linux/fs/exec.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/exec.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * #!-checking implemented by tytso.
   9 */
  10/*
  11 * Demand-loading implemented 01.12.91 - no need to read anything but
  12 * the header into memory. The inode of the executable is put into
  13 * "current->executable", and page faults do the actual loading. Clean.
  14 *
  15 * Once more I can proudly say that linux stood up to being changed: it
  16 * was less than 2 hours work to get demand-loading completely implemented.
  17 *
  18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  19 * current->executable is only used by the procfs.  This allows a dispatch
  20 * table to check for several different types  of binary formats.  We keep
  21 * trying until we recognize the file or we run out of supported binary
  22 * formats.
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/mm.h>
  29#include <linux/vmacache.h>
  30#include <linux/stat.h>
  31#include <linux/fcntl.h>
  32#include <linux/swap.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/sched/mm.h>
  36#include <linux/sched/coredump.h>
  37#include <linux/sched/signal.h>
  38#include <linux/sched/numa_balancing.h>
  39#include <linux/sched/task.h>
  40#include <linux/pagemap.h>
  41#include <linux/perf_event.h>
  42#include <linux/highmem.h>
  43#include <linux/spinlock.h>
  44#include <linux/key.h>
  45#include <linux/personality.h>
  46#include <linux/binfmts.h>
  47#include <linux/utsname.h>
  48#include <linux/pid_namespace.h>
  49#include <linux/module.h>
  50#include <linux/namei.h>
  51#include <linux/mount.h>
  52#include <linux/security.h>
  53#include <linux/syscalls.h>
  54#include <linux/tsacct_kern.h>
  55#include <linux/cn_proc.h>
  56#include <linux/audit.h>
  57#include <linux/tracehook.h>
  58#include <linux/kmod.h>
  59#include <linux/fsnotify.h>
  60#include <linux/fs_struct.h>
  61#include <linux/pipe_fs_i.h>
  62#include <linux/oom.h>
  63#include <linux/compat.h>
  64#include <linux/vmalloc.h>
  65
  66#include <linux/uaccess.h>
  67#include <asm/mmu_context.h>
  68#include <asm/tlb.h>
  69
  70#include <trace/events/task.h>
  71#include "internal.h"
  72
  73#include <trace/events/sched.h>
  74
  75int suid_dumpable = 0;
  76
  77static LIST_HEAD(formats);
  78static DEFINE_RWLOCK(binfmt_lock);
  79
  80void __register_binfmt(struct linux_binfmt * fmt, int insert)
  81{
  82        BUG_ON(!fmt);
  83        if (WARN_ON(!fmt->load_binary))
  84                return;
  85        write_lock(&binfmt_lock);
  86        insert ? list_add(&fmt->lh, &formats) :
  87                 list_add_tail(&fmt->lh, &formats);
  88        write_unlock(&binfmt_lock);
  89}
  90
  91EXPORT_SYMBOL(__register_binfmt);
  92
  93void unregister_binfmt(struct linux_binfmt * fmt)
  94{
  95        write_lock(&binfmt_lock);
  96        list_del(&fmt->lh);
  97        write_unlock(&binfmt_lock);
  98}
  99
 100EXPORT_SYMBOL(unregister_binfmt);
 101
 102static inline void put_binfmt(struct linux_binfmt * fmt)
 103{
 104        module_put(fmt->module);
 105}
 106
 107bool path_noexec(const struct path *path)
 108{
 109        return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 110               (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 111}
 112
 113#ifdef CONFIG_USELIB
 114/*
 115 * Note that a shared library must be both readable and executable due to
 116 * security reasons.
 117 *
 118 * Also note that we take the address to load from from the file itself.
 119 */
 120SYSCALL_DEFINE1(uselib, const char __user *, library)
 121{
 122        struct linux_binfmt *fmt;
 123        struct file *file;
 124        struct filename *tmp = getname(library);
 125        int error = PTR_ERR(tmp);
 126        static const struct open_flags uselib_flags = {
 127                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 128                .acc_mode = MAY_READ | MAY_EXEC,
 129                .intent = LOOKUP_OPEN,
 130                .lookup_flags = LOOKUP_FOLLOW,
 131        };
 132
 133        if (IS_ERR(tmp))
 134                goto out;
 135
 136        file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 137        putname(tmp);
 138        error = PTR_ERR(file);
 139        if (IS_ERR(file))
 140                goto out;
 141
 142        error = -EINVAL;
 143        if (!S_ISREG(file_inode(file)->i_mode))
 144                goto exit;
 145
 146        error = -EACCES;
 147        if (path_noexec(&file->f_path))
 148                goto exit;
 149
 150        fsnotify_open(file);
 151
 152        error = -ENOEXEC;
 153
 154        read_lock(&binfmt_lock);
 155        list_for_each_entry(fmt, &formats, lh) {
 156                if (!fmt->load_shlib)
 157                        continue;
 158                if (!try_module_get(fmt->module))
 159                        continue;
 160                read_unlock(&binfmt_lock);
 161                error = fmt->load_shlib(file);
 162                read_lock(&binfmt_lock);
 163                put_binfmt(fmt);
 164                if (error != -ENOEXEC)
 165                        break;
 166        }
 167        read_unlock(&binfmt_lock);
 168exit:
 169        fput(file);
 170out:
 171        return error;
 172}
 173#endif /* #ifdef CONFIG_USELIB */
 174
 175#ifdef CONFIG_MMU
 176/*
 177 * The nascent bprm->mm is not visible until exec_mmap() but it can
 178 * use a lot of memory, account these pages in current->mm temporary
 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 180 * change the counter back via acct_arg_size(0).
 181 */
 182static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 183{
 184        struct mm_struct *mm = current->mm;
 185        long diff = (long)(pages - bprm->vma_pages);
 186
 187        if (!mm || !diff)
 188                return;
 189
 190        bprm->vma_pages = pages;
 191        add_mm_counter(mm, MM_ANONPAGES, diff);
 192}
 193
 194static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 195                int write)
 196{
 197        struct page *page;
 198        int ret;
 199        unsigned int gup_flags = FOLL_FORCE;
 200
 201#ifdef CONFIG_STACK_GROWSUP
 202        if (write) {
 203                ret = expand_downwards(bprm->vma, pos);
 204                if (ret < 0)
 205                        return NULL;
 206        }
 207#endif
 208
 209        if (write)
 210                gup_flags |= FOLL_WRITE;
 211
 212        /*
 213         * We are doing an exec().  'current' is the process
 214         * doing the exec and bprm->mm is the new process's mm.
 215         */
 216        ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
 217                        &page, NULL, NULL);
 218        if (ret <= 0)
 219                return NULL;
 220
 221        if (write) {
 222                unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
 223                unsigned long ptr_size, limit;
 224
 225                /*
 226                 * Since the stack will hold pointers to the strings, we
 227                 * must account for them as well.
 228                 *
 229                 * The size calculation is the entire vma while each arg page is
 230                 * built, so each time we get here it's calculating how far it
 231                 * is currently (rather than each call being just the newly
 232                 * added size from the arg page).  As a result, we need to
 233                 * always add the entire size of the pointers, so that on the
 234                 * last call to get_arg_page() we'll actually have the entire
 235                 * correct size.
 236                 */
 237                ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
 238                if (ptr_size > ULONG_MAX - size)
 239                        goto fail;
 240                size += ptr_size;
 241
 242                acct_arg_size(bprm, size / PAGE_SIZE);
 243
 244                /*
 245                 * We've historically supported up to 32 pages (ARG_MAX)
 246                 * of argument strings even with small stacks
 247                 */
 248                if (size <= ARG_MAX)
 249                        return page;
 250
 251                /*
 252                 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
 253                 * (whichever is smaller) for the argv+env strings.
