linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/slab.h>
  29#include <linux/migrate.h>
  30#include <linux/ratelimit.h>
  31#include <linux/uuid.h>
  32#include <linux/semaphore.h>
  33#include <asm/unaligned.h>
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "hash.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "locking.h"
  42#include "tree-log.h"
  43#include "free-space-cache.h"
  44#include "free-space-tree.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48#include "dev-replace.h"
  49#include "raid56.h"
  50#include "sysfs.h"
  51#include "qgroup.h"
  52#include "compression.h"
  53
  54#ifdef CONFIG_X86
  55#include <asm/cpufeature.h>
  56#endif
  57
  58#define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
  59                                 BTRFS_HEADER_FLAG_RELOC |\
  60                                 BTRFS_SUPER_FLAG_ERROR |\
  61                                 BTRFS_SUPER_FLAG_SEEDING |\
  62                                 BTRFS_SUPER_FLAG_METADUMP)
  63
  64static const struct extent_io_ops btree_extent_io_ops;
  65static void end_workqueue_fn(struct btrfs_work *work);
  66static void free_fs_root(struct btrfs_root *root);
  67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  68static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  69static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  70                                      struct btrfs_fs_info *fs_info);
  71static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  72static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  73                                        struct extent_io_tree *dirty_pages,
  74                                        int mark);
  75static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  76                                       struct extent_io_tree *pinned_extents);
  77static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  78static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  79
  80/*
  81 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  82 * is complete.  This is used during reads to verify checksums, and it is used
  83 * by writes to insert metadata for new file extents after IO is complete.
  84 */
  85struct btrfs_end_io_wq {
  86        struct bio *bio;
  87        bio_end_io_t *end_io;
  88        void *private;
  89        struct btrfs_fs_info *info;
  90        blk_status_t status;
  91        enum btrfs_wq_endio_type metadata;
  92        struct btrfs_work work;
  93};
  94
  95static struct kmem_cache *btrfs_end_io_wq_cache;
  96
  97int __init btrfs_end_io_wq_init(void)
  98{
  99        btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
 100                                        sizeof(struct btrfs_end_io_wq),
 101                                        0,
 102                                        SLAB_MEM_SPREAD,
 103                                        NULL);
 104        if (!btrfs_end_io_wq_cache)
 105                return -ENOMEM;
 106        return 0;
 107}
 108
 109void btrfs_end_io_wq_exit(void)
 110{
 111        kmem_cache_destroy(btrfs_end_io_wq_cache);
 112}
 113
 114/*
 115 * async submit bios are used to offload expensive checksumming
 116 * onto the worker threads.  They checksum file and metadata bios
 117 * just before they are sent down the IO stack.
 118 */
 119struct async_submit_bio {
 120        void *private_data;
 121        struct btrfs_fs_info *fs_info;
 122        struct bio *bio;
 123        extent_submit_bio_hook_t *submit_bio_start;
 124        extent_submit_bio_hook_t *submit_bio_done;
 125        int mirror_num;
 126        unsigned long bio_flags;
 127        /*
 128         * bio_offset is optional, can be used if the pages in the bio
 129         * can't tell us where in the file the bio should go
 130         */
 131        u64 bio_offset;
 132        struct btrfs_work work;
 133        blk_status_t status;
 134};
 135
 136/*
 137 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 138 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 139 * the level the eb occupies in the tree.
 140 *
 141 * Different roots are used for different purposes and may nest inside each
 142 * other and they require separate keysets.  As lockdep keys should be
 143 * static, assign keysets according to the purpose of the root as indicated
 144 * by btrfs_root->objectid.  This ensures that all special purpose roots
 145 * have separate keysets.
 146 *
 147 * Lock-nesting across peer nodes is always done with the immediate parent
 148 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 149 * subclass to avoid triggering lockdep warning in such cases.
 150 *
 151 * The key is set by the readpage_end_io_hook after the buffer has passed
 152 * csum validation but before the pages are unlocked.  It is also set by
 153 * btrfs_init_new_buffer on freshly allocated blocks.
 154 *
 155 * We also add a check to make sure the highest level of the tree is the
 156 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 157 * needs update as well.
 158 */
 159#ifdef CONFIG_DEBUG_LOCK_ALLOC
 160# if BTRFS_MAX_LEVEL != 8
 161#  error
 162# endif
 163
 164static struct btrfs_lockdep_keyset {
 165        u64                     id;             /* root objectid */
 166        const char              *name_stem;     /* lock name stem */
 167        char                    names[BTRFS_MAX_LEVEL + 1][20];
 168        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 169} btrfs_lockdep_keysets[] = {
 170        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 171        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 172        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 173        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 174        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 175        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 176        { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
 177        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 178        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 179        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 180        { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
 181        { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
 182        { .id = 0,                              .name_stem = "tree"     },
 183};
 184
 185void __init btrfs_init_lockdep(void)
 186{
 187        int i, j;
 188
 189        /* initialize lockdep class names */
 190        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 191                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 192
 193                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 194                        snprintf(ks->names[j], sizeof(ks->names[j]),
 195                                 "btrfs-%s-%02d", ks->name_stem, j);
 196        }
 197}
 198
 199void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 200                                    int level)
 201{
 202        struct btrfs_lockdep_keyset *ks;
 203
 204        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 205
 206        /* find the matching keyset, id 0 is the default entry */
 207        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 208                if (ks->id == objectid)
 209                        break;
 210
 211        lockdep_set_class_and_name(&eb->lock,
 212                                   &ks->keys[level], ks->names[level]);
 213}
 214
 215#endif
 216
 217/*
 218 * extents on the btree inode are pretty simple, there's one extent
 219 * that covers the entire device
 220 */
 221static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 222                struct page *page, size_t pg_offset, u64 start, u64 len,
 223                int create)
 224{
 225        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 226        struct extent_map_tree *em_tree = &inode->extent_tree;
 227        struct extent_map *em;
 228        int ret;
 229
 230        read_lock(&em_tree->lock);
 231        em = lookup_extent_mapping(em_tree, start, len);
 232        if (em) {
 233                em->bdev = fs_info->fs_devices->latest_bdev;
 234                read_unlock(&em_tree->lock);
 235                goto out;
 236        }
 237        read_unlock(&em_tree->lock);
 238
 239        em = alloc_extent_map();
 240        if (!em) {
 241                em = ERR_PTR(-ENOMEM);
 242                goto out;
 243        }
 244        em->start = 0;
 245        em->len = (u64)-1;
 246        em->block_len = (u64)-1;
 247        em->block_start = 0;
 248        em->bdev = fs_info->fs_devices->latest_bdev;
 249
 250        write_lock(&em_tree->lock);
 251        ret = add_extent_mapping(em_tree, em, 0);
 252        if (ret == -EEXIST) {
 253                free_extent_map(em);
 254                em = lookup_extent_mapping(em_tree, start, len);
 255                if (!em)
 256                        em = ERR_PTR(-EIO);
 257        } else if (ret) {
 258                free_extent_map(em);
 259                em = ERR_PTR(ret);
 260        }
 261        write_unlock(&em_tree->lock);
 262
 263out:
 264        return em;
 265}
 266
 267u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
 268{
 269        return btrfs_crc32c(seed, data, len);
 270}
 271
 272void btrfs_csum_final(u32 crc, u8 *result)
 273{
 274        put_unaligned_le32(~crc, result);
 275}
 276
 277/*
 278 * compute the csum for a btree block, and either verify it or write it
 279 * into the csum field of the block.
 280 */
 281static int csum_tree_block(struct btrfs_fs_info *fs_info,
 282                           struct extent_buffer *buf,
 283                           int verify)
 284{
 285        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 286        char *result = NULL;
 287        unsigned long len;
 288        unsigned long cur_len;
 289        unsigned long offset = BTRFS_CSUM_SIZE;
 290        char *kaddr;
 291        unsigned long map_start;
 292        unsigned long map_len;
 293        int err;
 294        u32 crc = ~(u32)0;
 295        unsigned long inline_result;
 296
 297        len = buf->len - offset;
 298        while (len > 0) {
 299                err = map_private_extent_buffer(buf, offset, 32,
 300                                        &kaddr, &map_start, &map_len);
 301                if (err)
 302                        return err;
 303                cur_len = min(len, map_len - (offset - map_start));
 304                crc = btrfs_csum_data(kaddr + offset - map_start,
 305                                      crc, cur_len);
 306                len -= cur_len;
 307                offset += cur_len;
 308        }
 309        if (csum_size > sizeof(inline_result)) {
 310                result = kzalloc(csum_size, GFP_NOFS);
 311                if (!result)
 312                        return -ENOMEM;
 313        } else {
 314                result = (char *)&inline_result;
 315        }
 316
 317        btrfs_csum_final(crc, result);
 318
 319        if (verify) {
 320                if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 321                        u32 val;
 322                        u32 found = 0;
 323                        memcpy(&found, result, csum_size);
 324
 325                        read_extent_buffer(buf, &val, 0, csum_size);
 326                        btrfs_warn_rl(fs_info,
 327                                "%s checksum verify failed on %llu wanted %X found %X level %d",
 328                                fs_info->sb->s_id, buf->start,
 329                                val, found, btrfs_header_level(buf));
 330                        if (result != (char *)&inline_result)
 331                                kfree(result);
 332                        return -EUCLEAN;
 333                }
 334        } else {
 335                write_extent_buffer(buf, result, 0, csum_size);
 336        }
 337        if (result != (char *)&inline_result)
 338                kfree(result);
 339        return 0;
 340}
 341
 342/*
 343 * we can't consider a given block up to date unless the transid of the
 344 * block matches the transid in the parent node's pointer.  This is how we
 345 * detect blocks that either didn't get written at all or got written
 346 * in the wrong place.
 347 */
 348static int verify_parent_transid(struct extent_io_tree *io_tree,
 349                                 struct extent_buffer *eb, u64 parent_transid,
 350                                 int atomic)
 351{
 352        struct extent_state *cached_state = NULL;
 353        int ret;
 354        bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 355
 356        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 357                return 0;
 358
 359        if (atomic)
 360                return -EAGAIN;
 361
 362        if (need_lock) {
 363                btrfs_tree_read_lock(eb);
 364                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 365        }
 366
 367        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 368                         &cached_state);
 369        if (extent_buffer_uptodate(eb) &&
 370            btrfs_header_generation(eb) == parent_transid) {
 371                ret = 0;
 372                goto out;
 373        }
 374        btrfs_err_rl(eb->fs_info,
 375                "parent transid verify failed on %llu wanted %llu found %llu",
 376                        eb->start,
 377                        parent_transid, btrfs_header_generation(eb));
 378        ret = 1;
 379
 380        /*
 381         * Things reading via commit roots that don't have normal protection,
 382         * like send, can have a really old block in cache that may point at a
 383         * block that has been freed and re-allocated.  So don't clear uptodate
 384         * if we find an eb that is under IO (dirty/writeback) because we could
 385         * end up reading in the stale data and then writing it back out and
 386         * making everybody very sad.
 387         */
 388        if (!extent_buffer_under_io(eb))
 389                clear_extent_buffer_uptodate(eb);
 390out:
 391        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 392                             &cached_state, GFP_NOFS);
 393        if (need_lock)
 394                btrfs_tree_read_unlock_blocking(eb);
 395        return ret;
 396}
 397
 398/*
 399 * Return 0 if the superblock checksum type matches the checksum value of that
 400 * algorithm. Pass the raw disk superblock data.
 401 */
 402static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 403                                  char *raw_disk_sb)
 404{
 405        struct btrfs_super_block *disk_sb =
 406                (struct btrfs_super_block *)raw_disk_sb;
 407        u16 csum_type = btrfs_super_csum_type(disk_sb);
 408        int ret = 0;
 409
 410        if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 411                u32 crc = ~(u32)0;
 412                const int csum_size = sizeof(crc);
 413                char result[csum_size];
 414
 415                /*
 416                 * The super_block structure does not span the whole
 417                 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 418                 * is filled with zeros and is included in the checksum.
 419                 */
 420                crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 421                                crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 422                btrfs_csum_final(crc, result);
 423
 424                if (memcmp(raw_disk_sb, result, csum_size))
 425                        ret = 1;
 426        }
 427
 428        if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 429                btrfs_err(fs_info, "unsupported checksum algorithm %u",
 430                                csum_type);
 431                ret = 1;
 432        }
 433
 434        return ret;
 435}
 436
 437/*
 438 * helper to read a given tree block, doing retries as required when
 439 * the checksums don't match and we have alternate mirrors to try.
 440 */
 441static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
 442                                          struct extent_buffer *eb,
 443                                          u64 parent_transid)
 444{
 445        struct extent_io_tree *io_tree;
 446        int failed = 0;
 447        int ret;
 448        int num_copies = 0;
 449        int mirror_num = 0;
 450        int failed_mirror = 0;
 451
 452        clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 453        io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 454        while (1) {
 455                ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
 456                                               btree_get_extent, mirror_num);
 457                if (!ret) {
 458                        if (!verify_parent_transid(io_tree, eb,
 459                                                   parent_transid, 0))
 460                                break;
 461                        else
 462                                ret = -EIO;
 463                }
 464
 465                /*
 466                 * This buffer's crc is fine, but its contents are corrupted, so
 467                 * there is no reason to read the other copies, they won't be
 468                 * any less wrong.
 469                 */
 470                if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 471                        break;
 472
 473                num_copies = btrfs_num_copies(fs_info,
 474                                              eb->start, eb->len);
 475                if (num_copies == 1)
 476                        break;
 477
 478                if (!failed_mirror) {
 479                        failed = 1;
 480                        failed_mirror = eb->read_mirror;
 481                }
 482
 483                mirror_num++;
 484                if (mirror_num == failed_mirror)
 485                        mirror_num++;
 486
 487                if (mirror_num > num_copies)
 488                        break;
 489        }
 490
 491        if (failed && !ret && failed_mirror)
 492                repair_eb_io_failure(fs_info, eb, failed_mirror);
 493
 494        return ret;
 495}
 496
 497/*
 498 * checksum a dirty tree block before IO.  This has extra checks to make sure
 499 * we only fill in the checksum field in the first page of a multi-page block
 500 */
 501
 502static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 503{
 504        u64 start = page_offset(page);
 505        u64 found_start;
 506        struct extent_buffer *eb;
 507
 508        eb = (struct extent_buffer *)page->private;
 509        if (page != eb->pages[0])
 510                return 0;
 511
 512        found_start = btrfs_header_bytenr(eb);
 513        /*
 514         * Please do not consolidate these warnings into a single if.
 515         * It is useful to know what went wrong.
 516         */
 517        if (WARN_ON(found_start != start))
 518                return -EUCLEAN;
 519        if (WARN_ON(!PageUptodate(page)))
 520                return -EUCLEAN;
 521
 522        ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 523                        btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 524
 525        return csum_tree_block(fs_info, eb, 0);
 526}
 527
 528static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 529                                 struct extent_buffer *eb)
 530{
 531        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 532        u8 fsid[BTRFS_UUID_SIZE];
 533        int ret = 1;
 534
 535        read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 536        while (fs_devices) {
 537                if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 538                        ret = 0;
 539                        break;
 540                }
 541                fs_devices = fs_devices->seed;
 542        }
 543        return ret;
 544}
 545
 546#define CORRUPT(reason, eb, root, slot)                                 \
 547        btrfs_crit(root->fs_info,                                       \
 548                   "corrupt %s, %s: block=%llu, root=%llu, slot=%d",    \
 549                   btrfs_header_level(eb) == 0 ? "leaf" : "node",       \
 550                   reason, btrfs_header_bytenr(eb), root->objectid, slot)
 551
 552static noinline int check_leaf(struct btrfs_root *root,
 553                               struct extent_buffer *leaf)
 554{
 555        struct btrfs_fs_info *fs_info = root->fs_info;
 556        struct btrfs_key key;
 557        struct btrfs_key leaf_key;
 558        u32 nritems = btrfs_header_nritems(leaf);
 559        int slot;
 560
 561        /*
 562         * Extent buffers from a relocation tree have a owner field that
 563         * corresponds to the subvolume tree they are based on. So just from an
 564         * extent buffer alone we can not find out what is the id of the
 565         * corresponding subvolume tree, so we can not figure out if the extent
 566         * buffer corresponds to the root of the relocation tree or not. So skip
 567         * this check for relocation trees.
 568         */
 569        if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
 570                struct btrfs_root *check_root;
 571
 572                key.objectid = btrfs_header_owner(leaf);
 573                key.type = BTRFS_ROOT_ITEM_KEY;
 574                key.offset = (u64)-1;
 575
 576                check_root = btrfs_get_fs_root(fs_info, &key, false);
 577                /*
 578                 * The only reason we also check NULL here is that during
 579                 * open_ctree() some roots has not yet been set up.
 580                 */
 581                if (!IS_ERR_OR_NULL(check_root)) {
 582                        struct extent_buffer *eb;
 583
 584                        eb = btrfs_root_node(check_root);
 585                        /* if leaf is the root, then it's fine */
 586                        if (leaf != eb) {
 587                                CORRUPT("non-root leaf's nritems is 0",
 588                                        leaf, check_root, 0);
 589                                free_extent_buffer(eb);
 590                                return -EIO;
 591                        }
 592                        free_extent_buffer(eb);
 593                }
 594                return 0;
 595        }
 596
 597        if (nritems == 0)
 598                return 0;
 599
 600        /* Check the 0 item */
 601        if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 602            BTRFS_LEAF_DATA_SIZE(fs_info)) {
 603                CORRUPT("invalid item offset size pair", leaf, root, 0);
 604                return -EIO;
 605        }
 606
 607        /*
 608         * Check to make sure each items keys are in the correct order and their
 609         * offsets make sense.  We only have to loop through nritems-1 because
 610         * we check the current slot against the next slot, which verifies the
 611         * next slot's offset+size makes sense and that the current's slot
 612         * offset is correct.
 613         */
 614        for (slot = 0; slot < nritems - 1; slot++) {
 615                btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 616                btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 617
 618                /* Make sure the keys are in the right order */
 619                if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 620                        CORRUPT("bad key order", leaf, root, slot);
 621                        return -EIO;
 622                }
 623
 624                /*
 625                 * Make sure the offset and ends are right, remember that the
 626                 * item data starts at the end of the leaf and grows towards the
 627                 * front.
