btrfs_tree_unlock(right);
2084                free_extent_buffer(right);
2085        }
2086        if (left) {
2087                if (path->nodes[level] != left)
2088                        btrfs_tree_unlock(left);
2089                free_extent_buffer(left);
2090        }
2091        return ret;
2092}
2093
2094/* Node balancing for insertion.  Here we only split or push nodes around
2095 * when they are completely full.  This is also done top down, so we
2096 * have to be pessimistic.
2097 */
2098static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2099                                          struct btrfs_root *root,
2100                                          struct btrfs_path *path, int level)
2101{
2102        struct btrfs_fs_info *fs_info = root->fs_info;
2103        struct extent_buffer *right = NULL;
2104        struct extent_buffer *mid;
2105        struct extent_buffer *left = NULL;
2106        struct extent_buffer *parent = NULL;
2107        int ret = 0;
2108        int wret;
2109        int pslot;
2110        int orig_slot = path->slots[level];
2111
2112        if (level == 0)
2113                return 1;
2114
2115        mid = path->nodes[level];
2116        WARN_ON(btrfs_header_generation(mid) != trans->transid);
2117
2118        if (level < BTRFS_MAX_LEVEL - 1) {
2119                parent = path->nodes[level + 1];
2120                pslot = path->slots[level + 1];
2121        }
2122
2123        if (!parent)
2124                return 1;
2125
2126        left = read_node_slot(fs_info, parent, pslot - 1);
2127        if (IS_ERR(left))
2128                left = NULL;
2129
2130        /* first, try to make some room in the middle buffer */
2131        if (left) {
2132                u32 left_nr;
2133
2134                btrfs_tree_lock(left);
2135                btrfs_set_lock_blocking(left);
2136
2137                left_nr = btrfs_header_nritems(left);
2138                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2139                        wret = 1;
2140                } else {
2141                        ret = btrfs_cow_block(trans, root, left, parent,
2142                                              pslot - 1, &left);
2143                        if (ret)
2144                                wret = 1;
2145                        else {
2146                                wret = push_node_left(trans, fs_info,
2147                                                      left, mid, 0);
2148                        }
2149                }
2150                if (wret < 0)
2151                        ret = wret;
2152                if (wret == 0) {
2153                        struct btrfs_disk_key disk_key;
2154                        orig_slot += left_nr;
2155                        btrfs_node_key(mid, &disk_key, 0);
2156                        tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2157                        btrfs_set_node_key(parent, &disk_key, pslot);
2158                        btrfs_mark_buffer_dirty(parent);
2159                        if (btrfs_header_nritems(left) > orig_slot) {
2160                                path->nodes[level] = left;
2161                                path->slots[level + 1] -= 1;
2162                                path->slots[level] = orig_slot;
2163                                btrfs_tree_unlock(mid);
2164                                free_extent_buffer(mid);
2165                        } else {
2166                                orig_slot -=
2167                                        btrfs_header_nritems(left);
2168                                path->slots[level] = orig_slot;
2169                                btrfs_tree_unlock(left);
2170                                free_extent_buffer(left);
2171                        }
2172                        return 0;
2173                }
2174                btrfs_tree_unlock(left);
2175                free_extent_buffer(left);
2176        }
2177        right = read_node_slot(fs_info, parent, pslot + 1);
2178        if (IS_ERR(right))
2179                right = NULL;
2180
2181        /*
2182         * then try to empty the right most buffer into the middle
2183         */
2184        if (right) {
2185                u32 right_nr;
2186
2187                btrfs_tree_lock(right);
2188                btrfs_set_lock_blocking(right);
2189
2190                right_nr = btrfs_header_nritems(right);
2191                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2192                        wret = 1;
2193                } else {
2194                        ret = btrfs_cow_block(trans, root, right,
2195                                              parent, pslot + 1,
2196                                              &right);
2197                        if (ret)
2198                                wret = 1;
2199                        else {
2200                                wret = balance_node_right(trans, fs_info,
2201                                                          right, mid);
2202                        }
2203                }
2204                if (wret < 0)
2205                        ret = wret;
2206                if (wret == 0) {
2207                        struct btrfs_disk_key disk_key;
2208
2209                        btrfs_node_key(right, &disk_key, 0);
2210                        tree_mod_log_set_node_key(fs_info, parent,
2211                                                  pslot + 1, 0);
2212                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2213                        btrfs_mark_buffer_dirty(parent);
2214
2215                        if (btrfs_header_nritems(mid) <= orig_slot) {
2216                                path->nodes[level] = right;
2217                                path->slots[level + 1] += 1;
2218                                path->slots[level] = orig_slot -
2219                                        btrfs_header_nritems(mid);
2220                                btrfs_tree_unlock(mid);
2221                                free_extent_buffer(mid);
2222                        } else {
2223                                btrfs_tree_unlock(right);
2224                                free_extent_buffer(right);
2225                        }
2226                        return 0;
2227                }
2228                btrfs_tree_unlock(right);
2229                free_extent_buffer(right);
2230        }
2231        return 1;
2232}
2233
2234/*
2235 * readahead one full node of leaves, finding things that are close
2236 * to the block in 'slot', and triggering ra on them.
2237 */
2238static void reada_for_search(struct btrfs_fs_info *fs_info,
2239                             struct btrfs_path *path,
2240                             int level, int slot, u64 objectid)
2241{
2242        struct extent_buffer *node;
2243        struct btrfs_disk_key disk_key;
2244        u32 nritems;
2245        u64 search;
2246        u64 target;
2247        u64 nread = 0;
2248        struct extent_buffer *eb;
2249        u32 nr;
2250        u32 blocksize;
2251        u32 nscan = 0;
2252
2253        if (level != 1)
2254                return;
2255
2256        if (!path->nodes[level])
2257                return;
2258
2259        node = path->nodes[level];
2260
2261        search = btrfs_node_blockptr(node, slot);
2262        blocksize = fs_info->nodesize;
2263        eb = find_extent_buffer(fs_info, search);
2264        if (eb) {
2265                free_extent_buffer(eb);
2266                return;
2267        }
2268
2269        target = search;
2270
2271        nritems = btrfs_header_nritems(node);
2272        nr = slot;
2273
2274        while (1) {
2275                if (path->reada == READA_BACK) {
2276                        if (nr == 0)
2277                                break;
2278                        nr--;
2279                } else if (path->reada == READA_FORWARD) {
2280                        nr++;
2281                        if (nr >= nritems)
2282                                break;
2283                }
2284                if (path->reada == READA_BACK && objectid) {
2285                        btrfs_node_key(node, &disk_key, nr);
2286                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2287                                break;
2288                }
2289                search = btrfs_node_blockptr(node, nr);
2290                if ((search <= target && target - search <= 65536) ||
2291                    (search > target && search - target <= 65536)) {
2292                        readahead_tree_block(fs_info, search);
2293                        nread += blocksize;
2294                }
2295                nscan++;
2296                if ((nread > 65536 || nscan > 32))
2297                        break;
2298        }
2299}
2300
2301static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2302                                       struct btrfs_path *path, int level)
2303{
2304        int slot;
2305        int nritems;
2306        struct extent_buffer *parent;
2307        struct extent_buffer *eb;
2308        u64 gen;
2309        u64 block1 = 0;
2310        u64 block2 = 0;
2311
2312        parent = path->nodes[level + 1];
2313        if (!parent)
2314                return;
2315
2316        nritems = btrfs_header_nritems(parent);
2317        slot = path->slots[level + 1];
2318
2319        if (slot > 0) {
2320                block1 = btrfs_node_blockptr(parent, slot - 1);
2321                gen = btrfs_node_ptr_generation(parent, slot - 1);
2322                eb = find_extent_buffer(fs_info, block1);
2323                /*
2324                 * if we get -eagain from btrfs_buffer_uptodate, we
2325                 * don't want to return eagain here.  That will loop
2326                 * forever
2327                 */
2328                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2329                        block1 = 0;
2330                free_extent_buffer(eb);
2331        }
2332        if (slot + 1 < nritems) {
2333                block2 = btrfs_node_blockptr(parent, slot + 1);
2334                gen = btrfs_node_ptr_generation(parent, slot + 1);
2335                eb = find_extent_buffer(fs_info, block2);
2336                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2337                        block2 = 0;
2338                free_extent_buffer(eb);
2339        }
2340
2341        if (block1)
2342                readahead_tree_block(fs_info, block1);
2343        if (block2)
2344                readahead_tree_block(fs_info, block2);
2345}
2346
2347
2348/*
2349 * when we walk down the tree, it is usually safe to unlock the higher layers
2350 * in the tree.  The exceptions are when our path goes through slot 0, because
2351 * operations on the tree might require changing key pointers higher up in the
2352 * tree.
2353 *
2354 * callers might also have set path->keep_locks, which tells this code to keep
2355 * the lock if the path points to the last slot in the block.  This is part of
2356 * walking through the tree, and selecting the next slot in the higher block.
2357 *
2358 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2359 * if lowest_unlock is 1, level 0 won't be unlocked
2360 */
2361static noinline void unlock_up(struct btrfs_path *path, int level,
2362                               int lowest_unlock, int min_write_lock_level,
2363                               int *write_lock_level)
2364{
2365        int i;
2366        int skip_level = level;
2367        int no_skips = 0;
2368        struct extent_buffer *t;
2369
2370        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2371                if (!path->nodes[i])
2372                        break;
2373                if (!path->locks[i])
2374                        break;
2375                if (!no_skips && path->slots[i] == 0) {
2376                        skip_level = i + 1;
2377                        continue;
2378                }
2379                if (!no_skips && path->keep_locks) {
2380                        u32 nritems;
2381                        t = path->nodes[i];
2382                        nritems = btrfs_header_nritems(t);
2383                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2384                                skip_level = i + 1;
2385                                continue;
2386                        }
2387                }
2388                if (skip_level < i && i >= lowest_unlock)
2389                        no_skips = 1;
2390
2391                t = path->nodes[i];
2392                if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2393                        btrfs_tree_unlock_rw(t, path->locks[i]);
2394                        path->locks[i] = 0;
2395                        if (write_lock_level &&
2396                            i > min_write_lock_level &&
2397                            i <= *write_lock_level) {
2398                                *write_lock_level = i - 1;
2399                        }
2400                }
2401        }
2402}
2403
2404/*
2405 * This releases any locks held in the path starting at level and
2406 * going all the way up to the root.
2407 *
2408 * btrfs_search_slot will keep the lock held on higher nodes in a few
2409 * corner cases, such as COW of the block at slot zero in the node.  This
2410 * ignores those rules, and it should only be called when there are no
2411 * more updates to be done higher up in the tree.
2412 */
2413noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2414{
2415        int i;
2416
2417        if (path->keep_locks)
2418                return;
2419
2420        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2421                if (!path->nodes[i])
2422                        continue;
2423                if (!path->locks[i])
2424                        continue;
2425                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2426                path->locks[i] = 0;
2427        }
2428}
2429
2430/*
2431 * helper function for btrfs_search_slot.  The goal is to find a block
2432 * in cache without setting the path to blocking.  If we find the block
2433 * we return zero and the path is unchanged.
2434 *
2435 * If we can't find the block, we set the path blocking and do some
2436 * reada.  -EAGAIN is returned and the search must be repeated.
2437 */
2438static int
2439read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2440                      struct extent_buffer **eb_ret, int level, int slot,
2441                      const struct btrfs_key *key)
2442{
2443        struct btrfs_fs_info *fs_info = root->fs_info;
2444        u64 blocknr;
2445        u64 gen;
2446        struct extent_buffer *b = *eb_ret;
2447        struct extent_buffer *tmp;
2448        int ret;
2449
2450        blocknr = btrfs_node_blockptr(b, slot);
2451        gen = btrfs_node_ptr_generation(b, slot);
2452
2453        tmp = find_extent_buffer(fs_info, blocknr);
2454        if (tmp) {
2455                /* first we do an atomic uptodate check */
2456                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2457                        *eb_ret = tmp;
2458                        return 0;
2459                }
2460
2461                /* the pages were up to date, but we failed
2462                 * the generation number check.  Do a full
2463                 * read for the generation number that is correct.
2464                 * We must do this without dropping locks so
2465                 * we can trust our generation number
2466                 */
2467                btrfs_set_path_blocking(p);
2468
2469                /* now we're allowed to do a blocking uptodate check */
2470                ret = btrfs_read_buffer(tmp, gen);
2471                if (!ret) {
2472                        *eb_ret = tmp;
2473                        return 0;
2474                }
2475                free_extent_buffer(tmp);
2476                btrfs_release_path(p);
2477                return -EIO;
2478        }
2479
2480        /*
2481         * reduce lock contention at high levels
2482         * of the btree by dropping locks before
2483         * we read.  Don't release the lock on the current
2484         * level because we need to walk this node to figure
2485         * out which blocks to read.
2486         */
2487        btrfs_unlock_up_safe(p, level + 1);
2488        btrfs_set_path_blocking(p);
2489
2490        free_extent_buffer(tmp);
2491        if (p->reada != READA_NONE)
2492                reada_for_search(fs_info, p, level, slot, key->objectid);
2493
2494        btrfs_release_path(p);
2495
2496        ret = -EAGAIN;
2497        tmp = read_tree_block(fs_info, blocknr, 0);
2498        if (!IS_ERR(tmp)) {
2499                /*
2500                 * If the read above didn't mark this buffer up to date,
2501                 * it will never end up being up to date.  Set ret to EIO now
2502                 * and give up so that our caller doesn't loop forever
2503                 * on our EAGAINs.
2504                 */
2505                if (!btrfs_buffer_uptodate(tmp, 0, 0))
2506                        ret = -EIO;
2507                free_extent_buffer(tmp);
2508        } else {
2509                ret = PTR_ERR(tmp);
2510        }
2511        return ret;
2512}
2513
2514/*
2515 * helper function for btrfs_search_slot.  This does all of the checks
2516 * for node-level blocks and does any balancing required based on
2517 * the ins_len.
