linux/fs/ext2/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext2/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@dcs.ed.ac.uk), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/time.h>
  26#include <linux/highuid.h>
  27#include <linux/pagemap.h>
  28#include <linux/dax.h>
  29#include <linux/blkdev.h>
  30#include <linux/quotaops.h>
  31#include <linux/writeback.h>
  32#include <linux/buffer_head.h>
  33#include <linux/mpage.h>
  34#include <linux/fiemap.h>
  35#include <linux/iomap.h>
  36#include <linux/namei.h>
  37#include <linux/uio.h>
  38#include "ext2.h"
  39#include "acl.h"
  40#include "xattr.h"
  41
  42static int __ext2_write_inode(struct inode *inode, int do_sync);
  43
  44/*
  45 * Test whether an inode is a fast symlink.
  46 */
  47static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  48{
  49        int ea_blocks = EXT2_I(inode)->i_file_acl ?
  50                (inode->i_sb->s_blocksize >> 9) : 0;
  51
  52        return (S_ISLNK(inode->i_mode) &&
  53                inode->i_blocks - ea_blocks == 0);
  54}
  55
  56static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  57
  58static void ext2_write_failed(struct address_space *mapping, loff_t to)
  59{
  60        struct inode *inode = mapping->host;
  61
  62        if (to > inode->i_size) {
  63                truncate_pagecache(inode, inode->i_size);
  64                ext2_truncate_blocks(inode, inode->i_size);
  65        }
  66}
  67
  68/*
  69 * Called at the last iput() if i_nlink is zero.
  70 */
  71void ext2_evict_inode(struct inode * inode)
  72{
  73        struct ext2_block_alloc_info *rsv;
  74        int want_delete = 0;
  75
  76        if (!inode->i_nlink && !is_bad_inode(inode)) {
  77                want_delete = 1;
  78                dquot_initialize(inode);
  79        } else {
  80                dquot_drop(inode);
  81        }
  82
  83        truncate_inode_pages_final(&inode->i_data);
  84
  85        if (want_delete) {
  86                sb_start_intwrite(inode->i_sb);
  87                /* set dtime */
  88                EXT2_I(inode)->i_dtime  = get_seconds();
  89                mark_inode_dirty(inode);
  90                __ext2_write_inode(inode, inode_needs_sync(inode));
  91                /* truncate to 0 */
  92                inode->i_size = 0;
  93                if (inode->i_blocks)
  94                        ext2_truncate_blocks(inode, 0);
  95                ext2_xattr_delete_inode(inode);
  96        }
  97
  98        invalidate_inode_buffers(inode);
  99        clear_inode(inode);
 100
 101        ext2_discard_reservation(inode);
 102        rsv = EXT2_I(inode)->i_block_alloc_info;
 103        EXT2_I(inode)->i_block_alloc_info = NULL;
 104        if (unlikely(rsv))
 105                kfree(rsv);
 106
 107        if (want_delete) {
 108                ext2_free_inode(inode);
 109                sb_end_intwrite(inode->i_sb);
 110        }
 111}
 112
 113typedef struct {
 114        __le32  *p;
 115        __le32  key;
 116        struct buffer_head *bh;
 117} Indirect;
 118
 119static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 120{
 121        p->key = *(p->p = v);
 122        p->bh = bh;
 123}
 124
 125static inline int verify_chain(Indirect *from, Indirect *to)
 126{
 127        while (from <= to && from->key == *from->p)
 128                from++;
 129        return (from > to);
 130}
 131
 132/**
 133 *      ext2_block_to_path - parse the block number into array of offsets
 134 *      @inode: inode in question (we are only interested in its superblock)
 135 *      @i_block: block number to be parsed
 136 *      @offsets: array to store the offsets in
 137 *      @boundary: set this non-zero if the referred-to block is likely to be
 138 *             followed (on disk) by an indirect block.
 139 *      To store the locations of file's data ext2 uses a data structure common
 140 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 141 *      data blocks at leaves and indirect blocks in intermediate nodes.
 142 *      This function translates the block number into path in that tree -
 143 *      return value is the path length and @offsets[n] is the offset of
 144 *      pointer to (n+1)th node in the nth one. If @block is out of range
 145 *      (negative or too large) warning is printed and zero returned.
 146 *
 147 *      Note: function doesn't find node addresses, so no IO is needed. All
 148 *      we need to know is the capacity of indirect blocks (taken from the
 149 *      inode->i_sb).
 150 */
 151
 152/*
 153 * Portability note: the last comparison (check that we fit into triple
 154 * indirect block) is spelled differently, because otherwise on an
 155 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 156 * if our filesystem had 8Kb blocks. We might use long long, but that would
 157 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 158 * i_block would have to be negative in the very beginning, so we would not
 159 * get there at all.
 160 */
 161
 162static int ext2_block_to_path(struct inode *inode,
 163                        long i_block, int offsets[4], int *boundary)
 164{
 165        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 166        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 167        const long direct_blocks = EXT2_NDIR_BLOCKS,
 168                indirect_blocks = ptrs,
 169                double_blocks = (1 << (ptrs_bits * 2));
 170        int n = 0;
 171        int final = 0;
 172
 173        if (i_block < 0) {
 174                ext2_msg(inode->i_sb, KERN_WARNING,
 175                        "warning: %s: block < 0", __func__);
 176        } else if (i_block < direct_blocks) {
 177                offsets[n++] = i_block;
 178                final = direct_blocks;
 179        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 180                offsets[n++] = EXT2_IND_BLOCK;
 181                offsets[n++] = i_block;
 182                final = ptrs;
 183        } else if ((i_block -= indirect_blocks) < double_blocks) {
 184                offsets[n++] = EXT2_DIND_BLOCK;
 185                offsets[n++] = i_block >> ptrs_bits;
 186                offsets[n++] = i_block & (ptrs - 1);
 187                final = ptrs;
 188        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 189                offsets[n++] = EXT2_TIND_BLOCK;
 190                offsets[n++] = i_block >> (ptrs_bits * 2);
 191                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 192                offsets[n++] = i_block & (ptrs - 1);
 193                final = ptrs;
 194        } else {
 195                ext2_msg(inode->i_sb, KERN_WARNING,
 196                        "warning: %s: block is too big", __func__);
 197        }
 198        if (boundary)
 199                *boundary = final - 1 - (i_block & (ptrs - 1));
 200
 201        return n;
 202}
 203
 204/**
 205 *      ext2_get_branch - read the chain of indirect blocks leading to data
 206 *      @inode: inode in question
 207 *      @depth: depth of the chain (1 - direct pointer, etc.)
 208 *      @offsets: offsets of pointers in inode/indirect blocks
 209 *      @chain: place to store the result
 210 *      @err: here we store the error value
 211 *
 212 *      Function fills the array of triples <key, p, bh> and returns %NULL
 213 *      if everything went OK or the pointer to the last filled triple
 214 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 215 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 216 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 217 *      number (it points into struct inode for i==0 and into the bh->b_data
 218 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 219 *      block for i>0 and NULL for i==0. In other words, it holds the block
 220 *      numbers of the chain, addresses they were taken from (and where we can
 221 *      verify that chain did not change) and buffer_heads hosting these
 222 *      numbers.