 254                 * This ensures that:
 255                 *  - the remaining binfmt code will not run out of stack space,
 256                 *  - the program will have a reasonable amount of stack left
 257                 *    to work from.
 258                 */
 259                limit = _STK_LIM / 4 * 3;
 260                limit = min(limit, rlimit(RLIMIT_STACK) / 4);
 261                if (size > limit)
 262                        goto fail;
 263        }
 264
 265        return page;
 266
 267fail:
 268        put_page(page);
 269        return NULL;
 270}
 271
 272static void put_arg_page(struct page *page)
 273{
 274        put_page(page);
 275}
 276
 277static void free_arg_pages(struct linux_binprm *bprm)
 278{
 279}
 280
 281static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 282                struct page *page)
 283{
 284        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 285}
 286
 287static int __bprm_mm_init(struct linux_binprm *bprm)
 288{
 289        int err;
 290        struct vm_area_struct *vma = NULL;
 291        struct mm_struct *mm = bprm->mm;
 292
 293        bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 294        if (!vma)
 295                return -ENOMEM;
 296
 297        if (down_write_killable(&mm->mmap_sem)) {
 298                err = -EINTR;
 299                goto err_free;
 300        }
 301        vma->vm_mm = mm;
 302
 303        /*
 304         * Place the stack at the largest stack address the architecture
 305         * supports. Later, we'll move this to an appropriate place. We don't
 306         * use STACK_TOP because that can depend on attributes which aren't
 307         * configured yet.
 308         */
 309        BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 310        vma->vm_end = STACK_TOP_MAX;
 311        vma->vm_start = vma->vm_end - PAGE_SIZE;
 312        vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 313        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 314        INIT_LIST_HEAD(&vma->anon_vma_chain);
 315
 316        err = insert_vm_struct(mm, vma);
 317        if (err)
 318                goto err;
 319
 320        mm->stack_vm = mm->total_vm = 1;
 321        arch_bprm_mm_init(mm, vma);
 322        up_write(&mm->mmap_sem);
 323        bprm->p = vma->vm_end - sizeof(void *);
 324        return 0;
 325err:
 326        up_write(&mm->mmap_sem);
 327err_free:
 328        bprm->vma = NULL;
 329        kmem_cache_free(vm_area_cachep, vma);
 330        return err;
 331}
 332
 333static bool valid_arg_len(struct linux_binprm *bprm, long len)
 334{
 335        return len <= MAX_ARG_STRLEN;
 336}
 337
 338#else
 339
 340static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 341{
 342}
 343
 344static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 345                int write)
 346{
 347        struct page *page;
 348
 349        page = bprm->page[pos / PAGE_SIZE];
 350        if (!page && write) {
 351                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 352                if (!page)
 353                        return NULL;
 354                bprm->page[pos / PAGE_SIZE] = page;
 355        }
 356
 357        return page;
 358}
 359
 360static void put_arg_page(struct page *page)
 361{
 362}
 363
 364static void free_arg_page(struct linux_binprm *bprm, int i)
 365{
 366        if (bprm->page[i]) {
 367                __free_page(bprm->page[i]);
 368                bprm->page[i] = NULL;
 369        }
 370}
 371
 372static void free_arg_pages(struct linux_binprm *bprm)
 373{
 374        int i;
 375
 376        for (i = 0; i < MAX_ARG_PAGES; i++)
 377                free_arg_page(bprm, i);
 378}
 379
 380static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 381                struct page *page)
 382{
 383}
 384
 385static int __bprm_mm_init(struct linux_binprm *bprm)
 386{
 387        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 388        return 0;
 389}
 390
 391static bool valid_arg_len(struct linux_binprm *bprm, long len)
 392{
 393        return len <= bprm->p;
 394}
 395
 396#endif /* CONFIG_MMU */
 397
 398/*
 399 * Create a new mm_struct and populate it with a temporary stack
 400 * vm_area_struct.  We don't have enough context at this point to set the stack
 401 * flags, permissions, and offset, so we use temporary values.  We'll update
 402 * them later in setup_arg_pages().
 403 */
 404static int bprm_mm_init(struct linux_binprm *bprm)
 405{
 406        int err;
 407        struct mm_struct *mm = NULL;
 408
 409        bprm->mm = mm = mm_alloc();
 410        err = -ENOMEM;
 411        if (!mm)
 412                goto err;
 413
 414        err = __bprm_mm_init(bprm);
 415        if (err)
 416                goto err;
 417
 418        return 0;
 419
 420err:
 421        if (mm) {
 422                bprm->mm = NULL;
 423                mmdrop(mm);
 424        }
 425
 426        return err;
 427}
 428
 429struct user_arg_ptr {
 430#ifdef CONFIG_COMPAT
 431        bool is_compat;
 432#endif
 433        union {
 434                const char __user *const __user *native;
 435#ifdef CONFIG_COMPAT
 436                const compat_uptr_t __user *compat;
 437#endif
 438        } ptr;
 439};
 440
 441static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 442{
 443        const char __user *native;
 444
 445#ifdef CONFIG_COMPAT
 446        if (unlikely(argv.is_compat)) {
 447                compat_uptr_t compat;
 448
 449                if (get_user(compat, argv.ptr.compat + nr))
 450                        return ERR_PTR(-EFAULT);
 451
 452                return compat_ptr(compat);
 453        }
 454#endif
 455
 456        if (get_user(native, argv.ptr.native + nr))
 457                return ERR_PTR(-EFAULT);
 458
 459        return native;
 460}
 461
 462/*
 463 * count() counts the number of strings in array ARGV.
 464 */
 465static int count(struct user_arg_ptr argv, int max)
 466{
 467        int i = 0;
 468
 469        if (argv.ptr.native != NULL) {
 470                for (;;) {
 471                        const char __user *p = get_user_arg_ptr(argv, i);
 472
 473                        if (!p)
 474                                break;
 475
 476                        if (IS_ERR(p))
 477                                return -EFAULT;
 478
 479                        if (i >= max)
 480                                return -E2BIG;
 481                        ++i;
 482
 483                        if (fatal_signal_pending(current))
 484                                return -ERESTARTNOHAND;
 485                        cond_resched();
 486                }
 487        }
 488        return i;
 489}
 490
 491/*
 492 * 'copy_strings()' copies argument/environment strings from the old
 493 * processes's memory to the new process's stack.  The call to get_user_pages()
 494 * ensures the destination page is created and not swapped out.