2518 *
2519 * If no extra work was required, zero is returned.  If we had to
2520 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2521 * start over
2522 */
2523static int
2524setup_nodes_for_search(struct btrfs_trans_handle *trans,
2525                       struct btrfs_root *root, struct btrfs_path *p,
2526                       struct extent_buffer *b, int level, int ins_len,
2527                       int *write_lock_level)
2528{
2529        struct btrfs_fs_info *fs_info = root->fs_info;
2530        int ret;
2531
2532        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2533            BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2534                int sret;
2535
2536                if (*write_lock_level < level + 1) {
2537                        *write_lock_level = level + 1;
2538                        btrfs_release_path(p);
2539                        goto again;
2540                }
2541
2542                btrfs_set_path_blocking(p);
2543                reada_for_balance(fs_info, p, level);
2544                sret = split_node(trans, root, p, level);
2545                btrfs_clear_path_blocking(p, NULL, 0);
2546
2547                BUG_ON(sret > 0);
2548                if (sret) {
2549                        ret = sret;
2550                        goto done;
2551                }
2552                b = p->nodes[level];
2553        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2554                   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2555                int sret;
2556
2557                if (*write_lock_level < level + 1) {
2558                        *write_lock_level = level + 1;
2559                        btrfs_release_path(p);
2560                        goto again;
2561                }
2562
2563                btrfs_set_path_blocking(p);
2564                reada_for_balance(fs_info, p, level);
2565                sret = balance_level(trans, root, p, level);
2566                btrfs_clear_path_blocking(p, NULL, 0);
2567
2568                if (sret) {
2569                        ret = sret;
2570                        goto done;
2571                }
2572                b = p->nodes[level];
2573                if (!b) {
2574                        btrfs_release_path(p);
2575                        goto again;
2576                }
2577                BUG_ON(btrfs_header_nritems(b) == 1);
2578        }
2579        return 0;
2580
2581again:
2582        ret = -EAGAIN;
2583done:
2584        return ret;
2585}
2586
2587static void key_search_validate(struct extent_buffer *b,
2588                                const struct btrfs_key *key,
2589                                int level)
2590{
2591#ifdef CONFIG_BTRFS_ASSERT
2592        struct btrfs_disk_key disk_key;
2593
2594        btrfs_cpu_key_to_disk(&disk_key, key);
2595
2596        if (level == 0)
2597                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2598                    offsetof(struct btrfs_leaf, items[0].key),
2599                    sizeof(disk_key)));
2600        else
2601                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2602                    offsetof(struct btrfs_node, ptrs[0].key),
2603                    sizeof(disk_key)));
2604#endif
2605}
2606
2607static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2608                      int level, int *prev_cmp, int *slot)
2609{
2610        if (*prev_cmp != 0) {
2611                *prev_cmp = bin_search(b, key, level, slot);
2612                return *prev_cmp;
2613        }
2614
2615        key_search_validate(b, key, level);
2616        *slot = 0;
2617
2618        return 0;
2619}
2620
2621int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2622                u64 iobjectid, u64 ioff, u8 key_type,
2623                struct btrfs_key *found_key)
2624{
2625        int ret;
2626        struct btrfs_key key;
2627        struct extent_buffer *eb;
2628
2629        ASSERT(path);
2630        ASSERT(found_key);
2631
2632        key.type = key_type;
2633        key.objectid = iobjectid;
2634        key.offset = ioff;
2635
2636        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2637        if (ret < 0)
2638                return ret;
2639
2640        eb = path->nodes[0];
2641        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2642                ret = btrfs_next_leaf(fs_root, path);
2643                if (ret)
2644                        return ret;
2645                eb = path->nodes[0];
2646        }
2647
2648        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2649        if (found_key->type != key.type ||
2650                        found_key->objectid != key.objectid)
2651                return 1;
2652
2653        return 0;
2654}
2655
2656/*
2657 * look for key in the tree.  path is filled in with nodes along the way
2658 * if key is found, we return zero and you can find the item in the leaf
2659 * level of the path (level 0)
2660 *
2661 * If the key isn't found, the path points to the slot where it should
2662 * be inserted, and 1 is returned.  If there are other errors during the
2663 * search a negative error number is returned.
2664 *
2665 * if ins_len > 0, nodes and leaves will be split as we walk down the
2666 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2667 * possible)
2668 */
2669int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2670                      const struct btrfs_key *key, struct btrfs_path *p,
2671                      int ins_len, int cow)
2672{
2673        struct btrfs_fs_info *fs_info = root->fs_info;
2674        struct extent_buffer *b;
2675        int slot;
2676        int ret;
2677        int err;
2678        int level;
2679        int lowest_unlock = 1;
2680        int root_lock;
2681        /* everything at write_lock_level or lower must be write locked */
2682        int write_lock_level = 0;
2683        u8 lowest_level = 0;
2684        int min_write_lock_level;
2685        int prev_cmp;
2686
2687        lowest_level = p->lowest_level;
2688        WARN_ON(lowest_level && ins_len > 0);
2689        WARN_ON(p->nodes[0] != NULL);
2690        BUG_ON(!cow && ins_len);
2691
2692        if (ins_len < 0) {
2693                lowest_unlock = 2;
2694
2695                /* when we are removing items, we might have to go up to level
2696                 * two as we update tree pointers  Make sure we keep write
2697                 * for those levels as well
2698                 */
2699                write_lock_level = 2;
2700        } else if (ins_len > 0) {
2701                /*
2702                 * for inserting items, make sure we have a write lock on
2703                 * level 1 so we can update keys
2704                 */
2705                write_lock_level = 1;
2706        }
2707
2708        if (!cow)
2709                write_lock_level = -1;
2710
2711        if (cow && (p->keep_locks || p->lowest_level))
2712                write_lock_level = BTRFS_MAX_LEVEL;
2713
2714        min_write_lock_level = write_lock_level;
2715
2716again:
2717        prev_cmp = -1;
2718        /*
2719         * we try very hard to do read locks on the root
2720         */
2721        root_lock = BTRFS_READ_LOCK;
2722        level = 0;
2723        if (p->search_commit_root) {
2724                /*
2725                 * the commit roots are read only
2726                 * so we always do read locks
2727                 */
2728                if (p->need_commit_sem)
2729                        down_read(&fs_info->commit_root_sem);
2730                b = root->commit_root;
2731                extent_buffer_get(b);
2732                level = btrfs_header_level(b);
2733                if (p->need_commit_sem)
2734                        up_read(&fs_info->commit_root_sem);
2735                if (!p->skip_locking)
2736                        btrfs_tree_read_lock(b);
2737        } else {
2738                if (p->skip_locking) {
2739                        b = btrfs_root_node(root);
2740                        level = btrfs_header_level(b);
2741                } else {
2742                        /* we don't know the level of the root node
2743                         * until we actually have it read locked
2744                         */
2745                        b = btrfs_read_lock_root_node(root);
2746                        level = btrfs_header_level(b);
2747                        if (level <= write_lock_level) {
2748                                /* whoops, must trade for write lock */
2749                                btrfs_tree_read_unlock(b);
2750                                free_extent_buffer(b);
2751                                b = btrfs_lock_root_node(root);
2752                                root_lock = BTRFS_WRITE_LOCK;
2753
2754                                /* the level might have changed, check again */
2755                                level = btrfs_header_level(b);
2756                        }
2757                }
2758        }
2759        p->nodes[level] = b;
2760        if (!p->skip_locking)
2761                p->locks[level] = root_lock;
2762
2763        while (b) {
2764                level = btrfs_header_level(b);
2765
2766                /*
2767                 * setup the path here so we can release it under lock
2768                 * contention with the cow code
2769                 */
2770                if (cow) {
2771                        /*
2772                         * if we don't really need to cow this block
2773                         * then we don't want to set the path blocking,
2774                         * so we test it here
2775                         */
2776                        if (!should_cow_block(trans, root, b)) {
2777                                trans->dirty = true;
2778                                goto cow_done;
2779                        }
2780
2781                        /*
2782                         * must have write locks on this node and the
2783                         * parent
2784                         */
2785                        if (level > write_lock_level ||
2786                            (level + 1 > write_lock_level &&
2787                            level + 1 < BTRFS_MAX_LEVEL &&
2788                            p->nodes[level + 1])) {
2789                                write_lock_level = level + 1;
2790                                btrfs_release_path(p);
2791                                goto again;
2792                        }
2793
2794                        btrfs_set_path_blocking(p);
2795                        err = btrfs_cow_block(trans, root, b,
2796                                              p->nodes[level + 1],
2797                                              p->slots[level + 1], &b);
2798                        if (err) {
2799                                ret = err;
2800                                goto done;
2801                        }
2802                }
2803cow_done:
2804                p->nodes[level] = b;
2805                btrfs_clear_path_blocking(p, NULL, 0);
2806
2807                /*
2808                 * we have a lock on b and as long as we aren't changing
2809                 * the tree, there is no way to for the items in b to change.
2810                 * It is safe to drop the lock on our parent before we
2811                 * go through the expensive btree search on b.
2812                 *
2813                 * If we're inserting or deleting (ins_len != 0), then we might
2814                 * be changing slot zero, which may require changing the parent.
2815                 * So, we can't drop the lock until after we know which slot
2816                 * we're operating on.
2817                 */
2818                if (!ins_len && !p->keep_locks) {
2819                        int u = level + 1;
2820
2821                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2822                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2823                                p->locks[u] = 0;
2824                        }
2825                }
2826
2827                ret = key_search(b, key, level, &prev_cmp, &slot);
2828                if (ret < 0)
2829                        goto done;
2830
2831                if (level != 0) {
2832                        int dec = 0;
2833                        if (ret && slot > 0) {
2834                                dec = 1;
2835                                slot -= 1;
2836                        }
2837                        p->slots[level] = slot;
2838                        err = setup_nodes_for_search(trans, root, p, b, level,
2839                                             ins_len, &write_lock_level);
2840                        if (err == -EAGAIN)
2841                                goto again;
2842                        if (err) {
2843                                ret = err;
2844                                goto done;
2845                        }
2846                        b = p->nodes[level];
2847                        slot = p->slots[level];
2848
2849                        /*
2850                         * slot 0 is special, if we change the key
2851                         * we have to update the parent pointer
2852                         * which means we must have a write lock
2853                         * on the parent
2854                         */
2855                        if (slot == 0 && ins_len &&
2856                            write_lock_level < level + 1) {
2857                                write_lock_level = level + 1;
2858                                btrfs_release_path(p);
2859                                goto again;
2860                        }
2861
2862                        unlock_up(p, level, lowest_unlock,
2863                                  min_write_lock_level, &write_lock_level);
2864
2865                        if (level == lowest_level) {
2866                                if (dec)
2867                                        p->slots[level]++;
2868                                goto done;
2869                        }
2870
2871                        err = read_block_for_search(root, p, &b, level,
2872                                                    slot, key);
2873                        if (err == -EAGAIN)
2874                                goto again;
2875                        if (err) {
2876                                ret = err;
2877                                goto done;
2878                        }
2879
2880                        if (!p->skip_locking) {
2881                                level = btrfs_header_level(b);
2882                                if (level <= write_lock_level) {
2883                                        err = btrfs_try_tree_write_lock(b);
2884                                        if (!err) {
2885                                                btrfs_set_path_blocking(p);
2886                                                btrfs_tree_lock(b);
2887                                                btrfs_clear_path_blocking(p, b,
2888                                                                  BTRFS_WRITE_LOCK);
2889                                        }
2890                                        p->locks[level] = BTRFS_WRITE_LOCK;
2891                                } else {
2892                                        err = btrfs_tree_read_lock_atomic(b);
2893                                        if (!err) {
2894                                                btrfs_set_path_blocking(p);
2895                                                btrfs_tree_read_lock(b);
2896                                                btrfs_clear_path_blocking(p, b,
2897                                                                  BTRFS_READ_LOCK);
2898                                        }
2899                                        p->locks[level] = BTRFS_READ_LOCK;
2900                                }
2901                                p->nodes[level] = b;
2902                        }
2903                } else {
2904                        p->slots[level] = slot;
2905                        if (ins_len > 0 &&
2906                            btrfs_leaf_free_space(fs_info, b) < ins_len) {
2907                                if (write_lock_level < 1) {
2908                                        write_lock_level = 1;
2909                                        btrfs_release_path(p);
2910                                        goto again;
2911                                }
2912
2913                                btrfs_set_path_blocking(p);
2914                                err = split_leaf(trans, root, key,
2915                                                 p, ins_len, ret == 0);
2916                                btrfs_clear_path_blocking(p, NULL, 0);
2917
2918                                BUG_ON(err > 0);
2919                                if (err) {
2920                                        ret = err;
2921                                        goto done;
2922                                }
2923                        }
2924                        if (!p->search_for_split)
2925                                unlock_up(p, level, lowest_unlock,
2926                                          min_write_lock_level, &write_lock_level);
2927                        goto done;
2928                }
2929        }
2930        ret = 1;
2931done:
2932        /*
2933         * we don't really know what they plan on doing with the path
2934         * from here on, so for now just mark it as blocking
2935         */
2936        if (!p->leave_spinning)
2937                btrfs_set_path_blocking(p);
2938        if (ret < 0 && !p->skip_release_on_error)
2939                btrfs_release_path(p);
2940        return ret;
2941}
2942
2943/*
2944 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2945 * current state of the tree together with the operations recorded in the tree
2946 * modification log to search for the key in a previous version of this tree, as
2947 * denoted by the time_seq parameter.
2948 *
2949 * Naturally, there is no support for insert, delete or cow operations.
2950 *
2951 * The resulting path and return value will be set up as if we called
2952 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2953 */
2954int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2955                          struct btrfs_path *p, u64 time_seq)
2956{
2957        struct btrfs_fs_info *fs_info = root->fs_info;
2958        struct extent_buffer *b;
2959        int slot;
2960        int ret;
2961        int err;
2962        int level;
2963        int lowest_unlock = 1;
2964        u8 lowest_level = 0;
2965        int prev_cmp = -1;
2966
2967        lowest_level = p->lowest_level;
2968        WARN_ON(p->nodes[0] != NULL);
2969
2970        if (p->search_commit_root) {
2971                BUG_ON(time_seq);
2972                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2973        }
2974
2975again:
2976        b = get_old_root(root, time_seq);
2977        level = btrfs_header_level(b);
2978        p->locks[level] = BTRFS_READ_LOCK;
2979
2980        while (b) {
2981                level = btrfs_header_level(b);
2982                p->nodes[level] = b;
2983                btrfs_clear_path_blocking(p, NULL, 0);
2984
2985                /*
2986                 * we have a lock on b and as long as we aren't changing
2987                 * the tree, there is no way to for the items in b to change.
2988                 * It is safe to drop the lock on our parent before we
2989                 * go through the expensive btree search on b.
2990                 */
2991                btrfs_unlock_up_safe(p, level + 1);
2992
2993                /*
2994                 * Since we can unwind ebs we want to do a real search every
2995                 * time.
2996                 */
2997                prev_cmp = -1;
2998                ret = key_search(b, key, level, &prev_cmp, &slot);
2999
3000                if (level != 0) {
3001                        int dec = 0;
3002                        if (ret && slot > 0) {
3003                                dec = 1;
3004                                slot -= 1;
3005                        }
3006                        p->slots[level] = slot;
3007                        unlock_up(p, level, lowest_unlock, 0, NULL);
3008
3009                        if (level == lowest_level) {
3010                                if (dec)
3011                                        p->slots[level]++;
3012                                goto done;
3013                        }
3014
3015                        err = read_block_for_search(root, p, &b, level,
3016                                                    slot, key);
3017                        if (err == -EAGAIN)
3018                                goto again;
3019                        if (err) {
3020                                ret = err;
3021                                goto done;
3022                        }
3023
3024                        level = btrfs_header_level(b);
3025                        err = btrfs_tree_read_lock_atomic(b);
3026                        if (!err) {
3027                                btrfs_set_path_blocking(p);
3028                                btrfs_tree_read_lock(b);
3029                                btrfs_clear_path_blocking(p, b,
3030                                                          BTRFS_READ_LOCK);
3031                        }
3032                        b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3033                        if (!b) {
3034                                ret = -ENOMEM;
3035                                goto done;
3036                        }
3037                        p->locks[level] = BTRFS_READ_LOCK;
3038                        p->nodes[level] = b;
3039                } else {
3040                        p->slots[level] = slot;
3041                        unlock_up(p, level, lowest_unlock, 0, NULL);
3042                        goto done;
3043                }
3044        }
3045        ret = 1;
3046done:
3047        if (!p->leave_spinning)
3048                btrfs_set_path_blocking(p);
3049        if (ret < 0)
3050                btrfs_release_path(p);
3051
3052        return ret;
3053}
3054
3055/*
3056 * helper to use instead of search slot if no exact match is needed but
3057 * instead the next or previous item should be returned.
3058 * When find_higher is true, the next higher item is returned, the next lower
3059 * otherwise.
