linux/fs/proc/base.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <linux/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/sched/autogroup.h>
  89#include <linux/sched/mm.h>
  90#include <linux/sched/coredump.h>
  91#include <linux/sched/debug.h>
  92#include <linux/sched/stat.h>
  93#include <linux/flex_array.h>
  94#include <linux/posix-timers.h>
  95#ifdef CONFIG_HARDWALL
  96#include <asm/hardwall.h>
  97#endif
  98#include <trace/events/oom.h>
  99#include "internal.h"
 100#include "fd.h"
 101
 102/* NOTE:
 103 *      Implementing inode permission operations in /proc is almost
 104 *      certainly an error.  Permission checks need to happen during
 105 *      each system call not at open time.  The reason is that most of
 106 *      what we wish to check for permissions in /proc varies at runtime.
 107 *
 108 *      The classic example of a problem is opening file descriptors
 109 *      in /proc for a task before it execs a suid executable.
 110 */
 111
 112static u8 nlink_tid;
 113static u8 nlink_tgid;
 114
 115struct pid_entry {
 116        const char *name;
 117        unsigned int len;
 118        umode_t mode;
 119        const struct inode_operations *iop;
 120        const struct file_operations *fop;
 121        union proc_op op;
 122};
 123
 124#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 125        .name = (NAME),                                 \
 126        .len  = sizeof(NAME) - 1,                       \
 127        .mode = MODE,                                   \
 128        .iop  = IOP,                                    \
 129        .fop  = FOP,                                    \
 130        .op   = OP,                                     \
 131}
 132
 133#define DIR(NAME, MODE, iops, fops)     \
 134        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 135#define LNK(NAME, get_link)                                     \
 136        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 137                &proc_pid_link_inode_operations, NULL,          \
 138                { .proc_get_link = get_link } )
 139#define REG(NAME, MODE, fops)                           \
 140        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 141#define ONE(NAME, MODE, show)                           \
 142        NOD(NAME, (S_IFREG|(MODE)),                     \
 143                NULL, &proc_single_file_operations,     \
 144                { .proc_show = show } )
 145
 146/*
 147 * Count the number of hardlinks for the pid_entry table, excluding the .
 148 * and .. links.
 149 */
 150static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 151        unsigned int n)
 152{
 153        unsigned int i;
 154        unsigned int count;
 155
 156        count = 2;
 157        for (i = 0; i < n; ++i) {
 158                if (S_ISDIR(entries[i].mode))
 159                        ++count;
 160        }
 161
 162        return count;
 163}
 164
 165static int get_task_root(struct task_struct *task, struct path *root)
 166{
 167        int result = -ENOENT;
 168
 169        task_lock(task);
 170        if (task->fs) {
 171                get_fs_root(task->fs, root);
 172                result = 0;
 173        }
 174        task_unlock(task);
 175        return result;
 176}
 177
 178static int proc_cwd_link(struct dentry *dentry, struct path *path)
 179{
 180        struct task_struct *task = get_proc_task(d_inode(dentry));
 181        int result = -ENOENT;
 182
 183        if (task) {
 184                task_lock(task);
 185                if (task->fs) {
 186                        get_fs_pwd(task->fs, path);
 187                        result = 0;
 188                }
 189                task_unlock(task);
 190                put_task_struct(task);
 191        }
 192        return result;
 193}
 194
 195static int proc_root_link(struct dentry *dentry, struct path *path)
 196{
 197        struct task_struct *task = get_proc_task(d_inode(dentry));
 198        int result = -ENOENT;
 199
 200        if (task) {
 201                result = get_task_root(task, path);
 202                put_task_struct(task);
 203        }
 204        return result;
 205}
 206
 207static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 208                                     size_t _count, loff_t *pos)
 209{
 210        struct task_struct *tsk;
 211        struct mm_struct *mm;
 212        char *page;
 213        unsigned long count = _count;
 214        unsigned long arg_start, arg_end, env_start, env_end;
 215        unsigned long len1, len2, len;
 216        unsigned long p;
 217        char c;
 218        ssize_t rv;
 219
 220        BUG_ON(*pos < 0);
 221
 222        tsk = get_proc_task(file_inode(file));
 223        if (!tsk)
 224                return -ESRCH;
 225        mm = get_task_mm(tsk);
 226        put_task_struct(tsk);
 227        if (!mm)
 228                return 0;
 229        /* Check if process spawned far enough to have cmdline. */
 230        if (!mm->env_end) {
 231                rv = 0;
 232                goto out_mmput;
 233        }
 234
 235        page = (char *)__get_free_page(GFP_TEMPORARY);
 236        if (!page) {
 237                rv = -ENOMEM;
 238                goto out_mmput;
 239        }
 240
 241        down_read(&mm->mmap_sem);
 242        arg_start = mm->arg_start;
 243        arg_end = mm->arg_end;
 244        env_start = mm->env_start;
 245        env_end = mm->env_end;
 246        up_read(&mm->mmap_sem);
 247
 248        BUG_ON(arg_start > arg_end);
 249        BUG_ON(env_start > env_end);
 250
 251        len1 = arg_end - arg_start;
 252        len2 = env_end - env_start;
 253
 254        /* Empty ARGV. */
 255        if (len1 == 0) {
 256                rv = 0;
 257                goto out_free_page;
 258        }
 259        /*
 260         * Inherently racy -- command line shares address space
 261         * with code and data.