 495 */
 496static int copy_strings(int argc, struct user_arg_ptr argv,
 497                        struct linux_binprm *bprm)
 498{
 499        struct page *kmapped_page = NULL;
 500        char *kaddr = NULL;
 501        unsigned long kpos = 0;
 502        int ret;
 503
 504        while (argc-- > 0) {
 505                const char __user *str;
 506                int len;
 507                unsigned long pos;
 508
 509                ret = -EFAULT;
 510                str = get_user_arg_ptr(argv, argc);
 511                if (IS_ERR(str))
 512                        goto out;
 513
 514                len = strnlen_user(str, MAX_ARG_STRLEN);
 515                if (!len)
 516                        goto out;
 517
 518                ret = -E2BIG;
 519                if (!valid_arg_len(bprm, len))
 520                        goto out;
 521
 522                /* We're going to work our way backwords. */
 523                pos = bprm->p;
 524                str += len;
 525                bprm->p -= len;
 526
 527                while (len > 0) {
 528                        int offset, bytes_to_copy;
 529
 530                        if (fatal_signal_pending(current)) {
 531                                ret = -ERESTARTNOHAND;
 532                                goto out;
 533                        }
 534                        cond_resched();
 535
 536                        offset = pos % PAGE_SIZE;
 537                        if (offset == 0)
 538                                offset = PAGE_SIZE;
 539
 540                        bytes_to_copy = offset;
 541                        if (bytes_to_copy > len)
 542                                bytes_to_copy = len;
 543
 544                        offset -= bytes_to_copy;
 545                        pos -= bytes_to_copy;
 546                        str -= bytes_to_copy;
 547                        len -= bytes_to_copy;
 548
 549                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 550                                struct page *page;
 551
 552                                page = get_arg_page(bprm, pos, 1);
 553                                if (!page) {
 554                                        ret = -E2BIG;
 555                                        goto out;
 556                                }
 557
 558                                if (kmapped_page) {
 559                                        flush_kernel_dcache_page(kmapped_page);
 560                                        kunmap(kmapped_page);
 561                                        put_arg_page(kmapped_page);
 562                                }
 563                                kmapped_page = page;
 564                                kaddr = kmap(kmapped_page);
 565                                kpos = pos & PAGE_MASK;
 566                                flush_arg_page(bprm, kpos, kmapped_page);
 567                        }
 568                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 569                                ret = -EFAULT;
 570                                goto out;
 571                        }
 572                }
 573        }
 574        ret = 0;
 575out:
 576        if (kmapped_page) {
 577                flush_kernel_dcache_page(kmapped_page);
 578                kunmap(kmapped_page);
 579                put_arg_page(kmapped_page);
 580        }
 581        return ret;
 582}
 583
 584/*
 585 * Like copy_strings, but get argv and its values from kernel memory.
 586 */
 587int copy_strings_kernel(int argc, const char *const *__argv,
 588                        struct linux_binprm *bprm)
 589{
 590        int r;
 591        mm_segment_t oldfs = get_fs();
 592        struct user_arg_ptr argv = {
 593                .ptr.native = (const char __user *const  __user *)__argv,
 594        };
 595
 596        set_fs(KERNEL_DS);
 597        r = copy_strings(argc, argv, bprm);
 598        set_fs(oldfs);
 599
 600        return r;
 601}
 602EXPORT_SYMBOL(copy_strings_kernel);
 603
 604#ifdef CONFIG_MMU
 605
 606/*
 607 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 608 * the binfmt code determines where the new stack should reside, we shift it to
 609 * its final location.  The process proceeds as follows:
 610 *
 611 * 1) Use shift to calculate the new vma endpoints.
 612 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 613 *    arguments passed to subsequent functions are consistent.
 614 * 3) Move vma's page tables to the new range.
 615 * 4) Free up any cleared pgd range.
 616 * 5) Shrink the vma to cover only the new range.
 617 */
 618static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 619{
 620        struct mm_struct *mm = vma->vm_mm;
 621        unsigned long old_start = vma->vm_start;
 622        unsigned long old_end = vma->vm_end;
 623        unsigned long length = old_end - old_start;
 624        unsigned long new_start = old_start - shift;
 625        unsigned long new_end = old_end - shift;
 626        struct mmu_gather tlb;
 627
 628        BUG_ON(new_start > new_end);
 629
 630        /*
 631         * ensure there are no vmas between where we want to go
 632         * and where we are
 633         */
 634        if (vma != find_vma(mm, new_start))
 635                return -EFAULT;
 636
 637        /*
 638         * cover the whole range: [new_start, old_end)
 639         */
 640        if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 641                return -ENOMEM;
 642
 643        /*
 644         * move the page tables downwards, on failure we rely on
 645         * process cleanup to remove whatever mess we made.
 646         */
 647        if (length != move_page_tables(vma, old_start,
 648                                       vma, new_start, length, false))
 649                return -ENOMEM;
 650
 651        lru_add_drain();
 652        tlb_gather_mmu(&tlb, mm, old_start, old_end);
 653        if (new_end > old_start) {
 654                /*
 655                 * when the old and new regions overlap clear from new_end.
 656                 */
 657                free_pgd_range(&tlb, new_end, old_end, new_end,
 658                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 659        } else {
 660                /*
 661                 * otherwise, clean from old_start; this is done to not touch
 662                 * the address space in [new_end, old_start) some architectures
 663                 * have constraints on va-space that make this illegal (IA64) -
 664                 * for the others its just a little faster.
 665                 */
 666                free_pgd_range(&tlb, old_start, old_end, new_end,
 667                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 668        }
 669        tlb_finish_mmu(&tlb, old_start, old_end);
 670
 671        /*
 672         * Shrink the vma to just the new range.  Always succeeds.
 673         */
 674        vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 675
 676        return 0;
 677}
 678
 679/*
 680 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 681 * the stack is optionally relocated, and some extra space is added.
 682 */
 683int setup_arg_pages(struct linux_binprm *bprm,
 684                    unsigned long stack_top,
 685                    int executable_stack)
 686{
 687        unsigned long ret;
 688        unsigned long stack_shift;
 689        struct mm_struct *mm = current->mm;
 690        struct vm_area_struct *vma = bprm->vma;
 691        struct vm_area_struct *prev = NULL;
 692        unsigned long vm_flags;
 693        unsigned long stack_base;
 694        unsigned long stack_size;
 695        unsigned long stack_expand;
 696        unsigned long rlim_stack;
 697
 698#ifdef CONFIG_STACK_GROWSUP
 699        /* Limit stack size */
 700        stack_base = rlimit_max(RLIMIT_STACK);
 701        if (stack_base > STACK_SIZE_MAX)
 702                stack_base = STACK_SIZE_MAX;
 703
 704        /* Add space for stack randomization. */
 705        stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 706
 707        /* Make sure we didn't let the argument array grow too large. */
 708        if (vma->vm_end - vma->vm_start > stack_base)
 709                return -ENOMEM;
 710
 711        stack_base = PAGE_ALIGN(stack_top - stack_base);
 712
 713        stack_shift = vma->vm_start - stack_base;
 714        mm->arg_start = bprm->p - stack_shift;
 715        bprm->p = vma->vm_end - stack_shift;
 716#else
 717        stack_top = arch_align_stack(stack_top);
 718        stack_top = PAGE_ALIGN(stack_top);
 719
 720        if (unlikely(stack_top < mmap_min_addr) ||
 721            unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 722                return -ENOMEM;
 723
 724        stack_shift = vma->vm_end - stack_top;
 725
 726        bprm->p -= stack_shift;
 727        mm->arg_start = bprm->p;
 728#endif
 729
 730        if (bprm->loader)
 731                bprm->loader -= stack_shift;
 732        bprm->exec -= stack_shift;
 733
 734        if (down_write_killable(&mm->mmap_sem))
 735                return -EINTR;
 736
 737        vm_flags = VM_STACK_FLAGS;
 738
 739        /*
 740         * Adjust stack execute permissions; explicitly enable for
 741         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 742         * (arch default) otherwise.