3060 * When return_any and find_higher are both true, and no higher item is found,
3061 * return the next lower instead.
3062 * When return_any is true and find_higher is false, and no lower item is found,
3063 * return the next higher instead.
3064 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3065 * < 0 on error
3066 */
3067int btrfs_search_slot_for_read(struct btrfs_root *root,
3068                               const struct btrfs_key *key,
3069                               struct btrfs_path *p, int find_higher,
3070                               int return_any)
3071{
3072        int ret;
3073        struct extent_buffer *leaf;
3074
3075again:
3076        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3077        if (ret <= 0)
3078                return ret;
3079        /*
3080         * a return value of 1 means the path is at the position where the
3081         * item should be inserted. Normally this is the next bigger item,
3082         * but in case the previous item is the last in a leaf, path points
3083         * to the first free slot in the previous leaf, i.e. at an invalid
3084         * item.
3085         */
3086        leaf = p->nodes[0];
3087
3088        if (find_higher) {
3089                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3090                        ret = btrfs_next_leaf(root, p);
3091                        if (ret <= 0)
3092                                return ret;
3093                        if (!return_any)
3094                                return 1;
3095                        /*
3096                         * no higher item found, return the next
3097                         * lower instead
3098                         */
3099                        return_any = 0;
3100                        find_higher = 0;
3101                        btrfs_release_path(p);
3102                        goto again;
3103                }
3104        } else {
3105                if (p->slots[0] == 0) {
3106                        ret = btrfs_prev_leaf(root, p);
3107                        if (ret < 0)
3108                                return ret;
3109                        if (!ret) {
3110                                leaf = p->nodes[0];
3111                                if (p->slots[0] == btrfs_header_nritems(leaf))
3112                                        p->slots[0]--;
3113                                return 0;
3114                        }
3115                        if (!return_any)
3116                                return 1;
3117                        /*
3118                         * no lower item found, return the next
3119                         * higher instead
3120                         */
3121                        return_any = 0;
3122                        find_higher = 1;
3123                        btrfs_release_path(p);
3124                        goto again;
3125                } else {
3126                        --p->slots[0];
3127                }
3128        }
3129        return 0;
3130}
3131
3132/*
3133 * adjust the pointers going up the tree, starting at level
3134 * making sure the right key of each node is points to 'key'.
3135 * This is used after shifting pointers to the left, so it stops
3136 * fixing up pointers when a given leaf/node is not in slot 0 of the
3137 * higher levels
3138 *
3139 */
3140static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3141                           struct btrfs_path *path,
3142                           struct btrfs_disk_key *key, int level)
3143{
3144        int i;
3145        struct extent_buffer *t;
3146
3147        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3148                int tslot = path->slots[i];
3149                if (!path->nodes[i])
3150                        break;
3151                t = path->nodes[i];
3152                tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3153                btrfs_set_node_key(t, key, tslot);
3154                btrfs_mark_buffer_dirty(path->nodes[i]);
3155                if (tslot != 0)
3156                        break;
3157        }
3158}
3159
3160/*
3161 * update item key.
3162 *
3163 * This function isn't completely safe. It's the caller's responsibility
3164 * that the new key won't break the order
3165 */
3166void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3167                             struct btrfs_path *path,
3168                             const struct btrfs_key *new_key)
3169{
3170        struct btrfs_disk_key disk_key;
3171        struct extent_buffer *eb;
3172        int slot;
3173
3174        eb = path->nodes[0];
3175        slot = path->slots[0];
3176        if (slot > 0) {
3177                btrfs_item_key(eb, &disk_key, slot - 1);
3178                BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3179        }
3180        if (slot < btrfs_header_nritems(eb) - 1) {
3181                btrfs_item_key(eb, &disk_key, slot + 1);
3182                BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3183        }
3184
3185        btrfs_cpu_key_to_disk(&disk_key, new_key);
3186        btrfs_set_item_key(eb, &disk_key, slot);
3187        btrfs_mark_buffer_dirty(eb);
3188        if (slot == 0)
3189                fixup_low_keys(fs_info, path, &disk_key, 1);
3190}
3191
3192/*
3193 * try to push data from one node into the next node left in the
3194 * tree.
3195 *
3196 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3197 * error, and > 0 if there was no room in the left hand block.
3198 */
3199static int push_node_left(struct btrfs_trans_handle *trans,
3200                          struct btrfs_fs_info *fs_info,
3201                          struct extent_buffer *dst,
3202                          struct extent_buffer *src, int empty)
3203{
3204        int push_items = 0;
3205        int src_nritems;
3206        int dst_nritems;
3207        int ret = 0;
3208
3209        src_nritems = btrfs_header_nritems(src);
3210        dst_nritems = btrfs_header_nritems(dst);
3211        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3212        WARN_ON(btrfs_header_generation(src) != trans->transid);
3213        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3214
3215        if (!empty && src_nritems <= 8)
3216                return 1;
3217
3218        if (push_items <= 0)
3219                return 1;
3220
3221        if (empty) {
3222                push_items = min(src_nritems, push_items);
3223                if (push_items < src_nritems) {
3224                        /* leave at least 8 pointers in the node if
3225                         * we aren't going to empty it
3226                         */
3227                        if (src_nritems - push_items < 8) {
3228                                if (push_items <= 8)
3229                                        return 1;
3230                                push_items -= 8;
3231                        }
3232                }
3233        } else
3234                push_items = min(src_nritems - 8, push_items);
3235
3236        ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3237                                   push_items);
3238        if (ret) {
3239                btrfs_abort_transaction(trans, ret);
3240                return ret;
3241        }
3242        copy_extent_buffer(dst, src,
3243                           btrfs_node_key_ptr_offset(dst_nritems),
3244                           btrfs_node_key_ptr_offset(0),
3245                           push_items * sizeof(struct btrfs_key_ptr));
3246
3247        if (push_items < src_nritems) {
3248                /*
3249                 * don't call tree_mod_log_eb_move here, key removal was already
3250                 * fully logged by tree_mod_log_eb_copy above.
3251                 */
3252                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3253                                      btrfs_node_key_ptr_offset(push_items),
3254                                      (src_nritems - push_items) *
3255                                      sizeof(struct btrfs_key_ptr));
3256        }
3257        btrfs_set_header_nritems(src, src_nritems - push_items);
3258        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3259        btrfs_mark_buffer_dirty(src);
3260        btrfs_mark_buffer_dirty(dst);
3261
3262        return ret;
3263}
3264
3265/*
3266 * try to push data from one node into the next node right in the
3267 * tree.
3268 *
3269 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3270 * error, and > 0 if there was no room in the right hand block.
3271 *
3272 * this will  only push up to 1/2 the contents of the left node over
3273 */
3274static int balance_node_right(struct btrfs_trans_handle *trans,
3275                              struct btrfs_fs_info *fs_info,
3276                              struct extent_buffer *dst,
3277                              struct extent_buffer *src)
3278{
3279        int push_items = 0;
3280        int max_push;
3281        int src_nritems;
3282        int dst_nritems;
3283        int ret = 0;
3284
3285        WARN_ON(btrfs_header_generation(src) != trans->transid);
3286        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3287
3288        src_nritems = btrfs_header_nritems(src);
3289        dst_nritems = btrfs_header_nritems(dst);
3290        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3291        if (push_items <= 0)
3292                return 1;
3293
3294        if (src_nritems < 4)
3295                return 1;
3296
3297        max_push = src_nritems / 2 + 1;
3298        /* don't try to empty the node */
3299        if (max_push >= src_nritems)
3300                return 1;
3301
3302        if (max_push < push_items)
3303                push_items = max_push;
3304
3305        tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3306        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3307                                      btrfs_node_key_ptr_offset(0),
3308                                      (dst_nritems) *
3309                                      sizeof(struct btrfs_key_ptr));
3310
3311        ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3312                                   src_nritems - push_items, push_items);
3313        if (ret) {
3314                btrfs_abort_transaction(trans, ret);
3315                return ret;
3316        }
3317        copy_extent_buffer(dst, src,
3318                           btrfs_node_key_ptr_offset(0),
3319                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3320                           push_items * sizeof(struct btrfs_key_ptr));
3321
3322        btrfs_set_header_nritems(src, src_nritems - push_items);
3323        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3324
3325        btrfs_mark_buffer_dirty(src);
3326        btrfs_mark_buffer_dirty(dst);
3327
3328        return ret;
3329}
3330
3331/*
3332 * helper function to insert a new root level in the tree.
3333 * A new node is allocated, and a single item is inserted to
3334 * point to the existing root
3335 *
3336 * returns zero on success or < 0 on failure.
3337 */
3338static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3339                           struct btrfs_root *root,
3340                           struct btrfs_path *path, int level)
3341{
3342        struct btrfs_fs_info *fs_info = root->fs_info;
3343        u64 lower_gen;
3344        struct extent_buffer *lower;
3345        struct extent_buffer *c;
3346        struct extent_buffer *old;
3347        struct btrfs_disk_key lower_key;
3348
3349        BUG_ON(path->nodes[level]);
3350        BUG_ON(path->nodes[level-1] != root->node);
3351
3352        lower = path->nodes[level-1];
3353        if (level == 1)
3354                btrfs_item_key(lower, &lower_key, 0);
3355        else
3356                btrfs_node_key(lower, &lower_key, 0);
3357
3358        c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3359                                   &lower_key, level, root->node->start, 0);
3360        if (IS_ERR(c))
3361                return PTR_ERR(c);
3362
3363        root_add_used(root, fs_info->nodesize);
3364
3365        memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3366        btrfs_set_header_nritems(c, 1);
3367        btrfs_set_header_level(c, level);
3368        btrfs_set_header_bytenr(c, c->start);
3369        btrfs_set_header_generation(c, trans->transid);
3370        btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3371        btrfs_set_header_owner(c, root->root_key.objectid);
3372
3373        write_extent_buffer_fsid(c, fs_info->fsid);
3374        write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3375
3376        btrfs_set_node_key(c, &lower_key, 0);
3377        btrfs_set_node_blockptr(c, 0, lower->start);
3378        lower_gen = btrfs_header_generation(lower);
3379        WARN_ON(lower_gen != trans->transid);
3380
3381        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3382
3383        btrfs_mark_buffer_dirty(c);
3384
3385        old = root->node;
3386        tree_mod_log_set_root_pointer(root, c, 0);
3387        rcu_assign_pointer(root->node, c);
3388
3389        /* the super has an extra ref to root->node */
3390        free_extent_buffer(old);
3391
3392        add_root_to_dirty_list(root);
3393        extent_buffer_get(c);
3394        path->nodes[level] = c;
3395        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3396        path->slots[level] = 0;
3397        return 0;
3398}
3399
3400/*
3401 * worker function to insert a single pointer in a node.
3402 * the node should have enough room for the pointer already
3403 *
3404 * slot and level indicate where you want the key to go, and
3405 * blocknr is the block the key points to.
3406 */
3407static void insert_ptr(struct btrfs_trans_handle *trans,
3408                       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3409                       struct btrfs_disk_key *key, u64 bytenr,
3410                       int slot, int level)
3411{
3412        struct extent_buffer *lower;
3413        int nritems;
3414        int ret;
3415
3416        BUG_ON(!path->nodes[level]);
3417        btrfs_assert_tree_locked(path->nodes[level]);
3418        lower = path->nodes[level];
3419        nritems = btrfs_header_nritems(lower);
3420        BUG_ON(slot > nritems);
3421        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3422        if (slot != nritems) {
3423                if (level)
3424                        tree_mod_log_eb_move(fs_info, lower, slot + 1,
3425                                             slot, nritems - slot);
3426                memmove_extent_buffer(lower,
3427                              btrfs_node_key_ptr_offset(slot + 1),
3428                              btrfs_node_key_ptr_offset(slot),
3429                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3430        }
3431        if (level) {
3432                ret = tree_mod_log_insert_key(fs_info, lower, slot,
3433                                              MOD_LOG_KEY_ADD, GFP_NOFS);
3434                BUG_ON(ret < 0);
3435        }
3436        btrfs_set_node_key(lower, key, slot);
3437        btrfs_set_node_blockptr(lower, slot, bytenr);
3438        WARN_ON(trans->transid == 0);
3439        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3440        btrfs_set_header_nritems(lower, nritems + 1);
3441        btrfs_mark_buffer_dirty(lower);
3442}
3443
3444/*
3445 * split the node at the specified level in path in two.
3446 * The path is corrected to point to the appropriate node after the split
3447 *
3448 * Before splitting this tries to make some room in the node by pushing
3449 * left and right, if either one works, it returns right away.
3450 *
3451 * returns 0 on success and < 0 on failure
3452 */
3453static noinline int split_node(struct btrfs_trans_handle *trans,
3454                               struct btrfs_root *root,
3455                               struct btrfs_path *path, int level)
3456{
3457        struct btrfs_fs_info *fs_info = root->fs_info;
3458        struct extent_buffer *c;
3459        struct extent_buffer *split;
3460        struct btrfs_disk_key disk_key;
3461        int mid;
3462        int ret;
3463        u32 c_nritems;
3464
3465        c = path->nodes[level];
3466        WARN_ON(btrfs_header_generation(c) != trans->transid);
3467        if (c == root->node) {
3468                /*
3469                 * trying to split the root, lets make a new one
3470                 *
3471                 * tree mod log: We don't log_removal old root in
3472                 * insert_new_root, because that root buffer will be kept as a
3473                 * normal node. We are going to log removal of half of the
3474                 * elements below with tree_mod_log_eb_copy. We're holding a
3475                 * tree lock on the buffer, which is why we cannot race with
3476                 * other tree_mod_log users.