 628                 */
 629                if (btrfs_item_offset_nr(leaf, slot) !=
 630                        btrfs_item_end_nr(leaf, slot + 1)) {
 631                        CORRUPT("slot offset bad", leaf, root, slot);
 632                        return -EIO;
 633                }
 634
 635                /*
 636                 * Check to make sure that we don't point outside of the leaf,
 637                 * just in case all the items are consistent to each other, but
 638                 * all point outside of the leaf.
 639                 */
 640                if (btrfs_item_end_nr(leaf, slot) >
 641                    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 642                        CORRUPT("slot end outside of leaf", leaf, root, slot);
 643                        return -EIO;
 644                }
 645        }
 646
 647        return 0;
 648}
 649
 650static int check_node(struct btrfs_root *root, struct extent_buffer *node)
 651{
 652        unsigned long nr = btrfs_header_nritems(node);
 653        struct btrfs_key key, next_key;
 654        int slot;
 655        u64 bytenr;
 656        int ret = 0;
 657
 658        if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
 659                btrfs_crit(root->fs_info,
 660                           "corrupt node: block %llu root %llu nritems %lu",
 661                           node->start, root->objectid, nr);
 662                return -EIO;
 663        }
 664
 665        for (slot = 0; slot < nr - 1; slot++) {
 666                bytenr = btrfs_node_blockptr(node, slot);
 667                btrfs_node_key_to_cpu(node, &key, slot);
 668                btrfs_node_key_to_cpu(node, &next_key, slot + 1);
 669
 670                if (!bytenr) {
 671                        CORRUPT("invalid item slot", node, root, slot);
 672                        ret = -EIO;
 673                        goto out;
 674                }
 675
 676                if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
 677                        CORRUPT("bad key order", node, root, slot);
 678                        ret = -EIO;
 679                        goto out;
 680                }
 681        }
 682out:
 683        return ret;
 684}
 685
 686static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 687                                      u64 phy_offset, struct page *page,
 688                                      u64 start, u64 end, int mirror)
 689{
 690        u64 found_start;
 691        int found_level;
 692        struct extent_buffer *eb;
 693        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 694        struct btrfs_fs_info *fs_info = root->fs_info;
 695        int ret = 0;
 696        int reads_done;
 697
 698        if (!page->private)
 699                goto out;
 700
 701        eb = (struct extent_buffer *)page->private;
 702
 703        /* the pending IO might have been the only thing that kept this buffer
 704         * in memory.  Make sure we have a ref for all this other checks
 705         */
 706        extent_buffer_get(eb);
 707
 708        reads_done = atomic_dec_and_test(&eb->io_pages);
 709        if (!reads_done)
 710                goto err;
 711
 712        eb->read_mirror = mirror;
 713        if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 714                ret = -EIO;
 715                goto err;
 716        }
 717
 718        found_start = btrfs_header_bytenr(eb);
 719        if (found_start != eb->start) {
 720                btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 721                             found_start, eb->start);
 722                ret = -EIO;
 723                goto err;
 724        }
 725        if (check_tree_block_fsid(fs_info, eb)) {
 726                btrfs_err_rl(fs_info, "bad fsid on block %llu",
 727                             eb->start);
 728                ret = -EIO;
 729                goto err;
 730        }
 731        found_level = btrfs_header_level(eb);
 732        if (found_level >= BTRFS_MAX_LEVEL) {
 733                btrfs_err(fs_info, "bad tree block level %d",
 734                          (int)btrfs_header_level(eb));
 735                ret = -EIO;
 736                goto err;
 737        }
 738
 739        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 740                                       eb, found_level);
 741
 742        ret = csum_tree_block(fs_info, eb, 1);
 743        if (ret)
 744                goto err;
 745
 746        /*
 747         * If this is a leaf block and it is corrupt, set the corrupt bit so
 748         * that we don't try and read the other copies of this block, just
 749         * return -EIO.
 750         */
 751        if (found_level == 0 && check_leaf(root, eb)) {
 752                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 753                ret = -EIO;
 754        }
 755
 756        if (found_level > 0 && check_node(root, eb))
 757                ret = -EIO;
 758
 759        if (!ret)
 760                set_extent_buffer_uptodate(eb);
 761err:
 762        if (reads_done &&
 763            test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 764                btree_readahead_hook(eb, ret);
 765
 766        if (ret) {
 767                /*
 768                 * our io error hook is going to dec the io pages
 769                 * again, we have to make sure it has something
 770                 * to decrement
 771                 */
 772                atomic_inc(&eb->io_pages);
 773                clear_extent_buffer_uptodate(eb);
 774        }
 775        free_extent_buffer(eb);
 776out:
 777        return ret;
 778}
 779
 780static int btree_io_failed_hook(struct page *page, int failed_mirror)
 781{
 782        struct extent_buffer *eb;
 783
 784        eb = (struct extent_buffer *)page->private;
 785        set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 786        eb->read_mirror = failed_mirror;
 787        atomic_dec(&eb->io_pages);
 788        if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 789                btree_readahead_hook(eb, -EIO);
 790        return -EIO;    /* we fixed nothing */
 791}
 792
 793static void end_workqueue_bio(struct bio *bio)
 794{
 795        struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 796        struct btrfs_fs_info *fs_info;
 797        struct btrfs_workqueue *wq;
 798        btrfs_work_func_t func;
 799
 800        fs_info = end_io_wq->info;
 801        end_io_wq->status = bio->bi_status;
 802
 803        if (bio_op(bio) == REQ_OP_WRITE) {
 804                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 805                        wq = fs_info->endio_meta_write_workers;
 806                        func = btrfs_endio_meta_write_helper;
 807                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 808                        wq = fs_info->endio_freespace_worker;
 809                        func = btrfs_freespace_write_helper;
 810                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 811                        wq = fs_info->endio_raid56_workers;
 812                        func = btrfs_endio_raid56_helper;
 813                } else {
 814                        wq = fs_info->endio_write_workers;
 815                        func = btrfs_endio_write_helper;
 816                }
 817        } else {
 818                if (unlikely(end_io_wq->metadata ==
 819                             BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 820                        wq = fs_info->endio_repair_workers;
 821                        func = btrfs_endio_repair_helper;
 822                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 823                        wq = fs_info->endio_raid56_workers;
 824                        func = btrfs_endio_raid56_helper;
 825                } else if (end_io_wq->metadata) {
 826                        wq = fs_info->endio_meta_workers;
 827                        func = btrfs_endio_meta_helper;
 828                } else {
 829                        wq = fs_info->endio_workers;
 830                        func = btrfs_endio_helper;
 831                }
 832        }
 833
 834        btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 835        btrfs_queue_work(wq, &end_io_wq->work);
 836}
 837
 838blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 839                        enum btrfs_wq_endio_type metadata)
 840{
 841        struct btrfs_end_io_wq *end_io_wq;
 842
 843        end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 844        if (!end_io_wq)
 845                return BLK_STS_RESOURCE;
 846
 847        end_io_wq->private = bio->bi_private;
 848        end_io_wq->end_io = bio->bi_end_io;
 849        end_io_wq->info = info;
 850        end_io_wq->status = 0;
 851        end_io_wq->bio = bio;
 852        end_io_wq->metadata = metadata;
 853
 854        bio->bi_private = end_io_wq;
 855        bio->bi_end_io = end_workqueue_bio;
 856        return 0;
 857}
 858
 859unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 860{
 861        unsigned long limit = min_t(unsigned long,
 862                                    info->thread_pool_size,
 863                                    info->fs_devices->open_devices);
 864        return 256 * limit;
 865}
 866
 867static void run_one_async_start(struct btrfs_work *work)
 868{
 869        struct async_submit_bio *async;
 870        blk_status_t ret;
 871
 872        async = container_of(work, struct  async_submit_bio, work);
 873        ret = async->submit_bio_start(async->private_data, async->bio,
 874                                      async->mirror_num, async->bio_flags,
 875                                      async->bio_offset);
 876        if (ret)
 877                async->status = ret;
 878}
 879
 880static void run_one_async_done(struct btrfs_work *work)
 881{
 882        struct btrfs_fs_info *fs_info;
 883        struct async_submit_bio *async;
 884        int limit;
 885
 886        async = container_of(work, struct  async_submit_bio, work);
 887        fs_info = async->fs_info;
 888
 889        limit = btrfs_async_submit_limit(fs_info);
 890        limit = limit * 2 / 3;
 891
 892        /*
 893         * atomic_dec_return implies a barrier for waitqueue_active
 894         */
 895        if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 896            waitqueue_active(&fs_info->async_submit_wait))
 897                wake_up(&fs_info->async_submit_wait);
 898
 899        /* If an error occurred we just want to clean up the bio and move on */
 900        if (async->status) {
 901                async->bio->bi_status = async->status;
 902                bio_endio(async->bio);
 903                return;
 904        }
 905
 906        async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
 907                               async->bio_flags, async->bio_offset);
 908}
 909
 910static void run_one_async_free(struct btrfs_work *work)
 911{
 912        struct async_submit_bio *async;
 913
 914        async = container_of(work, struct  async_submit_bio, work);
 915        kfree(async);
 916}
 917
 918blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 919                                 int mirror_num, unsigned long bio_flags,
 920                                 u64 bio_offset, void *private_data,
 921                                 extent_submit_bio_hook_t *submit_bio_start,
 922                                 extent_submit_bio_hook_t *submit_bio_done)
 923{
 924        struct async_submit_bio *async;
 925
 926        async = kmalloc(sizeof(*async), GFP_NOFS);
 927        if (!async)
 928                return BLK_STS_RESOURCE;
 929
 930        async->private_data = private_data;
 931        async->fs_info = fs_info;
 932        async->bio = bio;
 933        async->mirror_num = mirror_num;
 934        async->submit_bio_start = submit_bio_start;
 935        async->submit_bio_done = submit_bio_done;
 936
 937        btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 938                        run_one_async_done, run_one_async_free);
 939
 940        async->bio_flags = bio_flags;
 941        async->bio_offset = bio_offset;
 942
 943        async->status = 0;
 944
 945        atomic_inc(&fs_info->nr_async_submits);
 946
 947        if (op_is_sync(bio->bi_opf))
 948                btrfs_set_work_high_priority(&async->work);
 949
 950        btrfs_queue_work(fs_info->workers, &async->work);
 951
 952        while (atomic_read(&fs_info->async_submit_draining) &&
 953              atomic_read(&fs_info->nr_async_submits)) {
 954                wait_event(fs_info->async_submit_wait,
 955                           (atomic_read(&fs_info->nr_async_submits) == 0));
 956        }
 957
 958        return 0;
 959}
 960
 961static blk_status_t btree_csum_one_bio(struct bio *bio)
 962{
 963        struct bio_vec *bvec;
 964        struct btrfs_root *root;
 965        int i, ret = 0;
 966
 967        ASSERT(!bio_flagged(bio, BIO_CLONED));
 968        bio_for_each_segment_all(bvec, bio, i) {
 969                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 970                ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 971                if (ret)
 972                        break;
 973        }
 974
 975        return errno_to_blk_status(ret);
 976}
 977
 978static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
 979                                             int mirror_num, unsigned long bio_flags,
 980                                             u64 bio_offset)
 981{
 982        /*
 983         * when we're called for a write, we're already in the async
 984         * submission context.  Just jump into btrfs_map_bio
 985         */
 986        return btree_csum_one_bio(bio);
 987}
 988
 989static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
 990                                            int mirror_num, unsigned long bio_flags,
 991                                            u64 bio_offset)
 992{
 993        struct inode *inode = private_data;
 994        blk_status_t ret;
 995
 996        /*
 997         * when we're called for a write, we're already in the async
 998         * submission context.  Just jump into btrfs_map_bio
 999         */
1000        ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1001        if (ret) {
1002                bio->bi_status = ret;
1003                bio_endio(bio);
1004        }
1005        return ret;
1006}
1007
1008static int check_async_write(unsigned long bio_flags)
1009{
1010        if (bio_flags & EXTENT_BIO_TREE_LOG)
1011                return 0;
1012#ifdef CONFIG_X86
1013        if (static_cpu_has(X86_FEATURE_XMM4_2))
1014                return 0;
1015#endif
1016        return 1;
1017}
1018
1019static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
1020                                          int mirror_num, unsigned long bio_flags,
1021                                          u64 bio_offset)
1022{
1023        struct inode *inode = private_data;
1024        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1025        int async = check_async_write(bio_flags);
1026        blk_status_t ret;
1027
1028        if (bio_op(bio) != REQ_OP_WRITE) {
1029                /*
1030                 * called for a read, do the setup so that checksum validation
1031                 * can happen in the async kernel threads
1032                 */
1033                ret = btrfs_bio_wq_end_io(fs_info, bio,
1034                                          BTRFS_WQ_ENDIO_METADATA);
1035                if (ret)
1036                        goto out_w_error;
1037                ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1038        } else if (!async) {
1039                ret = btree_csum_one_bio(bio);
1040                if (ret)
1041                        goto out_w_error;
1042                ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1043        } else {
1044                /*
1045                 * kthread helpers are used to submit writes so that
1046                 * checksumming can happen in parallel across all CPUs
1047                 */
1048                ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
1049                                          bio_offset, private_data,
1050                                          __btree_submit_bio_start,
1051                                          __btree_submit_bio_done);
1052        }
1053
1054        if (ret)
1055                goto out_w_error;
1056        return 0;
1057
1058out_w_error:
1059        bio->bi_status = ret;
1060        bio_endio(bio);
1061        return ret;
1062}
1063
1064#ifdef CONFIG_MIGRATION
1065static int btree_migratepage(struct address_space *mapping,
1066                        struct page *newpage, struct page *page,
1067                        enum migrate_mode mode)
1068{
1069        /*
1070         * we can't safely write a btree page from here,
1071         * we haven't done the locking hook
1072         */
1073        if (PageDirty(page))
1074                return -EAGAIN;
1075        /*
1076         * Buffers may be managed in a filesystem specific way.
1077         * We must have no buffers or drop them.