 743         */
 744        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 745                vm_flags |= VM_EXEC;
 746        else if (executable_stack == EXSTACK_DISABLE_X)
 747                vm_flags &= ~VM_EXEC;
 748        vm_flags |= mm->def_flags;
 749        vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 750
 751        ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 752                        vm_flags);
 753        if (ret)
 754                goto out_unlock;
 755        BUG_ON(prev != vma);
 756
 757        /* Move stack pages down in memory. */
 758        if (stack_shift) {
 759                ret = shift_arg_pages(vma, stack_shift);
 760                if (ret)
 761                        goto out_unlock;
 762        }
 763
 764        /* mprotect_fixup is overkill to remove the temporary stack flags */
 765        vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 766
 767        stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 768        stack_size = vma->vm_end - vma->vm_start;
 769        /*
 770         * Align this down to a page boundary as expand_stack
 771         * will align it up.
 772         */
 773        rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
 774#ifdef CONFIG_STACK_GROWSUP
 775        if (stack_size + stack_expand > rlim_stack)
 776                stack_base = vma->vm_start + rlim_stack;
 777        else
 778                stack_base = vma->vm_end + stack_expand;
 779#else
 780        if (stack_size + stack_expand > rlim_stack)
 781                stack_base = vma->vm_end - rlim_stack;
 782        else
 783                stack_base = vma->vm_start - stack_expand;
 784#endif
 785        current->mm->start_stack = bprm->p;
 786        ret = expand_stack(vma, stack_base);
 787        if (ret)
 788                ret = -EFAULT;
 789
 790out_unlock:
 791        up_write(&mm->mmap_sem);
 792        return ret;
 793}
 794EXPORT_SYMBOL(setup_arg_pages);
 795
 796#else
 797
 798/*
 799 * Transfer the program arguments and environment from the holding pages
 800 * onto the stack. The provided stack pointer is adjusted accordingly.
 801 */
 802int transfer_args_to_stack(struct linux_binprm *bprm,
 803                           unsigned long *sp_location)
 804{
 805        unsigned long index, stop, sp;
 806        int ret = 0;
 807
 808        stop = bprm->p >> PAGE_SHIFT;
 809        sp = *sp_location;
 810
 811        for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 812                unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 813                char *src = kmap(bprm->page[index]) + offset;
 814                sp -= PAGE_SIZE - offset;
 815                if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 816                        ret = -EFAULT;
 817                kunmap(bprm->page[index]);
 818                if (ret)
 819                        goto out;
 820        }
 821
 822        *sp_location = sp;
 823
 824out:
 825        return ret;
 826}
 827EXPORT_SYMBOL(transfer_args_to_stack);
 828
 829#endif /* CONFIG_MMU */
 830
 831static struct file *do_open_execat(int fd, struct filename *name, int flags)
 832{
 833        struct file *file;
 834        int err;
 835        struct open_flags open_exec_flags = {
 836                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 837                .acc_mode = MAY_EXEC,
 838                .intent = LOOKUP_OPEN,
 839                .lookup_flags = LOOKUP_FOLLOW,
 840        };
 841
 842        if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 843                return ERR_PTR(-EINVAL);
 844        if (flags & AT_SYMLINK_NOFOLLOW)
 845                open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 846        if (flags & AT_EMPTY_PATH)
 847                open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 848
 849        file = do_filp_open(fd, name, &open_exec_flags);
 850        if (IS_ERR(file))
 851                goto out;
 852
 853        err = -EACCES;
 854        if (!S_ISREG(file_inode(file)->i_mode))
 855                goto exit;
 856
 857        if (path_noexec(&file->f_path))
 858                goto exit;
 859
 860        err = deny_write_access(file);
 861        if (err)
 862                goto exit;
 863
 864        if (name->name[0] != '\0')
 865                fsnotify_open(file);
 866
 867out:
 868        return file;
 869
 870exit:
 871        fput(file);
 872        return ERR_PTR(err);
 873}
 874
 875struct file *open_exec(const char *name)
 876{
 877        struct filename *filename = getname_kernel(name);
 878        struct file *f = ERR_CAST(filename);
 879
 880        if (!IS_ERR(filename)) {
 881                f = do_open_execat(AT_FDCWD, filename, 0);
 882                putname(filename);
 883        }
 884        return f;
 885}
 886EXPORT_SYMBOL(open_exec);
 887
 888int kernel_read(struct file *file, loff_t offset,
 889                char *addr, unsigned long count)
 890{
 891        mm_segment_t old_fs;
 892        loff_t pos = offset;
 893        int result;
 894
 895        old_fs = get_fs();
 896        set_fs(get_ds());
 897        /* The cast to a user pointer is valid due to the set_fs() */
 898        result = vfs_read(file, (void __user *)addr, count, &pos);
 899        set_fs(old_fs);
 900        return result;
 901}
 902
 903EXPORT_SYMBOL(kernel_read);
 904
 905int kernel_read_file(struct file *file, void **buf, loff_t *size,
 906                     loff_t max_size, enum kernel_read_file_id id)
 907{
 908        loff_t i_size, pos;
 909        ssize_t bytes = 0;
 910        int ret;
 911
 912        if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
 913                return -EINVAL;
 914
 915        ret = security_kernel_read_file(file, id);
 916        if (ret)
 917                return ret;
 918
 919        ret = deny_write_access(file);
 920        if (ret)
 921                return ret;
 922
 923        i_size = i_size_read(file_inode(file));
 924        if (max_size > 0 && i_size > max_size) {
 925                ret = -EFBIG;
 926                goto out;
 927        }
 928        if (i_size <= 0) {
 929                ret = -EINVAL;
 930                goto out;
 931        }
 932
 933        if (id != READING_FIRMWARE_PREALLOC_BUFFER)
 934                *buf = vmalloc(i_size);
 935        if (!*buf) {
 936                ret = -ENOMEM;
 937                goto out;
 938        }
 939
 940        pos = 0;
 941        while (pos < i_size) {
 942                bytes = kernel_read(file, pos, (char *)(*buf) + pos,
 943                                    i_size - pos);
 944                if (bytes < 0) {
 945                        ret = bytes;
 946                        goto out;
 947                }
 948
 949                if (bytes == 0)
 950                        break;
 951                pos += bytes;
 952        }
 953
 954        if (pos != i_size) {
 955                ret = -EIO;
 956                goto out_free;
 957        }
 958
 959        ret = security_kernel_post_read_file(file, *buf, i_size, id);
 960        if (!ret)
 961                *size = pos;
 962
 963out_free:
 964        if (ret < 0) {
 965                if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
 966                        vfree(*buf);
 967                        *buf = NULL;
 968                }
 969        }
 970
 971out:
 972        allow_write_access(file);
 973        return ret;
 974}
 975EXPORT_SYMBOL_GPL(kernel_read_file);
 976
 977int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
 978                               loff_t max_size, enum kernel_read_file_id id)
 979{
 980        struct file *file;
 981        int ret;
 982
 983        if (!path || !*path)
 984                return -EINVAL;
 985
 986        file = filp_open(path, O_RDONLY, 0);
 987        if (IS_ERR(file))
 988                return PTR_ERR(file);
 989
 990        ret = kernel_read_file(file, buf, size, max_size, id);
 991        fput(file);
 992        return ret;
 993}
 994EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
 995
 996int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
 997                             enum kernel_read_file_id id)
 998{
 999        struct fd f = fdget(fd);
1000        int ret = -EBADF;
1001
1002        if (!f.file)
1003                goto out;
1004
1005        ret = kernel_read_file(f.file, buf, size, max_size, id);
1006out:
1007        fdput(f);
1008        return ret;
1009}
1010EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1011
1012ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1013{
1014        ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1015        if (res > 0)
1016                flush_icache_range(addr, addr + len);
1017        return res;
1018}
1019EXPORT_SYMBOL(read_code);
1020
1021static int exec_mmap(struct mm_struct *mm)
1022{
1023        struct task_struct *tsk;
1024        struct mm_struct *old_mm, *active_mm;
1025
1026        /* Notify parent that we're no longer interested in the old VM */
1027        tsk = current;
1028        old_mm = current->mm;
1029        mm_release(tsk, old_mm);
1030
1031        if (old_mm) {
1032                sync_mm_rss(old_mm);
1033                /*
1034                 * Make sure that if there is a core dump in progress
1035                 * for the old mm, we get out and die instead of going
1036                 * through with the exec.  We must hold mmap_sem around
1037                 * checking core_state and changing tsk->mm.