3477                 */
3478                ret = insert_new_root(trans, root, path, level + 1);
3479                if (ret)
3480                        return ret;
3481        } else {
3482                ret = push_nodes_for_insert(trans, root, path, level);
3483                c = path->nodes[level];
3484                if (!ret && btrfs_header_nritems(c) <
3485                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3486                        return 0;
3487                if (ret < 0)
3488                        return ret;
3489        }
3490
3491        c_nritems = btrfs_header_nritems(c);
3492        mid = (c_nritems + 1) / 2;
3493        btrfs_node_key(c, &disk_key, mid);
3494
3495        split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3496                        &disk_key, level, c->start, 0);
3497        if (IS_ERR(split))
3498                return PTR_ERR(split);
3499
3500        root_add_used(root, fs_info->nodesize);
3501
3502        memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3503        btrfs_set_header_level(split, btrfs_header_level(c));
3504        btrfs_set_header_bytenr(split, split->start);
3505        btrfs_set_header_generation(split, trans->transid);
3506        btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3507        btrfs_set_header_owner(split, root->root_key.objectid);
3508        write_extent_buffer_fsid(split, fs_info->fsid);
3509        write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3510
3511        ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3512        if (ret) {
3513                btrfs_abort_transaction(trans, ret);
3514                return ret;
3515        }
3516        copy_extent_buffer(split, c,
3517                           btrfs_node_key_ptr_offset(0),
3518                           btrfs_node_key_ptr_offset(mid),
3519                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3520        btrfs_set_header_nritems(split, c_nritems - mid);
3521        btrfs_set_header_nritems(c, mid);
3522        ret = 0;
3523
3524        btrfs_mark_buffer_dirty(c);
3525        btrfs_mark_buffer_dirty(split);
3526
3527        insert_ptr(trans, fs_info, path, &disk_key, split->start,
3528                   path->slots[level + 1] + 1, level + 1);
3529
3530        if (path->slots[level] >= mid) {
3531                path->slots[level] -= mid;
3532                btrfs_tree_unlock(c);
3533                free_extent_buffer(c);
3534                path->nodes[level] = split;
3535                path->slots[level + 1] += 1;
3536        } else {
3537                btrfs_tree_unlock(split);
3538                free_extent_buffer(split);
3539        }
3540        return ret;
3541}
3542
3543/*
3544 * how many bytes are required to store the items in a leaf.  start
3545 * and nr indicate which items in the leaf to check.  This totals up the
3546 * space used both by the item structs and the item data
3547 */
3548static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3549{
3550        struct btrfs_item *start_item;
3551        struct btrfs_item *end_item;
3552        struct btrfs_map_token token;
3553        int data_len;
3554        int nritems = btrfs_header_nritems(l);
3555        int end = min(nritems, start + nr) - 1;
3556
3557        if (!nr)
3558                return 0;
3559        btrfs_init_map_token(&token);
3560        start_item = btrfs_item_nr(start);
3561        end_item = btrfs_item_nr(end);
3562        data_len = btrfs_token_item_offset(l, start_item, &token) +
3563                btrfs_token_item_size(l, start_item, &token);
3564        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3565        data_len += sizeof(struct btrfs_item) * nr;
3566        WARN_ON(data_len < 0);
3567        return data_len;
3568}
3569
3570/*
3571 * The space between the end of the leaf items and
3572 * the start of the leaf data.  IOW, how much room
3573 * the leaf has left for both items and data
3574 */
3575noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3576                                   struct extent_buffer *leaf)
3577{
3578        int nritems = btrfs_header_nritems(leaf);
3579        int ret;
3580
3581        ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3582        if (ret < 0) {
3583                btrfs_crit(fs_info,
3584                           "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3585                           ret,
3586                           (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3587                           leaf_space_used(leaf, 0, nritems), nritems);
3588        }
3589        return ret;
3590}
3591
3592/*
3593 * min slot controls the lowest index we're willing to push to the
3594 * right.  We'll push up to and including min_slot, but no lower
3595 */
3596static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3597                                      struct btrfs_path *path,
3598                                      int data_size, int empty,
3599                                      struct extent_buffer *right,
3600                                      int free_space, u32 left_nritems,
3601                                      u32 min_slot)
3602{
3603        struct extent_buffer *left = path->nodes[0];
3604        struct extent_buffer *upper = path->nodes[1];
3605        struct btrfs_map_token token;
3606        struct btrfs_disk_key disk_key;
3607        int slot;
3608        u32 i;
3609        int push_space = 0;
3610        int push_items = 0;
3611        struct btrfs_item *item;
3612        u32 nr;
3613        u32 right_nritems;
3614        u32 data_end;
3615        u32 this_item_size;
3616
3617        btrfs_init_map_token(&token);
3618
3619        if (empty)
3620                nr = 0;
3621        else
3622                nr = max_t(u32, 1, min_slot);
3623
3624        if (path->slots[0] >= left_nritems)
3625                push_space += data_size;
3626
3627        slot = path->slots[1];
3628        i = left_nritems - 1;
3629        while (i >= nr) {
3630                item = btrfs_item_nr(i);
3631
3632                if (!empty && push_items > 0) {
3633                        if (path->slots[0] > i)
3634                                break;
3635                        if (path->slots[0] == i) {
3636                                int space = btrfs_leaf_free_space(fs_info, left);
3637                                if (space + push_space * 2 > free_space)
3638                                        break;
3639                        }
3640                }
3641
3642                if (path->slots[0] == i)
3643                        push_space += data_size;
3644
3645                this_item_size = btrfs_item_size(left, item);
3646                if (this_item_size + sizeof(*item) + push_space > free_space)
3647                        break;
3648
3649                push_items++;
3650                push_space += this_item_size + sizeof(*item);
3651                if (i == 0)
3652                        break;
3653                i--;
3654        }
3655
3656        if (push_items == 0)
3657                goto out_unlock;
3658
3659        WARN_ON(!empty && push_items == left_nritems);
3660
3661        /* push left to right */
3662        right_nritems = btrfs_header_nritems(right);
3663
3664        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3665        push_space -= leaf_data_end(fs_info, left);
3666
3667        /* make room in the right data area */
3668        data_end = leaf_data_end(fs_info, right);
3669        memmove_extent_buffer(right,
3670                              BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3671                              BTRFS_LEAF_DATA_OFFSET + data_end,
3672                              BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3673
3674        /* copy from the left data area */
3675        copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3676                     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3677                     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3678                     push_space);
3679
3680        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3681                              btrfs_item_nr_offset(0),
3682                              right_nritems * sizeof(struct btrfs_item));
3683
3684        /* copy the items from left to right */
3685        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3686                   btrfs_item_nr_offset(left_nritems - push_items),
3687                   push_items * sizeof(struct btrfs_item));
3688
3689        /* update the item pointers */
3690        right_nritems += push_items;
3691        btrfs_set_header_nritems(right, right_nritems);
3692        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3693        for (i = 0; i < right_nritems; i++) {
3694                item = btrfs_item_nr(i);
3695                push_space -= btrfs_token_item_size(right, item, &token);
3696                btrfs_set_token_item_offset(right, item, push_space, &token);
3697        }
3698
3699        left_nritems -= push_items;
3700        btrfs_set_header_nritems(left, left_nritems);
3701
3702        if (left_nritems)
3703                btrfs_mark_buffer_dirty(left);
3704        else
3705                clean_tree_block(fs_info, left);
3706
3707        btrfs_mark_buffer_dirty(right);
3708
3709        btrfs_item_key(right, &disk_key, 0);
3710        btrfs_set_node_key(upper, &disk_key, slot + 1);
3711        btrfs_mark_buffer_dirty(upper);
3712
3713        /* then fixup the leaf pointer in the path */
3714        if (path->slots[0] >= left_nritems) {
3715                path->slots[0] -= left_nritems;
3716                if (btrfs_header_nritems(path->nodes[0]) == 0)
3717                        clean_tree_block(fs_info, path->nodes[0]);
3718                btrfs_tree_unlock(path->nodes[0]);
3719                free_extent_buffer(path->nodes[0]);
3720                path->nodes[0] = right;
3721                path->slots[1] += 1;
3722        } else {
3723                btrfs_tree_unlock(right);
3724                free_extent_buffer(right);
3725        }
3726        return 0;
3727
3728out_unlock:
3729        btrfs_tree_unlock(right);
3730        free_extent_buffer(right);
3731        return 1;
3732}
3733
3734/*
3735 * push some data in the path leaf to the right, trying to free up at
3736 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3737 *
3738 * returns 1 if the push failed because the other node didn't have enough
3739 * room, 0 if everything worked out and < 0 if there were major errors.
3740 *
3741 * this will push starting from min_slot to the end of the leaf.  It won't
3742 * push any slot lower than min_slot
3743 */
3744static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3745                           *root, struct btrfs_path *path,
3746                           int min_data_size, int data_size,
3747                           int empty, u32 min_slot)
3748{
3749        struct btrfs_fs_info *fs_info = root->fs_info;
3750        struct extent_buffer *left = path->nodes[0];
3751        struct extent_buffer *right;
3752        struct extent_buffer *upper;
3753        int slot;
3754        int free_space;
3755        u32 left_nritems;
3756        int ret;
3757
3758        if (!path->nodes[1])
3759                return 1;
3760
3761        slot = path->slots[1];
3762        upper = path->nodes[1];
3763        if (slot >= btrfs_header_nritems(upper) - 1)
3764                return 1;
3765
3766        btrfs_assert_tree_locked(path->nodes[1]);
3767
3768        right = read_node_slot(fs_info, upper, slot + 1);
3769        /*
3770         * slot + 1 is not valid or we fail to read the right node,
3771         * no big deal, just return.
3772         */
3773        if (IS_ERR(right))
3774                return 1;
3775
3776        btrfs_tree_lock(right);
3777        btrfs_set_lock_blocking(right);
3778
3779        free_space = btrfs_leaf_free_space(fs_info, right);
3780        if (free_space < data_size)
3781                goto out_unlock;
3782
3783        /* cow and double check */
3784        ret = btrfs_cow_block(trans, root, right, upper,
3785                              slot + 1, &right);
3786        if (ret)
3787                goto out_unlock;
3788
3789        free_space = btrfs_leaf_free_space(fs_info, right);
3790        if (free_space < data_size)
3791                goto out_unlock;
3792
3793        left_nritems = btrfs_header_nritems(left);
3794        if (left_nritems == 0)
3795                goto out_unlock;
3796
3797        if (path->slots[0] == left_nritems && !empty) {
3798                /* Key greater than all keys in the leaf, right neighbor has
3799                 * enough room for it and we're not emptying our leaf to delete
3800                 * it, therefore use right neighbor to insert the new item and
3801                 * no need to touch/dirty our left leaft. */
3802                btrfs_tree_unlock(left);
3803                free_extent_buffer(left);
3804                path->nodes[0] = right;
3805                path->slots[0] = 0;
3806                path->slots[1]++;
3807                return 0;
3808        }
3809
3810        return __push_leaf_right(fs_info, path, min_data_size, empty,
3811                                right, free_space, left_nritems, min_slot);
3812out_unlock:
3813        btrfs_tree_unlock(right);
3814        free_extent_buffer(right);
3815        return 1;
3816}
3817
3818/*
3819 * push some data in the path leaf to the left, trying to free up at
3820 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3821 *
3822 * max_slot can put a limit on how far into the leaf we'll push items.  The
3823 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3824 * items
3825 */
3826static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3827                                     struct btrfs_path *path, int data_size,
3828                                     int empty, struct extent_buffer *left,
3829                                     int free_space, u32 right_nritems,
3830                                     u32 max_slot)
3831{
3832        struct btrfs_disk_key disk_key;
3833        struct extent_buffer *right = path->nodes[0];
3834        int i;
3835        int push_space = 0;
3836        int push_items = 0;
3837        struct btrfs_item *item;
3838        u32 old_left_nritems;
3839        u32 nr;
3840        int ret = 0;
3841        u32 this_item_size;
3842        u32 old_left_item_size;
3843        struct btrfs_map_token token;
3844
3845        btrfs_init_map_token(&token);
3846
3847        if (empty)
3848                nr = min(right_nritems, max_slot);
3849        else
3850                nr = min(right_nritems - 1, max_slot);
3851
3852        for (i = 0; i < nr; i++) {
3853                item = btrfs_item_nr(i);
3854
3855                if (!empty && push_items > 0) {
3856                        if (path->slots[0] < i)
3857                                break;
3858                        if (path->slots[0] == i) {
3859                                int space = btrfs_leaf_free_space(fs_info, right);
3860                                if (space + push_space * 2 > free_space)
3861                                        break;
3862                        }
3863                }
3864
3865                if (path->slots[0] == i)
3866                        push_space += data_size;
3867
3868                this_item_size = btrfs_item_size(right, item);
3869                if (this_item_size + sizeof(*item) + push_space > free_space)
3870                        break;
3871
3872                push_items++;
3873                push_space += this_item_size + sizeof(*item);
3874        }
3875
3876        if (push_items == 0) {
3877                ret = 1;
3878                goto out;
3879        }
3880        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3881
3882        /* push data from right to left */
3883        copy_extent_buffer(left, right,
3884                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3885                           btrfs_item_nr_offset(0),
3886                           push_items * sizeof(struct btrfs_item));
3887
3888        push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3889                     btrfs_item_offset_nr(right, push_items - 1);
3890
3891        copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3892                     leaf_data_end(fs_info, left) - push_space,
3893                     BTRFS_LEAF_DATA_OFFSET +
3894                     btrfs_item_offset_nr(right, push_items - 1),
3895                     push_space);
3896        old_left_nritems = btrfs_header_nritems(left);
3897        BUG_ON(old_left_nritems <= 0);
3898
3899        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3900        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3901                u32 ioff;
3902
3903                item = btrfs_item_nr(i);
3904
3905                ioff = btrfs_token_item_offset(left, item, &token);
3906                btrfs_set_token_item_offset(left, item,
3907                      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3908                      &token);
3909        }
3910        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3911
3912        /* fixup right node */
3913        if (push_items > right_nritems)
3914                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3915                       right_nritems);
3916
3917        if (push_items < right_nritems) {
3918                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3919                                                  leaf_data_end(fs_info, right);
3920                memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3921                                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3922                                      BTRFS_LEAF_DATA_OFFSET +
3923                                      leaf_data_end(fs_info, right), push_space);
3924
3925                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3926                              btrfs_item_nr_offset(push_items),
3927                             (btrfs_header_nritems(right) - push_items) *
3928                             sizeof(struct btrfs_item));
3929        }
3930        right_nritems -= push_items;
3931        btrfs_set_header_nritems(right, right_nritems);
3932        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3933        for (i = 0; i < right_nritems; i++) {
3934                item = btrfs_item_nr(i);
3935
3936                push_space = push_space - btrfs_token_item_size(right,
3937                                                                item, &token);
3938                btrfs_set_token_item_offset(right, item, push_space, &token);
3939        }
3940
3941        btrfs_mark_buffer_dirty(left);
3942        if (right_nritems)
3943                btrfs_mark_buffer_dirty(right);
3944        else
3945                clean_tree_block(fs_info, right);
3946
3947        btrfs_item_key(right, &disk_key, 0);
3948        fixup_low_keys(fs_info, path, &disk_key, 1);
3949
3950        /* then fixup the leaf pointer in the path */
3951        if (path->slots[0] < push_items) {
3952                path->slots[0] += old_left_nritems;
3953                btrfs_tree_unlock(path->nodes[0]);
3954                free_extent_buffer(path->nodes[0]);
3955                path->nodes[0] = left;
3956                path->slots[1] -= 1;
3957        } else {
3958                btrfs_tree_unlock(left);
3959                free_extent_buffer(left);
3960                path->slots[0] -= push_items;
3961        }
3962        BUG_ON(path->slots[0] < 0);
3963        return ret;
3964out:
3965        btrfs_tree_unlock(left);
3966        free_extent_buffer(left);
3967        return ret;
3968}
3969
3970/*
3971 * push some data in the path leaf to the left, trying to free up at
3972 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3973 *
3974 * max_slot can put a limit on how far into the leaf we'll push items.  The
3975 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3976 * items
3977 */
3978static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3979                          *root, struct btrfs_path *path, int min_data_size,
3980                          int data_size, int empty, u32 max_slot)
3981{
3982        struct btrfs_fs_info *fs_info = root->fs_info;
3983        struct extent_buffer *right = path->nodes[0];
3984        struct extent_buffer *left;
3985        int slot;
3986        int free_space;
3987        u32 right_nritems;
3988        int ret = 0;
3989
3990        slot = path->slots[1];
3991        if (slot == 0)
3992                return 1;
3993        if (!path->nodes[1])
3994                return 1;
3995
3996        right_nritems = btrfs_header_nritems(right);
3997        if (right_nritems == 0)
3998                return 1;
3999
4000        btrfs_assert_tree_locked(path->nodes[1]);
4001
4002        left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4003        /*
4004         * slot - 1 is not valid or we fail to read the left node,
4005         * no big deal, just return.