1078         */
1079        if (page_has_private(page) &&
1080            !try_to_release_page(page, GFP_KERNEL))
1081                return -EAGAIN;
1082        return migrate_page(mapping, newpage, page, mode);
1083}
1084#endif
1085
1086
1087static int btree_writepages(struct address_space *mapping,
1088                            struct writeback_control *wbc)
1089{
1090        struct btrfs_fs_info *fs_info;
1091        int ret;
1092
1093        if (wbc->sync_mode == WB_SYNC_NONE) {
1094
1095                if (wbc->for_kupdate)
1096                        return 0;
1097
1098                fs_info = BTRFS_I(mapping->host)->root->fs_info;
1099                /* this is a bit racy, but that's ok */
1100                ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1101                                             BTRFS_DIRTY_METADATA_THRESH);
1102                if (ret < 0)
1103                        return 0;
1104        }
1105        return btree_write_cache_pages(mapping, wbc);
1106}
1107
1108static int btree_readpage(struct file *file, struct page *page)
1109{
1110        struct extent_io_tree *tree;
1111        tree = &BTRFS_I(page->mapping->host)->io_tree;
1112        return extent_read_full_page(tree, page, btree_get_extent, 0);
1113}
1114
1115static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1116{
1117        if (PageWriteback(page) || PageDirty(page))
1118                return 0;
1119
1120        return try_release_extent_buffer(page);
1121}
1122
1123static void btree_invalidatepage(struct page *page, unsigned int offset,
1124                                 unsigned int length)
1125{
1126        struct extent_io_tree *tree;
1127        tree = &BTRFS_I(page->mapping->host)->io_tree;
1128        extent_invalidatepage(tree, page, offset);
1129        btree_releasepage(page, GFP_NOFS);
1130        if (PagePrivate(page)) {
1131                btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1132                           "page private not zero on page %llu",
1133                           (unsigned long long)page_offset(page));
1134                ClearPagePrivate(page);
1135                set_page_private(page, 0);
1136                put_page(page);
1137        }
1138}
1139
1140static int btree_set_page_dirty(struct page *page)
1141{
1142#ifdef DEBUG
1143        struct extent_buffer *eb;
1144
1145        BUG_ON(!PagePrivate(page));
1146        eb = (struct extent_buffer *)page->private;
1147        BUG_ON(!eb);
1148        BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1149        BUG_ON(!atomic_read(&eb->refs));
1150        btrfs_assert_tree_locked(eb);
1151#endif
1152        return __set_page_dirty_nobuffers(page);
1153}
1154
1155static const struct address_space_operations btree_aops = {
1156        .readpage       = btree_readpage,
1157        .writepages     = btree_writepages,
1158        .releasepage    = btree_releasepage,
1159        .invalidatepage = btree_invalidatepage,
1160#ifdef CONFIG_MIGRATION
1161        .migratepage    = btree_migratepage,
1162#endif
1163        .set_page_dirty = btree_set_page_dirty,
1164};
1165
1166void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1167{
1168        struct extent_buffer *buf = NULL;
1169        struct inode *btree_inode = fs_info->btree_inode;
1170
1171        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1172        if (IS_ERR(buf))
1173                return;
1174        read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1175                                 buf, WAIT_NONE, btree_get_extent, 0);
1176        free_extent_buffer(buf);
1177}
1178
1179int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1180                         int mirror_num, struct extent_buffer **eb)
1181{
1182        struct extent_buffer *buf = NULL;
1183        struct inode *btree_inode = fs_info->btree_inode;
1184        struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1185        int ret;
1186
1187        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1188        if (IS_ERR(buf))
1189                return 0;
1190
1191        set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1192
1193        ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1194                                       btree_get_extent, mirror_num);
1195        if (ret) {
1196                free_extent_buffer(buf);
1197                return ret;
1198        }
1199
1200        if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1201                free_extent_buffer(buf);
1202                return -EIO;
1203        } else if (extent_buffer_uptodate(buf)) {
1204                *eb = buf;
1205        } else {
1206                free_extent_buffer(buf);
1207        }
1208        return 0;
1209}
1210
1211struct extent_buffer *btrfs_find_create_tree_block(
1212                                                struct btrfs_fs_info *fs_info,
1213                                                u64 bytenr)
1214{
1215        if (btrfs_is_testing(fs_info))
1216                return alloc_test_extent_buffer(fs_info, bytenr);
1217        return alloc_extent_buffer(fs_info, bytenr);
1218}
1219
1220
1221int btrfs_write_tree_block(struct extent_buffer *buf)
1222{
1223        return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1224                                        buf->start + buf->len - 1);
1225}
1226
1227void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1228{
1229        filemap_fdatawait_range(buf->pages[0]->mapping,
1230                                buf->start, buf->start + buf->len - 1);
1231}
1232
1233struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1234                                      u64 parent_transid)
1235{
1236        struct extent_buffer *buf = NULL;
1237        int ret;
1238
1239        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1240        if (IS_ERR(buf))
1241                return buf;
1242
1243        ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1244        if (ret) {
1245                free_extent_buffer(buf);
1246                return ERR_PTR(ret);
1247        }
1248        return buf;
1249
1250}
1251
1252void clean_tree_block(struct btrfs_fs_info *fs_info,
1253                      struct extent_buffer *buf)
1254{
1255        if (btrfs_header_generation(buf) ==
1256            fs_info->running_transaction->transid) {
1257                btrfs_assert_tree_locked(buf);
1258
1259                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1260                        percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1261                                                 -buf->len,
1262                                                 fs_info->dirty_metadata_batch);
1263                        /* ugh, clear_extent_buffer_dirty needs to lock the page */
1264                        btrfs_set_lock_blocking(buf);
1265                        clear_extent_buffer_dirty(buf);
1266                }
1267        }
1268}
1269
1270static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1271{
1272        struct btrfs_subvolume_writers *writers;
1273        int ret;
1274
1275        writers = kmalloc(sizeof(*writers), GFP_NOFS);
1276        if (!writers)
1277                return ERR_PTR(-ENOMEM);
1278
1279        ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1280        if (ret < 0) {
1281                kfree(writers);
1282                return ERR_PTR(ret);
1283        }
1284
1285        init_waitqueue_head(&writers->wait);
1286        return writers;
1287}
1288
1289static void
1290btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1291{
1292        percpu_counter_destroy(&writers->counter);
1293        kfree(writers);
1294}
1295
1296static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1297                         u64 objectid)
1298{
1299        bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1300        root->node = NULL;
1301        root->commit_root = NULL;
1302        root->state = 0;
1303        root->orphan_cleanup_state = 0;
1304
1305        root->objectid = objectid;
1306        root->last_trans = 0;
1307        root->highest_objectid = 0;
1308        root->nr_delalloc_inodes = 0;
1309        root->nr_ordered_extents = 0;
1310        root->name = NULL;
1311        root->inode_tree = RB_ROOT;
1312        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1313        root->block_rsv = NULL;
1314        root->orphan_block_rsv = NULL;
1315
1316        INIT_LIST_HEAD(&root->dirty_list);
1317        INIT_LIST_HEAD(&root->root_list);
1318        INIT_LIST_HEAD(&root->delalloc_inodes);
1319        INIT_LIST_HEAD(&root->delalloc_root);
1320        INIT_LIST_HEAD(&root->ordered_extents);
1321        INIT_LIST_HEAD(&root->ordered_root);
1322        INIT_LIST_HEAD(&root->logged_list[0]);
1323        INIT_LIST_HEAD(&root->logged_list[1]);
1324        spin_lock_init(&root->orphan_lock);
1325        spin_lock_init(&root->inode_lock);
1326        spin_lock_init(&root->delalloc_lock);
1327        spin_lock_init(&root->ordered_extent_lock);
1328        spin_lock_init(&root->accounting_lock);
1329        spin_lock_init(&root->log_extents_lock[0]);
1330        spin_lock_init(&root->log_extents_lock[1]);
1331        mutex_init(&root->objectid_mutex);
1332        mutex_init(&root->log_mutex);
1333        mutex_init(&root->ordered_extent_mutex);
1334        mutex_init(&root->delalloc_mutex);
1335        init_waitqueue_head(&root->log_writer_wait);
1336        init_waitqueue_head(&root->log_commit_wait[0]);
1337        init_waitqueue_head(&root->log_commit_wait[1]);
1338        INIT_LIST_HEAD(&root->log_ctxs[0]);
1339        INIT_LIST_HEAD(&root->log_ctxs[1]);
1340        atomic_set(&root->log_commit[0], 0);
1341        atomic_set(&root->log_commit[1], 0);
1342        atomic_set(&root->log_writers, 0);
1343        atomic_set(&root->log_batch, 0);
1344        atomic_set(&root->orphan_inodes, 0);
1345        refcount_set(&root->refs, 1);
1346        atomic_set(&root->will_be_snapshoted, 0);
1347        atomic64_set(&root->qgroup_meta_rsv, 0);
1348        root->log_transid = 0;
1349        root->log_transid_committed = -1;
1350        root->last_log_commit = 0;
1351        if (!dummy)
1352                extent_io_tree_init(&root->dirty_log_pages, NULL);
1353
1354        memset(&root->root_key, 0, sizeof(root->root_key));
1355        memset(&root->root_item, 0, sizeof(root->root_item));
1356        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1357        if (!dummy)
1358                root->defrag_trans_start = fs_info->generation;
1359        else
1360                root->defrag_trans_start = 0;
1361        root->root_key.objectid = objectid;
1362        root->anon_dev = 0;
1363
1364        spin_lock_init(&root->root_item_lock);
1365}
1366
1367static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1368                gfp_t flags)
1369{
1370        struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1371        if (root)
1372                root->fs_info = fs_info;
1373        return root;
1374}
1375
1376#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1377/* Should only be used by the testing infrastructure */
1378struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1379{
1380        struct btrfs_root *root;
1381
1382        if (!fs_info)
1383                return ERR_PTR(-EINVAL);
1384
1385        root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1386        if (!root)
1387                return ERR_PTR(-ENOMEM);
1388
1389        /* We don't use the stripesize in selftest, set it as sectorsize */
1390        __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1391        root->alloc_bytenr = 0;
1392
1393        return root;
1394}
1395#endif
1396
1397struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1398                                     struct btrfs_fs_info *fs_info,
1399                                     u64 objectid)
1400{
1401        struct extent_buffer *leaf;
1402        struct btrfs_root *tree_root = fs_info->tree_root;
1403        struct btrfs_root *root;
1404        struct btrfs_key key;
1405        int ret = 0;
1406        uuid_le uuid;
1407
1408        root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1409        if (!root)
1410                return ERR_PTR(-ENOMEM);
1411
1412        __setup_root(root, fs_info, objectid);
1413        root->root_key.objectid = objectid;
1414        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1415        root->root_key.offset = 0;
1416
1417        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1418        if (IS_ERR(leaf)) {
1419                ret = PTR_ERR(leaf);
1420                leaf = NULL;
1421                goto fail;
1422        }
1423
1424        memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1425        btrfs_set_header_bytenr(leaf, leaf->start);
1426        btrfs_set_header_generation(leaf, trans->transid);
1427        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1428        btrfs_set_header_owner(leaf, objectid);
1429        root->node = leaf;
1430
1431        write_extent_buffer_fsid(leaf, fs_info->fsid);
1432        write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1433        btrfs_mark_buffer_dirty(leaf);
1434
1435        root->commit_root = btrfs_root_node(root);
1436        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1437
1438        root->root_item.flags = 0;
1439        root->root_item.byte_limit = 0;
1440        btrfs_set_root_bytenr(&root->root_item, leaf->start);
1441        btrfs_set_root_generation(&root->root_item, trans->transid);
1442        btrfs_set_root_level(&root->root_item, 0);
1443        btrfs_set_root_refs(&root->root_item, 1);
1444        btrfs_set_root_used(&root->root_item, leaf->len);
1445        btrfs_set_root_last_snapshot(&root->root_item, 0);
1446        btrfs_set_root_dirid(&root->root_item, 0);
1447        uuid_le_gen(&uuid);
1448        memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1449        root->root_item.drop_level = 0;
1450
1451        key.objectid = objectid;
1452        key.type = BTRFS_ROOT_ITEM_KEY;
1453        key.offset = 0;
1454        ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1455        if (ret)
1456                goto fail;
1457
1458        btrfs_tree_unlock(leaf);
1459
1460        return root;
1461
1462fail:
1463        if (leaf) {
1464                btrfs_tree_unlock(leaf);
1465                free_extent_buffer(root->commit_root);
1466                free_extent_buffer(leaf);
1467        }
1468        kfree(root);
1469
1470        return ERR_PTR(ret);
1471}
1472
1473static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1474                                         struct btrfs_fs_info *fs_info)
1475{
1476        struct btrfs_root *root;
1477        struct extent_buffer *leaf;
1478
1479        root = btrfs_alloc_root(fs_info, GFP_NOFS);
1480        if (!root)
1481                return ERR_PTR(-ENOMEM);
1482
1483        __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1484
1485        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1486        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1487        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1488
1489        /*
1490         * DON'T set REF_COWS for log trees
1491         *
1492         * log trees do not get reference counted because they go away
1493         * before a real commit is actually done.  They do store pointers
1494         * to file data extents, and those reference counts still get
1495         * updated (along with back refs to the log tree).
1496         */
1497
1498        leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1499                        NULL, 0, 0, 0);
1500        if (IS_ERR(leaf)) {
1501                kfree(root);
1502                return ERR_CAST(leaf);
1503        }
1504
1505        memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1506        btrfs_set_header_bytenr(leaf, leaf->start);
1507        btrfs_set_header_generation(leaf, trans->transid);
1508        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1509        btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1510        root->node = leaf;
1511
1512        write_extent_buffer_fsid(root->node, fs_info->fsid);
1513        btrfs_mark_buffer_dirty(root->node);
1514        btrfs_tree_unlock(root->node);
1515        return root;
1516}
1517
1518int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1519                             struct btrfs_fs_info *fs_info)
1520{
1521        struct btrfs_root *log_root;
1522
1523        log_root = alloc_log_tree(trans, fs_info);
1524        if (IS_ERR(log_root))
1525                return PTR_ERR(log_root);
1526        WARN_ON(fs_info->log_root_tree);
1527        fs_info->log_root_tree = log_root;
1528        return 0;
1529}
1530
1531int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1532                       struct btrfs_root *root)
1533{
1534        struct btrfs_fs_info *fs_info = root->fs_info;
1535        struct btrfs_root *log_root;
1536        struct btrfs_inode_item *inode_item;
1537
1538        log_root = alloc_log_tree(trans, fs_info);
1539        if (IS_ERR(log_root))
1540                return PTR_ERR(log_root);
1541
1542        log_root->last_trans = trans->transid;
1543        log_root->root_key.offset = root->root_key.objectid;
1544
1545        inode_item = &log_root->root_item.inode;
1546        btrfs_set_stack_inode_generation(inode_item, 1);
1547        btrfs_set_stack_inode_size(inode_item, 3);
1548        btrfs_set_stack_inode_nlink(inode_item, 1);
1549        btrfs_set_stack_inode_nbytes(inode_item,
1550                                     fs_info->nodesize);
1551        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1552
1553        btrfs_set_root_node(&log_root->root_item, log_root->node);
1554
1555        WARN_ON(root->log_root);
1556        root->log_root = log_root;
1557        root->log_transid = 0;
1558        root->log_transid_committed = -1;
1559        root->last_log_commit = 0;
1560        return 0;
1561}
1562
1563static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1564                                               struct btrfs_key *key)
1565{
1566        struct btrfs_root *root;
1567        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1568        struct btrfs_path *path;
1569        u64 generation;
1570        int ret;
1571
1572        path = btrfs_alloc_path();
1573        if (!path)
1574                return ERR_PTR(-ENOMEM);
1575
1576        root = btrfs_alloc_root(fs_info, GFP_NOFS);
1577        if (!root) {
1578                ret = -ENOMEM;
1579                goto alloc_fail;
1580        }
1581
1582        __setup_root(root, fs_info, key->objectid);
1583
1584        ret = btrfs_find_root(tree_root, key, path,
1585                              &root->root_item, &root->root_key);
1586        if (ret) {
1587                if (ret > 0)
1588                        ret = -ENOENT;
1589                goto find_fail;
1590        }
1591
1592        generation = btrfs_root_generation(&root->root_item);
1593        root->node = read_tree_block(fs_info,
1594                                     btrfs_root_bytenr(&root->root_item),
1595                                     generation);
1596        if (IS_ERR(root->node)) {
1597                ret = PTR_ERR(root->node);
1598                goto find_fail;
1599        } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1600                ret = -EIO;
1601                free_extent_buffer(root->node);
1602                goto find_fail;
1603        }
1604        root->commit_root = btrfs_root_node(root);
1605out:
1606        btrfs_free_path(path);
1607        return root;
1608
1609find_fail:
1610        kfree(root);
1611alloc_fail:
1612        root = ERR_PTR(ret);
1613        goto out;
1614}
1615
1616struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1617                                      struct btrfs_key *location)
1618{
1619        struct btrfs_root *root;
1620
1621        root = btrfs_read_tree_root(tree_root, location);
1622        if (IS_ERR(root))
1623                return root;
1624
1625        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1626                set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1627                btrfs_check_and_init_root_item(&root->root_item);
1628        }
1629
1630        return root;
1631}
1632
1633int btrfs_init_fs_root(struct btrfs_root *root)
1634{
1635        int ret;
1636        struct btrfs_subvolume_writers *writers;
1637
1638        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1639        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1640                                        GFP_NOFS);
1641        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1642                ret = -ENOMEM;
1643                goto fail;
1644        }
1645
1646        writers = btrfs_alloc_subvolume_writers();
1647        if (IS_ERR(writers)) {
1648                ret = PTR_ERR(writers);
1649                goto fail;
1650        }
1651        root->subv_writers = writers;
1652
1653        btrfs_init_free_ino_ctl(root);
1654        spin_lock_init(&root->ino_cache_lock);
1655        init_waitqueue_head(&root->ino_cache_wait);
1656
1657        ret = get_anon_bdev(&root->anon_dev);
1658        if (ret)
1659                goto fail;
1660
1661        mutex_lock(&root->objectid_mutex);
1662        ret = btrfs_find_highest_objectid(root,
1663                                        &root->highest_objectid);
1664        if (ret) {
1665                mutex_unlock(&root->objectid_mutex);
1666                goto fail;
1667        }
1668
1669        ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1670
1671        mutex_unlock(&root->objectid_mutex);
1672
1673        return 0;
1674fail:
1675        /* the caller is responsible to call free_fs_root */
1676        return ret;
1677}
1678
1679struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1680                                        u64 root_id)
1681{
1682        struct btrfs_root *root;
1683
1684        spin_lock(&fs_info->fs_roots_radix_lock);
1685        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1686                                 (unsigned long)root_id);
1687        spin_unlock(&fs_info->fs_roots_radix_lock);
1688        return root;
1689}
1690
1691int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1692                         struct btrfs_root *root)
1693{
1694        int ret;
1695
1696        ret = radix_tree_preload(GFP_NOFS);
1697        if (ret)
1698                return ret;
1699
1700        spin_lock(&fs_info->fs_roots_radix_lock);
1701        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1702                                (unsigned long)root->root_key.objectid,
1703                                root);
1704        if (ret == 0)
1705                set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1706        spin_unlock(&fs_info->fs_roots_radix_lock);
1707        radix_tree_preload_end();
1708
1709        return ret;
1710}
1711
1712struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1713                                     struct btrfs_key *location,
1714                                     bool check_ref)
1715{
1716        struct btrfs_root *root;
1717        struct btrfs_path *path;
1718        struct btrfs_key key;
1719        int ret;
1720
1721        if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1722                return fs_info->tree_root;
1723        if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1724                return fs_info->extent_root;
1725        if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1726                return fs_info->chunk_root;
1727        if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1728                return fs_info->dev_root;
1729        if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1730                return fs_info->csum_root;
1731        if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1732                return fs_info->quota_root ? fs_info->quota_root :
1733                                             ERR_PTR(-ENOENT);
1734        if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1735                return fs_info->uuid_root ? fs_info->uuid_root :
1736                                            ERR_PTR(-ENOENT);
1737        if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1738                return fs_info->free_space_root ? fs_info->free_space_root :
1739                                                  ERR_PTR(-ENOENT);
1740again:
1741        root = btrfs_lookup_fs_root(fs_info, location->objectid);
1742        if (root) {
1743                if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1744                        return ERR_PTR(-ENOENT);
1745                return root;
1746        }
1747
1748        root = btrfs_read_fs_root(fs_info->tree_root, location);
1749        if (IS_ERR(root))
1750                return root;
1751
1752        if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1753                ret = -ENOENT;
1754                goto fail;
1755        }
1756
1757        ret = btrfs_init_fs_root(root);
1758        if (ret)
1759                goto fail;
1760
1761        path = btrfs_alloc_path();
1762        if (!path) {
1763                ret = -ENOMEM;
1764                goto fail;
1765        }
1766        key.objectid = BTRFS_ORPHAN_OBJECTID;
1767        key.type = BTRFS_ORPHAN_ITEM_KEY;
1768        key.offset = location->objectid;
1769
1770        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1771        btrfs_free_path(path);
1772        if (ret < 0)
1773                goto fail;
1774        if (ret == 0)
1775                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1776
1777        ret = btrfs_insert_fs_root(fs_info, root);
1778        if (ret) {
1779                if (ret == -EEXIST) {
1780                        free_fs_root(root);
1781                        goto again;
1782                }
1783                goto fail;
1784        }
1785        return root;
1786fail:
1787        free_fs_root(root);
1788        return ERR_PTR(ret);
1789}
1790
1791static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1792{
1793        struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1794        int ret = 0;
1795        struct btrfs_device *device;
1796        struct backing_dev_info *bdi;
1797
1798        rcu_read_lock();
1799        list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1800                if (!device->bdev)
1801                        continue;
1802                bdi = device->bdev->bd_bdi;
1803                if (bdi_congested(bdi, bdi_bits)) {
1804                        ret = 1;
1805                        break;
1806                }
1807        }
1808        rcu_read_unlock();
1809        return ret;
1810}
1811
1812/*
1813 * called by the kthread helper functions to finally call the bio end_io
1814 * functions.  This is where read checksum verification actually happens
1815 */
1816static void end_workqueue_fn(struct btrfs_work *work)
1817{
1818        struct bio *bio;
1819        struct btrfs_end_io_wq *end_io_wq;
1820
1821        end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1822        bio = end_io_wq->bio;
1823
1824        bio->bi_status = end_io_wq->status;
1825        bio->bi_private = end_io_wq->private;
1826        bio->bi_end_io = end_io_wq->end_io;
1827        kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1828        bio_endio(bio);
1829}
1830
1831static int cleaner_kthread(void *arg)
1832{
1833        struct btrfs_root *root = arg;
1834        struct btrfs_fs_info *fs_info = root->fs_info;
1835        int again;
1836        struct btrfs_trans_handle *trans;
1837
1838        do {
1839                again = 0;
1840
1841                /* Make the cleaner go to sleep early. */
1842                if (btrfs_need_cleaner_sleep(fs_info))
1843                        goto sleep;
1844
1845                /*
1846                 * Do not do anything if we might cause open_ctree() to block
1847                 * before we have finished mounting the filesystem.
