linux/fs/dcache.c
<<
>>
Prefs
   1/*
   2 * fs/dcache.c
   3 *
   4 * Complete reimplementation
   5 * (C) 1997 Thomas Schoebel-Theuer,
   6 * with heavy changes by Linus Torvalds
   7 */
   8
   9/*
  10 * Notes on the allocation strategy:
  11 *
  12 * The dcache is a master of the icache - whenever a dcache entry
  13 * exists, the inode will always exist. "iput()" is done either when
  14 * the dcache entry is deleted or garbage collected.
  15 */
  16
  17#include <linux/syscalls.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/fs.h>
  21#include <linux/fsnotify.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/cache.h>
  26#include <linux/export.h>
  27#include <linux/mount.h>
  28#include <linux/file.h>
  29#include <linux/uaccess.h>
  30#include <linux/security.h>
  31#include <linux/seqlock.h>
  32#include <linux/swap.h>
  33#include <linux/bootmem.h>
  34#include <linux/fs_struct.h>
  35#include <linux/hardirq.h>
  36#include <linux/bit_spinlock.h>
  37#include <linux/rculist_bl.h>
  38#include <linux/prefetch.h>
  39#include <linux/ratelimit.h>
  40#include <linux/list_lru.h>
  41#include <linux/kasan.h>
  42
  43#include "internal.h"
  44#include "mount.h"
  45
  46/*
  47 * Usage:
  48 * dcache->d_inode->i_lock protects:
  49 *   - i_dentry, d_u.d_alias, d_inode of aliases
  50 * dcache_hash_bucket lock protects:
  51 *   - the dcache hash table
  52 * s_anon bl list spinlock protects:
  53 *   - the s_anon list (see __d_drop)
  54 * dentry->d_sb->s_dentry_lru_lock protects:
  55 *   - the dcache lru lists and counters
  56 * d_lock protects:
  57 *   - d_flags
  58 *   - d_name
  59 *   - d_lru
  60 *   - d_count
  61 *   - d_unhashed()
  62 *   - d_parent and d_subdirs
  63 *   - childrens' d_child and d_parent
  64 *   - d_u.d_alias, d_inode
  65 *
  66 * Ordering:
  67 * dentry->d_inode->i_lock
  68 *   dentry->d_lock
  69 *     dentry->d_sb->s_dentry_lru_lock
  70 *     dcache_hash_bucket lock
  71 *     s_anon lock
  72 *
  73 * If there is an ancestor relationship:
  74 * dentry->d_parent->...->d_parent->d_lock
  75 *   ...
  76 *     dentry->d_parent->d_lock
  77 *       dentry->d_lock
  78 *
  79 * If no ancestor relationship:
  80 * if (dentry1 < dentry2)
  81 *   dentry1->d_lock
  82 *     dentry2->d_lock
  83 */
  84int sysctl_vfs_cache_pressure __read_mostly = 100;
  85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  86
  87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  88
  89EXPORT_SYMBOL(rename_lock);
  90
  91static struct kmem_cache *dentry_cache __read_mostly;
  92
  93const struct qstr empty_name = QSTR_INIT("", 0);
  94EXPORT_SYMBOL(empty_name);
  95const struct qstr slash_name = QSTR_INIT("/", 1);
  96EXPORT_SYMBOL(slash_name);
  97
  98/*
  99 * This is the single most critical data structure when it comes
 100 * to the dcache: the hashtable for lookups. Somebody should try
 101 * to make this good - I've just made it work.
 102 *
 103 * This hash-function tries to avoid losing too many bits of hash
 104 * information, yet avoid using a prime hash-size or similar.
 105 */
 106
 107static unsigned int d_hash_mask __read_mostly;
 108static unsigned int d_hash_shift __read_mostly;
 109
 110static struct hlist_bl_head *dentry_hashtable __read_mostly;
 111
 112static inline struct hlist_bl_head *d_hash(unsigned int hash)
 113{
 114        return dentry_hashtable + (hash >> (32 - d_hash_shift));
 115}
 116
 117#define IN_LOOKUP_SHIFT 10
 118static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 119
 120static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 121                                        unsigned int hash)
 122{
 123        hash += (unsigned long) parent / L1_CACHE_BYTES;
 124        return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 125}
 126
 127
 128/* Statistics gathering. */
 129struct dentry_stat_t dentry_stat = {
 130        .age_limit = 45,
 131};
 132
 133static DEFINE_PER_CPU(long, nr_dentry);
 134static DEFINE_PER_CPU(long, nr_dentry_unused);
 135
 136#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 137
 138/*
 139 * Here we resort to our own counters instead of using generic per-cpu counters
 140 * for consistency with what the vfs inode code does. We are expected to harvest
 141 * better code and performance by having our own specialized counters.
 142 *
 143 * Please note that the loop is done over all possible CPUs, not over all online
 144 * CPUs. The reason for this is that we don't want to play games with CPUs going
 145 * on and off. If one of them goes off, we will just keep their counters.
 146 *
 147 * glommer: See cffbc8a for details, and if you ever intend to change this,
 148 * please update all vfs counters to match.
 149 */
 150static long get_nr_dentry(void)
 151{
 152        int i;
 153        long sum = 0;
 154        for_each_possible_cpu(i)
 155                sum += per_cpu(nr_dentry, i);
 156        return sum < 0 ? 0 : sum;
 157}
 158
 159static long get_nr_dentry_unused(void)
 160{
 161        int i;
 162        long sum = 0;
 163        for_each_possible_cpu(i)
 164                sum += per_cpu(nr_dentry_unused, i);
 165        return sum < 0 ? 0 : sum;
 166}
 167
 168int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
 169                   size_t *lenp, loff_t *ppos)
 170{
 171        dentry_stat.nr_dentry = get_nr_dentry();
 172        dentry_stat.nr_unused = get_nr_dentry_unused();
 173        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 174}
 175#endif
 176
 177/*
 178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 179 * The strings are both count bytes long, and count is non-zero.
 180 */
 181#ifdef CONFIG_DCACHE_WORD_ACCESS
 182
 183#include <asm/word-at-a-time.h>
 184/*
 185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 186 * aligned allocation for this particular component. We don't
 187 * strictly need the load_unaligned_zeropad() safety, but it
 188 * doesn't hurt either.
 189 *
 190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 191 * need the careful unaligned handling.
 192 */
 193static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 194{
 195        unsigned long a,b,mask;
 196
 197        for (;;) {
 198                a = *(unsigned long *)cs;
 199                b = load_unaligned_zeropad(ct);
 200                if (tcount < sizeof(unsigned long))
 201                        break;
 202                if (unlikely(a != b))
 203                        return 1;
 204                cs += sizeof(unsigned long);
 205                ct += sizeof(unsigned long);
 206                tcount -= sizeof(unsigned long);
 207                if (!tcount)
 208                        return 0;
 209        }
 210        mask = bytemask_from_count(tcount);
 211        return unlikely(!!((a ^ b) & mask));
 212}
 213
 214#else
 215
 216static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 217{
 218        do {
 219                if (*cs != *ct)
 220                        return 1;
 221                cs++;
 222                ct++;
 223                tcount--;
 224        } while (tcount);
 225        return 0;
 226}
 227
 228#endif
 229
 230static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 231{
 232        /*
 233         * Be careful about RCU walk racing with rename:
 234         * use 'lockless_dereference' to fetch the name pointer.
 235         *
 236         * NOTE! Even if a rename will mean that the length
 237         * was not loaded atomically, we don't care. The
 238         * RCU walk will check the sequence count eventually,
 239         * and catch it. And we won't overrun the buffer,
 240         * because we're reading the name pointer atomically,
 241         * and a dentry name is guaranteed to be properly
 242         * terminated with a NUL byte.
 243         *
 244         * End result: even if 'len' is wrong, we'll exit
 245         * early because the data cannot match (there can
 246         * be no NUL in the ct/tcount data)
 247         */
 248        const unsigned char *cs = lockless_dereference(dentry->d_name.name);
 249
 250        return dentry_string_cmp(cs, ct, tcount);
 251}
 252
 253struct external_name {
 254        union {
 255                atomic_t count;
 256                struct rcu_head head;
 257        } u;
 258        unsigned char name[];
 259};
 260
 261static inline struct external_name *external_name(struct dentry *dentry)
 262{
 263        return container_of(dentry->d_name.name, struct external_name, name[0]);
 264}
 265
 266static void __d_free(struct rcu_head *head)
 267{
 268        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 269
 270        kmem_cache_free(dentry_cache, dentry); 
 271}
 272
 273static void __d_free_external(struct rcu_head *head)
 274{
 275        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 276        kfree(external_name(dentry));
 277        kmem_cache_free(dentry_cache, dentry); 
 278}
 279
 280static inline int dname_external(const struct dentry *dentry)
 281{
 282        return dentry->d_name.name != dentry->d_iname;
 283}
 284
 285void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 286{
 287        spin_lock(&dentry->d_lock);
 288        if (unlikely(dname_external(dentry))) {
 289                struct external_name *p = external_name(dentry);
 290                atomic_inc(&p->u.count);
 291                spin_unlock(&dentry->d_lock);
 292                name->name = p->name;
 293        } else {
 294                memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
 295                spin_unlock(&dentry->d_lock);
 296                name->name = name->inline_name;
 297        }
 298}
 299EXPORT_SYMBOL(take_dentry_name_snapshot);
 300
 301void release_dentry_name_snapshot(struct name_snapshot *name)
 302{
 303        if (unlikely(name->name != name->inline_name)) {
 304                struct external_name *p;
 305                p = container_of(name->name, struct external_name, name[0]);
 306                if (unlikely(atomic_dec_and_test(&p->u.count)))
 307                        kfree_rcu(p, u.head);
 308        }
 309}
 310EXPORT_SYMBOL(release_dentry_name_snapshot);
 311
 312static inline void __d_set_inode_and_type(struct dentry *dentry,
 313                                          struct inode *inode,
 314                                          unsigned type_flags)
 315{
 316        unsigned flags;
 317
 318        dentry->d_inode = inode;
 319        flags = READ_ONCE(dentry->d_flags);
 320        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 321        flags |= type_flags;
 322        WRITE_ONCE(dentry->d_flags, flags);
 323}
 324
 325static inline void __d_clear_type_and_inode(struct dentry *dentry)
 326{
 327        unsigned flags = READ_ONCE(dentry->d_flags);
 328
 329        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 330        WRITE_ONCE(dentry->d_flags, flags);
 331        dentry->d_inode = NULL;
 332}
 333
 334static void dentry_free(struct dentry *dentry)
 335{
 336        WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 337        if (unlikely(dname_external(dentry))) {
 338                struct external_name *p = external_name(dentry);
 339                if (likely(atomic_dec_and_test(&p->u.count))) {
 340                        call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 341                        return;
 342                }
 343        }
 344        /* if dentry was never visible to RCU, immediate free is OK */
 345        if (!(dentry->d_flags & DCACHE_RCUACCESS))
 346                __d_free(&dentry->d_u.d_rcu);
 347        else
 348                call_rcu(&dentry->d_u.d_rcu, __d_free);
 349}
 350
 351/*
 352 * Release the dentry's inode, using the filesystem
 353 * d_iput() operation if defined.
 354 */
 355static void dentry_unlink_inode(struct dentry * dentry)
 356        __releases(dentry->d_lock)
 357        __releases(dentry->d_inode->i_lock)
 358{
 359        struct inode *inode = dentry->d_inode;
 360        bool hashed = !d_unhashed(dentry);
 361
 362        if (hashed)
 363                raw_write_seqcount_begin(&dentry->d_seq);
 364        __d_clear_type_and_inode(dentry);
 365        hlist_del_init(&dentry->d_u.d_alias);
 366        if (hashed)
 367                raw_write_seqcount_end(&dentry->d_seq);
 368        spin_unlock(&dentry->d_lock);
 369        spin_unlock(&inode->i_lock);
 370        if (!inode->i_nlink)
 371                fsnotify_inoderemove(inode);
 372        if (dentry->d_op && dentry->d_op->d_iput)
 373                dentry->d_op->d_iput(dentry, inode);
 374        else
 375                iput(inode);
 376}
 377
 378/*
 379 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 380 * is in use - which includes both the "real" per-superblock
 381 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 382 *
 383 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 384 * on the shrink list (ie not on the superblock LRU list).
 385 *
 386 * The per-cpu "nr_dentry_unused" counters are updated with
 387 * the DCACHE_LRU_LIST bit.
 388 *
 389 * These helper functions make sure we always follow the
 390 * rules. d_lock must be held by the caller.
 391 */
 392#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 393static void d_lru_add(struct dentry *dentry)
 394{
 395        D_FLAG_VERIFY(dentry, 0);
 396        dentry->d_flags |= DCACHE_LRU_LIST;
 397        this_cpu_inc(nr_dentry_unused);
 398        WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 399}
 400
 401static void d_lru_del(struct dentry *dentry)
 402{
 403        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 404        dentry->d_flags &= ~DCACHE_LRU_LIST;
 405        this_cpu_dec(nr_dentry_unused);
 406        WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 407}
 408
 409static void d_shrink_del(struct dentry *dentry)
 410{
 411        D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 412        list_del_init(&dentry->d_lru);
 413        dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 414        this_cpu_dec(nr_dentry_unused);
 415}
 416
 417static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 418{
 419        D_FLAG_VERIFY(dentry, 0);
 420        list_add(&dentry->d_lru, list);
 421        dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 422        this_cpu_inc(nr_dentry_unused);
 423}
 424
 425/*
 426 * These can only be called under the global LRU lock, ie during the
 427 * callback for freeing the LRU list. "isolate" removes it from the
 428 * LRU lists entirely, while shrink_move moves it to the indicated
 429 * private list.
 430 */
 431static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 432{
 433        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 434        dentry->d_flags &= ~DCACHE_LRU_LIST;
 435        this_cpu_dec(nr_dentry_unused);
 436        list_lru_isolate(lru, &dentry->d_lru);
 437}
 438
 439static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 440                              struct list_head *list)
 441{
 442        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 443        dentry->d_flags |= DCACHE_SHRINK_LIST;
 444        list_lru_isolate_move(lru, &dentry->d_lru, list);
 445}
 446
 447/*
 448 * dentry_lru_(add|del)_list) must be called with d_lock held.
 449 */
 450static void dentry_lru_add(struct dentry *dentry)
 451{
 452        if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
 453                d_lru_add(dentry);
 454        else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
 455                dentry->d_flags |= DCACHE_REFERENCED;
 456}
 457
 458/**
 459 * d_drop - drop a dentry
 460 * @dentry: dentry to drop
 461 *
 462 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 463 * be found through a VFS lookup any more. Note that this is different from
 464 * deleting the dentry - d_delete will try to mark the dentry negative if
 465 * possible, giving a successful _negative_ lookup, while d_drop will
 466 * just make the cache lookup fail.