4006         */
4007        if (IS_ERR(left))
4008                return 1;
4009
4010        btrfs_tree_lock(left);
4011        btrfs_set_lock_blocking(left);
4012
4013        free_space = btrfs_leaf_free_space(fs_info, left);
4014        if (free_space < data_size) {
4015                ret = 1;
4016                goto out;
4017        }
4018
4019        /* cow and double check */
4020        ret = btrfs_cow_block(trans, root, left,
4021                              path->nodes[1], slot - 1, &left);
4022        if (ret) {
4023                /* we hit -ENOSPC, but it isn't fatal here */
4024                if (ret == -ENOSPC)
4025                        ret = 1;
4026                goto out;
4027        }
4028
4029        free_space = btrfs_leaf_free_space(fs_info, left);
4030        if (free_space < data_size) {
4031                ret = 1;
4032                goto out;
4033        }
4034
4035        return __push_leaf_left(fs_info, path, min_data_size,
4036                               empty, left, free_space, right_nritems,
4037                               max_slot);
4038out:
4039        btrfs_tree_unlock(left);
4040        free_extent_buffer(left);
4041        return ret;
4042}
4043
4044/*
4045 * split the path's leaf in two, making sure there is at least data_size
4046 * available for the resulting leaf level of the path.
4047 */
4048static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4049                                    struct btrfs_fs_info *fs_info,
4050                                    struct btrfs_path *path,
4051                                    struct extent_buffer *l,
4052                                    struct extent_buffer *right,
4053                                    int slot, int mid, int nritems)
4054{
4055        int data_copy_size;
4056        int rt_data_off;
4057        int i;
4058        struct btrfs_disk_key disk_key;
4059        struct btrfs_map_token token;
4060
4061        btrfs_init_map_token(&token);
4062
4063        nritems = nritems - mid;
4064        btrfs_set_header_nritems(right, nritems);
4065        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4066
4067        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4068                           btrfs_item_nr_offset(mid),
4069                           nritems * sizeof(struct btrfs_item));
4070
4071        copy_extent_buffer(right, l,
4072                     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4073                     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4074                     leaf_data_end(fs_info, l), data_copy_size);
4075
4076        rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4077
4078        for (i = 0; i < nritems; i++) {
4079                struct btrfs_item *item = btrfs_item_nr(i);
4080                u32 ioff;
4081
4082                ioff = btrfs_token_item_offset(right, item, &token);
4083                btrfs_set_token_item_offset(right, item,
4084                                            ioff + rt_data_off, &token);
4085        }
4086
4087        btrfs_set_header_nritems(l, mid);
4088        btrfs_item_key(right, &disk_key, 0);
4089        insert_ptr(trans, fs_info, path, &disk_key, right->start,
4090                   path->slots[1] + 1, 1);
4091
4092        btrfs_mark_buffer_dirty(right);
4093        btrfs_mark_buffer_dirty(l);
4094        BUG_ON(path->slots[0] != slot);
4095
4096        if (mid <= slot) {
4097                btrfs_tree_unlock(path->nodes[0]);
4098                free_extent_buffer(path->nodes[0]);
4099                path->nodes[0] = right;
4100                path->slots[0] -= mid;
4101                path->slots[1] += 1;
4102        } else {
4103                btrfs_tree_unlock(right);
4104                free_extent_buffer(right);
4105        }
4106
4107        BUG_ON(path->slots[0] < 0);
4108}
4109
4110/*
4111 * double splits happen when we need to insert a big item in the middle
4112 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4113 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4114 *          A                 B                 C
4115 *
4116 * We avoid this by trying to push the items on either side of our target
4117 * into the adjacent leaves.  If all goes well we can avoid the double split
4118 * completely.
4119 */
4120static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4121                                          struct btrfs_root *root,
4122                                          struct btrfs_path *path,
4123                                          int data_size)
4124{
4125        struct btrfs_fs_info *fs_info = root->fs_info;
4126        int ret;
4127        int progress = 0;
4128        int slot;
4129        u32 nritems;
4130        int space_needed = data_size;
4131
4132        slot = path->slots[0];
4133        if (slot < btrfs_header_nritems(path->nodes[0]))
4134                space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4135
4136        /*
4137         * try to push all the items after our slot into the
4138         * right leaf
4139         */
4140        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4141        if (ret < 0)
4142                return ret;
4143
4144        if (ret == 0)
4145                progress++;
4146
4147        nritems = btrfs_header_nritems(path->nodes[0]);
4148        /*
4149         * our goal is to get our slot at the start or end of a leaf.  If
4150         * we've done so we're done
4151         */
4152        if (path->slots[0] == 0 || path->slots[0] == nritems)
4153                return 0;
4154
4155        if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4156                return 0;
4157
4158        /* try to push all the items before our slot into the next leaf */
4159        slot = path->slots[0];
4160        space_needed = data_size;
4161        if (slot > 0)
4162                space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4163        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164        if (ret < 0)
4165                return ret;
4166
4167        if (ret == 0)
4168                progress++;
4169
4170        if (progress)
4171                return 0;
4172        return 1;
4173}
4174
4175/*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
4178 *
4179 * returns 0 if all went well and < 0 on failure.
4180 */
4181static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182                               struct btrfs_root *root,
4183                               const struct btrfs_key *ins_key,
4184                               struct btrfs_path *path, int data_size,
4185                               int extend)
4186{
4187        struct btrfs_disk_key disk_key;
4188        struct extent_buffer *l;
4189        u32 nritems;
4190        int mid;
4191        int slot;
4192        struct extent_buffer *right;
4193        struct btrfs_fs_info *fs_info = root->fs_info;
4194        int ret = 0;
4195        int wret;
4196        int split;
4197        int num_doubles = 0;
4198        int tried_avoid_double = 0;
4199
4200        l = path->nodes[0];
4201        slot = path->slots[0];
4202        if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204                return -EOVERFLOW;
4205
4206        /* first try to make some room by pushing left and right */
4207        if (data_size && path->nodes[1]) {
4208                int space_needed = data_size;
4209
4210                if (slot < btrfs_header_nritems(l))
4211                        space_needed -= btrfs_leaf_free_space(fs_info, l);
4212
4213                wret = push_leaf_right(trans, root, path, space_needed,
4214                                       space_needed, 0, 0);
4215                if (wret < 0)
4216                        return wret;
4217                if (wret) {
4218                        space_needed = data_size;
4219                        if (slot > 0)
4220                                space_needed -= btrfs_leaf_free_space(fs_info,
4221                                                                      l);
4222                        wret = push_leaf_left(trans, root, path, space_needed,
4223                                              space_needed, 0, (u32)-1);
4224                        if (wret < 0)
4225                                return wret;
4226                }
4227                l = path->nodes[0];
4228
4229                /* did the pushes work? */
4230                if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4231                        return 0;
4232        }
4233
4234        if (!path->nodes[1]) {
4235                ret = insert_new_root(trans, root, path, 1);
4236                if (ret)
4237                        return ret;
4238        }
4239again:
4240        split = 1;
4241        l = path->nodes[0];
4242        slot = path->slots[0];
4243        nritems = btrfs_header_nritems(l);
4244        mid = (nritems + 1) / 2;
4245
4246        if (mid <= slot) {
4247                if (nritems == 1 ||
4248                    leaf_space_used(l, mid, nritems - mid) + data_size >
4249                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4250                        if (slot >= nritems) {
4251                                split = 0;
4252                        } else {
4253                                mid = slot;
4254                                if (mid != nritems &&
4255                                    leaf_space_used(l, mid, nritems - mid) +
4256                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4257                                        if (data_size && !tried_avoid_double)
4258                                                goto push_for_double;
4259                                        split = 2;
4260                                }
4261                        }
4262                }
4263        } else {
4264                if (leaf_space_used(l, 0, mid) + data_size >
4265                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4266                        if (!extend && data_size && slot == 0) {
4267                                split = 0;
4268                        } else if ((extend || !data_size) && slot == 0) {
4269                                mid = 1;
4270                        } else {
4271                                mid = slot;
4272                                if (mid != nritems &&
4273                                    leaf_space_used(l, mid, nritems - mid) +
4274                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4275                                        if (data_size && !tried_avoid_double)
4276                                                goto push_for_double;
4277                                        split = 2;
4278                                }
4279                        }
4280                }
4281        }
4282
4283        if (split == 0)
4284                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4285        else
4286                btrfs_item_key(l, &disk_key, mid);
4287
4288        right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4289                        &disk_key, 0, l->start, 0);
4290        if (IS_ERR(right))
4291                return PTR_ERR(right);
4292
4293        root_add_used(root, fs_info->nodesize);
4294
4295        memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4296        btrfs_set_header_bytenr(right, right->start);
4297        btrfs_set_header_generation(right, trans->transid);
4298        btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4299        btrfs_set_header_owner(right, root->root_key.objectid);
4300        btrfs_set_header_level(right, 0);
4301        write_extent_buffer_fsid(right, fs_info->fsid);
4302        write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4303
4304        if (split == 0) {
4305                if (mid <= slot) {
4306                        btrfs_set_header_nritems(right, 0);
4307                        insert_ptr(trans, fs_info, path, &disk_key,
4308                                   right->start, path->slots[1] + 1, 1);
4309                        btrfs_tree_unlock(path->nodes[0]);
4310                        free_extent_buffer(path->nodes[0]);
4311                        path->nodes[0] = right;
4312                        path->slots[0] = 0;
4313                        path->slots[1] += 1;
4314                } else {
4315                        btrfs_set_header_nritems(right, 0);
4316                        insert_ptr(trans, fs_info, path, &disk_key,
4317                                   right->start, path->slots[1], 1);
4318                        btrfs_tree_unlock(path->nodes[0]);
4319                        free_extent_buffer(path->nodes[0]);
4320                        path->nodes[0] = right;
4321                        path->slots[0] = 0;
4322                        if (path->slots[1] == 0)
4323                                fixup_low_keys(fs_info, path, &disk_key, 1);
4324                }
4325                /*
4326                 * We create a new leaf 'right' for the required ins_len and
4327                 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4328                 * the content of ins_len to 'right'.
4329                 */
4330                return ret;
4331        }
4332
4333        copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4334
4335        if (split == 2) {
4336                BUG_ON(num_doubles != 0);
4337                num_doubles++;
4338                goto again;
4339        }
4340
4341        return 0;
4342
4343push_for_double:
4344        push_for_double_split(trans, root, path, data_size);
4345        tried_avoid_double = 1;
4346        if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4347                return 0;
4348        goto again;
4349}
4350
4351static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4352                                         struct btrfs_root *root,
4353                                         struct btrfs_path *path, int ins_len)
4354{
4355        struct btrfs_fs_info *fs_info = root->fs_info;
4356        struct btrfs_key key;
4357        struct extent_buffer *leaf;
4358        struct btrfs_file_extent_item *fi;
4359        u64 extent_len = 0;
4360        u32 item_size;
4361        int ret;
4362
4363        leaf = path->nodes[0];
4364        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4365
4366        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4367               key.type != BTRFS_EXTENT_CSUM_KEY);
4368
4369        if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4370                return 0;
4371
4372        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4373        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4374                fi = btrfs_item_ptr(leaf, path->slots[0],
4375                                    struct btrfs_file_extent_item);
4376                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4377        }
4378        btrfs_release_path(path);
4379
4380        path->keep_locks = 1;
4381        path->search_for_split = 1;
4382        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4383        path->search_for_split = 0;
4384        if (ret > 0)
4385                ret = -EAGAIN;
4386        if (ret < 0)
4387                goto err;
4388
4389        ret = -EAGAIN;
4390        leaf = path->nodes[0];
4391        /* if our item isn't there, return now */
4392        if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4393                goto err;
4394
4395        /* the leaf has  changed, it now has room.  return now */
4396        if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4397                goto err;
4398
4399        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4400                fi = btrfs_item_ptr(leaf, path->slots[0],
4401                                    struct btrfs_file_extent_item);
4402                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4403                        goto err;
4404        }
4405
4406        btrfs_set_path_blocking(path);
4407        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4408        if (ret)
4409                goto err;
4410
4411        path->keep_locks = 0;
4412        btrfs_unlock_up_safe(path, 1);
4413        return 0;
4414err:
4415        path->keep_locks = 0;
4416        return ret;
4417}
4418
4419static noinline int split_item(struct btrfs_fs_info *fs_info,
4420                               struct btrfs_path *path,
4421                               const struct btrfs_key *new_key,
4422                               unsigned long split_offset)
4423{
4424        struct extent_buffer *leaf;
4425        struct btrfs_item *item;
4426        struct btrfs_item *new_item;
4427        int slot;
4428        char *buf;
4429        u32 nritems;
4430        u32 item_size;
4431        u32 orig_offset;
4432        struct btrfs_disk_key disk_key;
4433
4434        leaf = path->nodes[0];
4435        BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4436
4437        btrfs_set_path_blocking(path);
4438
4439        item = btrfs_item_nr(path->slots[0]);
4440        orig_offset = btrfs_item_offset(leaf, item);
4441        item_size = btrfs_item_size(leaf, item);
4442
4443        buf = kmalloc(item_size, GFP_NOFS);
4444        if (!buf)
4445                return -ENOMEM;
4446
4447        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4448                            path->slots[0]), item_size);
4449
4450        slot = path->slots[0] + 1;
4451        nritems = btrfs_header_nritems(leaf);
4452        if (slot != nritems) {
4453                /* shift the items */
4454                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4455                                btrfs_item_nr_offset(slot),
4456                                (nritems - slot) * sizeof(struct btrfs_item));
4457        }
4458
4459        btrfs_cpu_key_to_disk(&disk_key, new_key);
4460        btrfs_set_item_key(leaf, &disk_key, slot);
4461
4462        new_item = btrfs_item_nr(slot);
4463
4464        btrfs_set_item_offset(leaf, new_item, orig_offset);
4465        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4466
4467        btrfs_set_item_offset(leaf, item,
4468                              orig_offset + item_size - split_offset);
4469        btrfs_set_item_size(leaf, item, split_offset);
4470
4471        btrfs_set_header_nritems(leaf, nritems + 1);
4472
4473        /* write the data for the start of the original item */
4474        write_extent_buffer(leaf, buf,
4475                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4476                            split_offset);
4477
4478        /* write the data for the new item */
4479        write_extent_buffer(leaf, buf + split_offset,
4480                            btrfs_item_ptr_offset(leaf, slot),
4481                            item_size - split_offset);
4482        btrfs_mark_buffer_dirty(leaf);
4483
4484        BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4485        kfree(buf);
4486        return 0;
4487}
4488
4489/*
4490 * This function splits a single item into two items,
4491 * giving 'new_key' to the new item and splitting the
4492 * old one at split_offset (from the start of the item).
4493 *
4494 * The path may be released by this operation.  After
4495 * the split, the path is pointing to the old item.  The
4496 * new item is going to be in the same node as the old one.
4497 *
4498 * Note, the item being split must be smaller enough to live alone on
4499 * a tree block with room for one extra struct btrfs_item
4500 *
4501 * This allows us to split the item in place, keeping a lock on the
4502 * leaf the entire time.
4503 */
4504int btrfs_split_item(struct btrfs_trans_handle *trans,
4505                     struct btrfs_root *root,
4506                     struct btrfs_path *path,
4507                     const struct btrfs_key *new_key,
4508                     unsigned long split_offset)
4509{
4510        int ret;
4511        ret = setup_leaf_for_split(trans, root, path,
4512                                   sizeof(struct btrfs_item));
4513        if (ret)
4514                return ret;
4515
4516        ret = split_item(root->fs_info, path, new_key, split_offset);
4517        return ret;
4518}
4519
4520/*
4521 * This function duplicate a item, giving 'new_key' to the new item.
4522 * It guarantees both items live in the same tree leaf and the new item
4523 * is contiguous with the original item.