1848                 */
1849                if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1850                        goto sleep;
1851
1852                if (!mutex_trylock(&fs_info->cleaner_mutex))
1853                        goto sleep;
1854
1855                /*
1856                 * Avoid the problem that we change the status of the fs
1857                 * during the above check and trylock.
1858                 */
1859                if (btrfs_need_cleaner_sleep(fs_info)) {
1860                        mutex_unlock(&fs_info->cleaner_mutex);
1861                        goto sleep;
1862                }
1863
1864                mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1865                btrfs_run_delayed_iputs(fs_info);
1866                mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1867
1868                again = btrfs_clean_one_deleted_snapshot(root);
1869                mutex_unlock(&fs_info->cleaner_mutex);
1870
1871                /*
1872                 * The defragger has dealt with the R/O remount and umount,
1873                 * needn't do anything special here.
1874                 */
1875                btrfs_run_defrag_inodes(fs_info);
1876
1877                /*
1878                 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1879                 * with relocation (btrfs_relocate_chunk) and relocation
1880                 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1881                 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1882                 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1883                 * unused block groups.
1884                 */
1885                btrfs_delete_unused_bgs(fs_info);
1886sleep:
1887                if (!again) {
1888                        set_current_state(TASK_INTERRUPTIBLE);
1889                        if (!kthread_should_stop())
1890                                schedule();
1891                        __set_current_state(TASK_RUNNING);
1892                }
1893        } while (!kthread_should_stop());
1894
1895        /*
1896         * Transaction kthread is stopped before us and wakes us up.
1897         * However we might have started a new transaction and COWed some
1898         * tree blocks when deleting unused block groups for example. So
1899         * make sure we commit the transaction we started to have a clean
1900         * shutdown when evicting the btree inode - if it has dirty pages
1901         * when we do the final iput() on it, eviction will trigger a
1902         * writeback for it which will fail with null pointer dereferences
1903         * since work queues and other resources were already released and
1904         * destroyed by the time the iput/eviction/writeback is made.
1905         */
1906        trans = btrfs_attach_transaction(root);
1907        if (IS_ERR(trans)) {
1908                if (PTR_ERR(trans) != -ENOENT)
1909                        btrfs_err(fs_info,
1910                                  "cleaner transaction attach returned %ld",
1911                                  PTR_ERR(trans));
1912        } else {
1913                int ret;
1914
1915                ret = btrfs_commit_transaction(trans);
1916                if (ret)
1917                        btrfs_err(fs_info,
1918                                  "cleaner open transaction commit returned %d",
1919                                  ret);
1920        }
1921
1922        return 0;
1923}
1924
1925static int transaction_kthread(void *arg)
1926{
1927        struct btrfs_root *root = arg;
1928        struct btrfs_fs_info *fs_info = root->fs_info;
1929        struct btrfs_trans_handle *trans;
1930        struct btrfs_transaction *cur;
1931        u64 transid;
1932        unsigned long now;
1933        unsigned long delay;
1934        bool cannot_commit;
1935
1936        do {
1937                cannot_commit = false;
1938                delay = HZ * fs_info->commit_interval;
1939                mutex_lock(&fs_info->transaction_kthread_mutex);
1940
1941                spin_lock(&fs_info->trans_lock);
1942                cur = fs_info->running_transaction;
1943                if (!cur) {
1944                        spin_unlock(&fs_info->trans_lock);
1945                        goto sleep;
1946                }
1947
1948                now = get_seconds();
1949                if (cur->state < TRANS_STATE_BLOCKED &&
1950                    (now < cur->start_time ||
1951                     now - cur->start_time < fs_info->commit_interval)) {
1952                        spin_unlock(&fs_info->trans_lock);
1953                        delay = HZ * 5;
1954                        goto sleep;
1955                }
1956                transid = cur->transid;
1957                spin_unlock(&fs_info->trans_lock);
1958
1959                /* If the file system is aborted, this will always fail. */
1960                trans = btrfs_attach_transaction(root);
1961                if (IS_ERR(trans)) {
1962                        if (PTR_ERR(trans) != -ENOENT)
1963                                cannot_commit = true;
1964                        goto sleep;
1965                }
1966                if (transid == trans->transid) {
1967                        btrfs_commit_transaction(trans);
1968                } else {
1969                        btrfs_end_transaction(trans);
1970                }
1971sleep:
1972                wake_up_process(fs_info->cleaner_kthread);
1973                mutex_unlock(&fs_info->transaction_kthread_mutex);
1974
1975                if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1976                                      &fs_info->fs_state)))
1977                        btrfs_cleanup_transaction(fs_info);
1978                set_current_state(TASK_INTERRUPTIBLE);
1979                if (!kthread_should_stop() &&
1980                                (!btrfs_transaction_blocked(fs_info) ||
1981                                 cannot_commit))
1982                        schedule_timeout(delay);
1983                __set_current_state(TASK_RUNNING);
1984        } while (!kthread_should_stop());
1985        return 0;
1986}
1987
1988/*
1989 * this will find the highest generation in the array of
1990 * root backups.  The index of the highest array is returned,
1991 * or -1 if we can't find anything.
1992 *
1993 * We check to make sure the array is valid by comparing the
1994 * generation of the latest  root in the array with the generation
1995 * in the super block.  If they don't match we pitch it.
1996 */
1997static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1998{
1999        u64 cur;
2000        int newest_index = -1;
2001        struct btrfs_root_backup *root_backup;
2002        int i;
2003
2004        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2005                root_backup = info->super_copy->super_roots + i;
2006                cur = btrfs_backup_tree_root_gen(root_backup);
2007                if (cur == newest_gen)
2008                        newest_index = i;
2009        }
2010
2011        /* check to see if we actually wrapped around */
2012        if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2013                root_backup = info->super_copy->super_roots;
2014                cur = btrfs_backup_tree_root_gen(root_backup);
2015                if (cur == newest_gen)
2016                        newest_index = 0;
2017        }
2018        return newest_index;
2019}
2020
2021
2022/*
2023 * find the oldest backup so we know where to store new entries
2024 * in the backup array.  This will set the backup_root_index
2025 * field in the fs_info struct
2026 */
2027static void find_oldest_super_backup(struct btrfs_fs_info *info,
2028                                     u64 newest_gen)
2029{
2030        int newest_index = -1;
2031
2032        newest_index = find_newest_super_backup(info, newest_gen);
2033        /* if there was garbage in there, just move along */
2034        if (newest_index == -1) {
2035                info->backup_root_index = 0;
2036        } else {
2037                info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2038        }
2039}
2040
2041/*
2042 * copy all the root pointers into the super backup array.
2043 * this will bump the backup pointer by one when it is
2044 * done
2045 */
2046static void backup_super_roots(struct btrfs_fs_info *info)
2047{
2048        int next_backup;
2049        struct btrfs_root_backup *root_backup;
2050        int last_backup;
2051
2052        next_backup = info->backup_root_index;
2053        last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2054                BTRFS_NUM_BACKUP_ROOTS;
2055
2056        /*
2057         * just overwrite the last backup if we're at the same generation
2058         * this happens only at umount
2059         */
2060        root_backup = info->super_for_commit->super_roots + last_backup;
2061        if (btrfs_backup_tree_root_gen(root_backup) ==
2062            btrfs_header_generation(info->tree_root->node))
2063                next_backup = last_backup;
2064
2065        root_backup = info->super_for_commit->super_roots + next_backup;
2066
2067        /*
2068         * make sure all of our padding and empty slots get zero filled
2069         * regardless of which ones we use today
2070         */
2071        memset(root_backup, 0, sizeof(*root_backup));
2072
2073        info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2074
2075        btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2076        btrfs_set_backup_tree_root_gen(root_backup,
2077                               btrfs_header_generation(info->tree_root->node));
2078
2079        btrfs_set_backup_tree_root_level(root_backup,
2080                               btrfs_header_level(info->tree_root->node));
2081
2082        btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2083        btrfs_set_backup_chunk_root_gen(root_backup,
2084                               btrfs_header_generation(info->chunk_root->node));
2085        btrfs_set_backup_chunk_root_level(root_backup,
2086                               btrfs_header_level(info->chunk_root->node));
2087
2088        btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2089        btrfs_set_backup_extent_root_gen(root_backup,
2090                               btrfs_header_generation(info->extent_root->node));
2091        btrfs_set_backup_extent_root_level(root_backup,
2092                               btrfs_header_level(info->extent_root->node));
2093
2094        /*
2095         * we might commit during log recovery, which happens before we set
2096         * the fs_root.  Make sure it is valid before we fill it in.
2097         */
2098        if (info->fs_root && info->fs_root->node) {
2099                btrfs_set_backup_fs_root(root_backup,
2100                                         info->fs_root->node->start);
2101                btrfs_set_backup_fs_root_gen(root_backup,
2102                               btrfs_header_generation(info->fs_root->node));
2103                btrfs_set_backup_fs_root_level(root_backup,
2104                               btrfs_header_level(info->fs_root->node));
2105        }
2106
2107        btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2108        btrfs_set_backup_dev_root_gen(root_backup,
2109                               btrfs_header_generation(info->dev_root->node));
2110        btrfs_set_backup_dev_root_level(root_backup,
2111                                       btrfs_header_level(info->dev_root->node));
2112
2113        btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2114        btrfs_set_backup_csum_root_gen(root_backup,
2115                               btrfs_header_generation(info->csum_root->node));
2116        btrfs_set_backup_csum_root_level(root_backup,
2117                               btrfs_header_level(info->csum_root->node));
2118
2119        btrfs_set_backup_total_bytes(root_backup,
2120                             btrfs_super_total_bytes(info->super_copy));
2121        btrfs_set_backup_bytes_used(root_backup,
2122                             btrfs_super_bytes_used(info->super_copy));
2123        btrfs_set_backup_num_devices(root_backup,
2124                             btrfs_super_num_devices(info->super_copy));
2125
2126        /*
2127         * if we don't copy this out to the super_copy, it won't get remembered
2128         * for the next commit
2129         */
2130        memcpy(&info->super_copy->super_roots,
2131               &info->super_for_commit->super_roots,
2132               sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2133}
2134
2135/*
2136 * this copies info out of the root backup array and back into
2137 * the in-memory super block.  It is meant to help iterate through
2138 * the array, so you send it the number of backups you've already
2139 * tried and the last backup index you used.
2140 *
2141 * this returns -1 when it has tried all the backups
2142 */
2143static noinline int next_root_backup(struct btrfs_fs_info *info,
2144                                     struct btrfs_super_block *super,
2145                                     int *num_backups_tried, int *backup_index)
2146{
2147        struct btrfs_root_backup *root_backup;
2148        int newest = *backup_index;
2149
2150        if (*num_backups_tried == 0) {
2151                u64 gen = btrfs_super_generation(super);
2152
2153                newest = find_newest_super_backup(info, gen);
2154                if (newest == -1)
2155                        return -1;
2156
2157                *backup_index = newest;
2158                *num_backups_tried = 1;
2159        } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2160                /* we've tried all the backups, all done */
2161                return -1;
2162        } else {
2163                /* jump to the next oldest backup */
2164                newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2165                        BTRFS_NUM_BACKUP_ROOTS;
2166                *backup_index = newest;
2167                *num_backups_tried += 1;
2168        }
2169        root_backup = super->super_roots + newest;
2170
2171        btrfs_set_super_generation(super,
2172                                   btrfs_backup_tree_root_gen(root_backup));
2173        btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2174        btrfs_set_super_root_level(super,
2175                                   btrfs_backup_tree_root_level(root_backup));
2176        btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2177
2178        /*
2179         * fixme: the total bytes and num_devices need to match or we should
2180         * need a fsck
2181         */
2182        btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2183        btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2184        return 0;
2185}
2186
2187/* helper to cleanup workers */
2188static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2189{
2190        btrfs_destroy_workqueue(fs_info->fixup_workers);
2191        btrfs_destroy_workqueue(fs_info->delalloc_workers);
2192        btrfs_destroy_workqueue(fs_info->workers);
2193        btrfs_destroy_workqueue(fs_info->endio_workers);
2194        btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2195        btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2196        btrfs_destroy_workqueue(fs_info->rmw_workers);
2197        btrfs_destroy_workqueue(fs_info->endio_write_workers);
2198        btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2199        btrfs_destroy_workqueue(fs_info->submit_workers);
2200        btrfs_destroy_workqueue(fs_info->delayed_workers);
2201        btrfs_destroy_workqueue(fs_info->caching_workers);
2202        btrfs_destroy_workqueue(fs_info->readahead_workers);
2203        btrfs_destroy_workqueue(fs_info->flush_workers);
2204        btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2205        btrfs_destroy_workqueue(fs_info->extent_workers);
2206        /*
2207         * Now that all other work queues are destroyed, we can safely destroy
2208         * the queues used for metadata I/O, since tasks from those other work
2209         * queues can do metadata I/O operations.
2210         */
2211        btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2212        btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2213}
2214
2215static void free_root_extent_buffers(struct btrfs_root *root)
2216{
2217        if (root) {
2218                free_extent_buffer(root->node);
2219                free_extent_buffer(root->commit_root);
2220                root->node = NULL;
2221                root->commit_root = NULL;
2222        }
2223}
2224
2225/* helper to cleanup tree roots */
2226static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2227{
2228        free_root_extent_buffers(info->tree_root);
2229
2230        free_root_extent_buffers(info->dev_root);
2231        free_root_extent_buffers(info->extent_root);
2232        free_root_extent_buffers(info->csum_root);
2233        free_root_extent_buffers(info->quota_root);
2234        free_root_extent_buffers(info->uuid_root);
2235        if (chunk_root)
2236                free_root_extent_buffers(info->chunk_root);
2237        free_root_extent_buffers(info->free_space_root);
2238}
2239
2240void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2241{
2242        int ret;
2243        struct btrfs_root *gang[8];
2244        int i;
2245
2246        while (!list_empty(&fs_info->dead_roots)) {
2247                gang[0] = list_entry(fs_info->dead_roots.next,
2248                                     struct btrfs_root, root_list);
2249                list_del(&gang[0]->root_list);
2250
2251                if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2252                        btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2253                } else {
2254                        free_extent_buffer(gang[0]->node);
2255                        free_extent_buffer(gang[0]->commit_root);
2256                        btrfs_put_fs_root(gang[0]);
2257                }
2258        }
2259
2260        while (1) {
2261                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2262                                             (void **)gang, 0,
2263                                             ARRAY_SIZE(gang));
2264                if (!ret)
2265                        break;
2266                for (i = 0; i < ret; i++)
2267                        btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2268        }
2269
2270        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2271                btrfs_free_log_root_tree(NULL, fs_info);
2272                btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2273        }
2274}
2275
2276static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2277{
2278        mutex_init(&fs_info->scrub_lock);
2279        atomic_set(&fs_info->scrubs_running, 0);
2280        atomic_set(&fs_info->scrub_pause_req, 0);
2281        atomic_set(&fs_info->scrubs_paused, 0);
2282        atomic_set(&fs_info->scrub_cancel_req, 0);
2283        init_waitqueue_head(&fs_info->scrub_pause_wait);
2284        fs_info->scrub_workers_refcnt = 0;
2285}
2286
2287static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2288{
2289        spin_lock_init(&fs_info->balance_lock);
2290        mutex_init(&fs_info->balance_mutex);
2291        atomic_set(&fs_info->balance_running, 0);
2292        atomic_set(&fs_info->balance_pause_req, 0);
2293        atomic_set(&fs_info->balance_cancel_req, 0);
2294        fs_info->balance_ctl = NULL;
2295        init_waitqueue_head(&fs_info->balance_wait_q);
2296}
2297
2298static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2299{
2300        struct inode *inode = fs_info->btree_inode;
2301
2302        inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2303        set_nlink(inode, 1);
2304        /*
2305         * we set the i_size on the btree inode to the max possible int.