 467 *
 468 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 469 * reason (NFS timeouts or autofs deletes).
 470 *
 471 * __d_drop requires dentry->d_lock.
 472 */
 473void __d_drop(struct dentry *dentry)
 474{
 475        if (!d_unhashed(dentry)) {
 476                struct hlist_bl_head *b;
 477                /*
 478                 * Hashed dentries are normally on the dentry hashtable,
 479                 * with the exception of those newly allocated by
 480                 * d_obtain_alias, which are always IS_ROOT:
 481                 */
 482                if (unlikely(IS_ROOT(dentry)))
 483                        b = &dentry->d_sb->s_anon;
 484                else
 485                        b = d_hash(dentry->d_name.hash);
 486
 487                hlist_bl_lock(b);
 488                __hlist_bl_del(&dentry->d_hash);
 489                dentry->d_hash.pprev = NULL;
 490                hlist_bl_unlock(b);
 491                /* After this call, in-progress rcu-walk path lookup will fail. */
 492                write_seqcount_invalidate(&dentry->d_seq);
 493        }
 494}
 495EXPORT_SYMBOL(__d_drop);
 496
 497void d_drop(struct dentry *dentry)
 498{
 499        spin_lock(&dentry->d_lock);
 500        __d_drop(dentry);
 501        spin_unlock(&dentry->d_lock);
 502}
 503EXPORT_SYMBOL(d_drop);
 504
 505static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
 506{
 507        struct dentry *next;
 508        /*
 509         * Inform d_walk() and shrink_dentry_list() that we are no longer
 510         * attached to the dentry tree
 511         */
 512        dentry->d_flags |= DCACHE_DENTRY_KILLED;
 513        if (unlikely(list_empty(&dentry->d_child)))
 514                return;
 515        __list_del_entry(&dentry->d_child);
 516        /*
 517         * Cursors can move around the list of children.  While we'd been
 518         * a normal list member, it didn't matter - ->d_child.next would've
 519         * been updated.  However, from now on it won't be and for the
 520         * things like d_walk() it might end up with a nasty surprise.
 521         * Normally d_walk() doesn't care about cursors moving around -
 522         * ->d_lock on parent prevents that and since a cursor has no children
 523         * of its own, we get through it without ever unlocking the parent.
 524         * There is one exception, though - if we ascend from a child that
 525         * gets killed as soon as we unlock it, the next sibling is found
 526         * using the value left in its ->d_child.next.  And if _that_
 527         * pointed to a cursor, and cursor got moved (e.g. by lseek())
 528         * before d_walk() regains parent->d_lock, we'll end up skipping
 529         * everything the cursor had been moved past.
 530         *
 531         * Solution: make sure that the pointer left behind in ->d_child.next
 532         * points to something that won't be moving around.  I.e. skip the
 533         * cursors.
 534         */
 535        while (dentry->d_child.next != &parent->d_subdirs) {
 536                next = list_entry(dentry->d_child.next, struct dentry, d_child);
 537                if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 538                        break;
 539                dentry->d_child.next = next->d_child.next;
 540        }
 541}
 542
 543static void __dentry_kill(struct dentry *dentry)
 544{
 545        struct dentry *parent = NULL;
 546        bool can_free = true;
 547        if (!IS_ROOT(dentry))
 548                parent = dentry->d_parent;
 549
 550        /*
 551         * The dentry is now unrecoverably dead to the world.
 552         */
 553        lockref_mark_dead(&dentry->d_lockref);
 554
 555        /*
 556         * inform the fs via d_prune that this dentry is about to be
 557         * unhashed and destroyed.
 558         */
 559        if (dentry->d_flags & DCACHE_OP_PRUNE)
 560                dentry->d_op->d_prune(dentry);
 561
 562        if (dentry->d_flags & DCACHE_LRU_LIST) {
 563                if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 564                        d_lru_del(dentry);
 565        }
 566        /* if it was on the hash then remove it */
 567        __d_drop(dentry);
 568        dentry_unlist(dentry, parent);
 569        if (parent)
 570                spin_unlock(&parent->d_lock);
 571        if (dentry->d_inode)
 572                dentry_unlink_inode(dentry);
 573        else
 574                spin_unlock(&dentry->d_lock);
 575        this_cpu_dec(nr_dentry);
 576        if (dentry->d_op && dentry->d_op->d_release)
 577                dentry->d_op->d_release(dentry);
 578
 579        spin_lock(&dentry->d_lock);
 580        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 581                dentry->d_flags |= DCACHE_MAY_FREE;
 582                can_free = false;
 583        }
 584        spin_unlock(&dentry->d_lock);
 585        if (likely(can_free))
 586                dentry_free(dentry);
 587}
 588
 589/*
 590 * Finish off a dentry we've decided to kill.
 591 * dentry->d_lock must be held, returns with it unlocked.
 592 * If ref is non-zero, then decrement the refcount too.
 593 * Returns dentry requiring refcount drop, or NULL if we're done.
 594 */
 595static struct dentry *dentry_kill(struct dentry *dentry)
 596        __releases(dentry->d_lock)
 597{
 598        struct inode *inode = dentry->d_inode;
 599        struct dentry *parent = NULL;
 600
 601        if (inode && unlikely(!spin_trylock(&inode->i_lock)))
 602                goto failed;
 603
 604        if (!IS_ROOT(dentry)) {
 605                parent = dentry->d_parent;
 606                if (unlikely(!spin_trylock(&parent->d_lock))) {
 607                        if (inode)
 608                                spin_unlock(&inode->i_lock);
 609                        goto failed;
 610                }
 611        }
 612
 613        __dentry_kill(dentry);
 614        return parent;
 615
 616failed:
 617        spin_unlock(&dentry->d_lock);
 618        return dentry; /* try again with same dentry */
 619}
 620
 621static inline struct dentry *lock_parent(struct dentry *dentry)
 622{
 623        struct dentry *parent = dentry->d_parent;
 624        if (IS_ROOT(dentry))
 625                return NULL;
 626        if (unlikely(dentry->d_lockref.count < 0))
 627                return NULL;
 628        if (likely(spin_trylock(&parent->d_lock)))
 629                return parent;
 630        rcu_read_lock();
 631        spin_unlock(&dentry->d_lock);
 632again:
 633        parent = ACCESS_ONCE(dentry->d_parent);
 634        spin_lock(&parent->d_lock);
 635        /*
 636         * We can't blindly lock dentry until we are sure
 637         * that we won't violate the locking order.
 638         * Any changes of dentry->d_parent must have
 639         * been done with parent->d_lock held, so
 640         * spin_lock() above is enough of a barrier
 641         * for checking if it's still our child.
 642         */
 643        if (unlikely(parent != dentry->d_parent)) {
 644                spin_unlock(&parent->d_lock);
 645                goto again;
 646        }
 647        rcu_read_unlock();
 648        if (parent != dentry)
 649                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 650        else
 651                parent = NULL;
 652        return parent;
 653}
 654
 655/*
 656 * Try to do a lockless dput(), and return whether that was successful.
 657 *
 658 * If unsuccessful, we return false, having already taken the dentry lock.
 659 *
 660 * The caller needs to hold the RCU read lock, so that the dentry is
 661 * guaranteed to stay around even if the refcount goes down to zero!
 662 */
 663static inline bool fast_dput(struct dentry *dentry)
 664{
 665        int ret;
 666        unsigned int d_flags;
 667
 668        /*
 669         * If we have a d_op->d_delete() operation, we sould not
 670         * let the dentry count go to zero, so use "put_or_lock".
 671         */
 672        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
 673                return lockref_put_or_lock(&dentry->d_lockref);
 674
 675        /*
 676         * .. otherwise, we can try to just decrement the
 677         * lockref optimistically.
 678         */
 679        ret = lockref_put_return(&dentry->d_lockref);
 680
 681        /*
 682         * If the lockref_put_return() failed due to the lock being held
 683         * by somebody else, the fast path has failed. We will need to
 684         * get the lock, and then check the count again.
 685         */
 686        if (unlikely(ret < 0)) {
 687                spin_lock(&dentry->d_lock);
 688                if (dentry->d_lockref.count > 1) {
 689                        dentry->d_lockref.count--;
 690                        spin_unlock(&dentry->d_lock);
 691                        return 1;
 692                }
 693                return 0;
 694        }
 695
 696        /*
 697         * If we weren't the last ref, we're done.
 698         */
 699        if (ret)
 700                return 1;
 701
 702        /*
 703         * Careful, careful. The reference count went down
 704         * to zero, but we don't hold the dentry lock, so
 705         * somebody else could get it again, and do another
 706         * dput(), and we need to not race with that.
 707         *
 708         * However, there is a very special and common case
 709         * where we don't care, because there is nothing to
 710         * do: the dentry is still hashed, it does not have
 711         * a 'delete' op, and it's referenced and already on
 712         * the LRU list.
 713         *
 714         * NOTE! Since we aren't locked, these values are
 715         * not "stable". However, it is sufficient that at
 716         * some point after we dropped the reference the
 717         * dentry was hashed and the flags had the proper
 718         * value. Other dentry users may have re-gotten
 719         * a reference to the dentry and change that, but
 720         * our work is done - we can leave the dentry
 721         * around with a zero refcount.
 722         */
 723        smp_rmb();
 724        d_flags = ACCESS_ONCE(dentry->d_flags);
 725        d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
 726
 727        /* Nothing to do? Dropping the reference was all we needed? */
 728        if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
 729                return 1;
 730
 731        /*
 732         * Not the fast normal case? Get the lock. We've already decremented
 733         * the refcount, but we'll need to re-check the situation after
 734         * getting the lock.
 735         */
 736        spin_lock(&dentry->d_lock);
 737
 738        /*
 739         * Did somebody else grab a reference to it in the meantime, and
 740         * we're no longer the last user after all? Alternatively, somebody
 741         * else could have killed it and marked it dead. Either way, we
 742         * don't need to do anything else.
 743         */
 744        if (dentry->d_lockref.count) {
 745                spin_unlock(&dentry->d_lock);
 746                return 1;
 747        }
 748
 749        /*
 750         * Re-get the reference we optimistically dropped. We hold the
 751         * lock, and we just tested that it was zero, so we can just
 752         * set it to 1.
 753         */
 754        dentry->d_lockref.count = 1;
 755        return 0;
 756}
 757
 758
 759/* 
 760 * This is dput
 761 *
 762 * This is complicated by the fact that we do not want to put
 763 * dentries that are no longer on any hash chain on the unused
 764 * list: we'd much rather just get rid of them immediately.
 765 *
 766 * However, that implies that we have to traverse the dentry
 767 * tree upwards to the parents which might _also_ now be
 768 * scheduled for deletion (it may have been only waiting for
 769 * its last child to go away).
 770 *
 771 * This tail recursion is done by hand as we don't want to depend
 772 * on the compiler to always get this right (gcc generally doesn't).
 773 * Real recursion would eat up our stack space.
 774 */
 775
 776/*
 777 * dput - release a dentry
 778 * @dentry: dentry to release 
 779 *
 780 * Release a dentry. This will drop the usage count and if appropriate
 781 * call the dentry unlink method as well as removing it from the queues and
 782 * releasing its resources. If the parent dentries were scheduled for release
 783 * they too may now get deleted.
 784 */
 785void dput(struct dentry *dentry)
 786{
 787        if (unlikely(!dentry))
 788                return;
 789
 790repeat:
 791        might_sleep();
 792
 793        rcu_read_lock();
 794        if (likely(fast_dput(dentry))) {
 795                rcu_read_unlock();
 796                return;
 797        }
 798
 799        /* Slow case: now with the dentry lock held */
 800        rcu_read_unlock();
 801
 802        WARN_ON(d_in_lookup(dentry));
 803
 804        /* Unreachable? Get rid of it */
 805        if (unlikely(d_unhashed(dentry)))
 806                goto kill_it;
 807
 808        if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
 809                goto kill_it;
 810
 811        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
 812                if (dentry->d_op->d_delete(dentry))
 813                        goto kill_it;
 814        }
 815
 816        dentry_lru_add(dentry);
 817
 818        dentry->d_lockref.count--;
 819        spin_unlock(&dentry->d_lock);
 820        return;
 821
 822kill_it:
 823        dentry = dentry_kill(dentry);
 824        if (dentry) {
 825                cond_resched();
 826                goto repeat;
 827        }
 828}
 829EXPORT_SYMBOL(dput);
 830
 831
 832/* This must be called with d_lock held */
 833static inline void __dget_dlock(struct dentry *dentry)
 834{
 835        dentry->d_lockref.count++;
 836}
 837
 838static inline void __dget(struct dentry *dentry)
 839{
 840        lockref_get(&dentry->d_lockref);
 841}
 842
 843struct dentry *dget_parent(struct dentry *dentry)
 844{
 845        int gotref;
 846        struct dentry *ret;
 847
 848        /*
 849         * Do optimistic parent lookup without any
 850         * locking.
 851         */
 852        rcu_read_lock();
 853        ret = ACCESS_ONCE(dentry->d_parent);
 854        gotref = lockref_get_not_zero(&ret->d_lockref);
 855        rcu_read_unlock();
 856        if (likely(gotref)) {
 857                if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
 858                        return ret;
 859                dput(ret);
 860        }
 861
 862repeat:
 863        /*
 864         * Don't need rcu_dereference because we re-check it was correct under
 865         * the lock.
 866         */
 867        rcu_read_lock();
 868        ret = dentry->d_parent;
 869        spin_lock(&ret->d_lock);
 870        if (unlikely(ret != dentry->d_parent)) {
 871                spin_unlock(&ret->d_lock);
 872                rcu_read_unlock();
 873                goto repeat;
 874        }
 875        rcu_read_unlock();
 876        BUG_ON(!ret->d_lockref.count);
 877        ret->d_lockref.count++;
 878        spin_unlock(&ret->d_lock);
 879        return ret;
 880}
 881EXPORT_SYMBOL(dget_parent);
 882
 883/**
 884 * d_find_alias - grab a hashed alias of inode
 885 * @inode: inode in question
 886 *
 887 * If inode has a hashed alias, or is a directory and has any alias,
 888 * acquire the reference to alias and return it. Otherwise return NULL.
 889 * Notice that if inode is a directory there can be only one alias and
 890 * it can be unhashed only if it has no children, or if it is the root
 891 * of a filesystem, or if the directory was renamed and d_revalidate
 892 * was the first vfs operation to notice.
 893 *
 894 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 895 * any other hashed alias over that one.