 223 *
 224 *      Function stops when it stumbles upon zero pointer (absent block)
 225 *              (pointer to last triple returned, *@err == 0)
 226 *      or when it gets an IO error reading an indirect block
 227 *              (ditto, *@err == -EIO)
 228 *      or when it notices that chain had been changed while it was reading
 229 *              (ditto, *@err == -EAGAIN)
 230 *      or when it reads all @depth-1 indirect blocks successfully and finds
 231 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 232 */
 233static Indirect *ext2_get_branch(struct inode *inode,
 234                                 int depth,
 235                                 int *offsets,
 236                                 Indirect chain[4],
 237                                 int *err)
 238{
 239        struct super_block *sb = inode->i_sb;
 240        Indirect *p = chain;
 241        struct buffer_head *bh;
 242
 243        *err = 0;
 244        /* i_data is not going away, no lock needed */
 245        add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 246        if (!p->key)
 247                goto no_block;
 248        while (--depth) {
 249                bh = sb_bread(sb, le32_to_cpu(p->key));
 250                if (!bh)
 251                        goto failure;
 252                read_lock(&EXT2_I(inode)->i_meta_lock);
 253                if (!verify_chain(chain, p))
 254                        goto changed;
 255                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 256                read_unlock(&EXT2_I(inode)->i_meta_lock);
 257                if (!p->key)
 258                        goto no_block;
 259        }
 260        return NULL;
 261
 262changed:
 263        read_unlock(&EXT2_I(inode)->i_meta_lock);
 264        brelse(bh);
 265        *err = -EAGAIN;
 266        goto no_block;
 267failure:
 268        *err = -EIO;
 269no_block:
 270        return p;
 271}
 272
 273/**
 274 *      ext2_find_near - find a place for allocation with sufficient locality
 275 *      @inode: owner
 276 *      @ind: descriptor of indirect block.
 277 *
 278 *      This function returns the preferred place for block allocation.
 279 *      It is used when heuristic for sequential allocation fails.
 280 *      Rules are:
 281 *        + if there is a block to the left of our position - allocate near it.
 282 *        + if pointer will live in indirect block - allocate near that block.
 283 *        + if pointer will live in inode - allocate in the same cylinder group.
 284 *
 285 * In the latter case we colour the starting block by the callers PID to
 286 * prevent it from clashing with concurrent allocations for a different inode
 287 * in the same block group.   The PID is used here so that functionally related
 288 * files will be close-by on-disk.
 289 *
 290 *      Caller must make sure that @ind is valid and will stay that way.
 291 */
 292
 293static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 294{
 295        struct ext2_inode_info *ei = EXT2_I(inode);
 296        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 297        __le32 *p;
 298        ext2_fsblk_t bg_start;
 299        ext2_fsblk_t colour;
 300
 301        /* Try to find previous block */
 302        for (p = ind->p - 1; p >= start; p--)
 303                if (*p)
 304                        return le32_to_cpu(*p);
 305
 306        /* No such thing, so let's try location of indirect block */
 307        if (ind->bh)
 308                return ind->bh->b_blocknr;
 309
 310        /*
 311         * It is going to be referred from inode itself? OK, just put it into
 312         * the same cylinder group then.
 313         */
 314        bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 315        colour = (current->pid % 16) *
 316                        (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 317        return bg_start + colour;
 318}
 319
 320/**
 321 *      ext2_find_goal - find a preferred place for allocation.
 322 *      @inode: owner
 323 *      @block:  block we want
 324 *      @partial: pointer to the last triple within a chain
 325 *
 326 *      Returns preferred place for a block (the goal).
 327 */
 328
 329static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 330                                          Indirect *partial)
 331{
 332        struct ext2_block_alloc_info *block_i;
 333
 334        block_i = EXT2_I(inode)->i_block_alloc_info;
 335
 336        /*
 337         * try the heuristic for sequential allocation,
 338         * failing that at least try to get decent locality.
 339         */
 340        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 341                && (block_i->last_alloc_physical_block != 0)) {
 342                return block_i->last_alloc_physical_block + 1;
 343        }
 344
 345        return ext2_find_near(inode, partial);
 346}
 347
 348/**
 349 *      ext2_blks_to_allocate: Look up the block map and count the number
 350 *      of direct blocks need to be allocated for the given branch.
 351 *
 352 *      @branch: chain of indirect blocks
 353 *      @k: number of blocks need for indirect blocks
 354 *      @blks: number of data blocks to be mapped.
 355 *      @blocks_to_boundary:  the offset in the indirect block
 356 *
 357 *      return the total number of blocks to be allocate, including the
 358 *      direct and indirect blocks.
 359 */
 360static int
 361ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 362                int blocks_to_boundary)
 363{
 364        unsigned long count = 0;
 365
 366        /*
 367         * Simple case, [t,d]Indirect block(s) has not allocated yet
 368         * then it's clear blocks on that path have not allocated
 369         */
 370        if (k > 0) {
 371                /* right now don't hanel cross boundary allocation */
 372                if (blks < blocks_to_boundary + 1)
 373                        count += blks;
 374                else
 375                        count += blocks_to_boundary + 1;
 376                return count;
 377        }
 378
 379        count++;
 380        while (count < blks && count <= blocks_to_boundary
 381                && le32_to_cpu(*(branch[0].p + count)) == 0) {
 382                count++;
 383        }
 384        return count;
 385}
 386
 387/**
 388 *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
 389 *      @indirect_blks: the number of blocks need to allocate for indirect
 390 *                      blocks
 391 *
 392 *      @new_blocks: on return it will store the new block numbers for
 393 *      the indirect blocks(if needed) and the first direct block,
 394 *      @blks:  on return it will store the total number of allocated
 395 *              direct blocks
 396 */
 397static int ext2_alloc_blocks(struct inode *inode,
 398                        ext2_fsblk_t goal, int indirect_blks, int blks,
 399                        ext2_fsblk_t new_blocks[4], int *err)
 400{
 401        int target, i;
 402        unsigned long count = 0;
 403        int index = 0;
 404        ext2_fsblk_t current_block = 0;
 405        int ret = 0;
 406
 407        /*
 408         * Here we try to allocate the requested multiple blocks at once,
 409         * on a best-effort basis.