2306         * the real end of the address space is determined by all of
2307         * the devices in the system
2308         */
2309        inode->i_size = OFFSET_MAX;
2310        inode->i_mapping->a_ops = &btree_aops;
2311
2312        RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2313        extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2314        BTRFS_I(inode)->io_tree.track_uptodate = 0;
2315        extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2316
2317        BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2318
2319        BTRFS_I(inode)->root = fs_info->tree_root;
2320        memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2321        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2322        btrfs_insert_inode_hash(inode);
2323}
2324
2325static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2326{
2327        fs_info->dev_replace.lock_owner = 0;
2328        atomic_set(&fs_info->dev_replace.nesting_level, 0);
2329        mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2330        rwlock_init(&fs_info->dev_replace.lock);
2331        atomic_set(&fs_info->dev_replace.read_locks, 0);
2332        atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2333        init_waitqueue_head(&fs_info->replace_wait);
2334        init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2335}
2336
2337static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2338{
2339        spin_lock_init(&fs_info->qgroup_lock);
2340        mutex_init(&fs_info->qgroup_ioctl_lock);
2341        fs_info->qgroup_tree = RB_ROOT;
2342        fs_info->qgroup_op_tree = RB_ROOT;
2343        INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2344        fs_info->qgroup_seq = 1;
2345        fs_info->qgroup_ulist = NULL;
2346        fs_info->qgroup_rescan_running = false;
2347        mutex_init(&fs_info->qgroup_rescan_lock);
2348}
2349
2350static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2351                struct btrfs_fs_devices *fs_devices)
2352{
2353        int max_active = fs_info->thread_pool_size;
2354        unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2355
2356        fs_info->workers =
2357                btrfs_alloc_workqueue(fs_info, "worker",
2358                                      flags | WQ_HIGHPRI, max_active, 16);
2359
2360        fs_info->delalloc_workers =
2361                btrfs_alloc_workqueue(fs_info, "delalloc",
2362                                      flags, max_active, 2);
2363
2364        fs_info->flush_workers =
2365                btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2366                                      flags, max_active, 0);
2367
2368        fs_info->caching_workers =
2369                btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2370
2371        /*
2372         * a higher idle thresh on the submit workers makes it much more
2373         * likely that bios will be send down in a sane order to the
2374         * devices
2375         */
2376        fs_info->submit_workers =
2377                btrfs_alloc_workqueue(fs_info, "submit", flags,
2378                                      min_t(u64, fs_devices->num_devices,
2379                                            max_active), 64);
2380
2381        fs_info->fixup_workers =
2382                btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2383
2384        /*
2385         * endios are largely parallel and should have a very
2386         * low idle thresh
2387         */
2388        fs_info->endio_workers =
2389                btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2390        fs_info->endio_meta_workers =
2391                btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2392                                      max_active, 4);
2393        fs_info->endio_meta_write_workers =
2394                btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2395                                      max_active, 2);
2396        fs_info->endio_raid56_workers =
2397                btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2398                                      max_active, 4);
2399        fs_info->endio_repair_workers =
2400                btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2401        fs_info->rmw_workers =
2402                btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2403        fs_info->endio_write_workers =
2404                btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2405                                      max_active, 2);
2406        fs_info->endio_freespace_worker =
2407                btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2408                                      max_active, 0);
2409        fs_info->delayed_workers =
2410                btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2411                                      max_active, 0);
2412        fs_info->readahead_workers =
2413                btrfs_alloc_workqueue(fs_info, "readahead", flags,
2414                                      max_active, 2);
2415        fs_info->qgroup_rescan_workers =
2416                btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2417        fs_info->extent_workers =
2418                btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2419                                      min_t(u64, fs_devices->num_devices,
2420                                            max_active), 8);
2421
2422        if (!(fs_info->workers && fs_info->delalloc_workers &&
2423              fs_info->submit_workers && fs_info->flush_workers &&
2424              fs_info->endio_workers && fs_info->endio_meta_workers &&
2425              fs_info->endio_meta_write_workers &&
2426              fs_info->endio_repair_workers &&
2427              fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2428              fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2429              fs_info->caching_workers && fs_info->readahead_workers &&
2430              fs_info->fixup_workers && fs_info->delayed_workers &&
2431              fs_info->extent_workers &&
2432              fs_info->qgroup_rescan_workers)) {
2433                return -ENOMEM;
2434        }
2435
2436        return 0;
2437}
2438
2439static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2440                            struct btrfs_fs_devices *fs_devices)
2441{
2442        int ret;
2443        struct btrfs_root *log_tree_root;
2444        struct btrfs_super_block *disk_super = fs_info->super_copy;
2445        u64 bytenr = btrfs_super_log_root(disk_super);
2446
2447        if (fs_devices->rw_devices == 0) {
2448                btrfs_warn(fs_info, "log replay required on RO media");
2449                return -EIO;
2450        }
2451
2452        log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2453        if (!log_tree_root)
2454                return -ENOMEM;
2455
2456        __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2457
2458        log_tree_root->node = read_tree_block(fs_info, bytenr,
2459                                              fs_info->generation + 1);
2460        if (IS_ERR(log_tree_root->node)) {
2461                btrfs_warn(fs_info, "failed to read log tree");
2462                ret = PTR_ERR(log_tree_root->node);
2463                kfree(log_tree_root);
2464                return ret;
2465        } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2466                btrfs_err(fs_info, "failed to read log tree");
2467                free_extent_buffer(log_tree_root->node);
2468                kfree(log_tree_root);
2469                return -EIO;
2470        }
2471        /* returns with log_tree_root freed on success */
2472        ret = btrfs_recover_log_trees(log_tree_root);
2473        if (ret) {
2474                btrfs_handle_fs_error(fs_info, ret,
2475                                      "Failed to recover log tree");
2476                free_extent_buffer(log_tree_root->node);
2477                kfree(log_tree_root);
2478                return ret;
2479        }
2480
2481        if (fs_info->sb->s_flags & MS_RDONLY) {
2482                ret = btrfs_commit_super(fs_info);
2483                if (ret)
2484                        return ret;
2485        }
2486
2487        return 0;
2488}
2489
2490static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2491{
2492        struct btrfs_root *tree_root = fs_info->tree_root;
2493        struct btrfs_root *root;
2494        struct btrfs_key location;
2495        int ret;
2496
2497        BUG_ON(!fs_info->tree_root);
2498
2499        location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2500        location.type = BTRFS_ROOT_ITEM_KEY;
2501        location.offset = 0;
2502
2503        root = btrfs_read_tree_root(tree_root, &location);
2504        if (IS_ERR(root))
2505                return PTR_ERR(root);
2506        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2507        fs_info->extent_root = root;
2508
2509        location.objectid = BTRFS_DEV_TREE_OBJECTID;
2510        root = btrfs_read_tree_root(tree_root, &location);
2511        if (IS_ERR(root))
2512                return PTR_ERR(root);
2513        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2514        fs_info->dev_root = root;
2515        btrfs_init_devices_late(fs_info);
2516
2517        location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2518        root = btrfs_read_tree_root(tree_root, &location);
2519        if (IS_ERR(root))
2520                return PTR_ERR(root);
2521        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2522        fs_info->csum_root = root;
2523
2524        location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2525        root = btrfs_read_tree_root(tree_root, &location);
2526        if (!IS_ERR(root)) {
2527                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2528                set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2529                fs_info->quota_root = root;
2530        }
2531
2532        location.objectid = BTRFS_UUID_TREE_OBJECTID;
2533        root = btrfs_read_tree_root(tree_root, &location);
2534        if (IS_ERR(root)) {
2535                ret = PTR_ERR(root);
2536                if (ret != -ENOENT)
2537                        return ret;
2538        } else {
2539                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2540                fs_info->uuid_root = root;
2541        }
2542
2543        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2544                location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2545                root = btrfs_read_tree_root(tree_root, &location);
2546                if (IS_ERR(root))
2547                        return PTR_ERR(root);
2548                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2549                fs_info->free_space_root = root;
2550        }
2551
2552        return 0;
2553}
2554
2555int open_ctree(struct super_block *sb,
2556               struct btrfs_fs_devices *fs_devices,
2557               char *options)
2558{
2559        u32 sectorsize;
2560        u32 nodesize;
2561        u32 stripesize;
2562        u64 generation;
2563        u64 features;
2564        struct btrfs_key location;
2565        struct buffer_head *bh;
2566        struct btrfs_super_block *disk_super;
2567        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2568        struct btrfs_root *tree_root;
2569        struct btrfs_root *chunk_root;
2570        int ret;
2571        int err = -EINVAL;
2572        int num_backups_tried = 0;
2573        int backup_index = 0;
2574        int max_active;
2575        int clear_free_space_tree = 0;
2576
2577        tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2578        chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2579        if (!tree_root || !chunk_root) {
2580                err = -ENOMEM;
2581                goto fail;
2582        }
2583
2584        ret = init_srcu_struct(&fs_info->subvol_srcu);
2585        if (ret) {
2586                err = ret;
2587                goto fail;
2588        }
2589
2590        ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2591        if (ret) {
2592                err = ret;
2593                goto fail_srcu;
2594        }
2595        fs_info->dirty_metadata_batch = PAGE_SIZE *
2596                                        (1 + ilog2(nr_cpu_ids));
2597
2598        ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2599        if (ret) {
2600                err = ret;
2601                goto fail_dirty_metadata_bytes;
2602        }
2603
2604        ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2605        if (ret) {
2606                err = ret;
2607                goto fail_delalloc_bytes;
2608        }
2609
2610        fs_info->btree_inode = new_inode(sb);
2611        if (!fs_info->btree_inode) {
2612                err = -ENOMEM;
2613                goto fail_bio_counter;
2614        }
2615
2616        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2617
2618        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2619        INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2620        INIT_LIST_HEAD(&fs_info->trans_list);
2621        INIT_LIST_HEAD(&fs_info->dead_roots);
2622        INIT_LIST_HEAD(&fs_info->delayed_iputs);
2623        INIT_LIST_HEAD(&fs_info->delalloc_roots);
2624        INIT_LIST_HEAD(&fs_info->caching_block_groups);
2625        spin_lock_init(&fs_info->delalloc_root_lock);
2626        spin_lock_init(&fs_info->trans_lock);
2627        spin_lock_init(&fs_info->fs_roots_radix_lock);
2628        spin_lock_init(&fs_info->delayed_iput_lock);
2629        spin_lock_init(&fs_info->defrag_inodes_lock);
2630        spin_lock_init(&fs_info->tree_mod_seq_lock);
2631        spin_lock_init(&fs_info->super_lock);
2632        spin_lock_init(&fs_info->qgroup_op_lock);
2633        spin_lock_init(&fs_info->buffer_lock);
2634        spin_lock_init(&fs_info->unused_bgs_lock);
2635        rwlock_init(&fs_info->tree_mod_log_lock);
2636        mutex_init(&fs_info->unused_bg_unpin_mutex);
2637        mutex_init(&fs_info->delete_unused_bgs_mutex);
2638        mutex_init(&fs_info->reloc_mutex);
2639        mutex_init(&fs_info->delalloc_root_mutex);
2640        mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2641        seqlock_init(&fs_info->profiles_lock);
2642
2643        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2644        INIT_LIST_HEAD(&fs_info->space_info);
2645        INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2646        INIT_LIST_HEAD(&fs_info->unused_bgs);
2647        btrfs_mapping_init(&fs_info->mapping_tree);
2648        btrfs_init_block_rsv(&fs_info->global_block_rsv,
2649                             BTRFS_BLOCK_RSV_GLOBAL);
2650        btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2651                             BTRFS_BLOCK_RSV_DELALLOC);
2652        btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2653        btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2654        btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2655        btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2656                             BTRFS_BLOCK_RSV_DELOPS);
2657        atomic_set(&fs_info->nr_async_submits, 0);
2658        atomic_set(&fs_info->async_delalloc_pages, 0);
2659        atomic_set(&fs_info->async_submit_draining, 0);
2660        atomic_set(&fs_info->nr_async_bios, 0);
2661        atomic_set(&fs_info->defrag_running, 0);
2662        atomic_set(&fs_info->qgroup_op_seq, 0);
2663        atomic_set(&fs_info->reada_works_cnt, 0);
2664        atomic64_set(&fs_info->tree_mod_seq, 0);
2665        fs_info->sb = sb;
2666        fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2667        fs_info->metadata_ratio = 0;
2668        fs_info->defrag_inodes = RB_ROOT;
2669        atomic64_set(&fs_info->free_chunk_space, 0);
2670        fs_info->tree_mod_log = RB_ROOT;
2671        fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2672        fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2673        /* readahead state */
2674        INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2675        spin_lock_init(&fs_info->reada_lock);
2676
2677        fs_info->thread_pool_size = min_t(unsigned long,
2678                                          num_online_cpus() + 2, 8);
2679
2680        INIT_LIST_HEAD(&fs_info->ordered_roots);
2681        spin_lock_init(&fs_info->ordered_root_lock);
2682        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2683                                        GFP_KERNEL);
2684        if (!fs_info->delayed_root) {
2685                err = -ENOMEM;
2686                goto fail_iput;
2687        }
2688        btrfs_init_delayed_root(fs_info->delayed_root);
2689
2690        btrfs_init_scrub(fs_info);
2691#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2692        fs_info->check_integrity_print_mask = 0;
2693#endif
2694        btrfs_init_balance(fs_info);
2695        btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2696
2697        sb->s_blocksize = 4096;
2698        sb->s_blocksize_bits = blksize_bits(4096);
2699
2700        btrfs_init_btree_inode(fs_info);
2701
2702        spin_lock_init(&fs_info->block_group_cache_lock);
2703        fs_info->block_group_cache_tree = RB_ROOT;
2704        fs_info->first_logical_byte = (u64)-1;
2705
2706        extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2707        extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2708        fs_info->pinned_extents = &fs_info->freed_extents[0];
2709        set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2710
2711        mutex_init(&fs_info->ordered_operations_mutex);
2712        mutex_init(&fs_info->tree_log_mutex);
2713        mutex_init(&fs_info->chunk_mutex);
2714        mutex_init(&fs_info->transaction_kthread_mutex);
2715        mutex_init(&fs_info->cleaner_mutex);
2716        mutex_init(&fs_info->volume_mutex);
2717        mutex_init(&fs_info->ro_block_group_mutex);
2718        init_rwsem(&fs_info->commit_root_sem);
2719        init_rwsem(&fs_info->cleanup_work_sem);
2720        init_rwsem(&fs_info->subvol_sem);
2721        sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2722
2723        btrfs_init_dev_replace_locks(fs_info);
2724        btrfs_init_qgroup(fs_info);
2725
2726        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2727        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2728
2729        init_waitqueue_head(&fs_info->transaction_throttle);
2730        init_waitqueue_head(&fs_info->transaction_wait);
2731        init_waitqueue_head(&fs_info->transaction_blocked_wait);
2732        init_waitqueue_head(&fs_info->async_submit_wait);
2733
2734        INIT_LIST_HEAD(&fs_info->pinned_chunks);
2735
2736        /* Usable values until the real ones are cached from the superblock */
2737        fs_info->nodesize = 4096;
2738        fs_info->sectorsize = 4096;
2739        fs_info->stripesize = 4096;
2740
2741        ret = btrfs_alloc_stripe_hash_table(fs_info);
2742        if (ret) {
2743                err = ret;
2744                goto fail_alloc;
2745        }
2746
2747        __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2748
2749        invalidate_bdev(fs_devices->latest_bdev);
2750
2751        /*
2752         * Read super block and check the signature bytes only
2753         */
2754        bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2755        if (IS_ERR(bh)) {
2756                err = PTR_ERR(bh);
2757                goto fail_alloc;
2758        }
2759
2760        /*
2761         * We want to check superblock checksum, the type is stored inside.
2762         * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2763         */
2764        if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2765                btrfs_err(fs_info, "superblock checksum mismatch");
2766                err = -EINVAL;
2767                brelse(bh);
2768                goto fail_alloc;
2769        }
2770
2771        /*
2772         * super_copy is zeroed at allocation time and we never touch the
2773         * following bytes up to INFO_SIZE, the checksum is calculated from
2774         * the whole block of INFO_SIZE
2775         */
2776        memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2777        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2778               sizeof(*fs_info->super_for_commit));
2779        brelse(bh);
2780
2781        memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2782
2783        ret = btrfs_check_super_valid(fs_info);
2784        if (ret) {
2785                btrfs_err(fs_info, "superblock contains fatal errors");
2786                err = -EINVAL;
2787                goto fail_alloc;
2788        }
2789
2790        disk_super = fs_info->super_copy;
2791        if (!btrfs_super_root(disk_super))
2792                goto fail_alloc;
2793
2794        /* check FS state, whether FS is broken. */
2795        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2796                set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2797
2798        /*
2799         * run through our array of backup supers and setup
2800         * our ring pointer to the oldest one
2801         */
2802        generation = btrfs_super_generation(disk_super);
2803        find_oldest_super_backup(fs_info, generation);
2804
2805        /*
2806         * In the long term, we'll store the compression type in the super
2807         * block, and it'll be used for per file compression control.
2808         */
2809        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2810
2811        ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2812        if (ret) {
2813                err = ret;
2814                goto fail_alloc;
2815        }
2816
2817        features = btrfs_super_incompat_flags(disk_super) &
2818                ~BTRFS_FEATURE_INCOMPAT_SUPP;
2819        if (features) {
2820                btrfs_err(fs_info,
2821                    "cannot mount because of unsupported optional features (%llx)",
2822                    features);
2823                err = -EINVAL;
2824                goto fail_alloc;
2825        }
2826
2827        features = btrfs_super_incompat_flags(disk_super);
2828        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2829        if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2830                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2831
2832        if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2833                btrfs_info(fs_info, "has skinny extents");
2834
2835        /*
2836         * flag our filesystem as having big metadata blocks if
2837         * they are bigger than the page size
2838         */
2839        if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2840                if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2841                        btrfs_info(fs_info,
2842                                "flagging fs with big metadata feature");
2843                features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2844        }
2845
2846        nodesize = btrfs_super_nodesize(disk_super);
2847        sectorsize = btrfs_super_sectorsize(disk_super);
2848        stripesize = sectorsize;
2849        fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2850        fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2851
2852        /* Cache block sizes */
2853        fs_info->nodesize = nodesize;
2854        fs_info->sectorsize = sectorsize;
2855        fs_info->stripesize = stripesize;
2856
2857        /*
2858         * mixed block groups end up with duplicate but slightly offset
2859         * extent buffers for the same range.  It leads to corruptions
2860         */
2861        if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2862            (sectorsize != nodesize)) {
2863                btrfs_err(fs_info,
2864"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2865                        nodesize, sectorsize);
2866                goto fail_alloc;
2867        }
2868
2869        /*
2870         * Needn't use the lock because there is no other task which will
2871         * update the flag.