 896 */
 897static struct dentry *__d_find_alias(struct inode *inode)
 898{
 899        struct dentry *alias, *discon_alias;
 900
 901again:
 902        discon_alias = NULL;
 903        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
 904                spin_lock(&alias->d_lock);
 905                if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 906                        if (IS_ROOT(alias) &&
 907                            (alias->d_flags & DCACHE_DISCONNECTED)) {
 908                                discon_alias = alias;
 909                        } else {
 910                                __dget_dlock(alias);
 911                                spin_unlock(&alias->d_lock);
 912                                return alias;
 913                        }
 914                }
 915                spin_unlock(&alias->d_lock);
 916        }
 917        if (discon_alias) {
 918                alias = discon_alias;
 919                spin_lock(&alias->d_lock);
 920                if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 921                        __dget_dlock(alias);
 922                        spin_unlock(&alias->d_lock);
 923                        return alias;
 924                }
 925                spin_unlock(&alias->d_lock);
 926                goto again;
 927        }
 928        return NULL;
 929}
 930
 931struct dentry *d_find_alias(struct inode *inode)
 932{
 933        struct dentry *de = NULL;
 934
 935        if (!hlist_empty(&inode->i_dentry)) {
 936                spin_lock(&inode->i_lock);
 937                de = __d_find_alias(inode);
 938                spin_unlock(&inode->i_lock);
 939        }
 940        return de;
 941}
 942EXPORT_SYMBOL(d_find_alias);
 943
 944/*
 945 *      Try to kill dentries associated with this inode.
 946 * WARNING: you must own a reference to inode.
 947 */
 948void d_prune_aliases(struct inode *inode)
 949{
 950        struct dentry *dentry;
 951restart:
 952        spin_lock(&inode->i_lock);
 953        hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
 954                spin_lock(&dentry->d_lock);
 955                if (!dentry->d_lockref.count) {
 956                        struct dentry *parent = lock_parent(dentry);
 957                        if (likely(!dentry->d_lockref.count)) {
 958                                __dentry_kill(dentry);
 959                                dput(parent);
 960                                goto restart;
 961                        }
 962                        if (parent)
 963                                spin_unlock(&parent->d_lock);
 964                }
 965                spin_unlock(&dentry->d_lock);
 966        }
 967        spin_unlock(&inode->i_lock);
 968}
 969EXPORT_SYMBOL(d_prune_aliases);
 970
 971static void shrink_dentry_list(struct list_head *list)
 972{
 973        struct dentry *dentry, *parent;
 974
 975        while (!list_empty(list)) {
 976                struct inode *inode;
 977                dentry = list_entry(list->prev, struct dentry, d_lru);
 978                spin_lock(&dentry->d_lock);
 979                parent = lock_parent(dentry);
 980
 981                /*
 982                 * The dispose list is isolated and dentries are not accounted
 983                 * to the LRU here, so we can simply remove it from the list
 984                 * here regardless of whether it is referenced or not.
 985                 */
 986                d_shrink_del(dentry);
 987
 988                /*
 989                 * We found an inuse dentry which was not removed from
 990                 * the LRU because of laziness during lookup. Do not free it.
 991                 */
 992                if (dentry->d_lockref.count > 0) {
 993                        spin_unlock(&dentry->d_lock);
 994                        if (parent)
 995                                spin_unlock(&parent->d_lock);
 996                        continue;
 997                }
 998
 999
1000                if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1001                        bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1002                        spin_unlock(&dentry->d_lock);
1003                        if (parent)
1004                                spin_unlock(&parent->d_lock);
1005                        if (can_free)
1006                                dentry_free(dentry);
1007                        continue;
1008                }
1009
1010                inode = dentry->d_inode;
1011                if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1012                        d_shrink_add(dentry, list);
1013                        spin_unlock(&dentry->d_lock);
1014                        if (parent)
1015                                spin_unlock(&parent->d_lock);
1016                        continue;
1017                }
1018
1019                __dentry_kill(dentry);
1020
1021                /*
1022                 * We need to prune ancestors too. This is necessary to prevent
1023                 * quadratic behavior of shrink_dcache_parent(), but is also
1024                 * expected to be beneficial in reducing dentry cache
1025                 * fragmentation.
1026                 */
1027                dentry = parent;
1028                while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1029                        parent = lock_parent(dentry);
1030                        if (dentry->d_lockref.count != 1) {
1031                                dentry->d_lockref.count--;
1032                                spin_unlock(&dentry->d_lock);
1033                                if (parent)
1034                                        spin_unlock(&parent->d_lock);
1035                                break;
1036                        }
1037                        inode = dentry->d_inode;        /* can't be NULL */
1038                        if (unlikely(!spin_trylock(&inode->i_lock))) {
1039                                spin_unlock(&dentry->d_lock);
1040                                if (parent)
1041                                        spin_unlock(&parent->d_lock);
1042                                cpu_relax();
1043                                continue;
1044                        }
1045                        __dentry_kill(dentry);
1046                        dentry = parent;
1047                }
1048        }
1049}
1050
1051static enum lru_status dentry_lru_isolate(struct list_head *item,
1052                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1053{
1054        struct list_head *freeable = arg;
1055        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1056
1057
1058        /*
1059         * we are inverting the lru lock/dentry->d_lock here,
1060         * so use a trylock. If we fail to get the lock, just skip
1061         * it
1062         */
1063        if (!spin_trylock(&dentry->d_lock))
1064                return LRU_SKIP;
1065
1066        /*
1067         * Referenced dentries are still in use. If they have active
1068         * counts, just remove them from the LRU. Otherwise give them
1069         * another pass through the LRU.
1070         */
1071        if (dentry->d_lockref.count) {
1072                d_lru_isolate(lru, dentry);
1073                spin_unlock(&dentry->d_lock);
1074                return LRU_REMOVED;
1075        }
1076
1077        if (dentry->d_flags & DCACHE_REFERENCED) {
1078                dentry->d_flags &= ~DCACHE_REFERENCED;
1079                spin_unlock(&dentry->d_lock);
1080
1081                /*
1082                 * The list move itself will be made by the common LRU code. At
1083                 * this point, we've dropped the dentry->d_lock but keep the
1084                 * lru lock. This is safe to do, since every list movement is
1085                 * protected by the lru lock even if both locks are held.
1086                 *
1087                 * This is guaranteed by the fact that all LRU management
1088                 * functions are intermediated by the LRU API calls like
1089                 * list_lru_add and list_lru_del. List movement in this file
1090                 * only ever occur through this functions or through callbacks
1091                 * like this one, that are called from the LRU API.
1092                 *
1093                 * The only exceptions to this are functions like
1094                 * shrink_dentry_list, and code that first checks for the
1095                 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1096                 * operating only with stack provided lists after they are
1097                 * properly isolated from the main list.  It is thus, always a
1098                 * local access.
1099                 */
1100                return LRU_ROTATE;
1101        }
1102
1103        d_lru_shrink_move(lru, dentry, freeable);
1104        spin_unlock(&dentry->d_lock);
1105
1106        return LRU_REMOVED;
1107}
1108
1109/**
1110 * prune_dcache_sb - shrink the dcache
1111 * @sb: superblock
1112 * @sc: shrink control, passed to list_lru_shrink_walk()
1113 *
1114 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1115 * is done when we need more memory and called from the superblock shrinker
1116 * function.
1117 *
1118 * This function may fail to free any resources if all the dentries are in
1119 * use.
1120 */
1121long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1122{
1123        LIST_HEAD(dispose);
1124        long freed;
1125
1126        freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1127                                     dentry_lru_isolate, &dispose);
1128        shrink_dentry_list(&dispose);
1129        return freed;
1130}
1131
1132static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1133                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1134{
1135        struct list_head *freeable = arg;
1136        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1137
1138        /*
1139         * we are inverting the lru lock/dentry->d_lock here,
1140         * so use a trylock. If we fail to get the lock, just skip
1141         * it
1142         */
1143        if (!spin_trylock(&dentry->d_lock))
1144                return LRU_SKIP;
1145
1146        d_lru_shrink_move(lru, dentry, freeable);
1147        spin_unlock(&dentry->d_lock);
1148
1149        return LRU_REMOVED;
1150}
1151
1152
1153/**
1154 * shrink_dcache_sb - shrink dcache for a superblock
1155 * @sb: superblock
1156 *
1157 * Shrink the dcache for the specified super block. This is used to free
1158 * the dcache before unmounting a file system.
1159 */
1160void shrink_dcache_sb(struct super_block *sb)
1161{
1162        long freed;
1163
1164        do {
1165                LIST_HEAD(dispose);
1166
1167                freed = list_lru_walk(&sb->s_dentry_lru,
1168                        dentry_lru_isolate_shrink, &dispose, 1024);
1169
1170                this_cpu_sub(nr_dentry_unused, freed);
1171                shrink_dentry_list(&dispose);
1172                cond_resched();
1173        } while (list_lru_count(&sb->s_dentry_lru) > 0);
1174}
1175EXPORT_SYMBOL(shrink_dcache_sb);
1176
1177/**
1178 * enum d_walk_ret - action to talke during tree walk
1179 * @D_WALK_CONTINUE:    contrinue walk
1180 * @D_WALK_QUIT:        quit walk
1181 * @D_WALK_NORETRY:     quit when retry is needed
1182 * @D_WALK_SKIP:        skip this dentry and its children
1183 */
1184enum d_walk_ret {
1185        D_WALK_CONTINUE,
1186        D_WALK_QUIT,
1187        D_WALK_NORETRY,
1188        D_WALK_SKIP,
1189};
1190
1191/**
1192 * d_walk - walk the dentry tree
1193 * @parent:     start of walk
1194 * @data:       data passed to @enter() and @finish()
1195 * @enter:      callback when first entering the dentry
1196 * @finish:     callback when successfully finished the walk
1197 *
1198 * The @enter() and @finish() callbacks are called with d_lock held.
1199 */
1200static void d_walk(struct dentry *parent, void *data,
1201                   enum d_walk_ret (*enter)(void *, struct dentry *),
1202                   void (*finish)(void *))
1203{
1204        struct dentry *this_parent;
1205        struct list_head *next;
1206        unsigned seq = 0;
1207        enum d_walk_ret ret;
1208        bool retry = true;
1209
1210again:
1211        read_seqbegin_or_lock(&rename_lock, &seq);
1212        this_parent = parent;
1213        spin_lock(&this_parent->d_lock);
1214
1215        ret = enter(data, this_parent);
1216        switch (ret) {
1217        case D_WALK_CONTINUE:
1218                break;
1219        case D_WALK_QUIT:
1220        case D_WALK_SKIP:
1221                goto out_unlock;
1222        case D_WALK_NORETRY:
1223                retry = false;
1224                break;
1225        }
1226repeat:
1227        next = this_parent->d_subdirs.next;
1228resume:
1229        while (next != &this_parent->d_subdirs) {
1230                struct list_head *tmp = next;
1231                struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1232                next = tmp->next;
1233
1234                if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1235                        continue;
1236
1237                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1238
1239                ret = enter(data, dentry);
1240                switch (ret) {
1241                case D_WALK_CONTINUE:
1242                        break;
1243                case D_WALK_QUIT:
1244                        spin_unlock(&dentry->d_lock);
1245                        goto out_unlock;
1246                case D_WALK_NORETRY:
1247                        retry = false;
1248                        break;
1249                case D_WALK_SKIP:
1250                        spin_unlock(&dentry->d_lock);
1251                        continue;
1252                }
1253
1254                if (!list_empty(&dentry->d_subdirs)) {
1255                        spin_unlock(&this_parent->d_lock);
1256                        spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1257                        this_parent = dentry;
1258                        spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1259                        goto repeat;
1260                }
1261                spin_unlock(&dentry->d_lock);
1262        }
1263        /*
1264         * All done at this level ... ascend and resume the search.
1265         */
1266        rcu_read_lock();
1267ascend:
1268        if (this_parent != parent) {
1269                struct dentry *child = this_parent;
1270                this_parent = child->d_parent;
1271
1272                spin_unlock(&child->d_lock);
1273                spin_lock(&this_parent->d_lock);
1274
1275                /* might go back up the wrong parent if we have had a rename. */
1276                if (need_seqretry(&rename_lock, seq))
1277                        goto rename_retry;
1278                /* go into the first sibling still alive */
1279                do {
1280                        next = child->d_child.next;
1281                        if (next == &this_parent->d_subdirs)
1282                                goto ascend;
1283                        child = list_entry(next, struct dentry, d_child);
1284                } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1285                rcu_read_unlock();
1286                goto resume;
1287        }
1288        if (need_seqretry(&rename_lock, seq))
1289                goto rename_retry;
1290        rcu_read_unlock();
1291        if (finish)
1292                finish(data);
1293
1294out_unlock:
1295        spin_unlock(&this_parent->d_lock);
1296        done_seqretry(&rename_lock, seq);
1297        return;
1298
1299rename_retry:
1300        spin_unlock(&this_parent->d_lock);
1301        rcu_read_unlock();
1302        BUG_ON(seq & 1);
1303        if (!retry)
1304                return;
1305        seq = 1;
1306        goto again;
1307}
1308
1309struct check_mount {
1310        struct vfsmount *mnt;
1311        unsigned int mounted;
1312};
1313
1314static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1315{
1316        struct check_mount *info = data;
1317        struct path path = { .mnt = info->mnt, .dentry = dentry };
1318
1319        if (likely(!d_mountpoint(dentry)))
1320                return D_WALK_CONTINUE;
1321        if (__path_is_mountpoint(&path)) {
1322                info->mounted = 1;
1323                return D_WALK_QUIT;
1324        }
1325        return D_WALK_CONTINUE;
1326}
1327
1328/**
1329 * path_has_submounts - check for mounts over a dentry in the
1330 *                      current namespace.
1331 * @parent: path to check.
1332 *
1333 * Return true if the parent or its subdirectories contain
1334 * a mount point in the current namespace.
1335 */
1336int path_has_submounts(const struct path *parent)
1337{
1338        struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1339
1340        read_seqlock_excl(&mount_lock);
1341        d_walk(parent->dentry, &data, path_check_mount, NULL);
1342        read_sequnlock_excl(&mount_lock);
1343
1344        return data.mounted;
1345}
1346EXPORT_SYMBOL(path_has_submounts);
1347
1348/*
1349 * Called by mount code to set a mountpoint and check if the mountpoint is
1350 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1351 * subtree can become unreachable).
1352 *
1353 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1354 * this reason take rename_lock and d_lock on dentry and ancestors.