1038                 */
1039                down_read(&old_mm->mmap_sem);
1040                if (unlikely(old_mm->core_state)) {
1041                        up_read(&old_mm->mmap_sem);
1042                        return -EINTR;
1043                }
1044        }
1045        task_lock(tsk);
1046        active_mm = tsk->active_mm;
1047        tsk->mm = mm;
1048        tsk->active_mm = mm;
1049        activate_mm(active_mm, mm);
1050        tsk->mm->vmacache_seqnum = 0;
1051        vmacache_flush(tsk);
1052        task_unlock(tsk);
1053        if (old_mm) {
1054                up_read(&old_mm->mmap_sem);
1055                BUG_ON(active_mm != old_mm);
1056                setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1057                mm_update_next_owner(old_mm);
1058                mmput(old_mm);
1059                return 0;
1060        }
1061        mmdrop(active_mm);
1062        return 0;
1063}
1064
1065/*
1066 * This function makes sure the current process has its own signal table,
1067 * so that flush_signal_handlers can later reset the handlers without
1068 * disturbing other processes.  (Other processes might share the signal
1069 * table via the CLONE_SIGHAND option to clone().)
1070 */
1071static int de_thread(struct task_struct *tsk)
1072{
1073        struct signal_struct *sig = tsk->signal;
1074        struct sighand_struct *oldsighand = tsk->sighand;
1075        spinlock_t *lock = &oldsighand->siglock;
1076
1077        if (thread_group_empty(tsk))
1078                goto no_thread_group;
1079
1080        /*
1081         * Kill all other threads in the thread group.
1082         */
1083        spin_lock_irq(lock);
1084        if (signal_group_exit(sig)) {
1085                /*
1086                 * Another group action in progress, just
1087                 * return so that the signal is processed.
1088                 */
1089                spin_unlock_irq(lock);
1090                return -EAGAIN;
1091        }
1092
1093        sig->group_exit_task = tsk;
1094        sig->notify_count = zap_other_threads(tsk);
1095        if (!thread_group_leader(tsk))
1096                sig->notify_count--;
1097
1098        while (sig->notify_count) {
1099                __set_current_state(TASK_KILLABLE);
1100                spin_unlock_irq(lock);
1101                schedule();
1102                if (unlikely(__fatal_signal_pending(tsk)))
1103                        goto killed;
1104                spin_lock_irq(lock);
1105        }
1106        spin_unlock_irq(lock);
1107
1108        /*
1109         * At this point all other threads have exited, all we have to
1110         * do is to wait for the thread group leader to become inactive,
1111         * and to assume its PID:
1112         */
1113        if (!thread_group_leader(tsk)) {
1114                struct task_struct *leader = tsk->group_leader;
1115
1116                for (;;) {
1117                        cgroup_threadgroup_change_begin(tsk);
1118                        write_lock_irq(&tasklist_lock);
1119                        /*
1120                         * Do this under tasklist_lock to ensure that
1121                         * exit_notify() can't miss ->group_exit_task
1122                         */
1123                        sig->notify_count = -1;
1124                        if (likely(leader->exit_state))
1125                                break;
1126                        __set_current_state(TASK_KILLABLE);
1127                        write_unlock_irq(&tasklist_lock);
1128                        cgroup_threadgroup_change_end(tsk);
1129                        schedule();
1130                        if (unlikely(__fatal_signal_pending(tsk)))
1131                                goto killed;
1132                }
1133
1134                /*
1135                 * The only record we have of the real-time age of a
1136                 * process, regardless of execs it's done, is start_time.
1137                 * All the past CPU time is accumulated in signal_struct
1138                 * from sister threads now dead.  But in this non-leader
1139                 * exec, nothing survives from the original leader thread,
1140                 * whose birth marks the true age of this process now.
1141                 * When we take on its identity by switching to its PID, we
1142                 * also take its birthdate (always earlier than our own).
1143                 */
1144                tsk->start_time = leader->start_time;
1145                tsk->real_start_time = leader->real_start_time;
1146
1147                BUG_ON(!same_thread_group(leader, tsk));
1148                BUG_ON(has_group_leader_pid(tsk));
1149                /*
1150                 * An exec() starts a new thread group with the
1151                 * TGID of the previous thread group. Rehash the
1152                 * two threads with a switched PID, and release
1153                 * the former thread group leader:
1154                 */
1155
1156                /* Become a process group leader with the old leader's pid.
1157                 * The old leader becomes a thread of the this thread group.
1158                 * Note: The old leader also uses this pid until release_task
1159                 *       is called.  Odd but simple and correct.
1160                 */
1161                tsk->pid = leader->pid;
1162                change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1163                transfer_pid(leader, tsk, PIDTYPE_PGID);
1164                transfer_pid(leader, tsk, PIDTYPE_SID);
1165
1166                list_replace_rcu(&leader->tasks, &tsk->tasks);
1167                list_replace_init(&leader->sibling, &tsk->sibling);
1168
1169                tsk->group_leader = tsk;
1170                leader->group_leader = tsk;
1171
1172                tsk->exit_signal = SIGCHLD;
1173                leader->exit_signal = -1;
1174
1175                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1176                leader->exit_state = EXIT_DEAD;
1177
1178                /*
1179                 * We are going to release_task()->ptrace_unlink() silently,
1180                 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1181                 * the tracer wont't block again waiting for this thread.
1182                 */
1183                if (unlikely(leader->ptrace))
1184                        __wake_up_parent(leader, leader->parent);
1185                write_unlock_irq(&tasklist_lock);
1186                cgroup_threadgroup_change_end(tsk);
1187
1188                release_task(leader);
1189        }
1190
1191        sig->group_exit_task = NULL;
1192        sig->notify_count = 0;
1193
1194no_thread_group:
1195        /* we have changed execution domain */
1196        tsk->exit_signal = SIGCHLD;
1197
1198#ifdef CONFIG_POSIX_TIMERS
1199        exit_itimers(sig);
1200        flush_itimer_signals();
1201#endif
1202
1203        if (atomic_read(&oldsighand->count) != 1) {
1204                struct sighand_struct *newsighand;
1205                /*
1206                 * This ->sighand is shared with the CLONE_SIGHAND
1207                 * but not CLONE_THREAD task, switch to the new one.