2872         */
2873        btrfs_set_super_incompat_flags(disk_super, features);
2874
2875        features = btrfs_super_compat_ro_flags(disk_super) &
2876                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2877        if (!(sb->s_flags & MS_RDONLY) && features) {
2878                btrfs_err(fs_info,
2879        "cannot mount read-write because of unsupported optional features (%llx)",
2880                       features);
2881                err = -EINVAL;
2882                goto fail_alloc;
2883        }
2884
2885        max_active = fs_info->thread_pool_size;
2886
2887        ret = btrfs_init_workqueues(fs_info, fs_devices);
2888        if (ret) {
2889                err = ret;
2890                goto fail_sb_buffer;
2891        }
2892
2893        sb->s_bdi->congested_fn = btrfs_congested_fn;
2894        sb->s_bdi->congested_data = fs_info;
2895        sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2896        sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2897        sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2898        sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2899
2900        sb->s_blocksize = sectorsize;
2901        sb->s_blocksize_bits = blksize_bits(sectorsize);
2902
2903        mutex_lock(&fs_info->chunk_mutex);
2904        ret = btrfs_read_sys_array(fs_info);
2905        mutex_unlock(&fs_info->chunk_mutex);
2906        if (ret) {
2907                btrfs_err(fs_info, "failed to read the system array: %d", ret);
2908                goto fail_sb_buffer;
2909        }
2910
2911        generation = btrfs_super_chunk_root_generation(disk_super);
2912
2913        __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2914
2915        chunk_root->node = read_tree_block(fs_info,
2916                                           btrfs_super_chunk_root(disk_super),
2917                                           generation);
2918        if (IS_ERR(chunk_root->node) ||
2919            !extent_buffer_uptodate(chunk_root->node)) {
2920                btrfs_err(fs_info, "failed to read chunk root");
2921                if (!IS_ERR(chunk_root->node))
2922                        free_extent_buffer(chunk_root->node);
2923                chunk_root->node = NULL;
2924                goto fail_tree_roots;
2925        }
2926        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2927        chunk_root->commit_root = btrfs_root_node(chunk_root);
2928
2929        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2930           btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2931
2932        ret = btrfs_read_chunk_tree(fs_info);
2933        if (ret) {
2934                btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2935                goto fail_tree_roots;
2936        }
2937
2938        /*
2939         * keep the device that is marked to be the target device for the
2940         * dev_replace procedure
2941         */
2942        btrfs_close_extra_devices(fs_devices, 0);
2943
2944        if (!fs_devices->latest_bdev) {
2945                btrfs_err(fs_info, "failed to read devices");
2946                goto fail_tree_roots;
2947        }
2948
2949retry_root_backup:
2950        generation = btrfs_super_generation(disk_super);
2951
2952        tree_root->node = read_tree_block(fs_info,
2953                                          btrfs_super_root(disk_super),
2954                                          generation);
2955        if (IS_ERR(tree_root->node) ||
2956            !extent_buffer_uptodate(tree_root->node)) {
2957                btrfs_warn(fs_info, "failed to read tree root");
2958                if (!IS_ERR(tree_root->node))
2959                        free_extent_buffer(tree_root->node);
2960                tree_root->node = NULL;
2961                goto recovery_tree_root;
2962        }
2963
2964        btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2965        tree_root->commit_root = btrfs_root_node(tree_root);
2966        btrfs_set_root_refs(&tree_root->root_item, 1);
2967
2968        mutex_lock(&tree_root->objectid_mutex);
2969        ret = btrfs_find_highest_objectid(tree_root,
2970                                        &tree_root->highest_objectid);
2971        if (ret) {
2972                mutex_unlock(&tree_root->objectid_mutex);
2973                goto recovery_tree_root;
2974        }
2975
2976        ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2977
2978        mutex_unlock(&tree_root->objectid_mutex);
2979
2980        ret = btrfs_read_roots(fs_info);
2981        if (ret)
2982                goto recovery_tree_root;
2983
2984        fs_info->generation = generation;
2985        fs_info->last_trans_committed = generation;
2986
2987        ret = btrfs_recover_balance(fs_info);
2988        if (ret) {
2989                btrfs_err(fs_info, "failed to recover balance: %d", ret);
2990                goto fail_block_groups;
2991        }
2992
2993        ret = btrfs_init_dev_stats(fs_info);
2994        if (ret) {
2995                btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2996                goto fail_block_groups;
2997        }
2998
2999        ret = btrfs_init_dev_replace(fs_info);
3000        if (ret) {
3001                btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3002                goto fail_block_groups;
3003        }
3004
3005        btrfs_close_extra_devices(fs_devices, 1);
3006
3007        ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3008        if (ret) {
3009                btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3010                                ret);
3011                goto fail_block_groups;
3012        }
3013
3014        ret = btrfs_sysfs_add_device(fs_devices);
3015        if (ret) {
3016                btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3017                                ret);
3018                goto fail_fsdev_sysfs;
3019        }
3020
3021        ret = btrfs_sysfs_add_mounted(fs_info);
3022        if (ret) {
3023                btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3024                goto fail_fsdev_sysfs;
3025        }
3026
3027        ret = btrfs_init_space_info(fs_info);
3028        if (ret) {
3029                btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3030                goto fail_sysfs;
3031        }
3032
3033        ret = btrfs_read_block_groups(fs_info);
3034        if (ret) {
3035                btrfs_err(fs_info, "failed to read block groups: %d", ret);
3036                goto fail_sysfs;
3037        }
3038        fs_info->num_tolerated_disk_barrier_failures =
3039                btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3040        if (fs_info->fs_devices->missing_devices >
3041             fs_info->num_tolerated_disk_barrier_failures &&
3042            !(sb->s_flags & MS_RDONLY)) {
3043                btrfs_warn(fs_info,
3044"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3045                        fs_info->fs_devices->missing_devices,
3046                        fs_info->num_tolerated_disk_barrier_failures);
3047                goto fail_sysfs;
3048        }
3049
3050        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3051                                               "btrfs-cleaner");
3052        if (IS_ERR(fs_info->cleaner_kthread))
3053                goto fail_sysfs;
3054
3055        fs_info->transaction_kthread = kthread_run(transaction_kthread,
3056                                                   tree_root,
3057                                                   "btrfs-transaction");
3058        if (IS_ERR(fs_info->transaction_kthread))
3059                goto fail_cleaner;
3060
3061        if (!btrfs_test_opt(fs_info, SSD) &&
3062            !btrfs_test_opt(fs_info, NOSSD) &&
3063            !fs_info->fs_devices->rotating) {
3064                btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3065                btrfs_set_opt(fs_info->mount_opt, SSD);
3066        }
3067
3068        /*
3069         * Mount does not set all options immediately, we can do it now and do
3070         * not have to wait for transaction commit
3071         */
3072        btrfs_apply_pending_changes(fs_info);
3073
3074#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3075        if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3076                ret = btrfsic_mount(fs_info, fs_devices,
3077                                    btrfs_test_opt(fs_info,
3078                                        CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3079                                    1 : 0,
3080                                    fs_info->check_integrity_print_mask);
3081                if (ret)
3082                        btrfs_warn(fs_info,
3083                                "failed to initialize integrity check module: %d",
3084                                ret);
3085        }
3086#endif
3087        ret = btrfs_read_qgroup_config(fs_info);
3088        if (ret)
3089                goto fail_trans_kthread;
3090
3091        /* do not make disk changes in broken FS or nologreplay is given */
3092        if (btrfs_super_log_root(disk_super) != 0 &&
3093            !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3094                ret = btrfs_replay_log(fs_info, fs_devices);
3095                if (ret) {
3096                        err = ret;
3097                        goto fail_qgroup;
3098                }
3099        }
3100
3101        ret = btrfs_find_orphan_roots(fs_info);
3102        if (ret)
3103                goto fail_qgroup;
3104
3105        if (!(sb->s_flags & MS_RDONLY)) {
3106                ret = btrfs_cleanup_fs_roots(fs_info);
3107                if (ret)
3108                        goto fail_qgroup;
3109
3110                mutex_lock(&fs_info->cleaner_mutex);
3111                ret = btrfs_recover_relocation(tree_root);
3112                mutex_unlock(&fs_info->cleaner_mutex);
3113                if (ret < 0) {
3114                        btrfs_warn(fs_info, "failed to recover relocation: %d",
3115                                        ret);
3116                        err = -EINVAL;
3117                        goto fail_qgroup;
3118                }
3119        }
3120
3121        location.objectid = BTRFS_FS_TREE_OBJECTID;
3122        location.type = BTRFS_ROOT_ITEM_KEY;
3123        location.offset = 0;
3124
3125        fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3126        if (IS_ERR(fs_info->fs_root)) {
3127                err = PTR_ERR(fs_info->fs_root);
3128                goto fail_qgroup;
3129        }
3130
3131        if (sb->s_flags & MS_RDONLY)
3132                return 0;
3133
3134        if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3135            btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3136                clear_free_space_tree = 1;
3137        } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3138                   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3139                btrfs_warn(fs_info, "free space tree is invalid");
3140                clear_free_space_tree = 1;
3141        }
3142
3143        if (clear_free_space_tree) {
3144                btrfs_info(fs_info, "clearing free space tree");
3145                ret = btrfs_clear_free_space_tree(fs_info);
3146                if (ret) {
3147                        btrfs_warn(fs_info,
3148                                   "failed to clear free space tree: %d", ret);
3149                        close_ctree(fs_info);
3150                        return ret;
3151                }
3152        }
3153
3154        if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3155            !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3156                btrfs_info(fs_info, "creating free space tree");
3157                ret = btrfs_create_free_space_tree(fs_info);
3158                if (ret) {
3159                        btrfs_warn(fs_info,
3160                                "failed to create free space tree: %d", ret);
3161                        close_ctree(fs_info);
3162                        return ret;
3163                }
3164        }
3165
3166        down_read(&fs_info->cleanup_work_sem);
3167        if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3168            (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3169                up_read(&fs_info->cleanup_work_sem);
3170                close_ctree(fs_info);
3171                return ret;
3172        }
3173        up_read(&fs_info->cleanup_work_sem);
3174
3175        ret = btrfs_resume_balance_async(fs_info);
3176        if (ret) {
3177                btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3178                close_ctree(fs_info);
3179                return ret;
3180        }
3181
3182        ret = btrfs_resume_dev_replace_async(fs_info);
3183        if (ret) {
3184                btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3185                close_ctree(fs_info);
3186                return ret;
3187        }
3188
3189        btrfs_qgroup_rescan_resume(fs_info);
3190
3191        if (!fs_info->uuid_root) {
3192                btrfs_info(fs_info, "creating UUID tree");
3193                ret = btrfs_create_uuid_tree(fs_info);
3194                if (ret) {
3195                        btrfs_warn(fs_info,
3196                                "failed to create the UUID tree: %d", ret);
3197                        close_ctree(fs_info);
3198                        return ret;
3199                }
3200        } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3201                   fs_info->generation !=
3202                                btrfs_super_uuid_tree_generation(disk_super)) {
3203                btrfs_info(fs_info, "checking UUID tree");
3204                ret = btrfs_check_uuid_tree(fs_info);
3205                if (ret) {
3206                        btrfs_warn(fs_info,
3207                                "failed to check the UUID tree: %d", ret);
3208                        close_ctree(fs_info);
3209                        return ret;
3210                }
3211        } else {
3212                set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3213        }
3214        set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3215
3216        /*
3217         * backuproot only affect mount behavior, and if open_ctree succeeded,
3218         * no need to keep the flag
3219         */
3220        btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3221
3222        return 0;
3223
3224fail_qgroup:
3225        btrfs_free_qgroup_config(fs_info);
3226fail_trans_kthread:
3227        kthread_stop(fs_info->transaction_kthread);
3228        btrfs_cleanup_transaction(fs_info);
3229        btrfs_free_fs_roots(fs_info);
3230fail_cleaner:
3231        kthread_stop(fs_info->cleaner_kthread);
3232
3233        /*
3234         * make sure we're done with the btree inode before we stop our
3235         * kthreads
3236         */
3237        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3238
3239fail_sysfs:
3240        btrfs_sysfs_remove_mounted(fs_info);
3241
3242fail_fsdev_sysfs:
3243        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3244
3245fail_block_groups:
3246        btrfs_put_block_group_cache(fs_info);
3247
3248fail_tree_roots:
3249        free_root_pointers(fs_info, 1);
3250        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3251
3252fail_sb_buffer:
3253        btrfs_stop_all_workers(fs_info);
3254        btrfs_free_block_groups(fs_info);
3255fail_alloc:
3256fail_iput:
3257        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3258
3259        iput(fs_info->btree_inode);
3260fail_bio_counter:
3261        percpu_counter_destroy(&fs_info->bio_counter);
3262fail_delalloc_bytes:
3263        percpu_counter_destroy(&fs_info->delalloc_bytes);
3264fail_dirty_metadata_bytes:
3265        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3266fail_srcu:
3267        cleanup_srcu_struct(&fs_info->subvol_srcu);
3268fail:
3269        btrfs_free_stripe_hash_table(fs_info);
3270        btrfs_close_devices(fs_info->fs_devices);
3271        return err;
3272
3273recovery_tree_root:
3274        if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3275                goto fail_tree_roots;
3276
3277        free_root_pointers(fs_info, 0);
3278
3279        /* don't use the log in recovery mode, it won't be valid */
3280        btrfs_set_super_log_root(disk_super, 0);
3281
3282        /* we can't trust the free space cache either */
3283        btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3284
3285        ret = next_root_backup(fs_info, fs_info->super_copy,
3286                               &num_backups_tried, &backup_index);
3287        if (ret == -1)
3288                goto fail_block_groups;
3289        goto retry_root_backup;
3290}
3291
3292static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3293{
3294        if (uptodate) {
3295                set_buffer_uptodate(bh);
3296        } else {
3297                struct btrfs_device *device = (struct btrfs_device *)
3298                        bh->b_private;
3299
3300                btrfs_warn_rl_in_rcu(device->fs_info,
3301                                "lost page write due to IO error on %s",
3302                                          rcu_str_deref(device->name));
3303                /* note, we don't set_buffer_write_io_error because we have
3304                 * our own ways of dealing with the IO errors
3305                 */
3306                clear_buffer_uptodate(bh);
3307                btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3308        }
3309        unlock_buffer(bh);
3310        put_bh(bh);
3311}
3312
3313int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3314                        struct buffer_head **bh_ret)
3315{
3316        struct buffer_head *bh;
3317        struct btrfs_super_block *super;
3318        u64 bytenr;
3319
3320        bytenr = btrfs_sb_offset(copy_num);
3321        if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3322                return -EINVAL;
3323
3324        bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3325        /*
3326         * If we fail to read from the underlying devices, as of now
3327         * the best option we have is to mark it EIO.
3328         */
3329        if (!bh)
3330                return -EIO;
3331
3332        super = (struct btrfs_super_block *)bh->b_data;
3333        if (btrfs_super_bytenr(super) != bytenr ||
3334                    btrfs_super_magic(super) != BTRFS_MAGIC) {
3335                brelse(bh);
3336                return -EINVAL;
3337        }
3338
3339        *bh_ret = bh;
3340        return 0;
3341}
3342
3343
3344struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3345{
3346        struct buffer_head *bh;
3347        struct buffer_head *latest = NULL;
3348        struct btrfs_super_block *super;
3349        int i;
3350        u64 transid = 0;
3351        int ret = -EINVAL;
3352
3353        /* we would like to check all the supers, but that would make
3354         * a btrfs mount succeed after a mkfs from a different FS.
3355         * So, we need to add a special mount option to scan for
3356         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3357         */
3358        for (i = 0; i < 1; i++) {
3359                ret = btrfs_read_dev_one_super(bdev, i, &bh);
3360                if (ret)
3361                        continue;
3362
3363                super = (struct btrfs_super_block *)bh->b_data;
3364
3365                if (!latest || btrfs_super_generation(super) > transid) {
3366                        brelse(latest);
3367                        latest = bh;
3368                        transid = btrfs_super_generation(super);
3369                } else {
3370                        brelse(bh);
3371                }
3372        }
3373
3374        if (!latest)
3375                return ERR_PTR(ret);
3376
3377        return latest;
3378}
3379
3380/*
3381 * this should be called twice, once with wait == 0 and
3382 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3383 * we write are pinned.
3384 *
3385 * They are released when wait == 1 is done.
3386 * max_mirrors must be the same for both runs, and it indicates how
3387 * many supers on this one device should be written.
3388 *
3389 * max_mirrors == 0 means to write them all.
3390 */
3391static int write_dev_supers(struct btrfs_device *device,
3392                            struct btrfs_super_block *sb,
3393                            int wait, int max_mirrors)
3394{
3395        struct buffer_head *bh;
3396        int i;
3397        int ret;
3398        int errors = 0;
3399        u32 crc;
3400        u64 bytenr;
3401
3402        if (max_mirrors == 0)
3403                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3404
3405        for (i = 0; i < max_mirrors; i++) {
3406                bytenr = btrfs_sb_offset(i);
3407                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3408                    device->commit_total_bytes)
3409                        break;
3410
3411                if (wait) {
3412                        bh = __find_get_block(device->bdev, bytenr / 4096,
3413                                              BTRFS_SUPER_INFO_SIZE);
3414                        if (!bh) {
3415                                errors++;
3416                                continue;
3417                        }
3418                        wait_on_buffer(bh);
3419                        if (!buffer_uptodate(bh))
3420                                errors++;
3421
3422                        /* drop our reference */
3423                        brelse(bh);
3424
3425                        /* drop the reference from the wait == 0 run */
3426                        brelse(bh);
3427                        continue;
3428                } else {
3429                        btrfs_set_super_bytenr(sb, bytenr);
3430
3431                        crc = ~(u32)0;
3432                        crc = btrfs_csum_data((const char *)sb +
3433                                              BTRFS_CSUM_SIZE, crc,
3434                                              BTRFS_SUPER_INFO_SIZE -
3435                                              BTRFS_CSUM_SIZE);
3436                        btrfs_csum_final(crc, sb->csum);
3437
3438                        /*
3439                         * one reference for us, and we leave it for the
3440                         * caller
3441                         */
3442                        bh = __getblk(device->bdev, bytenr / 4096,
3443                                      BTRFS_SUPER_INFO_SIZE);
3444                        if (!bh) {
3445                                btrfs_err(device->fs_info,
3446                                    "couldn't get super buffer head for bytenr %llu",
3447                                    bytenr);
3448                                errors++;
3449                                continue;
3450                        }
3451
3452                        memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3453
3454                        /* one reference for submit_bh */
3455                        get_bh(bh);
3456
3457                        set_buffer_uptodate(bh);
3458                        lock_buffer(bh);
3459                        bh->b_end_io = btrfs_end_buffer_write_sync;
3460                        bh->b_private = device;
3461                }
3462
3463                /*
3464                 * we fua the first super.  The others we allow
3465                 * to go down lazy.
3466                 */
3467                if (i == 0) {
3468                        ret = btrfsic_submit_bh(REQ_OP_WRITE,
3469                                                REQ_SYNC | REQ_FUA, bh);
3470                } else {
3471                        ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3472                }
3473                if (ret)
3474                        errors++;
3475        }
3476        return errors < i ? 0 : -1;
3477}
3478
3479/*
3480 * endio for the write_dev_flush, this will wake anyone waiting
3481 * for the barrier when it is done
3482 */
3483static void btrfs_end_empty_barrier(struct bio *bio)
3484{
3485        complete(bio->bi_private);
3486}
3487
3488/*
3489 * Submit a flush request to the device if it supports it. Error handling is
3490 * done in the waiting counterpart.
3491 */
3492static void write_dev_flush(struct btrfs_device *device)
3493{
3494        struct request_queue *q = bdev_get_queue(device->bdev);
3495        struct bio *bio = device->flush_bio;
3496
3497        if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3498                return;
3499
3500        bio_reset(bio);
3501        bio->bi_end_io = btrfs_end_empty_barrier;
3502        bio->bi_bdev = device->bdev;
3503        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3504        init_completion(&device->flush_wait);
3505        bio->bi_private = &device->flush_wait;
3506
3507        submit_bio(bio);
3508        device->flush_bio_sent = 1;
3509}
3510
3511/*
3512 * If the flush bio has been submitted by write_dev_flush, wait for it.