1355 */
1356int d_set_mounted(struct dentry *dentry)
1357{
1358        struct dentry *p;
1359        int ret = -ENOENT;
1360        write_seqlock(&rename_lock);
1361        for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1362                /* Need exclusion wrt. d_invalidate() */
1363                spin_lock(&p->d_lock);
1364                if (unlikely(d_unhashed(p))) {
1365                        spin_unlock(&p->d_lock);
1366                        goto out;
1367                }
1368                spin_unlock(&p->d_lock);
1369        }
1370        spin_lock(&dentry->d_lock);
1371        if (!d_unlinked(dentry)) {
1372                ret = -EBUSY;
1373                if (!d_mountpoint(dentry)) {
1374                        dentry->d_flags |= DCACHE_MOUNTED;
1375                        ret = 0;
1376                }
1377        }
1378        spin_unlock(&dentry->d_lock);
1379out:
1380        write_sequnlock(&rename_lock);
1381        return ret;
1382}
1383
1384/*
1385 * Search the dentry child list of the specified parent,
1386 * and move any unused dentries to the end of the unused
1387 * list for prune_dcache(). We descend to the next level
1388 * whenever the d_subdirs list is non-empty and continue
1389 * searching.
1390 *
1391 * It returns zero iff there are no unused children,
1392 * otherwise  it returns the number of children moved to
1393 * the end of the unused list. This may not be the total
1394 * number of unused children, because select_parent can
1395 * drop the lock and return early due to latency
1396 * constraints.
1397 */
1398
1399struct select_data {
1400        struct dentry *start;
1401        struct list_head dispose;
1402        int found;
1403};
1404
1405static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1406{
1407        struct select_data *data = _data;
1408        enum d_walk_ret ret = D_WALK_CONTINUE;
1409
1410        if (data->start == dentry)
1411                goto out;
1412
1413        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1414                data->found++;
1415        } else {
1416                if (dentry->d_flags & DCACHE_LRU_LIST)
1417                        d_lru_del(dentry);
1418                if (!dentry->d_lockref.count) {
1419                        d_shrink_add(dentry, &data->dispose);
1420                        data->found++;
1421                }
1422        }
1423        /*
1424         * We can return to the caller if we have found some (this
1425         * ensures forward progress). We'll be coming back to find
1426         * the rest.
1427         */
1428        if (!list_empty(&data->dispose))
1429                ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1430out:
1431        return ret;
1432}
1433
1434/**
1435 * shrink_dcache_parent - prune dcache
1436 * @parent: parent of entries to prune
1437 *
1438 * Prune the dcache to remove unused children of the parent dentry.
1439 */
1440void shrink_dcache_parent(struct dentry *parent)
1441{
1442        for (;;) {
1443                struct select_data data;
1444
1445                INIT_LIST_HEAD(&data.dispose);
1446                data.start = parent;
1447                data.found = 0;
1448
1449                d_walk(parent, &data, select_collect, NULL);
1450                if (!data.found)
1451                        break;
1452
1453                shrink_dentry_list(&data.dispose);
1454                cond_resched();
1455        }
1456}
1457EXPORT_SYMBOL(shrink_dcache_parent);
1458
1459static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1460{
1461        /* it has busy descendents; complain about those instead */
1462        if (!list_empty(&dentry->d_subdirs))
1463                return D_WALK_CONTINUE;
1464
1465        /* root with refcount 1 is fine */
1466        if (dentry == _data && dentry->d_lockref.count == 1)
1467                return D_WALK_CONTINUE;
1468
1469        printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1470                        " still in use (%d) [unmount of %s %s]\n",
1471                       dentry,
1472                       dentry->d_inode ?
1473                       dentry->d_inode->i_ino : 0UL,
1474                       dentry,
1475                       dentry->d_lockref.count,
1476                       dentry->d_sb->s_type->name,
1477                       dentry->d_sb->s_id);
1478        WARN_ON(1);
1479        return D_WALK_CONTINUE;
1480}
1481
1482static void do_one_tree(struct dentry *dentry)
1483{
1484        shrink_dcache_parent(dentry);
1485        d_walk(dentry, dentry, umount_check, NULL);
1486        d_drop(dentry);
1487        dput(dentry);
1488}
1489
1490/*
1491 * destroy the dentries attached to a superblock on unmounting
1492 */
1493void shrink_dcache_for_umount(struct super_block *sb)
1494{
1495        struct dentry *dentry;
1496
1497        WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1498
1499        dentry = sb->s_root;
1500        sb->s_root = NULL;
1501        do_one_tree(dentry);
1502
1503        while (!hlist_bl_empty(&sb->s_anon)) {
1504                dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1505                do_one_tree(dentry);
1506        }
1507}
1508
1509struct detach_data {
1510        struct select_data select;
1511        struct dentry *mountpoint;
1512};
1513static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1514{
1515        struct detach_data *data = _data;
1516
1517        if (d_mountpoint(dentry)) {
1518                __dget_dlock(dentry);
1519                data->mountpoint = dentry;
1520                return D_WALK_QUIT;
1521        }
1522
1523        return select_collect(&data->select, dentry);
1524}
1525
1526static void check_and_drop(void *_data)
1527{
1528        struct detach_data *data = _data;
1529
1530        if (!data->mountpoint && list_empty(&data->select.dispose))
1531                __d_drop(data->select.start);
1532}
1533
1534/**
1535 * d_invalidate - detach submounts, prune dcache, and drop
1536 * @dentry: dentry to invalidate (aka detach, prune and drop)
1537 *
1538 * no dcache lock.
1539 *
1540 * The final d_drop is done as an atomic operation relative to
1541 * rename_lock ensuring there are no races with d_set_mounted.  This
1542 * ensures there are no unhashed dentries on the path to a mountpoint.
1543 */
1544void d_invalidate(struct dentry *dentry)
1545{
1546        /*
1547         * If it's already been dropped, return OK.
1548         */
1549        spin_lock(&dentry->d_lock);
1550        if (d_unhashed(dentry)) {
1551                spin_unlock(&dentry->d_lock);
1552                return;
1553        }
1554        spin_unlock(&dentry->d_lock);
1555
1556        /* Negative dentries can be dropped without further checks */
1557        if (!dentry->d_inode) {
1558                d_drop(dentry);
1559                return;
1560        }
1561
1562        for (;;) {
1563                struct detach_data data;
1564
1565                data.mountpoint = NULL;
1566                INIT_LIST_HEAD(&data.select.dispose);
1567                data.select.start = dentry;
1568                data.select.found = 0;
1569
1570                d_walk(dentry, &data, detach_and_collect, check_and_drop);
1571
1572                if (!list_empty(&data.select.dispose))
1573                        shrink_dentry_list(&data.select.dispose);
1574                else if (!data.mountpoint)
1575                        return;
1576
1577                if (data.mountpoint) {
1578                        detach_mounts(data.mountpoint);
1579                        dput(data.mountpoint);
1580                }
1581                cond_resched();
1582        }
1583}
1584EXPORT_SYMBOL(d_invalidate);
1585
1586/**
1587 * __d_alloc    -       allocate a dcache entry
1588 * @sb: filesystem it will belong to
1589 * @name: qstr of the name
1590 *
1591 * Allocates a dentry. It returns %NULL if there is insufficient memory
1592 * available. On a success the dentry is returned. The name passed in is
1593 * copied and the copy passed in may be reused after this call.
1594 */
1595 
1596struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1597{
1598        struct dentry *dentry;
1599        char *dname;
1600        int err;
1601
1602        dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1603        if (!dentry)
1604                return NULL;
1605
1606        /*
1607         * We guarantee that the inline name is always NUL-terminated.
1608         * This way the memcpy() done by the name switching in rename
1609         * will still always have a NUL at the end, even if we might
1610         * be overwriting an internal NUL character
1611         */
1612        dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1613        if (unlikely(!name)) {
1614                name = &slash_name;
1615                dname = dentry->d_iname;
1616        } else if (name->len > DNAME_INLINE_LEN-1) {
1617                size_t size = offsetof(struct external_name, name[1]);
1618                struct external_name *p = kmalloc(size + name->len,
1619                                                  GFP_KERNEL_ACCOUNT);
1620                if (!p) {
1621                        kmem_cache_free(dentry_cache, dentry); 
1622                        return NULL;
1623                }
1624                atomic_set(&p->u.count, 1);
1625                dname = p->name;
1626                if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1627                        kasan_unpoison_shadow(dname,
1628                                round_up(name->len + 1, sizeof(unsigned long)));
1629        } else  {
1630                dname = dentry->d_iname;
1631        }       
1632
1633        dentry->d_name.len = name->len;
1634        dentry->d_name.hash = name->hash;
1635        memcpy(dname, name->name, name->len);
1636        dname[name->len] = 0;
1637
1638        /* Make sure we always see the terminating NUL character */
1639        smp_wmb();
1640        dentry->d_name.name = dname;
1641
1642        dentry->d_lockref.count = 1;
1643        dentry->d_flags = 0;
1644        spin_lock_init(&dentry->d_lock);
1645        seqcount_init(&dentry->d_seq);
1646        dentry->d_inode = NULL;
1647        dentry->d_parent = dentry;
1648        dentry->d_sb = sb;
1649        dentry->d_op = NULL;
1650        dentry->d_fsdata = NULL;
1651        INIT_HLIST_BL_NODE(&dentry->d_hash);
1652        INIT_LIST_HEAD(&dentry->d_lru);
1653        INIT_LIST_HEAD(&dentry->d_subdirs);
1654        INIT_HLIST_NODE(&dentry->d_u.d_alias);
1655        INIT_LIST_HEAD(&dentry->d_child);
1656        d_set_d_op(dentry, dentry->d_sb->s_d_op);
1657
1658        if (dentry->d_op && dentry->d_op->d_init) {
1659                err = dentry->d_op->d_init(dentry);
1660                if (err) {
1661                        if (dname_external(dentry))
1662                                kfree(external_name(dentry));
1663                        kmem_cache_free(dentry_cache, dentry);
1664                        return NULL;
1665                }
1666        }
1667
1668        this_cpu_inc(nr_dentry);
1669
1670        return dentry;
1671}
1672
1673/**
1674 * d_alloc      -       allocate a dcache entry
1675 * @parent: parent of entry to allocate
1676 * @name: qstr of the name
1677 *
1678 * Allocates a dentry. It returns %NULL if there is insufficient memory
1679 * available. On a success the dentry is returned. The name passed in is
1680 * copied and the copy passed in may be reused after this call.
1681 */
1682struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1683{
1684        struct dentry *dentry = __d_alloc(parent->d_sb, name);
1685        if (!dentry)
1686                return NULL;
1687        dentry->d_flags |= DCACHE_RCUACCESS;
1688        spin_lock(&parent->d_lock);
1689        /*
1690         * don't need child lock because it is not subject
1691         * to concurrency here
1692         */
1693        __dget_dlock(parent);
1694        dentry->d_parent = parent;
1695        list_add(&dentry->d_child, &parent->d_subdirs);
1696        spin_unlock(&parent->d_lock);
1697
1698        return dentry;
1699}
1700EXPORT_SYMBOL(d_alloc);
1701
1702struct dentry *d_alloc_cursor(struct dentry * parent)
1703{
1704        struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1705        if (dentry) {
1706                dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1707                dentry->d_parent = dget(parent);
1708        }
1709        return dentry;
1710}
1711
1712/**
1713 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1714 * @sb: the superblock
1715 * @name: qstr of the name
1716 *
1717 * For a filesystem that just pins its dentries in memory and never
1718 * performs lookups at all, return an unhashed IS_ROOT dentry.
1719 */
1720struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1721{
1722        return __d_alloc(sb, name);
1723}
1724EXPORT_SYMBOL(d_alloc_pseudo);
1725
1726struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1727{
1728        struct qstr q;
1729
1730        q.name = name;
1731        q.hash_len = hashlen_string(parent, name);
1732        return d_alloc(parent, &q);
1733}
1734EXPORT_SYMBOL(d_alloc_name);
1735
1736void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1737{
1738        WARN_ON_ONCE(dentry->d_op);
1739        WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1740                                DCACHE_OP_COMPARE       |
1741                                DCACHE_OP_REVALIDATE    |
1742                                DCACHE_OP_WEAK_REVALIDATE       |
1743                                DCACHE_OP_DELETE        |
1744                                DCACHE_OP_REAL));
1745        dentry->d_op = op;
1746        if (!op)
1747                return;
1748        if (op->d_hash)
1749                dentry->d_flags |= DCACHE_OP_HASH;
1750        if (op->d_compare)
1751                dentry->d_flags |= DCACHE_OP_COMPARE;
1752        if (op->d_revalidate)
1753                dentry->d_flags |= DCACHE_OP_REVALIDATE;
1754        if (op->d_weak_revalidate)
1755                dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1756        if (op->d_delete)
1757                dentry->d_flags |= DCACHE_OP_DELETE;
1758        if (op->d_prune)
1759                dentry->d_flags |= DCACHE_OP_PRUNE;
1760        if (op->d_real)
1761                dentry->d_flags |= DCACHE_OP_REAL;
1762
1763}
1764EXPORT_SYMBOL(d_set_d_op);
1765
1766
1767/*
1768 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1769 * @dentry - The dentry to mark
1770 *
1771 * Mark a dentry as falling through to the lower layer (as set with
1772 * d_pin_lower()).  This flag may be recorded on the medium.
1773 */
1774void d_set_fallthru(struct dentry *dentry)
1775{
1776        spin_lock(&dentry->d_lock);
1777        dentry->d_flags |= DCACHE_FALLTHRU;
1778        spin_unlock(&dentry->d_lock);
1779}
1780EXPORT_SYMBOL(d_set_fallthru);
1781
1782static unsigned d_flags_for_inode(struct inode *inode)
1783{
1784        unsigned add_flags = DCACHE_REGULAR_TYPE;
1785
1786        if (!inode)
1787                return DCACHE_MISS_TYPE;
1788
1789        if (S_ISDIR(inode->i_mode)) {
1790                add_flags = DCACHE_DIRECTORY_TYPE;
1791                if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1792                        if (unlikely(!inode->i_op->lookup))
1793                                add_flags = DCACHE_AUTODIR_TYPE;
1794                        else
1795                                inode->i_opflags |= IOP_LOOKUP;
1796                }
1797                goto type_determined;
1798        }
1799
1800        if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1801                if (unlikely(inode->i_op->get_link)) {
1802                        add_flags = DCACHE_SYMLINK_TYPE;
1803                        goto type_determined;
1804                }
1805                inode->i_opflags |= IOP_NOFOLLOW;
1806        }
1807
1808        if (unlikely(!S_ISREG(inode->i_mode)))
1809                add_flags = DCACHE_SPECIAL_TYPE;
1810
1811type_determined:
1812        if (unlikely(IS_AUTOMOUNT(inode)))
1813                add_flags |= DCACHE_NEED_AUTOMOUNT;
1814        return add_flags;
1815}
1816
1817static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1818{
1819        unsigned add_flags = d_flags_for_inode(inode);
1820        WARN_ON(d_in_lookup(dentry));
1821
1822        spin_lock(&dentry->d_lock);
1823        hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1824        raw_write_seqcount_begin(&dentry->d_seq);
1825        __d_set_inode_and_type(dentry, inode, add_flags);
1826        raw_write_seqcount_end(&dentry->d_seq);
1827        fsnotify_update_flags(dentry);
1828        spin_unlock(&dentry->d_lock);
1829}
1830
1831/**
1832 * d_instantiate - fill in inode information for a dentry
1833 * @entry: dentry to complete
1834 * @inode: inode to attach to this dentry
1835 *
1836 * Fill in inode information in the entry.