 410         * To build a branch, we should allocate blocks for
 411         * the indirect blocks(if not allocated yet), and at least
 412         * the first direct block of this branch.  That's the
 413         * minimum number of blocks need to allocate(required)
 414         */
 415        target = blks + indirect_blks;
 416
 417        while (1) {
 418                count = target;
 419                /* allocating blocks for indirect blocks and direct blocks */
 420                current_block = ext2_new_blocks(inode,goal,&count,err);
 421                if (*err)
 422                        goto failed_out;
 423
 424                target -= count;
 425                /* allocate blocks for indirect blocks */
 426                while (index < indirect_blks && count) {
 427                        new_blocks[index++] = current_block++;
 428                        count--;
 429                }
 430
 431                if (count > 0)
 432                        break;
 433        }
 434
 435        /* save the new block number for the first direct block */
 436        new_blocks[index] = current_block;
 437
 438        /* total number of blocks allocated for direct blocks */
 439        ret = count;
 440        *err = 0;
 441        return ret;
 442failed_out:
 443        for (i = 0; i <index; i++)
 444                ext2_free_blocks(inode, new_blocks[i], 1);
 445        if (index)
 446                mark_inode_dirty(inode);
 447        return ret;
 448}
 449
 450/**
 451 *      ext2_alloc_branch - allocate and set up a chain of blocks.
 452 *      @inode: owner
 453 *      @num: depth of the chain (number of blocks to allocate)
 454 *      @offsets: offsets (in the blocks) to store the pointers to next.
 455 *      @branch: place to store the chain in.
 456 *
 457 *      This function allocates @num blocks, zeroes out all but the last one,
 458 *      links them into chain and (if we are synchronous) writes them to disk.
 459 *      In other words, it prepares a branch that can be spliced onto the
 460 *      inode. It stores the information about that chain in the branch[], in
 461 *      the same format as ext2_get_branch() would do. We are calling it after
 462 *      we had read the existing part of chain and partial points to the last
 463 *      triple of that (one with zero ->key). Upon the exit we have the same
 464 *      picture as after the successful ext2_get_block(), except that in one
 465 *      place chain is disconnected - *branch->p is still zero (we did not
 466 *      set the last link), but branch->key contains the number that should
 467 *      be placed into *branch->p to fill that gap.
 468 *
 469 *      If allocation fails we free all blocks we've allocated (and forget
 470 *      their buffer_heads) and return the error value the from failed
 471 *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 472 *      as described above and return 0.
 473 */
 474
 475static int ext2_alloc_branch(struct inode *inode,
 476                        int indirect_blks, int *blks, ext2_fsblk_t goal,
 477                        int *offsets, Indirect *branch)
 478{
 479        int blocksize = inode->i_sb->s_blocksize;
 480        int i, n = 0;
 481        int err = 0;
 482        struct buffer_head *bh;
 483        int num;
 484        ext2_fsblk_t new_blocks[4];
 485        ext2_fsblk_t current_block;
 486
 487        num = ext2_alloc_blocks(inode, goal, indirect_blks,
 488                                *blks, new_blocks, &err);
 489        if (err)
 490                return err;
 491
 492        branch[0].key = cpu_to_le32(new_blocks[0]);
 493        /*
 494         * metadata blocks and data blocks are allocated.
 495         */
 496        for (n = 1; n <= indirect_blks;  n++) {
 497                /*
 498                 * Get buffer_head for parent block, zero it out
 499                 * and set the pointer to new one, then send
 500                 * parent to disk.
 501                 */
 502                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 503                if (unlikely(!bh)) {
 504                        err = -ENOMEM;
 505                        goto failed;
 506                }
 507                branch[n].bh = bh;
 508                lock_buffer(bh);
 509                memset(bh->b_data, 0, blocksize);
 510                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 511                branch[n].key = cpu_to_le32(new_blocks[n]);
 512                *branch[n].p = branch[n].key;
 513                if ( n == indirect_blks) {
 514                        current_block = new_blocks[n];
 515                        /*
 516                         * End of chain, update the last new metablock of
 517                         * the chain to point to the new allocated
 518                         * data blocks numbers
 519                         */
 520                        for (i=1; i < num; i++)
 521                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 522                }
 523                set_buffer_uptodate(bh);
 524                unlock_buffer(bh);
 525                mark_buffer_dirty_inode(bh, inode);
 526                /* We used to sync bh here if IS_SYNC(inode).
 527                 * But we now rely upon generic_write_sync()
 528                 * and b_inode_buffers.  But not for directories.
 529                 */
 530                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 531                        sync_dirty_buffer(bh);
 532        }
 533        *blks = num;
 534        return err;
 535
 536failed:
 537        for (i = 1; i < n; i++)
 538                bforget(branch[i].bh);
 539        for (i = 0; i < indirect_blks; i++)
 540                ext2_free_blocks(inode, new_blocks[i], 1);
 541        ext2_free_blocks(inode, new_blocks[i], num);
 542        return err;
 543}
 544
 545/**
 546 * ext2_splice_branch - splice the allocated branch onto inode.
 547 * @inode: owner
 548 * @block: (logical) number of block we are adding
 549 * @where: location of missing link
 550 * @num:   number of indirect blocks we are adding
 551 * @blks:  number of direct blocks we are adding
 552 *
 553 * This function fills the missing link and does all housekeeping needed in
 554 * inode (->i_blocks, etc.). In case of success we end up with the full
 555 * chain to new block and return 0.
 556 */
 557static void ext2_splice_branch(struct inode *inode,
 558                        long block, Indirect *where, int num, int blks)
 559{
 560        int i;
 561        struct ext2_block_alloc_info *block_i;
 562        ext2_fsblk_t current_block;
 563
 564        block_i = EXT2_I(inode)->i_block_alloc_info;
 565
 566        /* XXX LOCKING probably should have i_meta_lock ?*/
 567        /* That's it */
 568
 569        *where->p = where->key;
 570
 571        /*
 572         * Update the host buffer_head or inode to point to more just allocated
 573         * direct blocks blocks
 574         */
 575        if (num == 0 && blks > 1) {
 576                current_block = le32_to_cpu(where->key) + 1;
 577                for (i = 1; i < blks; i++)
 578                        *(where->p + i ) = cpu_to_le32(current_block++);
 579        }
 580
 581        /*
 582         * update the most recently allocated logical & physical block
 583         * in i_block_alloc_info, to assist find the proper goal block for next
 584         * allocation
 585         */
 586        if (block_i) {
 587                block_i->last_alloc_logical_block = block + blks - 1;
 588                block_i->last_alloc_physical_block =
 589                                le32_to_cpu(where[num].key) + blks - 1;
 590        }
 591
 592        /* We are done with atomic stuff, now do the rest of housekeeping */
 593
 594        /* had we spliced it onto indirect block? */
 595        if (where->bh)
 596                mark_buffer_dirty_inode(where->bh, inode);
 597
 598        inode->i_ctime = current_time(inode);
 599        mark_inode_dirty(inode);
 600}
 601
 602/*
 603 * Allocation strategy is simple: if we have to allocate something, we will
 604 * have to go the whole way to leaf. So let's do it before attaching anything
 605 * to tree, set linkage between the newborn blocks, write them if sync is
 606 * required, recheck the path, free and repeat if check fails, otherwise
 607 * set the last missing link (that will protect us from any truncate-generated
 608 * removals - all blocks on the path are immune now) and possibly force the
 609 * write on the parent block.
 610 * That has a nice additional property: no special recovery from the failed
 611 * allocations is needed - we simply release blocks and do not touch anything
 612 * reachable from inode.