3513 */
3514static blk_status_t wait_dev_flush(struct btrfs_device *device)
3515{
3516        struct bio *bio = device->flush_bio;
3517
3518        if (!device->flush_bio_sent)
3519                return BLK_STS_OK;
3520
3521        device->flush_bio_sent = 0;
3522        wait_for_completion_io(&device->flush_wait);
3523
3524        return bio->bi_status;
3525}
3526
3527static int check_barrier_error(struct btrfs_fs_devices *fsdevs)
3528{
3529        int dev_flush_error = 0;
3530        struct btrfs_device *dev;
3531
3532        list_for_each_entry_rcu(dev, &fsdevs->devices, dev_list) {
3533                if (!dev->bdev || dev->last_flush_error)
3534                        dev_flush_error++;
3535        }
3536
3537        if (dev_flush_error >
3538            fsdevs->fs_info->num_tolerated_disk_barrier_failures)
3539                return -EIO;
3540
3541        return 0;
3542}
3543
3544/*
3545 * send an empty flush down to each device in parallel,
3546 * then wait for them
3547 */
3548static int barrier_all_devices(struct btrfs_fs_info *info)
3549{
3550        struct list_head *head;
3551        struct btrfs_device *dev;
3552        int errors_wait = 0;
3553        blk_status_t ret;
3554
3555        /* send down all the barriers */
3556        head = &info->fs_devices->devices;
3557        list_for_each_entry_rcu(dev, head, dev_list) {
3558                if (dev->missing)
3559                        continue;
3560                if (!dev->bdev)
3561                        continue;
3562                if (!dev->in_fs_metadata || !dev->writeable)
3563                        continue;
3564
3565                write_dev_flush(dev);
3566                dev->last_flush_error = BLK_STS_OK;
3567        }
3568
3569        /* wait for all the barriers */
3570        list_for_each_entry_rcu(dev, head, dev_list) {
3571                if (dev->missing)
3572                        continue;
3573                if (!dev->bdev) {
3574                        errors_wait++;
3575                        continue;
3576                }
3577                if (!dev->in_fs_metadata || !dev->writeable)
3578                        continue;
3579
3580                ret = wait_dev_flush(dev);
3581                if (ret) {
3582                        dev->last_flush_error = ret;
3583                        btrfs_dev_stat_inc_and_print(dev,
3584                                        BTRFS_DEV_STAT_FLUSH_ERRS);
3585                        errors_wait++;
3586                }
3587        }
3588
3589        if (errors_wait) {
3590                /*
3591                 * At some point we need the status of all disks
3592                 * to arrive at the volume status. So error checking
3593                 * is being pushed to a separate loop.
3594                 */
3595                return check_barrier_error(info->fs_devices);
3596        }
3597        return 0;
3598}
3599
3600int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3601{
3602        int raid_type;
3603        int min_tolerated = INT_MAX;
3604
3605        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3606            (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3607                min_tolerated = min(min_tolerated,
3608                                    btrfs_raid_array[BTRFS_RAID_SINGLE].
3609                                    tolerated_failures);
3610
3611        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3612                if (raid_type == BTRFS_RAID_SINGLE)
3613                        continue;
3614                if (!(flags & btrfs_raid_group[raid_type]))
3615                        continue;
3616                min_tolerated = min(min_tolerated,
3617                                    btrfs_raid_array[raid_type].
3618                                    tolerated_failures);
3619        }
3620
3621        if (min_tolerated == INT_MAX) {
3622                pr_warn("BTRFS: unknown raid flag: %llu", flags);
3623                min_tolerated = 0;
3624        }
3625
3626        return min_tolerated;
3627}
3628
3629int btrfs_calc_num_tolerated_disk_barrier_failures(
3630        struct btrfs_fs_info *fs_info)
3631{
3632        struct btrfs_ioctl_space_info space;
3633        struct btrfs_space_info *sinfo;
3634        u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3635                       BTRFS_BLOCK_GROUP_SYSTEM,
3636                       BTRFS_BLOCK_GROUP_METADATA,
3637                       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3638        int i;
3639        int c;
3640        int num_tolerated_disk_barrier_failures =
3641                (int)fs_info->fs_devices->num_devices;
3642
3643        for (i = 0; i < ARRAY_SIZE(types); i++) {
3644                struct btrfs_space_info *tmp;
3645
3646                sinfo = NULL;
3647                rcu_read_lock();
3648                list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3649                        if (tmp->flags == types[i]) {
3650                                sinfo = tmp;
3651                                break;
3652                        }
3653                }
3654                rcu_read_unlock();
3655
3656                if (!sinfo)
3657                        continue;
3658
3659                down_read(&sinfo->groups_sem);
3660                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3661                        u64 flags;
3662
3663                        if (list_empty(&sinfo->block_groups[c]))
3664                                continue;
3665
3666                        btrfs_get_block_group_info(&sinfo->block_groups[c],
3667                                                   &space);
3668                        if (space.total_bytes == 0 || space.used_bytes == 0)
3669                                continue;
3670                        flags = space.flags;
3671
3672                        num_tolerated_disk_barrier_failures = min(
3673                                num_tolerated_disk_barrier_failures,
3674                                btrfs_get_num_tolerated_disk_barrier_failures(
3675                                        flags));
3676                }
3677                up_read(&sinfo->groups_sem);
3678        }
3679
3680        return num_tolerated_disk_barrier_failures;
3681}
3682
3683int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3684{
3685        struct list_head *head;
3686        struct btrfs_device *dev;
3687        struct btrfs_super_block *sb;
3688        struct btrfs_dev_item *dev_item;
3689        int ret;
3690        int do_barriers;
3691        int max_errors;
3692        int total_errors = 0;
3693        u64 flags;
3694
3695        do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3696        backup_super_roots(fs_info);
3697
3698        sb = fs_info->super_for_commit;
3699        dev_item = &sb->dev_item;
3700
3701        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3702        head = &fs_info->fs_devices->devices;
3703        max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3704
3705        if (do_barriers) {
3706                ret = barrier_all_devices(fs_info);
3707                if (ret) {
3708                        mutex_unlock(
3709                                &fs_info->fs_devices->device_list_mutex);
3710                        btrfs_handle_fs_error(fs_info, ret,
3711                                              "errors while submitting device barriers.");
3712                        return ret;
3713                }
3714        }
3715
3716        list_for_each_entry_rcu(dev, head, dev_list) {
3717                if (!dev->bdev) {
3718                        total_errors++;
3719                        continue;
3720                }
3721                if (!dev->in_fs_metadata || !dev->writeable)
3722                        continue;
3723
3724                btrfs_set_stack_device_generation(dev_item, 0);
3725                btrfs_set_stack_device_type(dev_item, dev->type);
3726                btrfs_set_stack_device_id(dev_item, dev->devid);
3727                btrfs_set_stack_device_total_bytes(dev_item,
3728                                                   dev->commit_total_bytes);
3729                btrfs_set_stack_device_bytes_used(dev_item,
3730                                                  dev->commit_bytes_used);
3731                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3732                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3733                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3734                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3735                memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3736
3737                flags = btrfs_super_flags(sb);
3738                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3739
3740                ret = write_dev_supers(dev, sb, 0, max_mirrors);
3741                if (ret)
3742                        total_errors++;
3743        }
3744        if (total_errors > max_errors) {
3745                btrfs_err(fs_info, "%d errors while writing supers",
3746                          total_errors);
3747                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3748
3749                /* FUA is masked off if unsupported and can't be the reason */
3750                btrfs_handle_fs_error(fs_info, -EIO,
3751                                      "%d errors while writing supers",
3752                                      total_errors);
3753                return -EIO;
3754        }
3755
3756        total_errors = 0;
3757        list_for_each_entry_rcu(dev, head, dev_list) {
3758                if (!dev->bdev)
3759                        continue;
3760                if (!dev->in_fs_metadata || !dev->writeable)
3761                        continue;
3762
3763                ret = write_dev_supers(dev, sb, 1, max_mirrors);
3764                if (ret)
3765                        total_errors++;
3766        }
3767        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3768        if (total_errors > max_errors) {
3769                btrfs_handle_fs_error(fs_info, -EIO,
3770                                      "%d errors while writing supers",
3771                                      total_errors);
3772                return -EIO;
3773        }
3774        return 0;
3775}
3776
3777/* Drop a fs root from the radix tree and free it. */
3778void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3779                                  struct btrfs_root *root)
3780{
3781        spin_lock(&fs_info->fs_roots_radix_lock);
3782        radix_tree_delete(&fs_info->fs_roots_radix,
3783                          (unsigned long)root->root_key.objectid);
3784        spin_unlock(&fs_info->fs_roots_radix_lock);
3785
3786        if (btrfs_root_refs(&root->root_item) == 0)
3787                synchronize_srcu(&fs_info->subvol_srcu);
3788
3789        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3790                btrfs_free_log(NULL, root);
3791                if (root->reloc_root) {
3792                        free_extent_buffer(root->reloc_root->node);
3793                        free_extent_buffer(root->reloc_root->commit_root);
3794                        btrfs_put_fs_root(root->reloc_root);
3795                        root->reloc_root = NULL;
3796                }
3797        }
3798
3799        if (root->free_ino_pinned)
3800                __btrfs_remove_free_space_cache(root->free_ino_pinned);
3801        if (root->free_ino_ctl)
3802                __btrfs_remove_free_space_cache(root->free_ino_ctl);
3803        free_fs_root(root);
3804}
3805
3806static void free_fs_root(struct btrfs_root *root)
3807{
3808        iput(root->ino_cache_inode);
3809        WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3810        btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3811        root->orphan_block_rsv = NULL;
3812        if (root->anon_dev)
3813                free_anon_bdev(root->anon_dev);
3814        if (root->subv_writers)
3815                btrfs_free_subvolume_writers(root->subv_writers);
3816        free_extent_buffer(root->node);
3817        free_extent_buffer(root->commit_root);
3818        kfree(root->free_ino_ctl);
3819        kfree(root->free_ino_pinned);
3820        kfree(root->name);
3821        btrfs_put_fs_root(root);
3822}
3823
3824void btrfs_free_fs_root(struct btrfs_root *root)
3825{
3826        free_fs_root(root);
3827}
3828
3829int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3830{
3831        u64 root_objectid = 0;
3832        struct btrfs_root *gang[8];
3833        int i = 0;
3834        int err = 0;
3835        unsigned int ret = 0;
3836        int index;
3837
3838        while (1) {
3839                index = srcu_read_lock(&fs_info->subvol_srcu);
3840                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3841                                             (void **)gang, root_objectid,
3842                                             ARRAY_SIZE(gang));
3843                if (!ret) {
3844                        srcu_read_unlock(&fs_info->subvol_srcu, index);
3845                        break;
3846                }
3847                root_objectid = gang[ret - 1]->root_key.objectid + 1;
3848
3849                for (i = 0; i < ret; i++) {
3850                        /* Avoid to grab roots in dead_roots */
3851                        if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3852                                gang[i] = NULL;
3853                                continue;
3854                        }
3855                        /* grab all the search result for later use */
3856                        gang[i] = btrfs_grab_fs_root(gang[i]);
3857                }
3858                srcu_read_unlock(&fs_info->subvol_srcu, index);
3859
3860                for (i = 0; i < ret; i++) {
3861                        if (!gang[i])
3862                                continue;
3863                        root_objectid = gang[i]->root_key.objectid;
3864                        err = btrfs_orphan_cleanup(gang[i]);
3865                        if (err)
3866                                break;
3867                        btrfs_put_fs_root(gang[i]);
3868                }
3869                root_objectid++;
3870        }
3871
3872        /* release the uncleaned roots due to error */
3873        for (; i < ret; i++) {
3874                if (gang[i])
3875                        btrfs_put_fs_root(gang[i]);
3876        }
3877        return err;
3878}
3879
3880int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3881{
3882        struct btrfs_root *root = fs_info->tree_root;
3883        struct btrfs_trans_handle *trans;
3884
3885        mutex_lock(&fs_info->cleaner_mutex);
3886        btrfs_run_delayed_iputs(fs_info);
3887        mutex_unlock(&fs_info->cleaner_mutex);
3888        wake_up_process(fs_info->cleaner_kthread);
3889
3890        /* wait until ongoing cleanup work done */
3891        down_write(&fs_info->cleanup_work_sem);
3892        up_write(&fs_info->cleanup_work_sem);
3893
3894        trans = btrfs_join_transaction(root);
3895        if (IS_ERR(trans))
3896                return PTR_ERR(trans);
3897        return btrfs_commit_transaction(trans);
3898}
3899
3900void close_ctree(struct btrfs_fs_info *fs_info)
3901{
3902        struct btrfs_root *root = fs_info->tree_root;
3903        int ret;
3904
3905        set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3906
3907        /* wait for the qgroup rescan worker to stop */
3908        btrfs_qgroup_wait_for_completion(fs_info, false);
3909
3910        /* wait for the uuid_scan task to finish */
3911        down(&fs_info->uuid_tree_rescan_sem);
3912        /* avoid complains from lockdep et al., set sem back to initial state */
3913        up(&fs_info->uuid_tree_rescan_sem);
3914
3915        /* pause restriper - we want to resume on mount */
3916        btrfs_pause_balance(fs_info);
3917
3918        btrfs_dev_replace_suspend_for_unmount(fs_info);
3919
3920        btrfs_scrub_cancel(fs_info);
3921
3922        /* wait for any defraggers to finish */
3923        wait_event(fs_info->transaction_wait,
3924                   (atomic_read(&fs_info->defrag_running) == 0));
3925
3926        /* clear out the rbtree of defraggable inodes */
3927        btrfs_cleanup_defrag_inodes(fs_info);
3928
3929        cancel_work_sync(&fs_info->async_reclaim_work);
3930
3931        if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3932                /*
3933                 * If the cleaner thread is stopped and there are
3934                 * block groups queued for removal, the deletion will be
3935                 * skipped when we quit the cleaner thread.
3936                 */
3937                btrfs_delete_unused_bgs(fs_info);
3938
3939                ret = btrfs_commit_super(fs_info);
3940                if (ret)
3941                        btrfs_err(fs_info, "commit super ret %d", ret);
3942        }
3943
3944        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3945                btrfs_error_commit_super(fs_info);
3946
3947        kthread_stop(fs_info->transaction_kthread);
3948        kthread_stop(fs_info->cleaner_kthread);
3949
3950        set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3951
3952        btrfs_free_qgroup_config(fs_info);
3953
3954        if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3955                btrfs_info(fs_info, "at unmount delalloc count %lld",
3956                       percpu_counter_sum(&fs_info->delalloc_bytes));
3957        }
3958
3959        btrfs_sysfs_remove_mounted(fs_info);
3960        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3961
3962        btrfs_free_fs_roots(fs_info);
3963
3964        btrfs_put_block_group_cache(fs_info);
3965
3966        /*
3967         * we must make sure there is not any read request to
3968         * submit after we stopping all workers.
3969         */
3970        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3971        btrfs_stop_all_workers(fs_info);
3972
3973        btrfs_free_block_groups(fs_info);
3974
3975        clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3976        free_root_pointers(fs_info, 1);
3977
3978        iput(fs_info->btree_inode);
3979
3980#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3981        if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3982                btrfsic_unmount(fs_info->fs_devices);
3983#endif
3984
3985        btrfs_close_devices(fs_info->fs_devices);
3986        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3987
3988        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3989        percpu_counter_destroy(&fs_info->delalloc_bytes);
3990        percpu_counter_destroy(&fs_info->bio_counter);
3991        cleanup_srcu_struct(&fs_info->subvol_srcu);
3992
3993        btrfs_free_stripe_hash_table(fs_info);
3994
3995        __btrfs_free_block_rsv(root->orphan_block_rsv);
3996        root->orphan_block_rsv = NULL;
3997
3998        mutex_lock(&fs_info->chunk_mutex);
3999        while (!list_empty(&fs_info->pinned_chunks)) {
4000                struct extent_map *em;
4001
4002                em = list_first_entry(&fs_info->pinned_chunks,
4003                                      struct extent_map, list);
4004                list_del_init(&em->list);
4005                free_extent_map(em);
4006        }
4007        mutex_unlock(&fs_info->chunk_mutex);
4008}
4009
4010int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4011                          int atomic)
4012{
4013        int ret;
4014        struct inode *btree_inode = buf->pages[0]->mapping->host;
4015
4016        ret = extent_buffer_uptodate(buf);
4017        if (!ret)
4018                return ret;
4019
4020        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4021                                    parent_transid, atomic);
4022        if (ret == -EAGAIN)
4023                return ret;
4024        return !ret;
4025}
4026
4027void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4028{
4029        struct btrfs_fs_info *fs_info;
4030        struct btrfs_root *root;
4031        u64 transid = btrfs_header_generation(buf);
4032        int was_dirty;
4033
4034#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4035        /*
4036         * This is a fast path so only do this check if we have sanity tests
4037         * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4038         * outside of the sanity tests.
4039         */
4040        if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4041                return;
4042#endif
4043        root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4044        fs_info = root->fs_info;
4045        btrfs_assert_tree_locked(buf);
4046        if (transid != fs_info->generation)
4047                WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4048                        buf->start, transid, fs_info->generation);
4049        was_dirty = set_extent_buffer_dirty(buf);
4050        if (!was_dirty)
4051                percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4052                                         buf->len,
4053                                         fs_info->dirty_metadata_batch);
4054#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4055        if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4056                btrfs_print_leaf(fs_info, buf);
4057                ASSERT(0);
4058        }
4059#endif
4060}
4061
4062static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4063                                        int flush_delayed)
4064{
4065        /*
4066         * looks as though older kernels can get into trouble with
4067         * this code, they end up stuck in balance_dirty_pages forever
4068         */
4069        int ret;
4070
4071        if (current->flags & PF_MEMALLOC)
4072                return;
4073
4074        if (flush_delayed)
4075                btrfs_balance_delayed_items(fs_info);
4076
4077        ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4078                                     BTRFS_DIRTY_METADATA_THRESH);
4079        if (ret > 0) {
4080                balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4081        }
4082}
4083
4084void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4085{
4086        __btrfs_btree_balance_dirty(fs_info, 1);
4087}
4088
4089void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4090{
4091        __btrfs_btree_balance_dirty(fs_info, 0);
4092}
4093
4094int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4095{
4096        struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4097        struct btrfs_fs_info *fs_info = root->fs_info;
4098
4099        return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4100}
4101
4102static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
4103{
4104        struct btrfs_super_block *sb = fs_info->super_copy;
4105        u64 nodesize = btrfs_super_nodesize(sb);
4106        u64 sectorsize = btrfs_super_sectorsize(sb);
4107        int ret = 0;
4108
4109        if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4110                btrfs_err(fs_info, "no valid FS found");
4111                ret = -EINVAL;
4112        }
4113        if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4114                btrfs_warn(fs_info, "unrecognized super flag: %llu",
4115                                btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4116        if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4117                btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4118                                btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4119                ret = -EINVAL;
4120        }
4121        if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4122                btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4123                                btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4124                ret = -EINVAL;
4125        }
4126        if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4127                btrfs_err(fs_info, "log_root level too big: %d >= %d",
4128                                btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4129                ret = -EINVAL;
4130        }
4131
4132        /*
4133         * Check sectorsize and nodesize first, other check will need it.