 262         */
 263        rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 264        if (rv <= 0)
 265                goto out_free_page;
 266
 267        rv = 0;
 268
 269        if (c == '\0') {
 270                /* Command line (set of strings) occupies whole ARGV. */
 271                if (len1 <= *pos)
 272                        goto out_free_page;
 273
 274                p = arg_start + *pos;
 275                len = len1 - *pos;
 276                while (count > 0 && len > 0) {
 277                        unsigned int _count;
 278                        int nr_read;
 279
 280                        _count = min3(count, len, PAGE_SIZE);
 281                        nr_read = access_remote_vm(mm, p, page, _count, 0);
 282                        if (nr_read < 0)
 283                                rv = nr_read;
 284                        if (nr_read <= 0)
 285                                goto out_free_page;
 286
 287                        if (copy_to_user(buf, page, nr_read)) {
 288                                rv = -EFAULT;
 289                                goto out_free_page;
 290                        }
 291
 292                        p       += nr_read;
 293                        len     -= nr_read;
 294                        buf     += nr_read;
 295                        count   -= nr_read;
 296                        rv      += nr_read;
 297                }
 298        } else {
 299                /*
 300                 * Command line (1 string) occupies ARGV and
 301                 * extends into ENVP.
 302                 */
 303                struct {
 304                        unsigned long p;
 305                        unsigned long len;
 306                } cmdline[2] = {
 307                        { .p = arg_start, .len = len1 },
 308                        { .p = env_start, .len = len2 },
 309                };
 310                loff_t pos1 = *pos;
 311                unsigned int i;
 312
 313                i = 0;
 314                while (i < 2 && pos1 >= cmdline[i].len) {
 315                        pos1 -= cmdline[i].len;
 316                        i++;
 317                }
 318                while (i < 2) {
 319                        p = cmdline[i].p + pos1;
 320                        len = cmdline[i].len - pos1;
 321                        while (count > 0 && len > 0) {
 322                                unsigned int _count, l;
 323                                int nr_read;
 324                                bool final;
 325
 326                                _count = min3(count, len, PAGE_SIZE);
 327                                nr_read = access_remote_vm(mm, p, page, _count, 0);
 328                                if (nr_read < 0)
 329                                        rv = nr_read;
 330                                if (nr_read <= 0)
 331                                        goto out_free_page;
 332
 333                                /*
 334                                 * Command line can be shorter than whole ARGV
 335                                 * even if last "marker" byte says it is not.