1837 *
1838 * This turns negative dentries into productive full members
1839 * of society.
1840 *
1841 * NOTE! This assumes that the inode count has been incremented
1842 * (or otherwise set) by the caller to indicate that it is now
1843 * in use by the dcache.
1844 */
1845 
1846void d_instantiate(struct dentry *entry, struct inode * inode)
1847{
1848        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1849        if (inode) {
1850                security_d_instantiate(entry, inode);
1851                spin_lock(&inode->i_lock);
1852                __d_instantiate(entry, inode);
1853                spin_unlock(&inode->i_lock);
1854        }
1855}
1856EXPORT_SYMBOL(d_instantiate);
1857
1858/**
1859 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1860 * @entry: dentry to complete
1861 * @inode: inode to attach to this dentry
1862 *
1863 * Fill in inode information in the entry.  If a directory alias is found, then
1864 * return an error (and drop inode).  Together with d_materialise_unique() this
1865 * guarantees that a directory inode may never have more than one alias.
1866 */
1867int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1868{
1869        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1870
1871        security_d_instantiate(entry, inode);
1872        spin_lock(&inode->i_lock);
1873        if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1874                spin_unlock(&inode->i_lock);
1875                iput(inode);
1876                return -EBUSY;
1877        }
1878        __d_instantiate(entry, inode);
1879        spin_unlock(&inode->i_lock);
1880
1881        return 0;
1882}
1883EXPORT_SYMBOL(d_instantiate_no_diralias);
1884
1885struct dentry *d_make_root(struct inode *root_inode)
1886{
1887        struct dentry *res = NULL;
1888
1889        if (root_inode) {
1890                res = __d_alloc(root_inode->i_sb, NULL);
1891                if (res)
1892                        d_instantiate(res, root_inode);
1893                else
1894                        iput(root_inode);
1895        }
1896        return res;
1897}
1898EXPORT_SYMBOL(d_make_root);
1899
1900static struct dentry * __d_find_any_alias(struct inode *inode)
1901{
1902        struct dentry *alias;
1903
1904        if (hlist_empty(&inode->i_dentry))
1905                return NULL;
1906        alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1907        __dget(alias);
1908        return alias;
1909}
1910
1911/**
1912 * d_find_any_alias - find any alias for a given inode
1913 * @inode: inode to find an alias for
1914 *
1915 * If any aliases exist for the given inode, take and return a
1916 * reference for one of them.  If no aliases exist, return %NULL.
1917 */
1918struct dentry *d_find_any_alias(struct inode *inode)
1919{
1920        struct dentry *de;
1921
1922        spin_lock(&inode->i_lock);
1923        de = __d_find_any_alias(inode);
1924        spin_unlock(&inode->i_lock);
1925        return de;
1926}
1927EXPORT_SYMBOL(d_find_any_alias);
1928
1929static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1930{
1931        struct dentry *tmp;
1932        struct dentry *res;
1933        unsigned add_flags;
1934
1935        if (!inode)
1936                return ERR_PTR(-ESTALE);
1937        if (IS_ERR(inode))
1938                return ERR_CAST(inode);
1939
1940        res = d_find_any_alias(inode);
1941        if (res)
1942                goto out_iput;
1943
1944        tmp = __d_alloc(inode->i_sb, NULL);
1945        if (!tmp) {
1946                res = ERR_PTR(-ENOMEM);
1947                goto out_iput;
1948        }
1949
1950        security_d_instantiate(tmp, inode);
1951        spin_lock(&inode->i_lock);
1952        res = __d_find_any_alias(inode);
1953        if (res) {
1954                spin_unlock(&inode->i_lock);
1955                dput(tmp);
1956                goto out_iput;
1957        }
1958
1959        /* attach a disconnected dentry */
1960        add_flags = d_flags_for_inode(inode);
1961
1962        if (disconnected)
1963                add_flags |= DCACHE_DISCONNECTED;
1964
1965        spin_lock(&tmp->d_lock);
1966        __d_set_inode_and_type(tmp, inode, add_flags);
1967        hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1968        hlist_bl_lock(&tmp->d_sb->s_anon);
1969        hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1970        hlist_bl_unlock(&tmp->d_sb->s_anon);
1971        spin_unlock(&tmp->d_lock);
1972        spin_unlock(&inode->i_lock);
1973
1974        return tmp;
1975
1976 out_iput:
1977        iput(inode);
1978        return res;
1979}
1980
1981/**
1982 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1983 * @inode: inode to allocate the dentry for
1984 *
1985 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1986 * similar open by handle operations.  The returned dentry may be anonymous,
1987 * or may have a full name (if the inode was already in the cache).
1988 *
1989 * When called on a directory inode, we must ensure that the inode only ever
1990 * has one dentry.  If a dentry is found, that is returned instead of
1991 * allocating a new one.
1992 *
1993 * On successful return, the reference to the inode has been transferred
1994 * to the dentry.  In case of an error the reference on the inode is released.
1995 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1996 * be passed in and the error will be propagated to the return value,
1997 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1998 */
1999struct dentry *d_obtain_alias(struct inode *inode)
2000{
2001        return __d_obtain_alias(inode, 1);
2002}
2003EXPORT_SYMBOL(d_obtain_alias);
2004
2005/**
2006 * d_obtain_root - find or allocate a dentry for a given inode
2007 * @inode: inode to allocate the dentry for
2008 *
2009 * Obtain an IS_ROOT dentry for the root of a filesystem.
2010 *
2011 * We must ensure that directory inodes only ever have one dentry.  If a
2012 * dentry is found, that is returned instead of allocating a new one.
2013 *
2014 * On successful return, the reference to the inode has been transferred
2015 * to the dentry.  In case of an error the reference on the inode is
2016 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2017 * error will be propagate to the return value, with a %NULL @inode
2018 * replaced by ERR_PTR(-ESTALE).
2019 */
2020struct dentry *d_obtain_root(struct inode *inode)
2021{
2022        return __d_obtain_alias(inode, 0);
2023}
2024EXPORT_SYMBOL(d_obtain_root);
2025
2026/**
2027 * d_add_ci - lookup or allocate new dentry with case-exact name
2028 * @inode:  the inode case-insensitive lookup has found
2029 * @dentry: the negative dentry that was passed to the parent's lookup func
2030 * @name:   the case-exact name to be associated with the returned dentry
2031 *
2032 * This is to avoid filling the dcache with case-insensitive names to the
2033 * same inode, only the actual correct case is stored in the dcache for
2034 * case-insensitive filesystems.
2035 *
2036 * For a case-insensitive lookup match and if the the case-exact dentry
2037 * already exists in in the dcache, use it and return it.
2038 *
2039 * If no entry exists with the exact case name, allocate new dentry with
2040 * the exact case, and return the spliced entry.
2041 */
2042struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2043                        struct qstr *name)
2044{
2045        struct dentry *found, *res;
2046
2047        /*
2048         * First check if a dentry matching the name already exists,
2049         * if not go ahead and create it now.
2050         */
2051        found = d_hash_and_lookup(dentry->d_parent, name);
2052        if (found) {
2053                iput(inode);
2054                return found;
2055        }
2056        if (d_in_lookup(dentry)) {
2057                found = d_alloc_parallel(dentry->d_parent, name,
2058                                        dentry->d_wait);
2059                if (IS_ERR(found) || !d_in_lookup(found)) {
2060                        iput(inode);
2061                        return found;
2062                }
2063        } else {
2064                found = d_alloc(dentry->d_parent, name);
2065                if (!found) {
2066                        iput(inode);
2067                        return ERR_PTR(-ENOMEM);
2068                } 
2069        }
2070        res = d_splice_alias(inode, found);
2071        if (res) {
2072                dput(found);
2073                return res;
2074        }
2075        return found;
2076}
2077EXPORT_SYMBOL(d_add_ci);
2078
2079
2080static inline bool d_same_name(const struct dentry *dentry,
2081                                const struct dentry *parent,
2082                                const struct qstr *name)
2083{
2084        if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2085                if (dentry->d_name.len != name->len)
2086                        return false;
2087                return dentry_cmp(dentry, name->name, name->len) == 0;
2088        }
2089        return parent->d_op->d_compare(dentry,
2090                                       dentry->d_name.len, dentry->d_name.name,
2091                                       name) == 0;
2092}
2093
2094/**
2095 * __d_lookup_rcu - search for a dentry (racy, store-free)
2096 * @parent: parent dentry
2097 * @name: qstr of name we wish to find
2098 * @seqp: returns d_seq value at the point where the dentry was found
2099 * Returns: dentry, or NULL
2100 *
2101 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2102 * resolution (store-free path walking) design described in
2103 * Documentation/filesystems/path-lookup.txt.
2104 *
2105 * This is not to be used outside core vfs.
2106 *
2107 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2108 * held, and rcu_read_lock held. The returned dentry must not be stored into
2109 * without taking d_lock and checking d_seq sequence count against @seq
2110 * returned here.
2111 *
2112 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2113 * function.
2114 *
2115 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2116 * the returned dentry, so long as its parent's seqlock is checked after the
2117 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2118 * is formed, giving integrity down the path walk.
2119 *
2120 * NOTE! The caller *has* to check the resulting dentry against the sequence
2121 * number we've returned before using any of the resulting dentry state!
2122 */
2123struct dentry *__d_lookup_rcu(const struct dentry *parent,
2124                                const struct qstr *name,
2125                                unsigned *seqp)
2126{
2127        u64 hashlen = name->hash_len;
2128        const unsigned char *str = name->name;
2129        struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2130        struct hlist_bl_node *node;
2131        struct dentry *dentry;
2132
2133        /*
2134         * Note: There is significant duplication with __d_lookup_rcu which is
2135         * required to prevent single threaded performance regressions
2136         * especially on architectures where smp_rmb (in seqcounts) are costly.
2137         * Keep the two functions in sync.
2138         */
2139
2140        /*
2141         * The hash list is protected using RCU.
2142         *
2143         * Carefully use d_seq when comparing a candidate dentry, to avoid
2144         * races with d_move().
2145         *
2146         * It is possible that concurrent renames can mess up our list
2147         * walk here and result in missing our dentry, resulting in the
2148         * false-negative result. d_lookup() protects against concurrent
2149         * renames using rename_lock seqlock.
2150         *
2151         * See Documentation/filesystems/path-lookup.txt for more details.
2152         */
2153        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2154                unsigned seq;
2155
2156seqretry:
2157                /*
2158                 * The dentry sequence count protects us from concurrent
2159                 * renames, and thus protects parent and name fields.
2160                 *
2161                 * The caller must perform a seqcount check in order
2162                 * to do anything useful with the returned dentry.
2163                 *
2164                 * NOTE! We do a "raw" seqcount_begin here. That means that
2165                 * we don't wait for the sequence count to stabilize if it
2166                 * is in the middle of a sequence change. If we do the slow
2167                 * dentry compare, we will do seqretries until it is stable,
2168                 * and if we end up with a successful lookup, we actually
2169                 * want to exit RCU lookup anyway.
2170                 *
2171                 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2172                 * we are still guaranteed NUL-termination of ->d_name.name.
2173                 */
2174                seq = raw_seqcount_begin(&dentry->d_seq);
2175                if (dentry->d_parent != parent)
2176                        continue;
2177                if (d_unhashed(dentry))
2178                        continue;
2179
2180                if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2181                        int tlen;
2182                        const char *tname;
2183                        if (dentry->d_name.hash != hashlen_hash(hashlen))
2184                                continue;
2185                        tlen = dentry->d_name.len;
2186                        tname = dentry->d_name.name;
2187                        /* we want a consistent (name,len) pair */
2188                        if (read_seqcount_retry(&dentry->d_seq, seq)) {
2189                                cpu_relax();
2190                                goto seqretry;
2191                        }
2192                        if (parent->d_op->d_compare(dentry,
2193                                                    tlen, tname, name) != 0)
2194                                continue;
2195                } else {
2196                        if (dentry->d_name.hash_len != hashlen)
2197                                continue;
2198                        if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2199                                continue;
2200                }
2201                *seqp = seq;
2202                return dentry;
2203        }
2204        return NULL;
2205}
2206
2207/**
2208 * d_lookup - search for a dentry
2209 * @parent: parent dentry
2210 * @name: qstr of name we wish to find
2211 * Returns: dentry, or NULL
2212 *
2213 * d_lookup searches the children of the parent dentry for the name in
2214 * question. If the dentry is found its reference count is incremented and the
2215 * dentry is returned. The caller must use dput to free the entry when it has
2216 * finished using it. %NULL is returned if the dentry does not exist.
2217 */
2218struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2219{
2220        struct dentry *dentry;
2221        unsigned seq;
2222
2223        do {
2224                seq = read_seqbegin(&rename_lock);
2225                dentry = __d_lookup(parent, name);
2226                if (dentry)
2227                        break;
2228        } while (read_seqretry(&rename_lock, seq));
2229        return dentry;
2230}
2231EXPORT_SYMBOL(d_lookup);
2232
2233/**
2234 * __d_lookup - search for a dentry (racy)
2235 * @parent: parent dentry
2236 * @name: qstr of name we wish to find
2237 * Returns: dentry, or NULL
2238 *
2239 * __d_lookup is like d_lookup, however it may (rarely) return a
2240 * false-negative result due to unrelated rename activity.
2241 *
2242 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2243 * however it must be used carefully, eg. with a following d_lookup in
2244 * the case of failure.
2245 *
2246 * __d_lookup callers must be commented.
2247 */
2248struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2249{
2250        unsigned int hash = name->hash;
2251        struct hlist_bl_head *b = d_hash(hash);
2252        struct hlist_bl_node *node;
2253        struct dentry *found = NULL;
2254        struct dentry *dentry;
2255
2256        /*
2257         * Note: There is significant duplication with __d_lookup_rcu which is
2258         * required to prevent single threaded performance regressions
2259         * especially on architectures where smp_rmb (in seqcounts) are costly.
2260         * Keep the two functions in sync.
2261         */
2262
2263        /*
2264         * The hash list is protected using RCU.
2265         *
2266         * Take d_lock when comparing a candidate dentry, to avoid races
2267         * with d_move().