4524 *
4525 * This allows us to split file extent in place, keeping a lock on the
4526 * leaf the entire time.
4527 */
4528int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4529                         struct btrfs_root *root,
4530                         struct btrfs_path *path,
4531                         const struct btrfs_key *new_key)
4532{
4533        struct extent_buffer *leaf;
4534        int ret;
4535        u32 item_size;
4536
4537        leaf = path->nodes[0];
4538        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4539        ret = setup_leaf_for_split(trans, root, path,
4540                                   item_size + sizeof(struct btrfs_item));
4541        if (ret)
4542                return ret;
4543
4544        path->slots[0]++;
4545        setup_items_for_insert(root, path, new_key, &item_size,
4546                               item_size, item_size +
4547                               sizeof(struct btrfs_item), 1);
4548        leaf = path->nodes[0];
4549        memcpy_extent_buffer(leaf,
4550                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4551                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4552                             item_size);
4553        return 0;
4554}
4555
4556/*
4557 * make the item pointed to by the path smaller.  new_size indicates
4558 * how small to make it, and from_end tells us if we just chop bytes
4559 * off the end of the item or if we shift the item to chop bytes off
4560 * the front.
4561 */
4562void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4563                         struct btrfs_path *path, u32 new_size, int from_end)
4564{
4565        int slot;
4566        struct extent_buffer *leaf;
4567        struct btrfs_item *item;
4568        u32 nritems;
4569        unsigned int data_end;
4570        unsigned int old_data_start;
4571        unsigned int old_size;
4572        unsigned int size_diff;
4573        int i;
4574        struct btrfs_map_token token;
4575
4576        btrfs_init_map_token(&token);
4577
4578        leaf = path->nodes[0];
4579        slot = path->slots[0];
4580
4581        old_size = btrfs_item_size_nr(leaf, slot);
4582        if (old_size == new_size)
4583                return;
4584
4585        nritems = btrfs_header_nritems(leaf);
4586        data_end = leaf_data_end(fs_info, leaf);
4587
4588        old_data_start = btrfs_item_offset_nr(leaf, slot);
4589
4590        size_diff = old_size - new_size;
4591
4592        BUG_ON(slot < 0);
4593        BUG_ON(slot >= nritems);
4594
4595        /*
4596         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4597         */
4598        /* first correct the data pointers */
4599        for (i = slot; i < nritems; i++) {
4600                u32 ioff;
4601                item = btrfs_item_nr(i);
4602
4603                ioff = btrfs_token_item_offset(leaf, item, &token);
4604                btrfs_set_token_item_offset(leaf, item,
4605                                            ioff + size_diff, &token);
4606        }
4607
4608        /* shift the data */
4609        if (from_end) {
4610                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4611                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4612                              data_end, old_data_start + new_size - data_end);
4613        } else {
4614                struct btrfs_disk_key disk_key;
4615                u64 offset;
4616
4617                btrfs_item_key(leaf, &disk_key, slot);
4618
4619                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4620                        unsigned long ptr;
4621                        struct btrfs_file_extent_item *fi;
4622
4623                        fi = btrfs_item_ptr(leaf, slot,
4624                                            struct btrfs_file_extent_item);
4625                        fi = (struct btrfs_file_extent_item *)(
4626                             (unsigned long)fi - size_diff);
4627
4628                        if (btrfs_file_extent_type(leaf, fi) ==
4629                            BTRFS_FILE_EXTENT_INLINE) {
4630                                ptr = btrfs_item_ptr_offset(leaf, slot);
4631                                memmove_extent_buffer(leaf, ptr,
4632                                      (unsigned long)fi,
4633                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4634                        }
4635                }
4636
4637                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4638                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4639                              data_end, old_data_start - data_end);
4640
4641                offset = btrfs_disk_key_offset(&disk_key);
4642                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4643                btrfs_set_item_key(leaf, &disk_key, slot);
4644                if (slot == 0)
4645                        fixup_low_keys(fs_info, path, &disk_key, 1);
4646        }
4647
4648        item = btrfs_item_nr(slot);
4649        btrfs_set_item_size(leaf, item, new_size);
4650        btrfs_mark_buffer_dirty(leaf);
4651
4652        if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4653                btrfs_print_leaf(fs_info, leaf);
4654                BUG();
4655        }
4656}
4657
4658/*
4659 * make the item pointed to by the path bigger, data_size is the added size.
4660 */
4661void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4662                       u32 data_size)
4663{
4664        int slot;
4665        struct extent_buffer *leaf;
4666        struct btrfs_item *item;
4667        u32 nritems;
4668        unsigned int data_end;
4669        unsigned int old_data;
4670        unsigned int old_size;
4671        int i;
4672        struct btrfs_map_token token;
4673
4674        btrfs_init_map_token(&token);
4675
4676        leaf = path->nodes[0];
4677
4678        nritems = btrfs_header_nritems(leaf);
4679        data_end = leaf_data_end(fs_info, leaf);
4680
4681        if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4682                btrfs_print_leaf(fs_info, leaf);
4683                BUG();
4684        }
4685        slot = path->slots[0];
4686        old_data = btrfs_item_end_nr(leaf, slot);
4687
4688        BUG_ON(slot < 0);
4689        if (slot >= nritems) {
4690                btrfs_print_leaf(fs_info, leaf);
4691                btrfs_crit(fs_info, "slot %d too large, nritems %d",
4692                           slot, nritems);
4693                BUG_ON(1);
4694        }
4695
4696        /*
4697         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4698         */
4699        /* first correct the data pointers */
4700        for (i = slot; i < nritems; i++) {
4701                u32 ioff;
4702                item = btrfs_item_nr(i);
4703
4704                ioff = btrfs_token_item_offset(leaf, item, &token);
4705                btrfs_set_token_item_offset(leaf, item,
4706                                            ioff - data_size, &token);
4707        }
4708
4709        /* shift the data */
4710        memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4711                      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4712                      data_end, old_data - data_end);
4713
4714        data_end = old_data;
4715        old_size = btrfs_item_size_nr(leaf, slot);
4716        item = btrfs_item_nr(slot);
4717        btrfs_set_item_size(leaf, item, old_size + data_size);
4718        btrfs_mark_buffer_dirty(leaf);
4719
4720        if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4721                btrfs_print_leaf(fs_info, leaf);
4722                BUG();
4723        }
4724}
4725
4726/*
4727 * this is a helper for btrfs_insert_empty_items, the main goal here is
4728 * to save stack depth by doing the bulk of the work in a function
4729 * that doesn't call btrfs_search_slot
4730 */
4731void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4732                            const struct btrfs_key *cpu_key, u32 *data_size,
4733                            u32 total_data, u32 total_size, int nr)
4734{
4735        struct btrfs_fs_info *fs_info = root->fs_info;
4736        struct btrfs_item *item;
4737        int i;
4738        u32 nritems;
4739        unsigned int data_end;
4740        struct btrfs_disk_key disk_key;
4741        struct extent_buffer *leaf;
4742        int slot;
4743        struct btrfs_map_token token;
4744
4745        if (path->slots[0] == 0) {
4746                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4747                fixup_low_keys(fs_info, path, &disk_key, 1);
4748        }
4749        btrfs_unlock_up_safe(path, 1);
4750
4751        btrfs_init_map_token(&token);
4752
4753        leaf = path->nodes[0];
4754        slot = path->slots[0];
4755
4756        nritems = btrfs_header_nritems(leaf);
4757        data_end = leaf_data_end(fs_info, leaf);
4758
4759        if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4760                btrfs_print_leaf(fs_info, leaf);
4761                btrfs_crit(fs_info, "not enough freespace need %u have %d",
4762                           total_size, btrfs_leaf_free_space(fs_info, leaf));
4763                BUG();
4764        }
4765
4766        if (slot != nritems) {
4767                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4768
4769                if (old_data < data_end) {
4770                        btrfs_print_leaf(fs_info, leaf);
4771                        btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4772                                   slot, old_data, data_end);
4773                        BUG_ON(1);
4774                }
4775                /*
4776                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4777                 */
4778                /* first correct the data pointers */
4779                for (i = slot; i < nritems; i++) {
4780                        u32 ioff;
4781
4782                        item = btrfs_item_nr(i);
4783                        ioff = btrfs_token_item_offset(leaf, item, &token);
4784                        btrfs_set_token_item_offset(leaf, item,
4785                                                    ioff - total_data, &token);
4786                }
4787                /* shift the items */
4788                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4789                              btrfs_item_nr_offset(slot),
4790                              (nritems - slot) * sizeof(struct btrfs_item));
4791
4792                /* shift the data */
4793                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4794                              data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4795                              data_end, old_data - data_end);
4796                data_end = old_data;
4797        }
4798
4799        /* setup the item for the new data */
4800        for (i = 0; i < nr; i++) {
4801                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4802                btrfs_set_item_key(leaf, &disk_key, slot + i);
4803                item = btrfs_item_nr(slot + i);
4804                btrfs_set_token_item_offset(leaf, item,
4805                                            data_end - data_size[i], &token);
4806                data_end -= data_size[i];
4807                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4808        }
4809
4810        btrfs_set_header_nritems(leaf, nritems + nr);
4811        btrfs_mark_buffer_dirty(leaf);
4812
4813        if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4814                btrfs_print_leaf(fs_info, leaf);
4815                BUG();
4816        }
4817}
4818
4819/*
4820 * Given a key and some data, insert items into the tree.
4821 * This does all the path init required, making room in the tree if needed.
4822 */
4823int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4824                            struct btrfs_root *root,
4825                            struct btrfs_path *path,
4826                            const struct btrfs_key *cpu_key, u32 *data_size,
4827                            int nr)
4828{
4829        int ret = 0;
4830        int slot;
4831        int i;
4832        u32 total_size = 0;
4833        u32 total_data = 0;
4834
4835        for (i = 0; i < nr; i++)
4836                total_data += data_size[i];
4837
4838        total_size = total_data + (nr * sizeof(struct btrfs_item));
4839        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4840        if (ret == 0)
4841                return -EEXIST;
4842        if (ret < 0)
4843                return ret;
4844
4845        slot = path->slots[0];
4846        BUG_ON(slot < 0);
4847
4848        setup_items_for_insert(root, path, cpu_key, data_size,
4849                               total_data, total_size, nr);
4850        return 0;
4851}
4852
4853/*
4854 * Given a key and some data, insert an item into the tree.
4855 * This does all the path init required, making room in the tree if needed.
4856 */
4857int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4858                      const struct btrfs_key *cpu_key, void *data,
4859                      u32 data_size)
4860{
4861        int ret = 0;
4862        struct btrfs_path *path;
4863        struct extent_buffer *leaf;
4864        unsigned long ptr;
4865
4866        path = btrfs_alloc_path();
4867        if (!path)
4868                return -ENOMEM;
4869        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4870        if (!ret) {
4871                leaf = path->nodes[0];
4872                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4873                write_extent_buffer(leaf, data, ptr, data_size);
4874                btrfs_mark_buffer_dirty(leaf);
4875        }
4876        btrfs_free_path(path);
4877        return ret;
4878}
4879
4880/*
4881 * delete the pointer from a given node.
4882 *
4883 * the tree should have been previously balanced so the deletion does not
4884 * empty a node.
4885 */
4886static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4887                    int level, int slot)
4888{
4889        struct btrfs_fs_info *fs_info = root->fs_info;
4890        struct extent_buffer *parent = path->nodes[level];
4891        u32 nritems;
4892        int ret;
4893
4894        nritems = btrfs_header_nritems(parent);
4895        if (slot != nritems - 1) {
4896                if (level)
4897                        tree_mod_log_eb_move(fs_info, parent, slot,
4898                                             slot + 1, nritems - slot - 1);
4899                memmove_extent_buffer(parent,
4900                              btrfs_node_key_ptr_offset(slot),
4901                              btrfs_node_key_ptr_offset(slot + 1),
4902                              sizeof(struct btrfs_key_ptr) *
4903                              (nritems - slot - 1));
4904        } else if (level) {
4905                ret = tree_mod_log_insert_key(fs_info, parent, slot,
4906                                              MOD_LOG_KEY_REMOVE, GFP_NOFS);
4907                BUG_ON(ret < 0);
4908        }
4909
4910        nritems--;
4911        btrfs_set_header_nritems(parent, nritems);
4912        if (nritems == 0 && parent == root->node) {
4913                BUG_ON(btrfs_header_level(root->node) != 1);
4914                /* just turn the root into a leaf and break */
4915                btrfs_set_header_level(root->node, 0);
4916        } else if (slot == 0) {
4917                struct btrfs_disk_key disk_key;
4918
4919                btrfs_node_key(parent, &disk_key, 0);
4920                fixup_low_keys(fs_info, path, &disk_key, level + 1);
4921        }
4922        btrfs_mark_buffer_dirty(parent);
4923}
4924
4925/*
4926 * a helper function to delete the leaf pointed to by path->slots[1] and
4927 * path->nodes[1].
4928 *
4929 * This deletes the pointer in path->nodes[1] and frees the leaf
4930 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4931 *
4932 * The path must have already been setup for deleting the leaf, including
4933 * all the proper balancing.  path->nodes[1] must be locked.
4934 */
4935static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4936                                    struct btrfs_root *root,
4937                                    struct btrfs_path *path,
4938                                    struct extent_buffer *leaf)
4939{
4940        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4941        del_ptr(root, path, 1, path->slots[1]);
4942
4943        /*
4944         * btrfs_free_extent is expensive, we want to make sure we
4945         * aren't holding any locks when we call it
4946         */
4947        btrfs_unlock_up_safe(path, 0);
4948
4949        root_sub_used(root, leaf->len);
4950
4951        extent_buffer_get(leaf);
4952        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4953        free_extent_buffer_stale(leaf);
4954}
4955/*
4956 * delete the item at the leaf level in path.  If that empties
4957 * the leaf, remove it from the tree
4958 */
4959int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4960                    struct btrfs_path *path, int slot, int nr)
4961{
4962        struct btrfs_fs_info *fs_info = root->fs_info;
4963        struct extent_buffer *leaf;
4964        struct btrfs_item *item;
4965        u32 last_off;
4966        u32 dsize = 0;
4967        int ret = 0;
4968        int wret;
4969        int i;
4970        u32 nritems;
4971        struct btrfs_map_token token;
4972
4973        btrfs_init_map_token(&token);
4974
4975        leaf = path->nodes[0];
4976        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4977
4978        for (i = 0; i < nr; i++)
4979                dsize += btrfs_item_size_nr(leaf, slot + i);
4980
4981        nritems = btrfs_header_nritems(leaf);
4982
4983        if (slot + nr != nritems) {
4984                int data_end = leaf_data_end(fs_info, leaf);
4985
4986                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4987                              data_end + dsize,
4988                              BTRFS_LEAF_DATA_OFFSET + data_end,
4989                              last_off - data_end);
4990
4991                for (i = slot + nr; i < nritems; i++) {
4992                        u32 ioff;
4993
4994                        item = btrfs_item_nr(i);
4995                        ioff = btrfs_token_item_offset(leaf, item, &token);
4996                        btrfs_set_token_item_offset(leaf, item,
4997                                                    ioff + dsize, &token);
4998                }
4999
5000                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5001                              btrfs_item_nr_offset(slot + nr),
5002                              sizeof(struct btrfs_item) *
5003                              (nritems - slot - nr));
5004        }
5005        btrfs_set_header_nritems(leaf, nritems - nr);
5006        nritems -= nr;
5007
5008        /* delete the leaf if we've emptied it */
5009        if (nritems == 0) {
5010                if (leaf == root->node) {
5011                        btrfs_set_header_level(leaf, 0);
5012                } else {
5013                        btrfs_set_path_blocking(path);
5014                        clean_tree_block(fs_info, leaf);
5015                        btrfs_del_leaf(trans, root, path, leaf);
5016                }
5017        } else {
5018                int used = leaf_space_used(leaf, 0, nritems);
5019                if (slot == 0) {
5020                        struct btrfs_disk_key disk_key;
5021
5022                        btrfs_item_key(leaf, &disk_key, 0);
5023                        fixup_low_keys(fs_info, path, &disk_key, 1);
5024                }
5025
5026                /* delete the leaf if it is mostly empty */
5027                if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5028                        /* push_leaf_left fixes the path.