4134         * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4135         */
4136        if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4137            sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4138                btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4139                ret = -EINVAL;
4140        }
4141        /* Only PAGE SIZE is supported yet */
4142        if (sectorsize != PAGE_SIZE) {
4143                btrfs_err(fs_info,
4144                        "sectorsize %llu not supported yet, only support %lu",
4145                        sectorsize, PAGE_SIZE);
4146                ret = -EINVAL;
4147        }
4148        if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4149            nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4150                btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4151                ret = -EINVAL;
4152        }
4153        if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4154                btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4155                          le32_to_cpu(sb->__unused_leafsize), nodesize);
4156                ret = -EINVAL;
4157        }
4158
4159        /* Root alignment check */
4160        if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4161                btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4162                           btrfs_super_root(sb));
4163                ret = -EINVAL;
4164        }
4165        if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4166                btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4167                           btrfs_super_chunk_root(sb));
4168                ret = -EINVAL;
4169        }
4170        if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4171                btrfs_warn(fs_info, "log_root block unaligned: %llu",
4172                           btrfs_super_log_root(sb));
4173                ret = -EINVAL;
4174        }
4175
4176        if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4177                btrfs_err(fs_info,
4178                           "dev_item UUID does not match fsid: %pU != %pU",
4179                           fs_info->fsid, sb->dev_item.fsid);
4180                ret = -EINVAL;
4181        }
4182
4183        /*
4184         * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4185         * done later
4186         */
4187        if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4188                btrfs_err(fs_info, "bytes_used is too small %llu",
4189                          btrfs_super_bytes_used(sb));
4190                ret = -EINVAL;
4191        }
4192        if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4193                btrfs_err(fs_info, "invalid stripesize %u",
4194                          btrfs_super_stripesize(sb));
4195                ret = -EINVAL;
4196        }
4197        if (btrfs_super_num_devices(sb) > (1UL << 31))
4198                btrfs_warn(fs_info, "suspicious number of devices: %llu",
4199                           btrfs_super_num_devices(sb));
4200        if (btrfs_super_num_devices(sb) == 0) {
4201                btrfs_err(fs_info, "number of devices is 0");
4202                ret = -EINVAL;
4203        }
4204
4205        if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4206                btrfs_err(fs_info, "super offset mismatch %llu != %u",
4207                          btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4208                ret = -EINVAL;
4209        }
4210
4211        /*
4212         * Obvious sys_chunk_array corruptions, it must hold at least one key
4213         * and one chunk
4214         */
4215        if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4216                btrfs_err(fs_info, "system chunk array too big %u > %u",
4217                          btrfs_super_sys_array_size(sb),
4218                          BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4219                ret = -EINVAL;
4220        }
4221        if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4222                        + sizeof(struct btrfs_chunk)) {
4223                btrfs_err(fs_info, "system chunk array too small %u < %zu",
4224                          btrfs_super_sys_array_size(sb),
4225                          sizeof(struct btrfs_disk_key)
4226                          + sizeof(struct btrfs_chunk));
4227                ret = -EINVAL;
4228        }
4229
4230        /*
4231         * The generation is a global counter, we'll trust it more than the others
4232         * but it's still possible that it's the one that's wrong.
4233         */
4234        if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4235                btrfs_warn(fs_info,
4236                        "suspicious: generation < chunk_root_generation: %llu < %llu",
4237                        btrfs_super_generation(sb),
4238                        btrfs_super_chunk_root_generation(sb));
4239        if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4240            && btrfs_super_cache_generation(sb) != (u64)-1)
4241                btrfs_warn(fs_info,
4242                        "suspicious: generation < cache_generation: %llu < %llu",
4243                        btrfs_super_generation(sb),
4244                        btrfs_super_cache_generation(sb));
4245
4246        return ret;
4247}
4248
4249static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4250{
4251        mutex_lock(&fs_info->cleaner_mutex);
4252        btrfs_run_delayed_iputs(fs_info);
4253        mutex_unlock(&fs_info->cleaner_mutex);
4254
4255        down_write(&fs_info->cleanup_work_sem);
4256        up_write(&fs_info->cleanup_work_sem);
4257
4258        /* cleanup FS via transaction */
4259        btrfs_cleanup_transaction(fs_info);
4260}
4261
4262static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4263{
4264        struct btrfs_ordered_extent *ordered;
4265
4266        spin_lock(&root->ordered_extent_lock);
4267        /*
4268         * This will just short circuit the ordered completion stuff which will
4269         * make sure the ordered extent gets properly cleaned up.
4270         */
4271        list_for_each_entry(ordered, &root->ordered_extents,
4272                            root_extent_list)
4273                set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4274        spin_unlock(&root->ordered_extent_lock);
4275}
4276
4277static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4278{
4279        struct btrfs_root *root;
4280        struct list_head splice;
4281
4282        INIT_LIST_HEAD(&splice);
4283
4284        spin_lock(&fs_info->ordered_root_lock);
4285        list_splice_init(&fs_info->ordered_roots, &splice);
4286        while (!list_empty(&splice)) {
4287                root = list_first_entry(&splice, struct btrfs_root,
4288                                        ordered_root);
4289                list_move_tail(&root->ordered_root,
4290                               &fs_info->ordered_roots);
4291
4292                spin_unlock(&fs_info->ordered_root_lock);
4293                btrfs_destroy_ordered_extents(root);
4294
4295                cond_resched();
4296                spin_lock(&fs_info->ordered_root_lock);
4297        }
4298        spin_unlock(&fs_info->ordered_root_lock);
4299}
4300
4301static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4302                                      struct btrfs_fs_info *fs_info)
4303{
4304        struct rb_node *node;
4305        struct btrfs_delayed_ref_root *delayed_refs;
4306        struct btrfs_delayed_ref_node *ref;
4307        int ret = 0;
4308
4309        delayed_refs = &trans->delayed_refs;
4310
4311        spin_lock(&delayed_refs->lock);
4312        if (atomic_read(&delayed_refs->num_entries) == 0) {
4313                spin_unlock(&delayed_refs->lock);
4314                btrfs_info(fs_info, "delayed_refs has NO entry");
4315                return ret;
4316        }
4317
4318        while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4319                struct btrfs_delayed_ref_head *head;
4320                struct btrfs_delayed_ref_node *tmp;
4321                bool pin_bytes = false;
4322
4323                head = rb_entry(node, struct btrfs_delayed_ref_head,
4324                                href_node);
4325                if (!mutex_trylock(&head->mutex)) {
4326                        refcount_inc(&head->node.refs);
4327                        spin_unlock(&delayed_refs->lock);
4328
4329                        mutex_lock(&head->mutex);
4330                        mutex_unlock(&head->mutex);
4331                        btrfs_put_delayed_ref(&head->node);
4332                        spin_lock(&delayed_refs->lock);
4333                        continue;
4334                }
4335                spin_lock(&head->lock);
4336                list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4337                                                 list) {
4338                        ref->in_tree = 0;
4339                        list_del(&ref->list);
4340                        if (!list_empty(&ref->add_list))
4341                                list_del(&ref->add_list);
4342                        atomic_dec(&delayed_refs->num_entries);
4343                        btrfs_put_delayed_ref(ref);
4344                }
4345                if (head->must_insert_reserved)
4346                        pin_bytes = true;
4347                btrfs_free_delayed_extent_op(head->extent_op);
4348                delayed_refs->num_heads--;
4349                if (head->processing == 0)
4350                        delayed_refs->num_heads_ready--;
4351                atomic_dec(&delayed_refs->num_entries);
4352                head->node.in_tree = 0;
4353                rb_erase(&head->href_node, &delayed_refs->href_root);
4354                spin_unlock(&head->lock);
4355                spin_unlock(&delayed_refs->lock);
4356                mutex_unlock(&head->mutex);
4357
4358                if (pin_bytes)
4359                        btrfs_pin_extent(fs_info, head->node.bytenr,
4360                                         head->node.num_bytes, 1);
4361                btrfs_put_delayed_ref(&head->node);
4362                cond_resched();
4363                spin_lock(&delayed_refs->lock);
4364        }
4365
4366        spin_unlock(&delayed_refs->lock);
4367
4368        return ret;
4369}
4370
4371static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4372{
4373        struct btrfs_inode *btrfs_inode;
4374        struct list_head splice;
4375
4376        INIT_LIST_HEAD(&splice);
4377
4378        spin_lock(&root->delalloc_lock);
4379        list_splice_init(&root->delalloc_inodes, &splice);
4380
4381        while (!list_empty(&splice)) {
4382                btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4383                                               delalloc_inodes);
4384
4385                list_del_init(&btrfs_inode->delalloc_inodes);
4386                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4387                          &btrfs_inode->runtime_flags);
4388                spin_unlock(&root->delalloc_lock);
4389
4390                btrfs_invalidate_inodes(btrfs_inode->root);
4391
4392                spin_lock(&root->delalloc_lock);
4393        }
4394
4395        spin_unlock(&root->delalloc_lock);
4396}
4397
4398static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4399{
4400        struct btrfs_root *root;
4401        struct list_head splice;
4402
4403        INIT_LIST_HEAD(&splice);
4404
4405        spin_lock(&fs_info->delalloc_root_lock);
4406        list_splice_init(&fs_info->delalloc_roots, &splice);
4407        while (!list_empty(&splice)) {
4408                root = list_first_entry(&splice, struct btrfs_root,
4409                                         delalloc_root);
4410                list_del_init(&root->delalloc_root);
4411                root = btrfs_grab_fs_root(root);
4412                BUG_ON(!root);
4413                spin_unlock(&fs_info->delalloc_root_lock);
4414
4415                btrfs_destroy_delalloc_inodes(root);
4416                btrfs_put_fs_root(root);
4417
4418                spin_lock(&fs_info->delalloc_root_lock);
4419        }
4420        spin_unlock(&fs_info->delalloc_root_lock);
4421}
4422
4423static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4424                                        struct extent_io_tree *dirty_pages,
4425                                        int mark)
4426{
4427        int ret;
4428        struct extent_buffer *eb;
4429        u64 start = 0;
4430        u64 end;
4431
4432        while (1) {
4433                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4434                                            mark, NULL);
4435                if (ret)
4436                        break;
4437
4438                clear_extent_bits(dirty_pages, start, end, mark);
4439                while (start <= end) {
4440                        eb = find_extent_buffer(fs_info, start);
4441                        start += fs_info->nodesize;
4442                        if (!eb)
4443                                continue;
4444                        wait_on_extent_buffer_writeback(eb);
4445
4446                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4447                                               &eb->bflags))
4448                                clear_extent_buffer_dirty(eb);
4449                        free_extent_buffer_stale(eb);
4450                }
4451        }
4452
4453        return ret;
4454}
4455
4456static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4457                                       struct extent_io_tree *pinned_extents)
4458{
4459        struct extent_io_tree *unpin;
4460        u64 start;
4461        u64 end;
4462        int ret;
4463        bool loop = true;
4464
4465        unpin = pinned_extents;
4466again:
4467        while (1) {
4468                ret = find_first_extent_bit(unpin, 0, &start, &end,
4469                                            EXTENT_DIRTY, NULL);
4470                if (ret)
4471                        break;
4472
4473                clear_extent_dirty(unpin, start, end);
4474                btrfs_error_unpin_extent_range(fs_info, start, end);
4475                cond_resched();
4476        }
4477
4478        if (loop) {
4479                if (unpin == &fs_info->freed_extents[0])
4480                        unpin = &fs_info->freed_extents[1];
4481                else
4482                        unpin = &fs_info->freed_extents[0];
4483                loop = false;
4484                goto again;
4485        }
4486
4487        return 0;
4488}
4489
4490static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4491{
4492        struct inode *inode;
4493
4494        inode = cache->io_ctl.inode;
4495        if (inode) {
4496                invalidate_inode_pages2(inode->i_mapping);
4497                BTRFS_I(inode)->generation = 0;
4498                cache->io_ctl.inode = NULL;
4499                iput(inode);
4500        }
4501        btrfs_put_block_group(cache);
4502}
4503
4504void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4505                             struct btrfs_fs_info *fs_info)
4506{
4507        struct btrfs_block_group_cache *cache;
4508
4509        spin_lock(&cur_trans->dirty_bgs_lock);
4510        while (!list_empty(&cur_trans->dirty_bgs)) {
4511                cache = list_first_entry(&cur_trans->dirty_bgs,
4512                                         struct btrfs_block_group_cache,
4513                                         dirty_list);
4514                if (!cache) {
4515                        btrfs_err(fs_info, "orphan block group dirty_bgs list");
4516                        spin_unlock(&cur_trans->dirty_bgs_lock);
4517                        return;
4518                }
4519
4520                if (!list_empty(&cache->io_list)) {
4521                        spin_unlock(&cur_trans->dirty_bgs_lock);
4522                        list_del_init(&cache->io_list);
4523                        btrfs_cleanup_bg_io(cache);
4524                        spin_lock(&cur_trans->dirty_bgs_lock);
4525                }
4526
4527                list_del_init(&cache->dirty_list);
4528                spin_lock(&cache->lock);
4529                cache->disk_cache_state = BTRFS_DC_ERROR;
4530                spin_unlock(&cache->lock);
4531
4532                spin_unlock(&cur_trans->dirty_bgs_lock);
4533                btrfs_put_block_group(cache);
4534                spin_lock(&cur_trans->dirty_bgs_lock);
4535        }
4536        spin_unlock(&cur_trans->dirty_bgs_lock);
4537
4538        while (!list_empty(&cur_trans->io_bgs)) {
4539                cache = list_first_entry(&cur_trans->io_bgs,
4540                                         struct btrfs_block_group_cache,
4541                                         io_list);
4542                if (!cache) {
4543                        btrfs_err(fs_info, "orphan block group on io_bgs list");
4544                        return;
4545                }
4546
4547                list_del_init(&cache->io_list);
4548                spin_lock(&cache->lock);
4549                cache->disk_cache_state = BTRFS_DC_ERROR;
4550                spin_unlock(&cache->lock);
4551                btrfs_cleanup_bg_io(cache);
4552        }
4553}
4554
4555void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4556                                   struct btrfs_fs_info *fs_info)
4557{
4558        btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4559        ASSERT(list_empty(&cur_trans->dirty_bgs));
4560        ASSERT(list_empty(&cur_trans->io_bgs));
4561
4562        btrfs_destroy_delayed_refs(cur_trans, fs_info);
4563
4564        cur_trans->state = TRANS_STATE_COMMIT_START;
4565        wake_up(&fs_info->transaction_blocked_wait);
4566
4567        cur_trans->state = TRANS_STATE_UNBLOCKED;
4568        wake_up(&fs_info->transaction_wait);
4569
4570        btrfs_destroy_delayed_inodes(fs_info);
4571        btrfs_assert_delayed_root_empty(fs_info);
4572
4573        btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4574                                     EXTENT_DIRTY);
4575        btrfs_destroy_pinned_extent(fs_info,
4576                                    fs_info->pinned_extents);
4577
4578        cur_trans->state =TRANS_STATE_COMPLETED;
4579        wake_up(&cur_trans->commit_wait);
4580}
4581
4582static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4583{
4584        struct btrfs_transaction *t;
4585
4586        mutex_lock(&fs_info->transaction_kthread_mutex);
4587
4588        spin_lock(&fs_info->trans_lock);
4589        while (!list_empty(&fs_info->trans_list)) {
4590                t = list_first_entry(&fs_info->trans_list,
4591                                     struct btrfs_transaction, list);
4592                if (t->state >= TRANS_STATE_COMMIT_START) {
4593                        refcount_inc(&t->use_count);
4594                        spin_unlock(&fs_info->trans_lock);
4595                        btrfs_wait_for_commit(fs_info, t->transid);
4596                        btrfs_put_transaction(t);
4597                        spin_lock(&fs_info->trans_lock);
4598                        continue;
4599                }
4600                if (t == fs_info->running_transaction) {
4601                        t->state = TRANS_STATE_COMMIT_DOING;
4602                        spin_unlock(&fs_info->trans_lock);
4603                        /*
4604                         * We wait for 0 num_writers since we don't hold a trans
4605                         * handle open currently for this transaction.
4606                         */
4607                        wait_event(t->writer_wait,
4608                                   atomic_read(&t->num_writers) == 0);
4609                } else {
4610                        spin_unlock(&fs_info->trans_lock);
4611                }
4612                btrfs_cleanup_one_transaction(t, fs_info);
4613
4614                spin_lock(&fs_info->trans_lock);
4615                if (t == fs_info->running_transaction)
4616                        fs_info->running_transaction = NULL;
4617                list_del_init(&t->list);
4618                spin_unlock(&fs_info->trans_lock);
4619
4620                btrfs_put_transaction(t);
4621                trace_btrfs_transaction_commit(fs_info->tree_root);
4622                spin_lock(&fs_info->trans_lock);
4623        }
4624        spin_unlock(&fs_info->trans_lock);
4625        btrfs_destroy_all_ordered_extents(fs_info);
4626        btrfs_destroy_delayed_inodes(fs_info);
4627        btrfs_assert_delayed_root_empty(fs_info);
4628        btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4629        btrfs_destroy_all_delalloc_inodes(fs_info);
4630        mutex_unlock(&fs_info->transaction_kthread_mutex);
4631
4632        return 0;
4633}
4634
4635static struct btrfs_fs_info *btree_fs_info(void *private_data)
4636{
4637        struct inode *inode = private_data;
4638        return btrfs_sb(inode->i_sb);
4639}
4640
4641static const struct extent_io_ops btree_extent_io_ops = {
4642        /* mandatory callbacks */
4643        .submit_bio_hook = btree_submit_bio_hook,
4644        .readpage_end_io_hook = btree_readpage_end_io_hook,
4645        /* note we're sharing with inode.c for the merge bio hook */
4646        .merge_bio_hook = btrfs_merge_bio_hook,
4647        .readpage_io_failed_hook = btree_io_failed_hook,
4648        .set_range_writeback = btrfs_set_range_writeback,
4649        .tree_fs_info = btree_fs_info,
4650
4651        /* optional callbacks */
4652};
4653