2268         *
2269         * It is possible that concurrent renames can mess up our list
2270         * walk here and result in missing our dentry, resulting in the
2271         * false-negative result. d_lookup() protects against concurrent
2272         * renames using rename_lock seqlock.
2273         *
2274         * See Documentation/filesystems/path-lookup.txt for more details.
2275         */
2276        rcu_read_lock();
2277        
2278        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2279
2280                if (dentry->d_name.hash != hash)
2281                        continue;
2282
2283                spin_lock(&dentry->d_lock);
2284                if (dentry->d_parent != parent)
2285                        goto next;
2286                if (d_unhashed(dentry))
2287                        goto next;
2288
2289                if (!d_same_name(dentry, parent, name))
2290                        goto next;
2291
2292                dentry->d_lockref.count++;
2293                found = dentry;
2294                spin_unlock(&dentry->d_lock);
2295                break;
2296next:
2297                spin_unlock(&dentry->d_lock);
2298        }
2299        rcu_read_unlock();
2300
2301        return found;
2302}
2303
2304/**
2305 * d_hash_and_lookup - hash the qstr then search for a dentry
2306 * @dir: Directory to search in
2307 * @name: qstr of name we wish to find
2308 *
2309 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2310 */
2311struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2312{
2313        /*
2314         * Check for a fs-specific hash function. Note that we must
2315         * calculate the standard hash first, as the d_op->d_hash()
2316         * routine may choose to leave the hash value unchanged.
2317         */
2318        name->hash = full_name_hash(dir, name->name, name->len);
2319        if (dir->d_flags & DCACHE_OP_HASH) {
2320                int err = dir->d_op->d_hash(dir, name);
2321                if (unlikely(err < 0))
2322                        return ERR_PTR(err);
2323        }
2324        return d_lookup(dir, name);
2325}
2326EXPORT_SYMBOL(d_hash_and_lookup);
2327
2328/*
2329 * When a file is deleted, we have two options:
2330 * - turn this dentry into a negative dentry
2331 * - unhash this dentry and free it.
2332 *
2333 * Usually, we want to just turn this into
2334 * a negative dentry, but if anybody else is
2335 * currently using the dentry or the inode
2336 * we can't do that and we fall back on removing
2337 * it from the hash queues and waiting for
2338 * it to be deleted later when it has no users
2339 */
2340 
2341/**
2342 * d_delete - delete a dentry
2343 * @dentry: The dentry to delete
2344 *
2345 * Turn the dentry into a negative dentry if possible, otherwise
2346 * remove it from the hash queues so it can be deleted later
2347 */
2348 
2349void d_delete(struct dentry * dentry)
2350{
2351        struct inode *inode;
2352        int isdir = 0;
2353        /*
2354         * Are we the only user?
2355         */
2356again:
2357        spin_lock(&dentry->d_lock);
2358        inode = dentry->d_inode;
2359        isdir = S_ISDIR(inode->i_mode);
2360        if (dentry->d_lockref.count == 1) {
2361                if (!spin_trylock(&inode->i_lock)) {
2362                        spin_unlock(&dentry->d_lock);
2363                        cpu_relax();
2364                        goto again;
2365                }
2366                dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2367                dentry_unlink_inode(dentry);
2368                fsnotify_nameremove(dentry, isdir);
2369                return;
2370        }
2371
2372        if (!d_unhashed(dentry))
2373                __d_drop(dentry);
2374
2375        spin_unlock(&dentry->d_lock);
2376
2377        fsnotify_nameremove(dentry, isdir);
2378}
2379EXPORT_SYMBOL(d_delete);
2380
2381static void __d_rehash(struct dentry *entry)
2382{
2383        struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2384        BUG_ON(!d_unhashed(entry));
2385        hlist_bl_lock(b);
2386        hlist_bl_add_head_rcu(&entry->d_hash, b);
2387        hlist_bl_unlock(b);
2388}
2389
2390/**
2391 * d_rehash     - add an entry back to the hash
2392 * @entry: dentry to add to the hash
2393 *
2394 * Adds a dentry to the hash according to its name.
2395 */
2396 
2397void d_rehash(struct dentry * entry)
2398{
2399        spin_lock(&entry->d_lock);
2400        __d_rehash(entry);
2401        spin_unlock(&entry->d_lock);
2402}
2403EXPORT_SYMBOL(d_rehash);
2404
2405static inline unsigned start_dir_add(struct inode *dir)
2406{
2407
2408        for (;;) {
2409                unsigned n = dir->i_dir_seq;
2410                if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2411                        return n;
2412                cpu_relax();
2413        }
2414}
2415
2416static inline void end_dir_add(struct inode *dir, unsigned n)
2417{
2418        smp_store_release(&dir->i_dir_seq, n + 2);
2419}
2420
2421static void d_wait_lookup(struct dentry *dentry)
2422{
2423        if (d_in_lookup(dentry)) {
2424                DECLARE_WAITQUEUE(wait, current);
2425                add_wait_queue(dentry->d_wait, &wait);
2426                do {
2427                        set_current_state(TASK_UNINTERRUPTIBLE);
2428                        spin_unlock(&dentry->d_lock);
2429                        schedule();
2430                        spin_lock(&dentry->d_lock);
2431                } while (d_in_lookup(dentry));
2432        }
2433}
2434
2435struct dentry *d_alloc_parallel(struct dentry *parent,
2436                                const struct qstr *name,
2437                                wait_queue_head_t *wq)
2438{
2439        unsigned int hash = name->hash;
2440        struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2441        struct hlist_bl_node *node;
2442        struct dentry *new = d_alloc(parent, name);
2443        struct dentry *dentry;
2444        unsigned seq, r_seq, d_seq;
2445
2446        if (unlikely(!new))
2447                return ERR_PTR(-ENOMEM);
2448
2449retry:
2450        rcu_read_lock();
2451        seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2452        r_seq = read_seqbegin(&rename_lock);
2453        dentry = __d_lookup_rcu(parent, name, &d_seq);
2454        if (unlikely(dentry)) {
2455                if (!lockref_get_not_dead(&dentry->d_lockref)) {
2456                        rcu_read_unlock();
2457                        goto retry;
2458                }
2459                if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2460                        rcu_read_unlock();
2461                        dput(dentry);
2462                        goto retry;
2463                }
2464                rcu_read_unlock();
2465                dput(new);
2466                return dentry;
2467        }
2468        if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2469                rcu_read_unlock();
2470                goto retry;
2471        }
2472        hlist_bl_lock(b);
2473        if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2474                hlist_bl_unlock(b);
2475                rcu_read_unlock();
2476                goto retry;
2477        }
2478        /*
2479         * No changes for the parent since the beginning of d_lookup().
2480         * Since all removals from the chain happen with hlist_bl_lock(),
2481         * any potential in-lookup matches are going to stay here until
2482         * we unlock the chain.  All fields are stable in everything
2483         * we encounter.
2484         */
2485        hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2486                if (dentry->d_name.hash != hash)
2487                        continue;
2488                if (dentry->d_parent != parent)
2489                        continue;
2490                if (!d_same_name(dentry, parent, name))
2491                        continue;
2492                hlist_bl_unlock(b);
2493                /* now we can try to grab a reference */
2494                if (!lockref_get_not_dead(&dentry->d_lockref)) {
2495                        rcu_read_unlock();
2496                        goto retry;
2497                }
2498
2499                rcu_read_unlock();
2500                /*
2501                 * somebody is likely to be still doing lookup for it;
2502                 * wait for them to finish
2503                 */
2504                spin_lock(&dentry->d_lock);
2505                d_wait_lookup(dentry);
2506                /*
2507                 * it's not in-lookup anymore; in principle we should repeat
2508                 * everything from dcache lookup, but it's likely to be what
2509                 * d_lookup() would've found anyway.  If it is, just return it;
2510                 * otherwise we really have to repeat the whole thing.
2511                 */
2512                if (unlikely(dentry->d_name.hash != hash))
2513                        goto mismatch;
2514                if (unlikely(dentry->d_parent != parent))
2515                        goto mismatch;
2516                if (unlikely(d_unhashed(dentry)))
2517                        goto mismatch;
2518                if (unlikely(!d_same_name(dentry, parent, name)))
2519                        goto mismatch;
2520                /* OK, it *is* a hashed match; return it */
2521                spin_unlock(&dentry->d_lock);
2522                dput(new);
2523                return dentry;
2524        }
2525        rcu_read_unlock();
2526        /* we can't take ->d_lock here; it's OK, though. */
2527        new->d_flags |= DCACHE_PAR_LOOKUP;
2528        new->d_wait = wq;
2529        hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2530        hlist_bl_unlock(b);
2531        return new;
2532mismatch:
2533        spin_unlock(&dentry->d_lock);
2534        dput(dentry);
2535        goto retry;
2536}
2537EXPORT_SYMBOL(d_alloc_parallel);
2538
2539void __d_lookup_done(struct dentry *dentry)
2540{
2541        struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2542                                                 dentry->d_name.hash);
2543        hlist_bl_lock(b);
2544        dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2545        __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2546        wake_up_all(dentry->d_wait);
2547        dentry->d_wait = NULL;
2548        hlist_bl_unlock(b);
2549        INIT_HLIST_NODE(&dentry->d_u.d_alias);
2550        INIT_LIST_HEAD(&dentry->d_lru);
2551}
2552EXPORT_SYMBOL(__d_lookup_done);
2553
2554/* inode->i_lock held if inode is non-NULL */
2555
2556static inline void __d_add(struct dentry *dentry, struct inode *inode)
2557{
2558        struct inode *dir = NULL;
2559        unsigned n;
2560        spin_lock(&dentry->d_lock);
2561        if (unlikely(d_in_lookup(dentry))) {
2562                dir = dentry->d_parent->d_inode;
2563                n = start_dir_add(dir);
2564                __d_lookup_done(dentry);
2565        }
2566        if (inode) {
2567                unsigned add_flags = d_flags_for_inode(inode);
2568                hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2569                raw_write_seqcount_begin(&dentry->d_seq);
2570                __d_set_inode_and_type(dentry, inode, add_flags);
2571                raw_write_seqcount_end(&dentry->d_seq);
2572                fsnotify_update_flags(dentry);
2573        }
2574        __d_rehash(dentry);
2575        if (dir)
2576                end_dir_add(dir, n);
2577        spin_unlock(&dentry->d_lock);
2578        if (inode)
2579                spin_unlock(&inode->i_lock);
2580}
2581
2582/**
2583 * d_add - add dentry to hash queues
2584 * @entry: dentry to add
2585 * @inode: The inode to attach to this dentry
2586 *
2587 * This adds the entry to the hash queues and initializes @inode.
2588 * The entry was actually filled in earlier during d_alloc().
2589 */
2590
2591void d_add(struct dentry *entry, struct inode *inode)
2592{
2593        if (inode) {
2594                security_d_instantiate(entry, inode);
2595                spin_lock(&inode->i_lock);
2596        }
2597        __d_add(entry, inode);
2598}
2599EXPORT_SYMBOL(d_add);
2600
2601/**
2602 * d_exact_alias - find and hash an exact unhashed alias
2603 * @entry: dentry to add
2604 * @inode: The inode to go with this dentry
2605 *
2606 * If an unhashed dentry with the same name/parent and desired
2607 * inode already exists, hash and return it.  Otherwise, return
2608 * NULL.
2609 *
2610 * Parent directory should be locked.
2611 */
2612struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2613{
2614        struct dentry *alias;
2615        unsigned int hash = entry->d_name.hash;
2616
2617        spin_lock(&inode->i_lock);
2618        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2619                /*
2620                 * Don't need alias->d_lock here, because aliases with
2621                 * d_parent == entry->d_parent are not subject to name or
2622                 * parent changes, because the parent inode i_mutex is held.
2623                 */
2624                if (alias->d_name.hash != hash)
2625                        continue;
2626                if (alias->d_parent != entry->d_parent)
2627                        continue;
2628                if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2629                        continue;
2630                spin_lock(&alias->d_lock);
2631                if (!d_unhashed(alias)) {
2632                        spin_unlock(&alias->d_lock);
2633                        alias = NULL;
2634                } else {
2635                        __dget_dlock(alias);
2636                        __d_rehash(alias);
2637                        spin_unlock(&alias->d_lock);
2638                }
2639                spin_unlock(&inode->i_lock);
2640                return alias;
2641        }
2642        spin_unlock(&inode->i_lock);
2643        return NULL;
2644}
2645EXPORT_SYMBOL(d_exact_alias);
2646
2647/**
2648 * dentry_update_name_case - update case insensitive dentry with a new name
2649 * @dentry: dentry to be updated
2650 * @name: new name
2651 *
2652 * Update a case insensitive dentry with new case of name.
2653 *
2654 * dentry must have been returned by d_lookup with name @name. Old and new
2655 * name lengths must match (ie. no d_compare which allows mismatched name
2656 * lengths).
2657 *
2658 * Parent inode i_mutex must be held over d_lookup and into this call (to
2659 * keep renames and concurrent inserts, and readdir(2) away).
2660 */
2661void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2662{
2663        BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2664        BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2665
2666        spin_lock(&dentry->d_lock);
2667        write_seqcount_begin(&dentry->d_seq);
2668        memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2669        write_seqcount_end(&dentry->d_seq);
2670        spin_unlock(&dentry->d_lock);
2671}
2672EXPORT_SYMBOL(dentry_update_name_case);
2673
2674static void swap_names(struct dentry *dentry, struct dentry *target)
2675{
2676        if (unlikely(dname_external(target))) {
2677                if (unlikely(dname_external(dentry))) {
2678                        /*
2679                         * Both external: swap the pointers
2680                         */
2681                        swap(target->d_name.name, dentry->d_name.name);
2682                } else {
2683                        /*
2684                         * dentry:internal, target:external.  Steal target's
2685                         * storage and make target internal.
2686                         */
2687                        memcpy(target->d_iname, dentry->d_name.name,
2688                                        dentry->d_name.len + 1);
2689                        dentry->d_name.name = target->d_name.name;
2690                        target->d_name.name = target->d_iname;
2691                }
2692        } else {
2693                if (unlikely(dname_external(dentry))) {
2694                        /*
2695                         * dentry:external, target:internal.  Give dentry's
2696                         * storage to target and make dentry internal
2697                         */
2698                        memcpy(dentry->d_iname, target->d_name.name,
2699                                        target->d_name.len + 1);
2700                        target->d_name.name = dentry->d_name.name;
2701                        dentry->d_name.name = dentry->d_iname;
2702                } else {
2703                        /*
2704                         * Both are internal.