1208                 */
1209                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1210                if (!newsighand)
1211                        return -ENOMEM;
1212
1213                atomic_set(&newsighand->count, 1);
1214                memcpy(newsighand->action, oldsighand->action,
1215                       sizeof(newsighand->action));
1216
1217                write_lock_irq(&tasklist_lock);
1218                spin_lock(&oldsighand->siglock);
1219                rcu_assign_pointer(tsk->sighand, newsighand);
1220                spin_unlock(&oldsighand->siglock);
1221                write_unlock_irq(&tasklist_lock);
1222
1223                __cleanup_sighand(oldsighand);
1224        }
1225
1226        BUG_ON(!thread_group_leader(tsk));
1227        return 0;
1228
1229killed:
1230        /* protects against exit_notify() and __exit_signal() */
1231        read_lock(&tasklist_lock);
1232        sig->group_exit_task = NULL;
1233        sig->notify_count = 0;
1234        read_unlock(&tasklist_lock);
1235        return -EAGAIN;
1236}
1237
1238char *get_task_comm(char *buf, struct task_struct *tsk)
1239{
1240        /* buf must be at least sizeof(tsk->comm) in size */
1241        task_lock(tsk);
1242        strncpy(buf, tsk->comm, sizeof(tsk->comm));
1243        task_unlock(tsk);
1244        return buf;
1245}
1246EXPORT_SYMBOL_GPL(get_task_comm);
1247
1248/*
1249 * These functions flushes out all traces of the currently running executable
1250 * so that a new one can be started
1251 */
1252
1253void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1254{
1255        task_lock(tsk);
1256        trace_task_rename(tsk, buf);
1257        strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1258        task_unlock(tsk);
1259        perf_event_comm(tsk, exec);
1260}
1261
1262int flush_old_exec(struct linux_binprm * bprm)
1263{
1264        int retval;
1265
1266        /*
1267         * Make sure we have a private signal table and that
1268         * we are unassociated from the previous thread group.
1269         */
1270        retval = de_thread(current);
1271        if (retval)
1272                goto out;
1273
1274        /*
1275         * Must be called _before_ exec_mmap() as bprm->mm is
1276         * not visibile until then. This also enables the update
1277         * to be lockless.
1278         */
1279        set_mm_exe_file(bprm->mm, bprm->file);
1280
1281        /*
1282         * Release all of the old mmap stuff
1283         */
1284        acct_arg_size(bprm, 0);
1285        retval = exec_mmap(bprm->mm);
1286        if (retval)
1287                goto out;
1288
1289        bprm->mm = NULL;                /* We're using it now */
1290
1291        set_fs(USER_DS);
1292        current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1293                                        PF_NOFREEZE | PF_NO_SETAFFINITY);
1294        flush_thread();
1295        current->personality &= ~bprm->per_clear;
1296
1297        /*
1298         * We have to apply CLOEXEC before we change whether the process is
1299         * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1300         * trying to access the should-be-closed file descriptors of a process
1301         * undergoing exec(2).
1302         */
1303        do_close_on_exec(current->files);
1304        return 0;
1305
1306out:
1307        return retval;
1308}
1309EXPORT_SYMBOL(flush_old_exec);
1310
1311void would_dump(struct linux_binprm *bprm, struct file *file)
1312{
1313        struct inode *inode = file_inode(file);
1314        if (inode_permission(inode, MAY_READ) < 0) {
1315                struct user_namespace *old, *user_ns;
1316                bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1317
1318                /* Ensure mm->user_ns contains the executable */
1319                user_ns = old = bprm->mm->user_ns;
1320                while ((user_ns != &init_user_ns) &&
1321                       !privileged_wrt_inode_uidgid(user_ns, inode))
1322                        user_ns = user_ns->parent;
1323
1324                if (old != user_ns) {
1325                        bprm->mm->user_ns = get_user_ns(user_ns);
1326                        put_user_ns(old);
1327                }
1328        }
1329}
1330EXPORT_SYMBOL(would_dump);
1331
1332void setup_new_exec(struct linux_binprm * bprm)
1333{
1334        arch_pick_mmap_layout(current->mm);
1335
1336        /* This is the point of no return */
1337        current->sas_ss_sp = current->sas_ss_size = 0;
1338
1339        if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1340                set_dumpable(current->mm, SUID_DUMP_USER);
1341        else
1342                set_dumpable(current->mm, suid_dumpable);
1343
1344        arch_setup_new_exec();
1345        perf_event_exec();
1346        __set_task_comm(current, kbasename(bprm->filename), true);
1347
1348        /* Set the new mm task size. We have to do that late because it may
1349         * depend on TIF_32BIT which is only updated in flush_thread() on
1350         * some architectures like powerpc
1351         */
1352        current->mm->task_size = TASK_SIZE;
1353
1354        /* install the new credentials */
1355        if (!uid_eq(bprm->cred->uid, current_euid()) ||
1356            !gid_eq(bprm->cred->gid, current_egid())) {
1357                current->pdeath_signal = 0;
1358        } else {
1359                if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1360                        set_dumpable(current->mm, suid_dumpable);
1361        }
1362
1363        /* An exec changes our domain. We are no longer part of the thread
1364           group */
1365        current->self_exec_id++;
1366        flush_signal_handlers(current, 0);
1367}
1368EXPORT_SYMBOL(setup_new_exec);
1369
1370/*
1371 * Prepare credentials and lock ->cred_guard_mutex.
1372 * install_exec_creds() commits the new creds and drops the lock.
1373 * Or, if exec fails before, free_bprm() should release ->cred and
1374 * and unlock.
1375 */
1376int prepare_bprm_creds(struct linux_binprm *bprm)
1377{
1378        if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1379                return -ERESTARTNOINTR;
1380
1381        bprm->cred = prepare_exec_creds();
1382        if (likely(bprm->cred))
1383                return 0;
1384
1385        mutex_unlock(&current->signal->cred_guard_mutex);
1386        return -ENOMEM;
1387}
1388
1389static void free_bprm(struct linux_binprm *bprm)
1390{
1391        free_arg_pages(bprm);
1392        if (bprm->cred) {
1393                mutex_unlock(&current->signal->cred_guard_mutex);
1394                abort_creds(bprm->cred);
1395        }
1396        if (bprm->file) {
1397                allow_write_access(bprm->file);
1398                fput(bprm->file);
1399        }
1400        /* If a binfmt changed the interp, free it. */
1401        if (bprm->interp != bprm->filename)
1402                kfree(bprm->interp);
1403        kfree(bprm);
1404}
1405
1406int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1407{
1408        /* If a binfmt changed the interp, free it first. */
1409        if (bprm->interp != bprm->filename)
1410                kfree(bprm->interp);
1411        bprm->interp = kstrdup(interp, GFP_KERNEL);
1412        if (!bprm->interp)
1413                return -ENOMEM;
1414        return 0;
1415}
1416EXPORT_SYMBOL(bprm_change_interp);
1417
1418/*
1419 * install the new credentials for this executable
1420 */
1421void install_exec_creds(struct linux_binprm *bprm)
1422{
1423        security_bprm_committing_creds(bprm);
1424
1425        commit_creds(bprm->cred);
1426        bprm->cred = NULL;
1427
1428        /*
1429         * Disable monitoring for regular users
1430         * when executing setuid binaries. Must
1431         * wait until new credentials are committed
1432         * by commit_creds() above
1433         */
1434        if (get_dumpable(current->mm) != SUID_DUMP_USER)
1435                perf_event_exit_task(current);
1436        /*
1437         * cred_guard_mutex must be held at least to this point to prevent
1438         * ptrace_attach() from altering our determination of the task's
1439         * credentials; any time after this it may be unlocked.
1440         */
1441        security_bprm_committed_creds(bprm);
1442        mutex_unlock(&current->signal->cred_guard_mutex);
1443}
1444EXPORT_SYMBOL(install_exec_creds);
1445
1446/*
1447 * determine how safe it is to execute the proposed program
1448 * - the caller must hold ->cred_guard_mutex to protect against
1449 *   PTRACE_ATTACH or seccomp thread-sync
1450 */
1451static void check_unsafe_exec(struct linux_binprm *bprm)
1452{
1453        struct task_struct *p = current, *t;
1454        unsigned n_fs;
1455
1456        if (p->ptrace)
1457                bprm->unsafe |= LSM_UNSAFE_PTRACE;
1458
1459        /*
1460         * This isn't strictly necessary, but it makes it harder for LSMs to
1461         * mess up.