 613 *
 614 * `handle' can be NULL if create == 0.
 615 *
 616 * return > 0, # of blocks mapped or allocated.
 617 * return = 0, if plain lookup failed.
 618 * return < 0, error case.
 619 */
 620static int ext2_get_blocks(struct inode *inode,
 621                           sector_t iblock, unsigned long maxblocks,
 622                           u32 *bno, bool *new, bool *boundary,
 623                           int create)
 624{
 625        int err;
 626        int offsets[4];
 627        Indirect chain[4];
 628        Indirect *partial;
 629        ext2_fsblk_t goal;
 630        int indirect_blks;
 631        int blocks_to_boundary = 0;
 632        int depth;
 633        struct ext2_inode_info *ei = EXT2_I(inode);
 634        int count = 0;
 635        ext2_fsblk_t first_block = 0;
 636
 637        BUG_ON(maxblocks == 0);
 638
 639        depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 640
 641        if (depth == 0)
 642                return -EIO;
 643
 644        partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 645        /* Simplest case - block found, no allocation needed */
 646        if (!partial) {
 647                first_block = le32_to_cpu(chain[depth - 1].key);
 648                count++;
 649                /*map more blocks*/
 650                while (count < maxblocks && count <= blocks_to_boundary) {
 651                        ext2_fsblk_t blk;
 652
 653                        if (!verify_chain(chain, chain + depth - 1)) {
 654                                /*
 655                                 * Indirect block might be removed by
 656                                 * truncate while we were reading it.
 657                                 * Handling of that case: forget what we've
 658                                 * got now, go to reread.
 659                                 */
 660                                err = -EAGAIN;
 661                                count = 0;
 662                                partial = chain + depth - 1;
 663                                break;
 664                        }
 665                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 666                        if (blk == first_block + count)
 667                                count++;
 668                        else
 669                                break;
 670                }
 671                if (err != -EAGAIN)
 672                        goto got_it;
 673        }
 674
 675        /* Next simple case - plain lookup or failed read of indirect block */
 676        if (!create || err == -EIO)
 677                goto cleanup;
 678
 679        mutex_lock(&ei->truncate_mutex);
 680        /*
 681         * If the indirect block is missing while we are reading
 682         * the chain(ext2_get_branch() returns -EAGAIN err), or
 683         * if the chain has been changed after we grab the semaphore,
 684         * (either because another process truncated this branch, or
 685         * another get_block allocated this branch) re-grab the chain to see if
 686         * the request block has been allocated or not.
 687         *
 688         * Since we already block the truncate/other get_block
 689         * at this point, we will have the current copy of the chain when we
 690         * splice the branch into the tree.
 691         */
 692        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 693                while (partial > chain) {
 694                        brelse(partial->bh);
 695                        partial--;
 696                }
 697                partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 698                if (!partial) {
 699                        count++;
 700                        mutex_unlock(&ei->truncate_mutex);
 701                        if (err)
 702                                goto cleanup;
 703                        goto got_it;
 704                }
 705        }
 706
 707        /*
 708         * Okay, we need to do block allocation.  Lazily initialize the block
 709         * allocation info here if necessary
 710        */
 711        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 712                ext2_init_block_alloc_info(inode);
 713
 714        goal = ext2_find_goal(inode, iblock, partial);
 715
 716        /* the number of blocks need to allocate for [d,t]indirect blocks */
 717        indirect_blks = (chain + depth) - partial - 1;
 718        /*
 719         * Next look up the indirect map to count the totoal number of
 720         * direct blocks to allocate for this branch.
 721         */
 722        count = ext2_blks_to_allocate(partial, indirect_blks,
 723                                        maxblocks, blocks_to_boundary);
 724        /*
 725         * XXX ???? Block out ext2_truncate while we alter the tree
 726         */
 727        err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 728                                offsets + (partial - chain), partial);
 729
 730        if (err) {
 731                mutex_unlock(&ei->truncate_mutex);
 732                goto cleanup;
 733        }
 734
 735        if (IS_DAX(inode)) {
 736                /*
 737                 * We must unmap blocks before zeroing so that writeback cannot
 738                 * overwrite zeros with stale data from block device page cache.
 739                 */
 740                clean_bdev_aliases(inode->i_sb->s_bdev,
 741                                   le32_to_cpu(chain[depth-1].key),
 742                                   count);
 743                /*
 744                 * block must be initialised before we put it in the tree
 745                 * so that it's not found by another thread before it's
 746                 * initialised
 747                 */
 748                err = sb_issue_zeroout(inode->i_sb,
 749                                le32_to_cpu(chain[depth-1].key), count,
 750                                GFP_NOFS);
 751                if (err) {
 752                        mutex_unlock(&ei->truncate_mutex);
 753                        goto cleanup;
 754                }
 755        }
 756        *new = true;
 757
 758        ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 759        mutex_unlock(&ei->truncate_mutex);
 760got_it:
 761        if (count > blocks_to_boundary)
 762                *boundary = true;
 763        err = count;
 764        /* Clean up and exit */
 765        partial = chain + depth - 1;    /* the whole chain */
 766cleanup:
 767        while (partial > chain) {
 768                brelse(partial->bh);
 769                partial--;
 770        }
 771        if (err > 0)
 772                *bno = le32_to_cpu(chain[depth-1].key);
 773        return err;
 774}
 775
 776int ext2_get_block(struct inode *inode, sector_t iblock,
 777                struct buffer_head *bh_result, int create)
 778{
 779        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 780        bool new = false, boundary = false;
 781        u32 bno;
 782        int ret;
 783
 784        ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
 785                        create);
 786        if (ret <= 0)
 787                return ret;
 788
 789        map_bh(bh_result, inode->i_sb, bno);
 790        bh_result->b_size = (ret << inode->i_blkbits);
 791        if (new)
 792                set_buffer_new(bh_result);
 793        if (boundary)
 794                set_buffer_boundary(bh_result);
 795        return 0;
 796
 797}
 798
 799#ifdef CONFIG_FS_DAX
 800static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
 801                unsigned flags, struct iomap *iomap)
 802{
 803        struct block_device *bdev;
 804        unsigned int blkbits = inode->i_blkbits;
 805        unsigned long first_block = offset >> blkbits;
 806        unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
 807        bool new = false, boundary = false;
 808        u32 bno;
 809        int ret;
 810
 811        ret = ext2_get_blocks(inode, first_block, max_blocks,
 812                        &bno, &new, &boundary, flags & IOMAP_WRITE);
 813        if (ret < 0)
 814                return ret;
 815
 816        iomap->flags = 0;
 817        bdev = inode->i_sb->s_bdev;
 818        iomap->bdev = bdev;
 819        iomap->offset = (u64)first_block << blkbits;