5029                         * make sure the path still points to our leaf
5030                         * for possible call to del_ptr below
5031                         */
5032                        slot = path->slots[1];
5033                        extent_buffer_get(leaf);
5034
5035                        btrfs_set_path_blocking(path);
5036                        wret = push_leaf_left(trans, root, path, 1, 1,
5037                                              1, (u32)-1);
5038                        if (wret < 0 && wret != -ENOSPC)
5039                                ret = wret;
5040
5041                        if (path->nodes[0] == leaf &&
5042                            btrfs_header_nritems(leaf)) {
5043                                wret = push_leaf_right(trans, root, path, 1,
5044                                                       1, 1, 0);
5045                                if (wret < 0 && wret != -ENOSPC)
5046                                        ret = wret;
5047                        }
5048
5049                        if (btrfs_header_nritems(leaf) == 0) {
5050                                path->slots[1] = slot;
5051                                btrfs_del_leaf(trans, root, path, leaf);
5052                                free_extent_buffer(leaf);
5053                                ret = 0;
5054                        } else {
5055                                /* if we're still in the path, make sure
5056                                 * we're dirty.  Otherwise, one of the
5057                                 * push_leaf functions must have already
5058                                 * dirtied this buffer
5059                                 */
5060                                if (path->nodes[0] == leaf)
5061                                        btrfs_mark_buffer_dirty(leaf);
5062                                free_extent_buffer(leaf);
5063                        }
5064                } else {
5065                        btrfs_mark_buffer_dirty(leaf);
5066                }
5067        }
5068        return ret;
5069}
5070
5071/*
5072 * search the tree again to find a leaf with lesser keys
5073 * returns 0 if it found something or 1 if there are no lesser leaves.
5074 * returns < 0 on io errors.
5075 *
5076 * This may release the path, and so you may lose any locks held at the
5077 * time you call it.
5078 */
5079int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5080{
5081        struct btrfs_key key;
5082        struct btrfs_disk_key found_key;
5083        int ret;
5084
5085        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5086
5087        if (key.offset > 0) {
5088                key.offset--;
5089        } else if (key.type > 0) {
5090                key.type--;
5091                key.offset = (u64)-1;
5092        } else if (key.objectid > 0) {
5093                key.objectid--;
5094                key.type = (u8)-1;
5095                key.offset = (u64)-1;
5096        } else {
5097                return 1;
5098        }
5099
5100        btrfs_release_path(path);
5101        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5102        if (ret < 0)
5103                return ret;
5104        btrfs_item_key(path->nodes[0], &found_key, 0);
5105        ret = comp_keys(&found_key, &key);
5106        /*
5107         * We might have had an item with the previous key in the tree right
5108         * before we released our path. And after we released our path, that
5109         * item might have been pushed to the first slot (0) of the leaf we
5110         * were holding due to a tree balance. Alternatively, an item with the
5111         * previous key can exist as the only element of a leaf (big fat item).
5112         * Therefore account for these 2 cases, so that our callers (like
5113         * btrfs_previous_item) don't miss an existing item with a key matching
5114         * the previous key we computed above.
5115         */
5116        if (ret <= 0)
5117                return 0;
5118        return 1;
5119}
5120
5121/*
5122 * A helper function to walk down the tree starting at min_key, and looking
5123 * for nodes or leaves that are have a minimum transaction id.
5124 * This is used by the btree defrag code, and tree logging
5125 *
5126 * This does not cow, but it does stuff the starting key it finds back
5127 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5128 * key and get a writable path.
5129 *
5130 * This does lock as it descends, and path->keep_locks should be set
5131 * to 1 by the caller.
5132 *
5133 * This honors path->lowest_level to prevent descent past a given level
5134 * of the tree.
5135 *
5136 * min_trans indicates the oldest transaction that you are interested
5137 * in walking through.  Any nodes or leaves older than min_trans are
5138 * skipped over (without reading them).
5139 *
5140 * returns zero if something useful was found, < 0 on error and 1 if there
5141 * was nothing in the tree that matched the search criteria.
5142 */
5143int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5144                         struct btrfs_path *path,
5145                         u64 min_trans)
5146{
5147        struct btrfs_fs_info *fs_info = root->fs_info;
5148        struct extent_buffer *cur;
5149        struct btrfs_key found_key;
5150        int slot;
5151        int sret;
5152        u32 nritems;
5153        int level;
5154        int ret = 1;
5155        int keep_locks = path->keep_locks;
5156
5157        path->keep_locks = 1;
5158again:
5159        cur = btrfs_read_lock_root_node(root);
5160        level = btrfs_header_level(cur);
5161        WARN_ON(path->nodes[level]);
5162        path->nodes[level] = cur;
5163        path->locks[level] = BTRFS_READ_LOCK;
5164
5165        if (btrfs_header_generation(cur) < min_trans) {
5166                ret = 1;
5167                goto out;
5168        }
5169        while (1) {
5170                nritems = btrfs_header_nritems(cur);
5171                level = btrfs_header_level(cur);
5172                sret = bin_search(cur, min_key, level, &slot);
5173
5174                /* at the lowest level, we're done, setup the path and exit */
5175                if (level == path->lowest_level) {
5176                        if (slot >= nritems)
5177                                goto find_next_key;
5178                        ret = 0;
5179                        path->slots[level] = slot;
5180                        btrfs_item_key_to_cpu(cur, &found_key, slot);
5181                        goto out;
5182                }
5183                if (sret && slot > 0)
5184                        slot--;
5185                /*
5186                 * check this node pointer against the min_trans parameters.
5187                 * If it is too old, old, skip to the next one.
5188                 */
5189                while (slot < nritems) {
5190                        u64 gen;
5191
5192                        gen = btrfs_node_ptr_generation(cur, slot);
5193                        if (gen < min_trans) {
5194                                slot++;
5195                                continue;
5196                        }
5197                        break;
5198                }
5199find_next_key:
5200                /*
5201                 * we didn't find a candidate key in this node, walk forward
5202                 * and find another one
5203                 */
5204                if (slot >= nritems) {
5205                        path->slots[level] = slot;
5206                        btrfs_set_path_blocking(path);
5207                        sret = btrfs_find_next_key(root, path, min_key, level,
5208                                                  min_trans);
5209                        if (sret == 0) {
5210                                btrfs_release_path(path);
5211                                goto again;
5212                        } else {
5213                                goto out;
5214                        }
5215                }
5216                /* save our key for returning back */
5217                btrfs_node_key_to_cpu(cur, &found_key, slot);
5218                path->slots[level] = slot;
5219                if (level == path->lowest_level) {
5220                        ret = 0;
5221                        goto out;
5222                }
5223                btrfs_set_path_blocking(path);
5224                cur = read_node_slot(fs_info, cur, slot);
5225                if (IS_ERR(cur)) {
5226                        ret = PTR_ERR(cur);
5227                        goto out;
5228                }
5229
5230                btrfs_tree_read_lock(cur);
5231
5232                path->locks[level - 1] = BTRFS_READ_LOCK;
5233                path->nodes[level - 1] = cur;
5234                unlock_up(path, level, 1, 0, NULL);
5235                btrfs_clear_path_blocking(path, NULL, 0);
5236        }
5237out:
5238        path->keep_locks = keep_locks;
5239        if (ret == 0) {
5240                btrfs_unlock_up_safe(path, path->lowest_level + 1);
5241                btrfs_set_path_blocking(path);
5242                memcpy(min_key, &found_key, sizeof(found_key));
5243        }
5244        return ret;
5245}
5246
5247static int tree_move_down(struct btrfs_fs_info *fs_info,
5248                           struct btrfs_path *path,
5249                           int *level)
5250{
5251        struct extent_buffer *eb;
5252
5253        BUG_ON(*level == 0);
5254        eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5255        if (IS_ERR(eb))
5256                return PTR_ERR(eb);
5257
5258        path->nodes[*level - 1] = eb;
5259        path->slots[*level - 1] = 0;
5260        (*level)--;
5261        return 0;
5262}
5263
5264static int tree_move_next_or_upnext(struct btrfs_path *path,
5265                                    int *level, int root_level)
5266{
5267        int ret = 0;
5268        int nritems;
5269        nritems = btrfs_header_nritems(path->nodes[*level]);
5270
5271        path->slots[*level]++;
5272
5273        while (path->slots[*level] >= nritems) {
5274                if (*level == root_level)
5275                        return -1;
5276
5277                /* move upnext */
5278                path->slots[*level] = 0;
5279                free_extent_buffer(path->nodes[*level]);
5280                path->nodes[*level] = NULL;
5281                (*level)++;
5282                path->slots[*level]++;
5283
5284                nritems = btrfs_header_nritems(path->nodes[*level]);
5285                ret = 1;
5286        }
5287        return ret;
5288}
5289
5290/*
5291 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5292 * or down.
5293 */
5294static int tree_advance(struct btrfs_fs_info *fs_info,
5295                        struct btrfs_path *path,
5296                        int *level, int root_level,
5297                        int allow_down,
5298                        struct btrfs_key *key)
5299{
5300        int ret;
5301
5302        if (*level == 0 || !allow_down) {
5303                ret = tree_move_next_or_upnext(path, level, root_level);
5304        } else {
5305                ret = tree_move_down(fs_info, path, level);
5306        }
5307        if (ret >= 0) {
5308                if (*level == 0)
5309                        btrfs_item_key_to_cpu(path->nodes[*level], key,
5310                                        path->slots[*level]);
5311                else
5312                        btrfs_node_key_to_cpu(path->nodes[*level], key,
5313                                        path->slots[*level]);
5314        }
5315        return ret;
5316}
5317
5318static int tree_compare_item(struct btrfs_path *left_path,
5319                             struct btrfs_path *right_path,
5320                             char *tmp_buf)
5321{
5322        int cmp;
5323        int len1, len2;
5324        unsigned long off1, off2;
5325
5326        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5327        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5328        if (len1 != len2)
5329                return 1;
5330
5331        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5332        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5333                                right_path->slots[0]);
5334
5335        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5336
5337        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5338        if (cmp)
5339                return 1;
5340        return 0;
5341}
5342
5343#define ADVANCE 1
5344#define ADVANCE_ONLY_NEXT -1
5345
5346/*
5347 * This function compares two trees and calls the provided callback for
5348 * every changed/new/deleted item it finds.
5349 * If shared tree blocks are encountered, whole subtrees are skipped, making
5350 * the compare pretty fast on snapshotted subvolumes.
5351 *
5352 * This currently works on commit roots only. As commit roots are read only,
5353 * we don't do any locking. The commit roots are protected with transactions.
5354 * Transactions are ended and rejoined when a commit is tried in between.
5355 *
5356 * This function checks for modifications done to the trees while comparing.
5357 * If it detects a change, it aborts immediately.
5358 */
5359int btrfs_compare_trees(struct btrfs_root *left_root,
5360                        struct btrfs_root *right_root,
5361                        btrfs_changed_cb_t changed_cb, void *ctx)
5362{
5363        struct btrfs_fs_info *fs_info = left_root->fs_info;
5364        int ret;
5365        int cmp;
5366        struct btrfs_path *left_path = NULL;
5367        struct btrfs_path *right_path = NULL;
5368        struct btrfs_key left_key;
5369        struct btrfs_key right_key;
5370        char *tmp_buf = NULL;
5371        int left_root_level;
5372        int right_root_level;
5373        int left_level;
5374        int right_level;
5375        int left_end_reached;
5376        int right_end_reached;
5377        int advance_left;
5378        int advance_right;
5379        u64 left_blockptr;
5380        u64 right_blockptr;
5381        u64 left_gen;
5382        u64 right_gen;
5383
5384        left_path = btrfs_alloc_path();
5385        if (!left_path) {
5386                ret = -ENOMEM;
5387                goto out;
5388        }
5389        right_path = btrfs_alloc_path();
5390        if (!right_path) {
5391                ret = -ENOMEM;
5392                goto out;
5393        }
5394
5395        tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5396        if (!tmp_buf) {
5397                ret = -ENOMEM;
5398                goto out;
5399        }
5400
5401        left_path->search_commit_root = 1;
5402        left_path->skip_locking = 1;
5403        right_path->search_commit_root = 1;
5404        right_path->skip_locking = 1;
5405
5406        /*
5407         * Strategy: Go to the first items of both trees. Then do
5408         *
5409         * If both trees are at level 0
5410         *   Compare keys of current items
5411         *     If left < right treat left item as new, advance left tree
5412         *       and repeat
5413         *     If left > right treat right item as deleted, advance right tree
5414         *       and repeat
5415         *     If left == right do deep compare of items, treat as changed if
5416         *       needed, advance both trees and repeat
5417         * If both trees are at the same level but not at level 0
5418         *   Compare keys of current nodes/leafs
5419         *     If left < right advance left tree and repeat
5420         *     If left > right advance right tree and repeat
5421         *     If left == right compare blockptrs of the next nodes/leafs
5422         *       If they match advance both trees but stay at the same level
5423         *         and repeat
5424         *       If they don't match advance both trees while allowing to go
5425         *         deeper and repeat
5426         * If tree levels are different
5427         *   Advance the tree that needs it and repeat
5428         *
5429         * Advancing a tree means:
5430         *   If we are at level 0, try to go to the next slot. If that's not
5431         *   possible, go one level up and repeat. Stop when we found a level
5432         *   where we could go to the next slot. We may at this point be on a
5433         *   node or a leaf.
5434         *
5435         *   If we are not at level 0 and not on shared tree blocks, go one
5436         *   level deeper.
5437         *
5438         *   If we are not at level 0 and on shared tree blocks, go one slot to
5439         *   the right if possible or go up and right.