2705                         */
2706                        unsigned int i;
2707                        BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2708                        kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2709                        kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2710                        for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2711                                swap(((long *) &dentry->d_iname)[i],
2712                                     ((long *) &target->d_iname)[i]);
2713                        }
2714                }
2715        }
2716        swap(dentry->d_name.hash_len, target->d_name.hash_len);
2717}
2718
2719static void copy_name(struct dentry *dentry, struct dentry *target)
2720{
2721        struct external_name *old_name = NULL;
2722        if (unlikely(dname_external(dentry)))
2723                old_name = external_name(dentry);
2724        if (unlikely(dname_external(target))) {
2725                atomic_inc(&external_name(target)->u.count);
2726                dentry->d_name = target->d_name;
2727        } else {
2728                memcpy(dentry->d_iname, target->d_name.name,
2729                                target->d_name.len + 1);
2730                dentry->d_name.name = dentry->d_iname;
2731                dentry->d_name.hash_len = target->d_name.hash_len;
2732        }
2733        if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2734                kfree_rcu(old_name, u.head);
2735}
2736
2737static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2738{
2739        /*
2740         * XXXX: do we really need to take target->d_lock?
2741         */
2742        if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2743                spin_lock(&target->d_parent->d_lock);
2744        else {
2745                if (d_ancestor(dentry->d_parent, target->d_parent)) {
2746                        spin_lock(&dentry->d_parent->d_lock);
2747                        spin_lock_nested(&target->d_parent->d_lock,
2748                                                DENTRY_D_LOCK_NESTED);
2749                } else {
2750                        spin_lock(&target->d_parent->d_lock);
2751                        spin_lock_nested(&dentry->d_parent->d_lock,
2752                                                DENTRY_D_LOCK_NESTED);
2753                }
2754        }
2755        if (target < dentry) {
2756                spin_lock_nested(&target->d_lock, 2);
2757                spin_lock_nested(&dentry->d_lock, 3);
2758        } else {
2759                spin_lock_nested(&dentry->d_lock, 2);
2760                spin_lock_nested(&target->d_lock, 3);
2761        }
2762}
2763
2764static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2765{
2766        if (target->d_parent != dentry->d_parent)
2767                spin_unlock(&dentry->d_parent->d_lock);
2768        if (target->d_parent != target)
2769                spin_unlock(&target->d_parent->d_lock);
2770        spin_unlock(&target->d_lock);
2771        spin_unlock(&dentry->d_lock);
2772}
2773
2774/*
2775 * When switching names, the actual string doesn't strictly have to
2776 * be preserved in the target - because we're dropping the target
2777 * anyway. As such, we can just do a simple memcpy() to copy over
2778 * the new name before we switch, unless we are going to rehash
2779 * it.  Note that if we *do* unhash the target, we are not allowed
2780 * to rehash it without giving it a new name/hash key - whether
2781 * we swap or overwrite the names here, resulting name won't match
2782 * the reality in filesystem; it's only there for d_path() purposes.
2783 * Note that all of this is happening under rename_lock, so the
2784 * any hash lookup seeing it in the middle of manipulations will
2785 * be discarded anyway.  So we do not care what happens to the hash
2786 * key in that case.
2787 */
2788/*
2789 * __d_move - move a dentry
2790 * @dentry: entry to move
2791 * @target: new dentry
2792 * @exchange: exchange the two dentries
2793 *
2794 * Update the dcache to reflect the move of a file name. Negative
2795 * dcache entries should not be moved in this way. Caller must hold
2796 * rename_lock, the i_mutex of the source and target directories,
2797 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2798 */
2799static void __d_move(struct dentry *dentry, struct dentry *target,
2800                     bool exchange)
2801{
2802        struct inode *dir = NULL;
2803        unsigned n;
2804        if (!dentry->d_inode)
2805                printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2806
2807        BUG_ON(d_ancestor(dentry, target));
2808        BUG_ON(d_ancestor(target, dentry));
2809
2810        dentry_lock_for_move(dentry, target);
2811        if (unlikely(d_in_lookup(target))) {
2812                dir = target->d_parent->d_inode;
2813                n = start_dir_add(dir);
2814                __d_lookup_done(target);
2815        }
2816
2817        write_seqcount_begin(&dentry->d_seq);
2818        write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2819
2820        /* unhash both */
2821        /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2822        __d_drop(dentry);
2823        __d_drop(target);
2824
2825        /* Switch the names.. */
2826        if (exchange)
2827                swap_names(dentry, target);
2828        else
2829                copy_name(dentry, target);
2830
2831        /* rehash in new place(s) */
2832        __d_rehash(dentry);
2833        if (exchange)
2834                __d_rehash(target);
2835
2836        /* ... and switch them in the tree */
2837        if (IS_ROOT(dentry)) {
2838                /* splicing a tree */
2839                dentry->d_flags |= DCACHE_RCUACCESS;
2840                dentry->d_parent = target->d_parent;
2841                target->d_parent = target;
2842                list_del_init(&target->d_child);
2843                list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2844        } else {
2845                /* swapping two dentries */
2846                swap(dentry->d_parent, target->d_parent);
2847                list_move(&target->d_child, &target->d_parent->d_subdirs);
2848                list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2849                if (exchange)
2850                        fsnotify_update_flags(target);
2851                fsnotify_update_flags(dentry);
2852        }
2853
2854        write_seqcount_end(&target->d_seq);
2855        write_seqcount_end(&dentry->d_seq);
2856
2857        if (dir)
2858                end_dir_add(dir, n);
2859        dentry_unlock_for_move(dentry, target);
2860}
2861
2862/*
2863 * d_move - move a dentry
2864 * @dentry: entry to move
2865 * @target: new dentry
2866 *
2867 * Update the dcache to reflect the move of a file name. Negative
2868 * dcache entries should not be moved in this way. See the locking
2869 * requirements for __d_move.
2870 */
2871void d_move(struct dentry *dentry, struct dentry *target)
2872{
2873        write_seqlock(&rename_lock);
2874        __d_move(dentry, target, false);
2875        write_sequnlock(&rename_lock);
2876}
2877EXPORT_SYMBOL(d_move);
2878
2879/*
2880 * d_exchange - exchange two dentries
2881 * @dentry1: first dentry
2882 * @dentry2: second dentry
2883 */
2884void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2885{
2886        write_seqlock(&rename_lock);
2887
2888        WARN_ON(!dentry1->d_inode);
2889        WARN_ON(!dentry2->d_inode);
2890        WARN_ON(IS_ROOT(dentry1));
2891        WARN_ON(IS_ROOT(dentry2));
2892
2893        __d_move(dentry1, dentry2, true);
2894
2895        write_sequnlock(&rename_lock);
2896}
2897
2898/**
2899 * d_ancestor - search for an ancestor
2900 * @p1: ancestor dentry
2901 * @p2: child dentry
2902 *
2903 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2904 * an ancestor of p2, else NULL.
2905 */
2906struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2907{
2908        struct dentry *p;
2909
2910        for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2911                if (p->d_parent == p1)
2912                        return p;
2913        }
2914        return NULL;
2915}
2916
2917/*
2918 * This helper attempts to cope with remotely renamed directories
2919 *
2920 * It assumes that the caller is already holding
2921 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2922 *
2923 * Note: If ever the locking in lock_rename() changes, then please
2924 * remember to update this too...
2925 */
2926static int __d_unalias(struct inode *inode,
2927                struct dentry *dentry, struct dentry *alias)
2928{
2929        struct mutex *m1 = NULL;
2930        struct rw_semaphore *m2 = NULL;
2931        int ret = -ESTALE;
2932
2933        /* If alias and dentry share a parent, then no extra locks required */
2934        if (alias->d_parent == dentry->d_parent)
2935                goto out_unalias;
2936
2937        /* See lock_rename() */
2938        if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2939                goto out_err;
2940        m1 = &dentry->d_sb->s_vfs_rename_mutex;
2941        if (!inode_trylock_shared(alias->d_parent->d_inode))
2942                goto out_err;
2943        m2 = &alias->d_parent->d_inode->i_rwsem;
2944out_unalias:
2945        __d_move(alias, dentry, false);
2946        ret = 0;
2947out_err:
2948        if (m2)
2949                up_read(m2);
2950        if (m1)
2951                mutex_unlock(m1);
2952        return ret;
2953}
2954
2955/**
2956 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2957 * @inode:  the inode which may have a disconnected dentry
2958 * @dentry: a negative dentry which we want to point to the inode.
2959 *
2960 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2961 * place of the given dentry and return it, else simply d_add the inode
2962 * to the dentry and return NULL.
2963 *
2964 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2965 * we should error out: directories can't have multiple aliases.
2966 *
2967 * This is needed in the lookup routine of any filesystem that is exportable
2968 * (via knfsd) so that we can build dcache paths to directories effectively.
2969 *
2970 * If a dentry was found and moved, then it is returned.  Otherwise NULL
2971 * is returned.  This matches the expected return value of ->lookup.
2972 *
2973 * Cluster filesystems may call this function with a negative, hashed dentry.
2974 * In that case, we know that the inode will be a regular file, and also this
2975 * will only occur during atomic_open. So we need to check for the dentry
2976 * being already hashed only in the final case.
2977 */
2978struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2979{
2980        if (IS_ERR(inode))
2981                return ERR_CAST(inode);
2982
2983        BUG_ON(!d_unhashed(dentry));
2984
2985        if (!inode)
2986                goto out;
2987
2988        security_d_instantiate(dentry, inode);
2989        spin_lock(&inode->i_lock);
2990        if (S_ISDIR(inode->i_mode)) {
2991                struct dentry *new = __d_find_any_alias(inode);
2992                if (unlikely(new)) {
2993                        /* The reference to new ensures it remains an alias */
2994                        spin_unlock(&inode->i_lock);
2995                        write_seqlock(&rename_lock);
2996                        if (unlikely(d_ancestor(new, dentry))) {
2997                                write_sequnlock(&rename_lock);
2998                                dput(new);
2999                                new = ERR_PTR(-ELOOP);
3000                                pr_warn_ratelimited(
3001                                        "VFS: Lookup of '%s' in %s %s"
3002                                        " would have caused loop\n",
3003                                        dentry->d_name.name,
3004                                        inode->i_sb->s_type->name,
3005                                        inode->i_sb->s_id);
3006                        } else if (!IS_ROOT(new)) {
3007                                int err = __d_unalias(inode, dentry, new);
3008                                write_sequnlock(&rename_lock);
3009                                if (err) {
3010                                        dput(new);
3011                                        new = ERR_PTR(err);
3012                                }
3013                        } else {
3014                                __d_move(new, dentry, false);
3015                                write_sequnlock(&rename_lock);
3016                        }
3017                        iput(inode);
3018                        return new;
3019                }
3020        }
3021out:
3022        __d_add(dentry, inode);
3023        return NULL;
3024}
3025EXPORT_SYMBOL(d_splice_alias);
3026
3027static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3028{
3029        *buflen -= namelen;
3030        if (*buflen < 0)
3031                return -ENAMETOOLONG;
3032        *buffer -= namelen;
3033        memcpy(*buffer, str, namelen);
3034        return 0;
3035}
3036
3037/**
3038 * prepend_name - prepend a pathname in front of current buffer pointer
3039 * @buffer: buffer pointer
3040 * @buflen: allocated length of the buffer
3041 * @name:   name string and length qstr structure
3042 *
3043 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3044 * make sure that either the old or the new name pointer and length are
3045 * fetched. However, there may be mismatch between length and pointer.
3046 * The length cannot be trusted, we need to copy it byte-by-byte until
3047 * the length is reached or a null byte is found. It also prepends "/" at
3048 * the beginning of the name. The sequence number check at the caller will
3049 * retry it again when a d_move() does happen. So any garbage in the buffer
3050 * due to mismatched pointer and length will be discarded.
3051 *
3052 * Data dependency barrier is needed to make sure that we see that terminating
3053 * NUL.  Alpha strikes again, film at 11...
3054 */
3055static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3056{
3057        const char *dname = ACCESS_ONCE(name->name);
3058        u32 dlen = ACCESS_ONCE(name->len);
3059        char *p;
3060
3061        smp_read_barrier_depends();
3062
3063        *buflen -= dlen + 1;
3064        if (*buflen < 0)
3065                return -ENAMETOOLONG;
3066        p = *buffer -= dlen + 1;
3067        *p++ = '/';
3068        while (dlen--) {
3069                char c = *dname++;
3070                if (!c)
3071                        break;
3072                *p++ = c;
3073        }
3074        return 0;
3075}
3076
3077/**
3078 * prepend_path - Prepend path string to a buffer
3079 * @path: the dentry/vfsmount to report
3080 * @root: root vfsmnt/dentry
3081 * @buffer: pointer to the end of the buffer
3082 * @buflen: pointer to buffer length
3083 *
3084 * The function will first try to write out the pathname without taking any
3085 * lock other than the RCU read lock to make sure that dentries won't go away.
3086 * It only checks the sequence number of the global rename_lock as any change
3087 * in the dentry's d_seq will be preceded by changes in the rename_lock
3088 * sequence number. If the sequence number had been changed, it will restart
3089 * the whole pathname back-tracing sequence again by taking the rename_lock.
3090 * In this case, there is no need to take the RCU read lock as the recursive
3091 * parent pointer references will keep the dentry chain alive as long as no
3092 * rename operation is performed.
3093 */
3094static int prepend_path(const struct path *path,
3095                        const struct path *root,
3096                        char **buffer, int *buflen)
3097{
3098        struct dentry *dentry;
3099        struct vfsmount *vfsmnt;
3100        struct mount *mnt;
3101        int error = 0;
3102        unsigned seq, m_seq = 0;
3103        char *bptr;
3104        int blen;
3105
3106        rcu_read_lock();
3107restart_mnt:
3108        read_seqbegin_or_lock(&mount_lock, &m_seq);
3109        seq = 0;
3110        rcu_read_lock();
3111restart:
3112        bptr = *buffer;
3113        blen = *buflen;
3114        error = 0;
3115        dentry = path->dentry;
3116        vfsmnt = path->mnt;
3117        mnt = real_mount(vfsmnt);
3118        read_seqbegin_or_lock(&rename_lock, &seq);
3119        while (dentry != root->dentry || vfsmnt != root->mnt) {
3120                struct dentry * parent;
3121
3122                if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3123                        struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3124                        /* Escaped? */
3125                        if (dentry != vfsmnt->mnt_root) {
3126                                bptr = *buffer;
3127                                blen = *buflen;
3128                                error = 3;
3129                                break;
3130                        }
3131                        /* Global root? */
3132                        if (mnt != parent) {
3133                                dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3134                                mnt = parent;
3135                                vfsmnt = &mnt->mnt;
3136                                continue;
3137                        }
3138                        if (!error)
3139                                error = is_mounted(vfsmnt) ? 1 : 2;
3140                        break;
3141                }
3142                parent = dentry->d_parent;
3143                prefetch(parent);
3144                error = prepend_name(&bptr, &blen, &dentry->d_name);
3145                if (error)
3146                        break;
3147
3148                dentry = parent;
3149        }
3150        if (!(seq & 1))
3151                rcu_read_unlock();
3152        if (need_seqretry(&rename_lock, seq)) {
3153                seq = 1;
3154                goto restart;
3155        }
3156        done_seqretry(&rename_lock, seq);
3157
3158        if (!(m_seq & 1))
3159                rcu_read_unlock();
3160        if (need_seqretry(&mount_lock, m_seq)) {
3161                m_seq = 1;
3162                goto restart_mnt;
3163        }
3164        done_seqretry(&mount_lock, m_seq);
3165
3166        if (error >= 0 && bptr == *buffer) {
3167                if (--blen < 0)
3168                        error = -ENAMETOOLONG;
3169                else
3170                        *--bptr = '/';
3171        }
3172        *buffer = bptr;
3173        *buflen = blen;
3174        return error;
3175}
3176
3177/**
3178 * __d_path - return the path of a dentry
3179 * @path: the dentry/vfsmount to report
3180 * @root: root vfsmnt/dentry
3181 * @buf: buffer to return value in
3182 * @buflen: buffer length
3183 *
3184 * Convert a dentry into an ASCII path name.