 820        if (blk_queue_dax(bdev->bd_queue))
 821                iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
 822        else
 823                iomap->dax_dev = NULL;
 824
 825        if (ret == 0) {
 826                iomap->type = IOMAP_HOLE;
 827                iomap->blkno = IOMAP_NULL_BLOCK;
 828                iomap->length = 1 << blkbits;
 829        } else {
 830                iomap->type = IOMAP_MAPPED;
 831                iomap->blkno = (sector_t)bno << (blkbits - 9);
 832                iomap->length = (u64)ret << blkbits;
 833                iomap->flags |= IOMAP_F_MERGED;
 834        }
 835
 836        if (new)
 837                iomap->flags |= IOMAP_F_NEW;
 838        return 0;
 839}
 840
 841static int
 842ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
 843                ssize_t written, unsigned flags, struct iomap *iomap)
 844{
 845        fs_put_dax(iomap->dax_dev);
 846        if (iomap->type == IOMAP_MAPPED &&
 847            written < length &&
 848            (flags & IOMAP_WRITE))
 849                ext2_write_failed(inode->i_mapping, offset + length);
 850        return 0;
 851}
 852
 853const struct iomap_ops ext2_iomap_ops = {
 854        .iomap_begin            = ext2_iomap_begin,
 855        .iomap_end              = ext2_iomap_end,
 856};
 857#else
 858/* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
 859const struct iomap_ops ext2_iomap_ops;
 860#endif /* CONFIG_FS_DAX */
 861
 862int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 863                u64 start, u64 len)
 864{
 865        return generic_block_fiemap(inode, fieinfo, start, len,
 866                                    ext2_get_block);
 867}
 868
 869static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 870{
 871        return block_write_full_page(page, ext2_get_block, wbc);
 872}
 873
 874static int ext2_readpage(struct file *file, struct page *page)
 875{
 876        return mpage_readpage(page, ext2_get_block);
 877}
 878
 879static int
 880ext2_readpages(struct file *file, struct address_space *mapping,
 881                struct list_head *pages, unsigned nr_pages)
 882{
 883        return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
 884}
 885
 886static int
 887ext2_write_begin(struct file *file, struct address_space *mapping,
 888                loff_t pos, unsigned len, unsigned flags,
 889                struct page **pagep, void **fsdata)
 890{
 891        int ret;
 892
 893        ret = block_write_begin(mapping, pos, len, flags, pagep,
 894                                ext2_get_block);
 895        if (ret < 0)
 896                ext2_write_failed(mapping, pos + len);
 897        return ret;
 898}
 899
 900static int ext2_write_end(struct file *file, struct address_space *mapping,
 901                        loff_t pos, unsigned len, unsigned copied,
 902                        struct page *page, void *fsdata)
 903{
 904        int ret;
 905
 906        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 907        if (ret < len)
 908                ext2_write_failed(mapping, pos + len);
 909        return ret;
 910}
 911
 912static int
 913ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 914                loff_t pos, unsigned len, unsigned flags,
 915                struct page **pagep, void **fsdata)
 916{
 917        int ret;
 918
 919        ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
 920                               ext2_get_block);
 921        if (ret < 0)
 922                ext2_write_failed(mapping, pos + len);
 923        return ret;
 924}
 925
 926static int ext2_nobh_writepage(struct page *page,
 927                        struct writeback_control *wbc)
 928{
 929        return nobh_writepage(page, ext2_get_block, wbc);
 930}
 931
 932static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 933{
 934        return generic_block_bmap(mapping,block,ext2_get_block);
 935}
 936
 937static ssize_t
 938ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 939{
 940        struct file *file = iocb->ki_filp;
 941        struct address_space *mapping = file->f_mapping;
 942        struct inode *inode = mapping->host;
 943        size_t count = iov_iter_count(iter);
 944        loff_t offset = iocb->ki_pos;
 945        ssize_t ret;
 946
 947        if (WARN_ON_ONCE(IS_DAX(inode)))
 948                return -EIO;
 949
 950        ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
 951        if (ret < 0 && iov_iter_rw(iter) == WRITE)
 952                ext2_write_failed(mapping, offset + count);
 953        return ret;
 954}
 955
 956static int
 957ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 958{
 959#ifdef CONFIG_FS_DAX
 960        if (dax_mapping(mapping)) {
 961                return dax_writeback_mapping_range(mapping,
 962                                                   mapping->host->i_sb->s_bdev,
 963                                                   wbc);
 964        }
 965#endif
 966
 967        return mpage_writepages(mapping, wbc, ext2_get_block);
 968}
 969
 970const struct address_space_operations ext2_aops = {
 971        .readpage               = ext2_readpage,
 972        .readpages              = ext2_readpages,
 973        .writepage              = ext2_writepage,
 974        .write_begin            = ext2_write_begin,
 975        .write_end              = ext2_write_end,
 976        .bmap                   = ext2_bmap,
 977        .direct_IO              = ext2_direct_IO,
 978        .writepages             = ext2_writepages,
 979        .migratepage            = buffer_migrate_page,
 980        .is_partially_uptodate  = block_is_partially_uptodate,
 981        .error_remove_page      = generic_error_remove_page,
 982};
 983
 984const struct address_space_operations ext2_nobh_aops = {
 985        .readpage               = ext2_readpage,
 986        .readpages              = ext2_readpages,
 987        .writepage              = ext2_nobh_writepage,
 988        .write_begin            = ext2_nobh_write_begin,
 989        .write_end              = nobh_write_end,
 990        .bmap                   = ext2_bmap,
 991        .direct_IO              = ext2_direct_IO,
 992        .writepages             = ext2_writepages,
 993        .migratepage            = buffer_migrate_page,
 994        .error_remove_page      = generic_error_remove_page,
 995};
 996
 997/*
 998 * Probably it should be a library function... search for first non-zero word
 999 * or memcmp with zero_page, whatever is better for particular architecture.
1000 * Linus?
1001 */
1002static inline int all_zeroes(__le32 *p, __le32 *q)
1003{
1004        while (p < q)
1005                if (*p++)
1006                        return 0;
1007        return 1;
1008}
1009
1010/**
1011 *      ext2_find_shared - find the indirect blocks for partial truncation.
1012 *      @inode:   inode in question
1013 *      @depth:   depth of the affected branch
1014 *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1015 *      @chain:   place to store the pointers to partial indirect blocks
1016 *      @top:     place to the (detached) top of branch
1017 *
1018 *      This is a helper function used by ext2_truncate().
1019 *
1020 *      When we do truncate() we may have to clean the ends of several indirect
1021 *      blocks but leave the blocks themselves alive. Block is partially
1022 *      truncated if some data below the new i_size is referred from it (and
1023 *      it is on the path to the first completely truncated data block, indeed).
1024 *      We have to free the top of that path along with everything to the right
1025 *      of the path. Since no allocation past the truncation point is possible
1026 *      until ext2_truncate() finishes, we may safely do the latter, but top
1027 *      of branch may require special attention - pageout below the truncation
1028 *      point might try to populate it.
1029 *
1030 *      We atomically detach the top of branch from the tree, store the block
1031 *      number of its root in *@top, pointers to buffer_heads of partially
1032 *      truncated blocks - in @chain[].bh and pointers to their last elements
1033 *      that should not be removed - in @chain[].p. Return value is the pointer
1034 *      to last filled element of @chain.