5440         */
5441
5442        down_read(&fs_info->commit_root_sem);
5443        left_level = btrfs_header_level(left_root->commit_root);
5444        left_root_level = left_level;
5445        left_path->nodes[left_level] = left_root->commit_root;
5446        extent_buffer_get(left_path->nodes[left_level]);
5447
5448        right_level = btrfs_header_level(right_root->commit_root);
5449        right_root_level = right_level;
5450        right_path->nodes[right_level] = right_root->commit_root;
5451        extent_buffer_get(right_path->nodes[right_level]);
5452        up_read(&fs_info->commit_root_sem);
5453
5454        if (left_level == 0)
5455                btrfs_item_key_to_cpu(left_path->nodes[left_level],
5456                                &left_key, left_path->slots[left_level]);
5457        else
5458                btrfs_node_key_to_cpu(left_path->nodes[left_level],
5459                                &left_key, left_path->slots[left_level]);
5460        if (right_level == 0)
5461                btrfs_item_key_to_cpu(right_path->nodes[right_level],
5462                                &right_key, right_path->slots[right_level]);
5463        else
5464                btrfs_node_key_to_cpu(right_path->nodes[right_level],
5465                                &right_key, right_path->slots[right_level]);
5466
5467        left_end_reached = right_end_reached = 0;
5468        advance_left = advance_right = 0;
5469
5470        while (1) {
5471                if (advance_left && !left_end_reached) {
5472                        ret = tree_advance(fs_info, left_path, &left_level,
5473                                        left_root_level,
5474                                        advance_left != ADVANCE_ONLY_NEXT,
5475                                        &left_key);
5476                        if (ret == -1)
5477                                left_end_reached = ADVANCE;
5478                        else if (ret < 0)
5479                                goto out;
5480                        advance_left = 0;
5481                }
5482                if (advance_right && !right_end_reached) {
5483                        ret = tree_advance(fs_info, right_path, &right_level,
5484                                        right_root_level,
5485                                        advance_right != ADVANCE_ONLY_NEXT,
5486                                        &right_key);
5487                        if (ret == -1)
5488                                right_end_reached = ADVANCE;
5489                        else if (ret < 0)
5490                                goto out;
5491                        advance_right = 0;
5492                }
5493
5494                if (left_end_reached && right_end_reached) {
5495                        ret = 0;
5496                        goto out;
5497                } else if (left_end_reached) {
5498                        if (right_level == 0) {
5499                                ret = changed_cb(left_root, right_root,
5500                                                left_path, right_path,
5501                                                &right_key,
5502                                                BTRFS_COMPARE_TREE_DELETED,
5503                                                ctx);
5504                                if (ret < 0)
5505                                        goto out;
5506                        }
5507                        advance_right = ADVANCE;
5508                        continue;
5509                } else if (right_end_reached) {
5510                        if (left_level == 0) {
5511                                ret = changed_cb(left_root, right_root,
5512                                                left_path, right_path,
5513                                                &left_key,
5514                                                BTRFS_COMPARE_TREE_NEW,
5515                                                ctx);
5516                                if (ret < 0)
5517                                        goto out;
5518                        }
5519                        advance_left = ADVANCE;
5520                        continue;
5521                }
5522
5523                if (left_level == 0 && right_level == 0) {
5524                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5525                        if (cmp < 0) {
5526                                ret = changed_cb(left_root, right_root,
5527                                                left_path, right_path,
5528                                                &left_key,
5529                                                BTRFS_COMPARE_TREE_NEW,
5530                                                ctx);
5531                                if (ret < 0)
5532                                        goto out;
5533                                advance_left = ADVANCE;
5534                        } else if (cmp > 0) {
5535                                ret = changed_cb(left_root, right_root,
5536                                                left_path, right_path,
5537                                                &right_key,
5538                                                BTRFS_COMPARE_TREE_DELETED,
5539                                                ctx);
5540                                if (ret < 0)
5541                                        goto out;
5542                                advance_right = ADVANCE;
5543                        } else {
5544                                enum btrfs_compare_tree_result result;
5545
5546                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5547                                ret = tree_compare_item(left_path, right_path,
5548                                                        tmp_buf);
5549                                if (ret)
5550                                        result = BTRFS_COMPARE_TREE_CHANGED;
5551                                else
5552                                        result = BTRFS_COMPARE_TREE_SAME;
5553                                ret = changed_cb(left_root, right_root,
5554                                                 left_path, right_path,
5555                                                 &left_key, result, ctx);
5556                                if (ret < 0)
5557                                        goto out;
5558                                advance_left = ADVANCE;
5559                                advance_right = ADVANCE;
5560                        }
5561                } else if (left_level == right_level) {
5562                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5563                        if (cmp < 0) {
5564                                advance_left = ADVANCE;
5565                        } else if (cmp > 0) {
5566                                advance_right = ADVANCE;
5567                        } else {
5568                                left_blockptr = btrfs_node_blockptr(
5569                                                left_path->nodes[left_level],
5570                                                left_path->slots[left_level]);
5571                                right_blockptr = btrfs_node_blockptr(
5572                                                right_path->nodes[right_level],
5573                                                right_path->slots[right_level]);
5574                                left_gen = btrfs_node_ptr_generation(
5575                                                left_path->nodes[left_level],
5576                                                left_path->slots[left_level]);
5577                                right_gen = btrfs_node_ptr_generation(
5578                                                right_path->nodes[right_level],
5579                                                right_path->slots[right_level]);
5580                                if (left_blockptr == right_blockptr &&
5581                                    left_gen == right_gen) {
5582                                        /*
5583                                         * As we're on a shared block, don't
5584                                         * allow to go deeper.
5585                                         */
5586                                        advance_left = ADVANCE_ONLY_NEXT;
5587                                        advance_right = ADVANCE_ONLY_NEXT;
5588                                } else {
5589                                        advance_left = ADVANCE;
5590                                        advance_right = ADVANCE;
5591                                }
5592                        }
5593                } else if (left_level < right_level) {
5594                        advance_right = ADVANCE;
5595                } else {
5596                        advance_left = ADVANCE;
5597                }
5598        }
5599
5600out:
5601        btrfs_free_path(left_path);
5602        btrfs_free_path(right_path);
5603        kvfree(tmp_buf);
5604        return ret;
5605}
5606
5607/*
5608 * this is similar to btrfs_next_leaf, but does not try to preserve
5609 * and fixup the path.  It looks for and returns the next key in the
5610 * tree based on the current path and the min_trans parameters.
5611 *
5612 * 0 is returned if another key is found, < 0 if there are any errors
5613 * and 1 is returned if there are no higher keys in the tree
5614 *
5615 * path->keep_locks should be set to 1 on the search made before
5616 * calling this function.
5617 */
5618int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5619                        struct btrfs_key *key, int level, u64 min_trans)
5620{
5621        int slot;
5622        struct extent_buffer *c;
5623
5624        WARN_ON(!path->keep_locks);
5625        while (level < BTRFS_MAX_LEVEL) {
5626                if (!path->nodes[level])
5627                        return 1;
5628
5629                slot = path->slots[level] + 1;
5630                c = path->nodes[level];
5631next:
5632                if (slot >= btrfs_header_nritems(c)) {
5633                        int ret;
5634                        int orig_lowest;
5635                        struct btrfs_key cur_key;
5636                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5637                            !path->nodes[level + 1])
5638                                return 1;
5639
5640                        if (path->locks[level + 1]) {
5641                                level++;
5642                                continue;
5643                        }
5644
5645                        slot = btrfs_header_nritems(c) - 1;
5646                        if (level == 0)
5647                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5648                        else
5649                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5650
5651                        orig_lowest = path->lowest_level;
5652                        btrfs_release_path(path);
5653                        path->lowest_level = level;
5654                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5655                                                0, 0);
5656                        path->lowest_level = orig_lowest;
5657                        if (ret < 0)
5658                                return ret;
5659
5660                        c = path->nodes[level];
5661                        slot = path->slots[level];
5662                        if (ret == 0)
5663                                slot++;
5664                        goto next;
5665                }
5666
5667                if (level == 0)
5668                        btrfs_item_key_to_cpu(c, key, slot);
5669                else {
5670                        u64 gen = btrfs_node_ptr_generation(c, slot);
5671
5672                        if (gen < min_trans) {
5673                                slot++;
5674                                goto next;
5675                        }
5676                        btrfs_node_key_to_cpu(c, key, slot);
5677                }
5678                return 0;
5679        }
5680        return 1;
5681}
5682
5683/*
5684 * search the tree again to find a leaf with greater keys
5685 * returns 0 if it found something or 1 if there are no greater leaves.
5686 * returns < 0 on io errors.
5687 */
5688int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5689{
5690        return btrfs_next_old_leaf(root, path, 0);
5691}
5692
5693int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5694                        u64 time_seq)
5695{
5696        int slot;
5697        int level;
5698        struct extent_buffer *c;
5699        struct extent_buffer *next;
5700        struct btrfs_key key;
5701        u32 nritems;
5702        int ret;
5703        int old_spinning = path->leave_spinning;
5704        int next_rw_lock = 0;
5705
5706        nritems = btrfs_header_nritems(path->nodes[0]);
5707        if (nritems == 0)
5708                return 1;
5709
5710        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5711again:
5712        level = 1;
5713        next = NULL;
5714        next_rw_lock = 0;
5715        btrfs_release_path(path);
5716
5717        path->keep_locks = 1;
5718        path->leave_spinning = 1;
5719
5720        if (time_seq)
5721                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5722        else
5723                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5724        path->keep_locks = 0;
5725
5726        if (ret < 0)
5727                return ret;
5728
5729        nritems = btrfs_header_nritems(path->nodes[0]);
5730        /*
5731         * by releasing the path above we dropped all our locks.  A balance
5732         * could have added more items next to the key that used to be
5733         * at the very end of the block.  So, check again here and
5734         * advance the path if there are now more items available.
5735         */
5736        if (nritems > 0 && path->slots[0] < nritems - 1) {
5737                if (ret == 0)
5738                        path->slots[0]++;
5739                ret = 0;
5740                goto done;
5741        }
5742        /*
5743         * So the above check misses one case:
5744         * - after releasing the path above, someone has removed the item that
5745         *   used to be at the very end of the block, and balance between leafs
5746         *   gets another one with bigger key.offset to replace it.
5747         *
5748         * This one should be returned as well, or we can get leaf corruption
5749         * later(esp. in __btrfs_drop_extents()).
5750         *
5751         * And a bit more explanation about this check,
5752         * with ret > 0, the key isn't found, the path points to the slot
5753         * where it should be inserted, so the path->slots[0] item must be the
5754         * bigger one.
5755         */
5756        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5757                ret = 0;
5758                goto done;
5759        }
5760
5761        while (level < BTRFS_MAX_LEVEL) {
5762                if (!path->nodes[level]) {
5763                        ret = 1;
5764                        goto done;
5765                }
5766
5767                slot = path->slots[level] + 1;
5768                c = path->nodes[level];
5769                if (slot >= btrfs_header_nritems(c)) {
5770                        level++;
5771                        if (level == BTRFS_MAX_LEVEL) {
5772                                ret = 1;
5773                                goto done;
5774                        }
5775                        continue;
5776                }
5777
5778                if (next) {
5779                        btrfs_tree_unlock_rw(next, next_rw_lock);
5780                        free_extent_buffer(next);
5781                }
5782
5783                next = c;
5784                next_rw_lock = path->locks[level];
5785                ret = read_block_for_search(root, path, &next, level,
5786                                            slot, &key);
5787                if (ret == -EAGAIN)
5788                        goto again;
5789
5790                if (ret < 0) {
5791                        btrfs_release_path(path);
5792                        goto done;
5793                }
5794
5795                if (!path->skip_locking) {
5796                        ret = btrfs_try_tree_read_lock(next);
5797                        if (!ret && time_seq) {
5798                                /*
5799                                 * If we don't get the lock, we may be racing
5800                                 * with push_leaf_left, holding that lock while
5801                                 * itself waiting for the leaf we've currently
5802                                 * locked. To solve this situation, we give up
5803                                 * on our lock and cycle.
5804                                 */
5805                                free_extent_buffer(next);
5806                                btrfs_release_path(path);
5807                                cond_resched();
5808                                goto again;
5809                        }
5810                        if (!ret) {
5811                                btrfs_set_path_blocking(path);
5812                                btrfs_tree_read_lock(next);
5813                                btrfs_clear_path_blocking(path, next,
5814                                                          BTRFS_READ_LOCK);
5815                        }
5816                        next_rw_lock = BTRFS_READ_LOCK;
5817                }
5818                break;
5819        }
5820        path->slots[level] = slot;
5821        while (1) {
5822                level--;
5823                c = path->nodes[level];
5824                if (path->locks[level])
5825                        btrfs_tree_unlock_rw(c, path->locks[level]);
5826
5827                free_extent_buffer(c);
5828                path->nodes[level] = next;
5829                path->slots[level] = 0;
5830                if (!path->skip_locking)
5831                        path->locks[level] = next_rw_lock;
5832                if (!level)
5833                        break;
5834
5835                ret = read_block_for_search(root, path, &next, level,
5836                                            0, &key);
5837                if (ret == -EAGAIN)
5838                        goto again;
5839
5840                if (ret < 0) {
5841                        btrfs_release_path(path);
5842                        goto done;
5843                }
5844
5845                if (!path->skip_locking) {
5846                        ret = btrfs_try_tree_read_lock(next);
5847                        if (!ret) {
5848                                btrfs_set_path_blocking(path);
5849                                btrfs_tree_read_lock(next);
5850                                btrfs_clear_path_blocking(path, next,
5851                                                          BTRFS_READ_LOCK);
5852                        }
5853                        next_rw_lock = BTRFS_READ_LOCK;
5854                }
5855        }
5856        ret = 0;
5857done:
5858        unlock_up(path, 0, 1, 0, NULL);
5859        path->leave_spinning = old_spinning;
5860        if (!old_spinning)
5861                btrfs_set_path_blocking(path);
5862
5863        return ret;
5864}
5865
5866/*
5867 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5868 * searching until it gets past min_objectid or finds an item of 'type'
5869 *
5870 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5871 */
5872int btrfs_previous_item(struct btrfs_root *root,
5873                        struct btrfs_path *path, u64 min_objectid,
5874                        int type)
5875{
5876        struct btrfs_key found_key;
5877        struct extent_buffer *leaf;
5878        u32 nritems;
5879        int ret;
5880
5881        while (1) {
5882                if (path->slots[0] == 0) {
5883                        btrfs_set_path_blocking(path);
5884                        ret = btrfs_prev_leaf(root, path);
5885                        if (ret != 0)
5886                                return ret;
5887                } else {
5888                        path->slots[0]--;
5889                }
5890                leaf = path->nodes[0];
5891                nritems = btrfs_header_nritems(leaf);
5892                if (nritems == 0)
5893                        return 1;
5894                if (path->slots[0] == nritems)
5895                        path->slots[0]--;
5896
5897                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5898                if (found_key.objectid < min_objectid)
5899                        break;
5900                if (found_key.type == type)
5901                        return 0;
5902                if (found_key.objectid == min_objectid &&
5903                    found_key.type < type)
5904                        break;
5905        }
5906        return 1;
5907}
5908
5909/*
5910 * search in extent tree to find a previous Metadata/Data extent item with
5911 * min objecitd.
5912 *
5913 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5914 */
5915int btrfs_previous_extent_item(struct btrfs_root *root,
5916                        struct btrfs_path *path, u64 min_objectid)
5917{
5918        struct btrfs_key found_key;
5919        struct extent_buffer *leaf;
5920        u32 nritems;
5921        int ret;
5922
5923        while (1) {
5924                if (path->slots[0] == 0) {
5925                        btrfs_set_path_blocking(path);
5926                        ret = btrfs_prev_leaf(root, path);
5927                        if (ret != 0)
5928                                return ret;
5929                } else {
5930                        path->slots[0]--;
5931                }
5932                leaf = path->nodes[0];
5933                nritems = btrfs_header_nritems(leaf);
5934                if (nritems == 0)
5935                        return 1;
5936                if (path->slots[0] == nritems)
5937                        path->slots[0]--;
5938
5939                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5940                if (found_key.objectid < min_objectid)
5941                        break;
5942                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5943                    found_key.type == BTRFS_METADATA_ITEM_KEY)
5944                        return 0;
5945                if (found_key.objectid == min_objectid &&
5946                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5947                        break;
5948        }
5949        return 1;
5950}
5951