3185 *
3186 * Returns a pointer into the buffer or an error code if the
3187 * path was too long.
3188 *
3189 * "buflen" should be positive.
3190 *
3191 * If the path is not reachable from the supplied root, return %NULL.
3192 */
3193char *__d_path(const struct path *path,
3194               const struct path *root,
3195               char *buf, int buflen)
3196{
3197        char *res = buf + buflen;
3198        int error;
3199
3200        prepend(&res, &buflen, "\0", 1);
3201        error = prepend_path(path, root, &res, &buflen);
3202
3203        if (error < 0)
3204                return ERR_PTR(error);
3205        if (error > 0)
3206                return NULL;
3207        return res;
3208}
3209
3210char *d_absolute_path(const struct path *path,
3211               char *buf, int buflen)
3212{
3213        struct path root = {};
3214        char *res = buf + buflen;
3215        int error;
3216
3217        prepend(&res, &buflen, "\0", 1);
3218        error = prepend_path(path, &root, &res, &buflen);
3219
3220        if (error > 1)
3221                error = -EINVAL;
3222        if (error < 0)
3223                return ERR_PTR(error);
3224        return res;
3225}
3226
3227/*
3228 * same as __d_path but appends "(deleted)" for unlinked files.
3229 */
3230static int path_with_deleted(const struct path *path,
3231                             const struct path *root,
3232                             char **buf, int *buflen)
3233{
3234        prepend(buf, buflen, "\0", 1);
3235        if (d_unlinked(path->dentry)) {
3236                int error = prepend(buf, buflen, " (deleted)", 10);
3237                if (error)
3238                        return error;
3239        }
3240
3241        return prepend_path(path, root, buf, buflen);
3242}
3243
3244static int prepend_unreachable(char **buffer, int *buflen)
3245{
3246        return prepend(buffer, buflen, "(unreachable)", 13);
3247}
3248
3249static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3250{
3251        unsigned seq;
3252
3253        do {
3254                seq = read_seqcount_begin(&fs->seq);
3255                *root = fs->root;
3256        } while (read_seqcount_retry(&fs->seq, seq));
3257}
3258
3259/**
3260 * d_path - return the path of a dentry
3261 * @path: path to report
3262 * @buf: buffer to return value in
3263 * @buflen: buffer length
3264 *
3265 * Convert a dentry into an ASCII path name. If the entry has been deleted
3266 * the string " (deleted)" is appended. Note that this is ambiguous.
3267 *
3268 * Returns a pointer into the buffer or an error code if the path was
3269 * too long. Note: Callers should use the returned pointer, not the passed
3270 * in buffer, to use the name! The implementation often starts at an offset
3271 * into the buffer, and may leave 0 bytes at the start.
3272 *
3273 * "buflen" should be positive.
3274 */
3275char *d_path(const struct path *path, char *buf, int buflen)
3276{
3277        char *res = buf + buflen;
3278        struct path root;
3279        int error;
3280
3281        /*
3282         * We have various synthetic filesystems that never get mounted.  On
3283         * these filesystems dentries are never used for lookup purposes, and
3284         * thus don't need to be hashed.  They also don't need a name until a
3285         * user wants to identify the object in /proc/pid/fd/.  The little hack
3286         * below allows us to generate a name for these objects on demand:
3287         *
3288         * Some pseudo inodes are mountable.  When they are mounted
3289         * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3290         * and instead have d_path return the mounted path.
3291         */
3292        if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3293            (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3294                return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3295
3296        rcu_read_lock();
3297        get_fs_root_rcu(current->fs, &root);
3298        error = path_with_deleted(path, &root, &res, &buflen);
3299        rcu_read_unlock();
3300
3301        if (error < 0)
3302                res = ERR_PTR(error);
3303        return res;
3304}
3305EXPORT_SYMBOL(d_path);
3306
3307/*
3308 * Helper function for dentry_operations.d_dname() members
3309 */
3310char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3311                        const char *fmt, ...)
3312{
3313        va_list args;
3314        char temp[64];
3315        int sz;
3316
3317        va_start(args, fmt);
3318        sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3319        va_end(args);
3320
3321        if (sz > sizeof(temp) || sz > buflen)
3322                return ERR_PTR(-ENAMETOOLONG);
3323
3324        buffer += buflen - sz;
3325        return memcpy(buffer, temp, sz);
3326}
3327
3328char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3329{
3330        char *end = buffer + buflen;
3331        /* these dentries are never renamed, so d_lock is not needed */
3332        if (prepend(&end, &buflen, " (deleted)", 11) ||
3333            prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3334            prepend(&end, &buflen, "/", 1))  
3335                end = ERR_PTR(-ENAMETOOLONG);
3336        return end;
3337}
3338EXPORT_SYMBOL(simple_dname);
3339
3340/*
3341 * Write full pathname from the root of the filesystem into the buffer.
3342 */
3343static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3344{
3345        struct dentry *dentry;
3346        char *end, *retval;
3347        int len, seq = 0;
3348        int error = 0;
3349
3350        if (buflen < 2)
3351                goto Elong;
3352
3353        rcu_read_lock();
3354restart:
3355        dentry = d;
3356        end = buf + buflen;
3357        len = buflen;
3358        prepend(&end, &len, "\0", 1);
3359        /* Get '/' right */
3360        retval = end-1;
3361        *retval = '/';
3362        read_seqbegin_or_lock(&rename_lock, &seq);
3363        while (!IS_ROOT(dentry)) {
3364                struct dentry *parent = dentry->d_parent;
3365
3366                prefetch(parent);
3367                error = prepend_name(&end, &len, &dentry->d_name);
3368                if (error)
3369                        break;
3370
3371                retval = end;
3372                dentry = parent;
3373        }
3374        if (!(seq & 1))
3375                rcu_read_unlock();
3376        if (need_seqretry(&rename_lock, seq)) {
3377                seq = 1;
3378                goto restart;
3379        }
3380        done_seqretry(&rename_lock, seq);
3381        if (error)
3382                goto Elong;
3383        return retval;
3384Elong:
3385        return ERR_PTR(-ENAMETOOLONG);
3386}
3387
3388char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3389{
3390        return __dentry_path(dentry, buf, buflen);
3391}
3392EXPORT_SYMBOL(dentry_path_raw);
3393
3394char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3395{
3396        char *p = NULL;
3397        char *retval;
3398
3399        if (d_unlinked(dentry)) {
3400                p = buf + buflen;
3401                if (prepend(&p, &buflen, "//deleted", 10) != 0)
3402                        goto Elong;
3403                buflen++;
3404        }
3405        retval = __dentry_path(dentry, buf, buflen);
3406        if (!IS_ERR(retval) && p)
3407                *p = '/';       /* restore '/' overriden with '\0' */
3408        return retval;
3409Elong:
3410        return ERR_PTR(-ENAMETOOLONG);
3411}
3412
3413static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3414                                    struct path *pwd)
3415{
3416        unsigned seq;
3417
3418        do {
3419                seq = read_seqcount_begin(&fs->seq);
3420                *root = fs->root;
3421                *pwd = fs->pwd;
3422        } while (read_seqcount_retry(&fs->seq, seq));
3423}
3424
3425/*
3426 * NOTE! The user-level library version returns a
3427 * character pointer. The kernel system call just
3428 * returns the length of the buffer filled (which
3429 * includes the ending '\0' character), or a negative
3430 * error value. So libc would do something like
3431 *
3432 *      char *getcwd(char * buf, size_t size)
3433 *      {
3434 *              int retval;
3435 *
3436 *              retval = sys_getcwd(buf, size);
3437 *              if (retval >= 0)
3438 *                      return buf;
3439 *              errno = -retval;
3440 *              return NULL;
3441 *      }
3442 */
3443SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3444{
3445        int error;
3446        struct path pwd, root;
3447        char *page = __getname();
3448
3449        if (!page)
3450                return -ENOMEM;
3451
3452        rcu_read_lock();
3453        get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3454
3455        error = -ENOENT;
3456        if (!d_unlinked(pwd.dentry)) {
3457                unsigned long len;
3458                char *cwd = page + PATH_MAX;
3459                int buflen = PATH_MAX;
3460
3461                prepend(&cwd, &buflen, "\0", 1);
3462                error = prepend_path(&pwd, &root, &cwd, &buflen);
3463                rcu_read_unlock();
3464
3465                if (error < 0)
3466                        goto out;
3467
3468                /* Unreachable from current root */
3469                if (error > 0) {
3470                        error = prepend_unreachable(&cwd, &buflen);
3471                        if (error)
3472                                goto out;
3473                }
3474
3475                error = -ERANGE;
3476                len = PATH_MAX + page - cwd;
3477                if (len <= size) {
3478                        error = len;
3479                        if (copy_to_user(buf, cwd, len))
3480                                error = -EFAULT;
3481                }
3482        } else {
3483                rcu_read_unlock();
3484        }
3485
3486out:
3487        __putname(page);
3488        return error;
3489}
3490
3491/*
3492 * Test whether new_dentry is a subdirectory of old_dentry.
3493 *
3494 * Trivially implemented using the dcache structure
3495 */
3496
3497/**
3498 * is_subdir - is new dentry a subdirectory of old_dentry
3499 * @new_dentry: new dentry
3500 * @old_dentry: old dentry
3501 *
3502 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3503 * Returns false otherwise.
3504 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3505 */
3506  
3507bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3508{
3509        bool result;
3510        unsigned seq;
3511
3512        if (new_dentry == old_dentry)
3513                return true;
3514
3515        do {
3516                /* for restarting inner loop in case of seq retry */
3517                seq = read_seqbegin(&rename_lock);
3518                /*
3519                 * Need rcu_readlock to protect against the d_parent trashing
3520                 * due to d_move
3521                 */
3522                rcu_read_lock();
3523                if (d_ancestor(old_dentry, new_dentry))
3524                        result = true;
3525                else
3526                        result = false;
3527                rcu_read_unlock();
3528        } while (read_seqretry(&rename_lock, seq));
3529
3530        return result;
3531}
3532
3533static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3534{
3535        struct dentry *root = data;
3536        if (dentry != root) {
3537                if (d_unhashed(dentry) || !dentry->d_inode)
3538                        return D_WALK_SKIP;
3539
3540                if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3541                        dentry->d_flags |= DCACHE_GENOCIDE;
3542                        dentry->d_lockref.count--;
3543                }
3544        }
3545        return D_WALK_CONTINUE;
3546}
3547
3548void d_genocide(struct dentry *parent)
3549{
3550        d_walk(parent, parent, d_genocide_kill, NULL);
3551}
3552
3553void d_tmpfile(struct dentry *dentry, struct inode *inode)
3554{
3555        inode_dec_link_count(inode);
3556        BUG_ON(dentry->d_name.name != dentry->d_iname ||
3557                !hlist_unhashed(&dentry->d_u.d_alias) ||
3558                !d_unlinked(dentry));
3559        spin_lock(&dentry->d_parent->d_lock);
3560        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3561        dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3562                                (unsigned long long)inode->i_ino);
3563        spin_unlock(&dentry->d_lock);
3564        spin_unlock(&dentry->d_parent->d_lock);
3565        d_instantiate(dentry, inode);
3566}
3567EXPORT_SYMBOL(d_tmpfile);
3568
3569static __initdata unsigned long dhash_entries;
3570static int __init set_dhash_entries(char *str)
3571{
3572        if (!str)
3573                return 0;
3574        dhash_entries = simple_strtoul(str, &str, 0);
3575        return 1;
3576}
3577__setup("dhash_entries=", set_dhash_entries);
3578
3579static void __init dcache_init_early(void)
3580{
3581        /* If hashes are distributed across NUMA nodes, defer
3582         * hash allocation until vmalloc space is available.
3583         */
3584        if (hashdist)
3585                return;
3586
3587        dentry_hashtable =
3588                alloc_large_system_hash("Dentry cache",
3589                                        sizeof(struct hlist_bl_head),
3590                                        dhash_entries,
3591                                        13,
3592                                        HASH_EARLY | HASH_ZERO,
3593                                        &d_hash_shift,
3594                                        &d_hash_mask,
3595                                        0,
3596                                        0);
3597}
3598
3599static void __init dcache_init(void)
3600{
3601        /*
3602         * A constructor could be added for stable state like the lists,
3603         * but it is probably not worth it because of the cache nature
3604         * of the dcache.
3605         */
3606        dentry_cache = KMEM_CACHE(dentry,
3607                SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3608
3609        /* Hash may have been set up in dcache_init_early */
3610        if (!hashdist)
3611                return;
3612
3613        dentry_hashtable =
3614                alloc_large_system_hash("Dentry cache",
3615                                        sizeof(struct hlist_bl_head),
3616                                        dhash_entries,
3617                                        13,
3618                                        HASH_ZERO,
3619                                        &d_hash_shift,
3620                                        &d_hash_mask,
3621                                        0,
3622                                        0);
3623}
3624
3625/* SLAB cache for __getname() consumers */
3626struct kmem_cache *names_cachep __read_mostly;
3627EXPORT_SYMBOL(names_cachep);
3628
3629EXPORT_SYMBOL(d_genocide);
3630
3631void __init vfs_caches_init_early(void)
3632{
3633        int i;
3634
3635        for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3636                INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3637
3638        dcache_init_early();
3639        inode_init_early();
3640}
3641
3642void __init vfs_caches_init(void)
3643{
3644        names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3645                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3646
3647        dcache_init();
3648        inode_init();
3649        files_init();
3650        files_maxfiles_init();
3651        mnt_init();
3652        bdev_cache_init();
3653        chrdev_init();
3654}
3655