1035 *
1036 *      The work left to caller to do the actual freeing of subtrees:
1037 *              a) free the subtree starting from *@top
1038 *              b) free the subtrees whose roots are stored in
1039 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1040 *              c) free the subtrees growing from the inode past the @chain[0].p
1041 *                      (no partially truncated stuff there).
1042 */
1043
1044static Indirect *ext2_find_shared(struct inode *inode,
1045                                int depth,
1046                                int offsets[4],
1047                                Indirect chain[4],
1048                                __le32 *top)
1049{
1050        Indirect *partial, *p;
1051        int k, err;
1052
1053        *top = 0;
1054        for (k = depth; k > 1 && !offsets[k-1]; k--)
1055                ;
1056        partial = ext2_get_branch(inode, k, offsets, chain, &err);
1057        if (!partial)
1058                partial = chain + k-1;
1059        /*
1060         * If the branch acquired continuation since we've looked at it -
1061         * fine, it should all survive and (new) top doesn't belong to us.
1062         */
1063        write_lock(&EXT2_I(inode)->i_meta_lock);
1064        if (!partial->key && *partial->p) {
1065                write_unlock(&EXT2_I(inode)->i_meta_lock);
1066                goto no_top;
1067        }
1068        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1069                ;
1070        /*
1071         * OK, we've found the last block that must survive. The rest of our
1072         * branch should be detached before unlocking. However, if that rest
1073         * of branch is all ours and does not grow immediately from the inode
1074         * it's easier to cheat and just decrement partial->p.
1075         */
1076        if (p == chain + k - 1 && p > chain) {
1077                p->p--;
1078        } else {
1079                *top = *p->p;
1080                *p->p = 0;
1081        }
1082        write_unlock(&EXT2_I(inode)->i_meta_lock);
1083
1084        while(partial > p)
1085        {
1086                brelse(partial->bh);
1087                partial--;
1088        }
1089no_top:
1090        return partial;
1091}
1092
1093/**
1094 *      ext2_free_data - free a list of data blocks
1095 *      @inode: inode we are dealing with
1096 *      @p:     array of block numbers
1097 *      @q:     points immediately past the end of array
1098 *
1099 *      We are freeing all blocks referred from that array (numbers are
1100 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1101 *      appropriately.
1102 */
1103static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1104{
1105        unsigned long block_to_free = 0, count = 0;
1106        unsigned long nr;
1107
1108        for ( ; p < q ; p++) {
1109                nr = le32_to_cpu(*p);
1110                if (nr) {
1111                        *p = 0;
1112                        /* accumulate blocks to free if they're contiguous */
1113                        if (count == 0)
1114                                goto free_this;
1115                        else if (block_to_free == nr - count)
1116                                count++;
1117                        else {
1118                                ext2_free_blocks (inode, block_to_free, count);
1119                                mark_inode_dirty(inode);
1120                        free_this:
1121                                block_to_free = nr;
1122                                count = 1;
1123                        }
1124                }
1125        }
1126        if (count > 0) {
1127                ext2_free_blocks (inode, block_to_free, count);
1128                mark_inode_dirty(inode);
1129        }
1130}
1131
1132/**
1133 *      ext2_free_branches - free an array of branches
1134 *      @inode: inode we are dealing with
1135 *      @p:     array of block numbers
1136 *      @q:     pointer immediately past the end of array
1137 *      @depth: depth of the branches to free
1138 *
1139 *      We are freeing all blocks referred from these branches (numbers are
1140 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1141 *      appropriately.
1142 */
1143static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1144{
1145        struct buffer_head * bh;
1146        unsigned long nr;
1147
1148        if (depth--) {
1149                int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1150                for ( ; p < q ; p++) {
1151                        nr = le32_to_cpu(*p);
1152                        if (!nr)
1153                                continue;
1154                        *p = 0;
1155                        bh = sb_bread(inode->i_sb, nr);
1156                        /*
1157                         * A read failure? Report error and clear slot
1158                         * (should be rare).
1159                         */ 
1160                        if (!bh) {
1161                                ext2_error(inode->i_sb, "ext2_free_branches",
1162                                        "Read failure, inode=%ld, block=%ld",
1163                                        inode->i_ino, nr);
1164                                continue;
1165                        }
1166                        ext2_free_branches(inode,
1167                                           (__le32*)bh->b_data,
1168                                           (__le32*)bh->b_data + addr_per_block,
1169                                           depth);
1170                        bforget(bh);
1171                        ext2_free_blocks(inode, nr, 1);
1172                        mark_inode_dirty(inode);
1173                }
1174        } else
1175                ext2_free_data(inode, p, q);
1176}
1177
1178/* dax_sem must be held when calling this function */
1179static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1180{
1181        __le32 *i_data = EXT2_I(inode)->i_data;
1182        struct ext2_inode_info *ei = EXT2_I(inode);
1183        int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1184        int offsets[4];
1185        Indirect chain[4];
1186        Indirect *partial;
1187        __le32 nr = 0;
1188        int n;
1189        long iblock;
1190        unsigned blocksize;
1191        blocksize = inode->i_sb->s_blocksize;
1192        iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1193
1194#ifdef CONFIG_FS_DAX
1195        WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1196#endif
1197
1198        n = ext2_block_to_path(inode, iblock, offsets, NULL);
1199        if (n == 0)
1200                return;
1201
1202        /*
1203         * From here we block out all ext2_get_block() callers who want to
1204         * modify the block allocation tree.
1205         */
1206        mutex_lock(&ei->truncate_mutex);
1207
1208        if (n == 1) {
1209                ext2_free_data(inode, i_data+offsets[0],
1210                                        i_data + EXT2_NDIR_BLOCKS);
1211                goto do_indirects;
1212        }
1213
1214        partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1215        /* Kill the top of shared branch (already detached) */
1216        if (nr) {
1217                if (partial == chain)
1218                        mark_inode_dirty(inode);
1219                else
1220                        mark_buffer_dirty_inode(partial->bh, inode);
1221                ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1222        }
1223        /* Clear the ends of indirect blocks on the shared branch */
1224        while (partial > chain) {
1225                ext2_free_branches(inode,
1226                                   partial->p + 1,
1227                                   (__le32*)partial->bh->b_data+addr_per_block,
1228                                   (chain+n-1) - partial);
1229                mark_buffer_dirty_inode(partial->bh, inode);
1230                brelse (partial->bh);
1231                partial--;
1232        }
1233do_indirects:
1234        /* Kill the remaining (whole) subtrees */
1235        switch (offsets[0]) {
1236                default:
1237                        nr = i_data[EXT2_IND_BLOCK];
1238                        if (nr) {
1239                                i_data[EXT2_IND_BLOCK] = 0;
1240                                mark_inode_dirty(inode);
1241                                ext2_free_branches(inode, &nr, &nr+1, 1);
1242                        }
1243                case EXT2_IND_BLOCK:
1244                        nr = i_data[EXT2_DIND_BLOCK];
1245                        if (nr) {
1246                                i_data[EXT2_DIND_BLOCK] = 0;
1247                                mark_inode_dirty(inode);
1248                                ext2_free_branches(inode, &nr, &nr+1, 2);
1249                        }
1250                case EXT2_DIND_BLOCK:
1251                        nr = i_data[EXT2_TIND_BLOCK];
1252                        if (nr) {
1253                                i_data[EXT2_TIND_BLOCK] = 0;
1254                                mark_inode_dirty(inode);
1255                                ext2_free_branches(inode, &nr, &nr+1, 3);
1256                        }
1257                case EXT2_TIND_BLOCK:
1258                        ;
1259        }
1260
1261        ext2_discard_reservation(inode);
1262
1263        mutex_unlock(&ei->truncate_mutex);
1264}
1265
1266static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1267{
1268        /*
1269         * XXX: it seems like a bug here that we don't allow
1270         * IS_APPEND inode to have blocks-past-i_size trimmed off.