1462         */
1463        if (task_no_new_privs(current))
1464                bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1465
1466        t = p;
1467        n_fs = 1;
1468        spin_lock(&p->fs->lock);
1469        rcu_read_lock();
1470        while_each_thread(p, t) {
1471                if (t->fs == p->fs)
1472                        n_fs++;
1473        }
1474        rcu_read_unlock();
1475
1476        if (p->fs->users > n_fs)
1477                bprm->unsafe |= LSM_UNSAFE_SHARE;
1478        else
1479                p->fs->in_exec = 1;
1480        spin_unlock(&p->fs->lock);
1481}
1482
1483static void bprm_fill_uid(struct linux_binprm *bprm)
1484{
1485        struct inode *inode;
1486        unsigned int mode;
1487        kuid_t uid;
1488        kgid_t gid;
1489
1490        /*
1491         * Since this can be called multiple times (via prepare_binprm),
1492         * we must clear any previous work done when setting set[ug]id
1493         * bits from any earlier bprm->file uses (for example when run
1494         * first for a setuid script then again for its interpreter).
1495         */
1496        bprm->cred->euid = current_euid();
1497        bprm->cred->egid = current_egid();
1498
1499        if (!mnt_may_suid(bprm->file->f_path.mnt))
1500                return;
1501
1502        if (task_no_new_privs(current))
1503                return;
1504
1505        inode = bprm->file->f_path.dentry->d_inode;
1506        mode = READ_ONCE(inode->i_mode);
1507        if (!(mode & (S_ISUID|S_ISGID)))
1508                return;
1509
1510        /* Be careful if suid/sgid is set */
1511        inode_lock(inode);
1512
1513        /* reload atomically mode/uid/gid now that lock held */
1514        mode = inode->i_mode;
1515        uid = inode->i_uid;
1516        gid = inode->i_gid;
1517        inode_unlock(inode);
1518
1519        /* We ignore suid/sgid if there are no mappings for them in the ns */
1520        if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1521                 !kgid_has_mapping(bprm->cred->user_ns, gid))
1522                return;
1523
1524        if (mode & S_ISUID) {
1525                bprm->per_clear |= PER_CLEAR_ON_SETID;
1526                bprm->cred->euid = uid;
1527        }
1528
1529        if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1530                bprm->per_clear |= PER_CLEAR_ON_SETID;
1531                bprm->cred->egid = gid;
1532        }
1533}
1534
1535/*
1536 * Fill the binprm structure from the inode.
1537 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1538 *
1539 * This may be called multiple times for binary chains (scripts for example).
1540 */
1541int prepare_binprm(struct linux_binprm *bprm)
1542{
1543        int retval;
1544
1545        bprm_fill_uid(bprm);
1546
1547        /* fill in binprm security blob */
1548        retval = security_bprm_set_creds(bprm);
1549        if (retval)
1550                return retval;
1551        bprm->cred_prepared = 1;
1552
1553        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1554        return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1555}
1556
1557EXPORT_SYMBOL(prepare_binprm);
1558
1559/*
1560 * Arguments are '\0' separated strings found at the location bprm->p
1561 * points to; chop off the first by relocating brpm->p to right after
1562 * the first '\0' encountered.
1563 */
1564int remove_arg_zero(struct linux_binprm *bprm)
1565{
1566        int ret = 0;
1567        unsigned long offset;
1568        char *kaddr;
1569        struct page *page;
1570
1571        if (!bprm->argc)
1572                return 0;
1573
1574        do {
1575                offset = bprm->p & ~PAGE_MASK;
1576                page = get_arg_page(bprm, bprm->p, 0);
1577                if (!page) {
1578                        ret = -EFAULT;
1579                        goto out;
1580                }
1581                kaddr = kmap_atomic(page);
1582
1583                for (; offset < PAGE_SIZE && kaddr[offset];
1584                                offset++, bprm->p++)
1585                        ;
1586
1587                kunmap_atomic(kaddr);
1588                put_arg_page(page);
1589        } while (offset == PAGE_SIZE);
1590
1591        bprm->p++;
1592        bprm->argc--;
1593        ret = 0;
1594
1595out:
1596        return ret;
1597}
1598EXPORT_SYMBOL(remove_arg_zero);
1599
1600#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1601/*
1602 * cycle the list of binary formats handler, until one recognizes the image
1603 */
1604int search_binary_handler(struct linux_binprm *bprm)
1605{
1606        bool need_retry = IS_ENABLED(CONFIG_MODULES);
1607        struct linux_binfmt *fmt;
1608        int retval;
1609
1610        /* This allows 4 levels of binfmt rewrites before failing hard. */
1611        if (bprm->recursion_depth > 5)
1612                return -ELOOP;
1613
1614        retval = security_bprm_check(bprm);
1615        if (retval)
1616                return retval;
1617
1618        retval = -ENOENT;
1619 retry:
1620        read_lock(&binfmt_lock);
1621        list_for_each_entry(fmt, &formats, lh) {
1622                if (!try_module_get(fmt->module))
1623                        continue;
1624                read_unlock(&binfmt_lock);
1625                bprm->recursion_depth++;
1626                retval = fmt->load_binary(bprm);
1627                read_lock(&binfmt_lock);
1628                put_binfmt(fmt);
1629                bprm->recursion_depth--;
1630                if (retval < 0 && !bprm->mm) {
1631                        /* we got to flush_old_exec() and failed after it */
1632                        read_unlock(&binfmt_lock);
1633                        force_sigsegv(SIGSEGV, current);
1634                        return retval;
1635                }
1636                if (retval != -ENOEXEC || !bprm->file) {
1637                        read_unlock(&binfmt_lock);
1638                        return retval;
1639                }
1640        }
1641        read_unlock(&binfmt_lock);
1642
1643        if (need_retry) {
1644                if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1645                    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1646                        return retval;
1647                if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1648                        return retval;
1649                need_retry = false;
1650                goto retry;
1651        }
1652
1653        return retval;
1654}
1655EXPORT_SYMBOL(search_binary_handler);
1656
1657static int exec_binprm(struct linux_binprm *bprm)
1658{
1659        pid_t old_pid, old_vpid;
1660        int ret;
1661
1662        /* Need to fetch pid before load_binary changes it */
1663        old_pid = current->pid;
1664        rcu_read_lock();
1665        old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1666        rcu_read_unlock();
1667
1668        ret = search_binary_handler(bprm);
1669        if (ret >= 0) {
1670                audit_bprm(bprm);
1671                trace_sched_process_exec(current, old_pid, bprm);
1672                ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1673                proc_exec_connector(current);
1674        }
1675
1676        return ret;
1677}
1678
1679/*
1680 * sys_execve() executes a new program.
1681 */
1682static int do_execveat_common(int fd, struct filename *filename,
1683                              struct user_arg_ptr argv,
1684                              struct user_arg_ptr envp,
1685                              int flags)
1686{
1687        char *pathbuf = NULL;
1688        struct linux_binprm *bprm;
1689        struct file *file;
1690        struct files_struct *displaced;
1691        int retval;
1692
1693        if (IS_ERR(filename))
1694                return PTR_ERR(filename);
1695
1696        /*
1697         * We move the actual failure in case of RLIMIT_NPROC excess from
1698         * set*uid() to execve() because too many poorly written programs
1699         * don't check setuid() return code.  Here we additionally recheck
1700         * whether NPROC limit is still exceeded.