1271         * review and fix this.
1272         *
1273         * Also would be nice to be able to handle IO errors and such,
1274         * but that's probably too much to ask.
1275         */
1276        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1277            S_ISLNK(inode->i_mode)))
1278                return;
1279        if (ext2_inode_is_fast_symlink(inode))
1280                return;
1281        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1282                return;
1283
1284        dax_sem_down_write(EXT2_I(inode));
1285        __ext2_truncate_blocks(inode, offset);
1286        dax_sem_up_write(EXT2_I(inode));
1287}
1288
1289static int ext2_setsize(struct inode *inode, loff_t newsize)
1290{
1291        int error;
1292
1293        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1294            S_ISLNK(inode->i_mode)))
1295                return -EINVAL;
1296        if (ext2_inode_is_fast_symlink(inode))
1297                return -EINVAL;
1298        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1299                return -EPERM;
1300
1301        inode_dio_wait(inode);
1302
1303        if (IS_DAX(inode)) {
1304                error = iomap_zero_range(inode, newsize,
1305                                         PAGE_ALIGN(newsize) - newsize, NULL,
1306                                         &ext2_iomap_ops);
1307        } else if (test_opt(inode->i_sb, NOBH))
1308                error = nobh_truncate_page(inode->i_mapping,
1309                                newsize, ext2_get_block);
1310        else
1311                error = block_truncate_page(inode->i_mapping,
1312                                newsize, ext2_get_block);
1313        if (error)
1314                return error;
1315
1316        dax_sem_down_write(EXT2_I(inode));
1317        truncate_setsize(inode, newsize);
1318        __ext2_truncate_blocks(inode, newsize);
1319        dax_sem_up_write(EXT2_I(inode));
1320
1321        inode->i_mtime = inode->i_ctime = current_time(inode);
1322        if (inode_needs_sync(inode)) {
1323                sync_mapping_buffers(inode->i_mapping);
1324                sync_inode_metadata(inode, 1);
1325        } else {
1326                mark_inode_dirty(inode);
1327        }
1328
1329        return 0;
1330}
1331
1332static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1333                                        struct buffer_head **p)
1334{
1335        struct buffer_head * bh;
1336        unsigned long block_group;
1337        unsigned long block;
1338        unsigned long offset;
1339        struct ext2_group_desc * gdp;
1340
1341        *p = NULL;
1342        if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1343            ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1344                goto Einval;
1345
1346        block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1347        gdp = ext2_get_group_desc(sb, block_group, NULL);
1348        if (!gdp)
1349                goto Egdp;
1350        /*
1351         * Figure out the offset within the block group inode table
1352         */
1353        offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1354        block = le32_to_cpu(gdp->bg_inode_table) +
1355                (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1356        if (!(bh = sb_bread(sb, block)))
1357                goto Eio;
1358
1359        *p = bh;
1360        offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1361        return (struct ext2_inode *) (bh->b_data + offset);
1362
1363Einval:
1364        ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1365                   (unsigned long) ino);
1366        return ERR_PTR(-EINVAL);
1367Eio:
1368        ext2_error(sb, "ext2_get_inode",
1369                   "unable to read inode block - inode=%lu, block=%lu",
1370                   (unsigned long) ino, block);
1371Egdp:
1372        return ERR_PTR(-EIO);
1373}
1374
1375void ext2_set_inode_flags(struct inode *inode)
1376{
1377        unsigned int flags = EXT2_I(inode)->i_flags;
1378
1379        inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1380                                S_DIRSYNC | S_DAX);
1381        if (flags & EXT2_SYNC_FL)
1382                inode->i_flags |= S_SYNC;
1383        if (flags & EXT2_APPEND_FL)
1384                inode->i_flags |= S_APPEND;
1385        if (flags & EXT2_IMMUTABLE_FL)
1386                inode->i_flags |= S_IMMUTABLE;
1387        if (flags & EXT2_NOATIME_FL)
1388                inode->i_flags |= S_NOATIME;
1389        if (flags & EXT2_DIRSYNC_FL)
1390                inode->i_flags |= S_DIRSYNC;
1391        if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1392                inode->i_flags |= S_DAX;
1393}
1394
1395struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1396{
1397        struct ext2_inode_info *ei;
1398        struct buffer_head * bh;
1399        struct ext2_inode *raw_inode;
1400        struct inode *inode;
1401        long ret = -EIO;
1402        int n;
1403        uid_t i_uid;
1404        gid_t i_gid;
1405
1406        inode = iget_locked(sb, ino);
1407        if (!inode)
1408                return ERR_PTR(-ENOMEM);
1409        if (!(inode->i_state & I_NEW))
1410                return inode;
1411
1412        ei = EXT2_I(inode);
1413        ei->i_block_alloc_info = NULL;
1414
1415        raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1416        if (IS_ERR(raw_inode)) {
1417                ret = PTR_ERR(raw_inode);
1418                goto bad_inode;
1419        }
1420
1421        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1422        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1423        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1424        if (!(test_opt (inode->i_sb, NO_UID32))) {
1425                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1426                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1427        }
1428        i_uid_write(inode, i_uid);
1429        i_gid_write(inode, i_gid);
1430        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1431        inode->i_size = le32_to_cpu(raw_inode->i_size);
1432        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1433        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1434        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1435        inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1436        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1437        /* We now have enough fields to check if the inode was active or not.
1438         * This is needed because nfsd might try to access dead inodes
1439         * the test is that same one that e2fsck uses
1440         * NeilBrown 1999oct15
1441         */
1442        if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1443                /* this inode is deleted */
1444                brelse (bh);
1445                ret = -ESTALE;
1446                goto bad_inode;
1447        }
1448        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1449        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1450        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1451        ei->i_frag_no = raw_inode->i_frag;
1452        ei->i_frag_size = raw_inode->i_fsize;
1453        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1454        ei->i_dir_acl = 0;
1455
1456        if (ei->i_file_acl &&
1457            !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1458                ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1459                           ei->i_file_acl);
1460                brelse(bh);
1461                ret = -EFSCORRUPTED;
1462                goto bad_inode;
1463        }
1464
1465        if (S_ISREG(inode->i_mode))
1466                inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1467        else
1468                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1469        if (i_size_read(inode) < 0) {
1470                ret = -EFSCORRUPTED;
1471                goto bad_inode;
1472        }
1473        ei->i_dtime = 0;
1474        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1475        ei->i_state = 0;
1476        ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1477        ei->i_dir_start_lookup = 0;
1478
1479        /*
1480         * NOTE! The in-memory inode i_data array is in little-endian order
1481         * even on big-endian machines: we do NOT byteswap the block numbers!