1701         */
1702        if ((current->flags & PF_NPROC_EXCEEDED) &&
1703            atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1704                retval = -EAGAIN;
1705                goto out_ret;
1706        }
1707
1708        /* We're below the limit (still or again), so we don't want to make
1709         * further execve() calls fail. */
1710        current->flags &= ~PF_NPROC_EXCEEDED;
1711
1712        retval = unshare_files(&displaced);
1713        if (retval)
1714                goto out_ret;
1715
1716        retval = -ENOMEM;
1717        bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1718        if (!bprm)
1719                goto out_files;
1720
1721        retval = prepare_bprm_creds(bprm);
1722        if (retval)
1723                goto out_free;
1724
1725        check_unsafe_exec(bprm);
1726        current->in_execve = 1;
1727
1728        file = do_open_execat(fd, filename, flags);
1729        retval = PTR_ERR(file);
1730        if (IS_ERR(file))
1731                goto out_unmark;
1732
1733        sched_exec();
1734
1735        bprm->file = file;
1736        if (fd == AT_FDCWD || filename->name[0] == '/') {
1737                bprm->filename = filename->name;
1738        } else {
1739                if (filename->name[0] == '\0')
1740                        pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1741                else
1742                        pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1743                                            fd, filename->name);
1744                if (!pathbuf) {
1745                        retval = -ENOMEM;
1746                        goto out_unmark;
1747                }
1748                /*
1749                 * Record that a name derived from an O_CLOEXEC fd will be
1750                 * inaccessible after exec. Relies on having exclusive access to
1751                 * current->files (due to unshare_files above).
1752                 */
1753                if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1754                        bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1755                bprm->filename = pathbuf;
1756        }
1757        bprm->interp = bprm->filename;
1758
1759        retval = bprm_mm_init(bprm);
1760        if (retval)
1761                goto out_unmark;
1762
1763        bprm->argc = count(argv, MAX_ARG_STRINGS);
1764        if ((retval = bprm->argc) < 0)
1765                goto out;
1766
1767        bprm->envc = count(envp, MAX_ARG_STRINGS);
1768        if ((retval = bprm->envc) < 0)
1769                goto out;
1770
1771        retval = prepare_binprm(bprm);
1772        if (retval < 0)
1773                goto out;
1774
1775        retval = copy_strings_kernel(1, &bprm->filename, bprm);
1776        if (retval < 0)
1777                goto out;
1778
1779        bprm->exec = bprm->p;
1780        retval = copy_strings(bprm->envc, envp, bprm);
1781        if (retval < 0)
1782                goto out;
1783
1784        retval = copy_strings(bprm->argc, argv, bprm);
1785        if (retval < 0)
1786                goto out;
1787
1788        would_dump(bprm, bprm->file);
1789
1790        retval = exec_binprm(bprm);
1791        if (retval < 0)
1792                goto out;
1793
1794        /* execve succeeded */
1795        current->fs->in_exec = 0;
1796        current->in_execve = 0;
1797        acct_update_integrals(current);
1798        task_numa_free(current);
1799        free_bprm(bprm);
1800        kfree(pathbuf);
1801        putname(filename);
1802        if (displaced)
1803                put_files_struct(displaced);
1804        return retval;
1805
1806out:
1807        if (bprm->mm) {
1808                acct_arg_size(bprm, 0);
1809                mmput(bprm->mm);
1810        }
1811
1812out_unmark:
1813        current->fs->in_exec = 0;
1814        current->in_execve = 0;
1815
1816out_free:
1817        free_bprm(bprm);
1818        kfree(pathbuf);
1819
1820out_files:
1821        if (displaced)
1822                reset_files_struct(displaced);
1823out_ret:
1824        putname(filename);
1825        return retval;
1826}
1827
1828int do_execve(struct filename *filename,
1829        const char __user *const __user *__argv,
1830        const char __user *const __user *__envp)
1831{
1832        struct user_arg_ptr argv = { .ptr.native = __argv };
1833        struct user_arg_ptr envp = { .ptr.native = __envp };
1834        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1835}
1836
1837int do_execveat(int fd, struct filename *filename,
1838                const char __user *const __user *__argv,
1839                const char __user *const __user *__envp,
1840                int flags)
1841{
1842        struct user_arg_ptr argv = { .ptr.native = __argv };
1843        struct user_arg_ptr envp = { .ptr.native = __envp };
1844
1845        return do_execveat_common(fd, filename, argv, envp, flags);
1846}
1847
1848#ifdef CONFIG_COMPAT
1849static int compat_do_execve(struct filename *filename,
1850        const compat_uptr_t __user *__argv,
1851        const compat_uptr_t __user *__envp)
1852{
1853        struct user_arg_ptr argv = {
1854                .is_compat = true,
1855                .ptr.compat = __argv,
1856        };
1857        struct user_arg_ptr envp = {
1858                .is_compat = true,
1859                .ptr.compat = __envp,
1860        };
1861        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1862}
1863
1864static int compat_do_execveat(int fd, struct filename *filename,
1865                              const compat_uptr_t __user *__argv,
1866                              const compat_uptr_t __user *__envp,
1867                              int flags)
1868{
1869        struct user_arg_ptr argv = {
1870                .is_compat = true,
1871                .ptr.compat = __argv,
1872        };
1873        struct user_arg_ptr envp = {
1874                .is_compat = true,
1875                .ptr.compat = __envp,
1876        };
1877        return do_execveat_common(fd, filename, argv, envp, flags);
1878}
1879#endif
1880
1881void set_binfmt(struct linux_binfmt *new)
1882{
1883        struct mm_struct *mm = current->mm;
1884
1885        if (mm->binfmt)
1886                module_put(mm->binfmt->module);
1887
1888        mm->binfmt = new;
1889        if (new)
1890                __module_get(new->module);
1891}
1892EXPORT_SYMBOL(set_binfmt);
1893
1894/*
1895 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1896 */
1897void set_dumpable(struct mm_struct *mm, int value)
1898{
1899        unsigned long old, new;
1900
1901        if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1902                return;
1903
1904        do {
1905                old = ACCESS_ONCE(mm->flags);
1906                new = (old & ~MMF_DUMPABLE_MASK) | value;
1907        } while (cmpxchg(&mm->flags, old, new) != old);
1908}
1909
1910SYSCALL_DEFINE3(execve,
1911                const char __user *, filename,
1912                const char __user *const __user *, argv,
1913                const char __user *const __user *, envp)
1914{
1915        return do_execve(getname(filename), argv, envp);
1916}
1917
1918SYSCALL_DEFINE5(execveat,
1919                int, fd, const char __user *, filename,
1920                const char __user *const __user *, argv,
1921                const char __user *const __user *, envp,
1922                int, flags)
1923{
1924        int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1925
1926        return do_execveat(fd,
1927                           getname_flags(filename, lookup_flags, NULL),
1928                           argv, envp, flags);
1929}
1930
1931#ifdef CONFIG_COMPAT
1932COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1933        const compat_uptr_t __user *, argv,
1934        const compat_uptr_t __user *, envp)
1935{
1936        return compat_do_execve(getname(filename), argv, envp);
1937}
1938
1939COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1940                       const char __user *, filename,
1941                       const compat_uptr_t __user *, argv,
1942                       const compat_uptr_t __user *, envp,
1943                       int,  flags)
1944{
1945        int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1946
1947        return compat_do_execveat(fd,
1948                                  getname_flags(filename, lookup_flags, NULL),
1949                                  argv, envp, flags);
1950}
1951#endif
1952