1482         */
1483        for (n = 0; n < EXT2_N_BLOCKS; n++)
1484                ei->i_data[n] = raw_inode->i_block[n];
1485
1486        if (S_ISREG(inode->i_mode)) {
1487                inode->i_op = &ext2_file_inode_operations;
1488                if (test_opt(inode->i_sb, NOBH)) {
1489                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1490                        inode->i_fop = &ext2_file_operations;
1491                } else {
1492                        inode->i_mapping->a_ops = &ext2_aops;
1493                        inode->i_fop = &ext2_file_operations;
1494                }
1495        } else if (S_ISDIR(inode->i_mode)) {
1496                inode->i_op = &ext2_dir_inode_operations;
1497                inode->i_fop = &ext2_dir_operations;
1498                if (test_opt(inode->i_sb, NOBH))
1499                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1500                else
1501                        inode->i_mapping->a_ops = &ext2_aops;
1502        } else if (S_ISLNK(inode->i_mode)) {
1503                if (ext2_inode_is_fast_symlink(inode)) {
1504                        inode->i_link = (char *)ei->i_data;
1505                        inode->i_op = &ext2_fast_symlink_inode_operations;
1506                        nd_terminate_link(ei->i_data, inode->i_size,
1507                                sizeof(ei->i_data) - 1);
1508                } else {
1509                        inode->i_op = &ext2_symlink_inode_operations;
1510                        inode_nohighmem(inode);
1511                        if (test_opt(inode->i_sb, NOBH))
1512                                inode->i_mapping->a_ops = &ext2_nobh_aops;
1513                        else
1514                                inode->i_mapping->a_ops = &ext2_aops;
1515                }
1516        } else {
1517                inode->i_op = &ext2_special_inode_operations;
1518                if (raw_inode->i_block[0])
1519                        init_special_inode(inode, inode->i_mode,
1520                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1521                else 
1522                        init_special_inode(inode, inode->i_mode,
1523                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1524        }
1525        brelse (bh);
1526        ext2_set_inode_flags(inode);
1527        unlock_new_inode(inode);
1528        return inode;
1529        
1530bad_inode:
1531        iget_failed(inode);
1532        return ERR_PTR(ret);
1533}
1534
1535static int __ext2_write_inode(struct inode *inode, int do_sync)
1536{
1537        struct ext2_inode_info *ei = EXT2_I(inode);
1538        struct super_block *sb = inode->i_sb;
1539        ino_t ino = inode->i_ino;
1540        uid_t uid = i_uid_read(inode);
1541        gid_t gid = i_gid_read(inode);
1542        struct buffer_head * bh;
1543        struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1544        int n;
1545        int err = 0;
1546
1547        if (IS_ERR(raw_inode))
1548                return -EIO;
1549
1550        /* For fields not not tracking in the in-memory inode,
1551         * initialise them to zero for new inodes. */
1552        if (ei->i_state & EXT2_STATE_NEW)
1553                memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1554
1555        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1556        if (!(test_opt(sb, NO_UID32))) {
1557                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1558                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1559/*
1560 * Fix up interoperability with old kernels. Otherwise, old inodes get
1561 * re-used with the upper 16 bits of the uid/gid intact
1562 */
1563                if (!ei->i_dtime) {
1564                        raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1565                        raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1566                } else {
1567                        raw_inode->i_uid_high = 0;
1568                        raw_inode->i_gid_high = 0;
1569                }
1570        } else {
1571                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1572                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1573                raw_inode->i_uid_high = 0;
1574                raw_inode->i_gid_high = 0;
1575        }
1576        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1577        raw_inode->i_size = cpu_to_le32(inode->i_size);
1578        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1579        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1580        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1581
1582        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1583        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1584        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1585        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1586        raw_inode->i_frag = ei->i_frag_no;
1587        raw_inode->i_fsize = ei->i_frag_size;
1588        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1589        if (!S_ISREG(inode->i_mode))
1590                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1591        else {
1592                raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1593                if (inode->i_size > 0x7fffffffULL) {
1594                        if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1595                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1596                            EXT2_SB(sb)->s_es->s_rev_level ==
1597                                        cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1598                               /* If this is the first large file
1599                                * created, add a flag to the superblock.
1600                                */
1601                                spin_lock(&EXT2_SB(sb)->s_lock);
1602                                ext2_update_dynamic_rev(sb);
1603                                EXT2_SET_RO_COMPAT_FEATURE(sb,
1604                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1605                                spin_unlock(&EXT2_SB(sb)->s_lock);
1606                                ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1607                        }
1608                }
1609        }
1610        
1611        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1612        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1613                if (old_valid_dev(inode->i_rdev)) {
1614                        raw_inode->i_block[0] =
1615                                cpu_to_le32(old_encode_dev(inode->i_rdev));
1616                        raw_inode->i_block[1] = 0;
1617                } else {
1618                        raw_inode->i_block[0] = 0;
1619                        raw_inode->i_block[1] =
1620                                cpu_to_le32(new_encode_dev(inode->i_rdev));
1621                        raw_inode->i_block[2] = 0;
1622                }
1623        } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1624                raw_inode->i_block[n] = ei->i_data[n];
1625        mark_buffer_dirty(bh);
1626        if (do_sync) {
1627                sync_dirty_buffer(bh);
1628                if (buffer_req(bh) && !buffer_uptodate(bh)) {
1629                        printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1630                                sb->s_id, (unsigned long) ino);
1631                        err = -EIO;
1632                }
1633        }
1634        ei->i_state &= ~EXT2_STATE_NEW;
1635        brelse (bh);
1636        return err;
1637}
1638
1639int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1640{
1641        return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1642}
1643
1644int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1645{
1646        struct inode *inode = d_inode(dentry);
1647        int error;
1648
1649        error = setattr_prepare(dentry, iattr);
1650        if (error)
1651                return error;
1652
1653        if (is_quota_modification(inode, iattr)) {
1654                error = dquot_initialize(inode);
1655                if (error)
1656                        return error;
1657        }
1658        if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1659            (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1660                error = dquot_transfer(inode, iattr);
1661                if (error)
1662                        return error;
1663        }
1664        if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1665                error = ext2_setsize(inode, iattr->ia_size);
1666                if (error)
1667                        return error;
1668        }
1669        setattr_copy(inode, iattr);
1670        if (iattr->ia_valid & ATTR_MODE)
1671                error = posix_acl_chmod(inode, inode->i_mode);
1672        mark_inode_dirty(inode);
1673
1674        return error;
1675}
1676