 336                                 */
 337                                final = false;
 338                                l = strnlen(page, nr_read);
 339                                if (l < nr_read) {
 340                                        nr_read = l;
 341                                        final = true;
 342                                }
 343
 344                                if (copy_to_user(buf, page, nr_read)) {
 345                                        rv = -EFAULT;
 346                                        goto out_free_page;
 347                                }
 348
 349                                p       += nr_read;
 350                                len     -= nr_read;
 351                                buf     += nr_read;
 352                                count   -= nr_read;
 353                                rv      += nr_read;
 354
 355                                if (final)
 356                                        goto out_free_page;
 357                        }
 358
 359                        /* Only first chunk can be read partially. */
 360                        pos1 = 0;
 361                        i++;
 362                }
 363        }
 364
 365out_free_page:
 366        free_page((unsigned long)page);
 367out_mmput:
 368        mmput(mm);
 369        if (rv > 0)
 370                *pos += rv;
 371        return rv;
 372}
 373
 374static const struct file_operations proc_pid_cmdline_ops = {
 375        .read   = proc_pid_cmdline_read,
 376        .llseek = generic_file_llseek,
 377};
 378
 379#ifdef CONFIG_KALLSYMS
 380/*
 381 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 382 * Returns the resolved symbol.  If that fails, simply return the address.
 383 */
 384static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 385                          struct pid *pid, struct task_struct *task)
 386{
 387        unsigned long wchan;
 388        char symname[KSYM_NAME_LEN];
 389
 390        wchan = get_wchan(task);
 391
 392        if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 393                        && !lookup_symbol_name(wchan, symname))
 394                seq_printf(m, "%s", symname);
 395        else
 396                seq_putc(m, '0');
 397
 398        return 0;
 399}
 400#endif /* CONFIG_KALLSYMS */
 401
 402static int lock_trace(struct task_struct *task)
 403{
 404        int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 405        if (err)
 406                return err;
 407        if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 408                mutex_unlock(&task->signal->cred_guard_mutex);
 409                return -EPERM;
 410        }
 411        return 0;
 412}
 413
 414static void unlock_trace(struct task_struct *task)
 415{
 416        mutex_unlock(&task->signal->cred_guard_mutex);
 417}
 418
 419#ifdef CONFIG_STACKTRACE
 420
 421#define MAX_STACK_TRACE_DEPTH   64
 422
 423static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 424                          struct pid *pid, struct task_struct *task)
 425{
 426        struct stack_trace trace;
 427        unsigned long *entries;
 428        int err;
 429        int i;
 430
 431        entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 432        if (!entries)
 433                return -ENOMEM;
 434
 435        trace.nr_entries        = 0;
 436        trace.max_entries       = MAX_STACK_TRACE_DEPTH;
 437        trace.entries           = entries;
 438        trace.skip              = 0;
 439
 440        err = lock_trace(task);
 441        if (!err) {
 442                save_stack_trace_tsk(task, &trace);
 443
 444                for (i = 0; i < trace.nr_entries; i++) {
 445                        seq_printf(m, "[<%pK>] %pB\n",
 446                                   (void *)entries[i], (void *)entries[i]);
 447                }
 448                unlock_trace(task);
 449        }
 450        kfree(entries);
 451
 452        return err;
 453}
 454#endif
 455
 456#ifdef CONFIG_SCHED_INFO
 457/*
 458 * Provides /proc/PID/schedstat
 459 */
 460static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 461                              struct pid *pid, struct task_struct *task)
 462{
 463        if (unlikely(!sched_info_on()))
 464                seq_printf(m, "0 0 0\n");
 465        else
 466                seq_printf(m, "%llu %llu %lu\n",
 467                   (unsigned long long)task->se.sum_exec_runtime,
 468                   (unsigned long long)task->sched_info.run_delay,
 469                   task->sched_info.pcount);
 470
 471        return 0;
 472}
 473#endif
 474
 475#ifdef CONFIG_LATENCYTOP
 476static int lstats_show_proc(struct seq_file *m, void *v)
 477{
 478        int i;
 479        struct inode *inode = m->private;
 480        struct task_struct *task = get_proc_task(inode);
 481
 482        if (!task)
 483                return -ESRCH;
 484        seq_puts(m, "Latency Top version : v0.1\n");
 485        for (i = 0; i < 32; i++) {
 486                struct latency_record *lr = &task->latency_record[i];
 487                if (lr->backtrace[0]) {
 488                        int q;
 489                        seq_printf(m, "%i %li %li",
 490                                   lr->count, lr->time, lr->max);
 491                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 492                                unsigned long bt = lr->backtrace[q];
 493                                if (!bt)
 494                                        break;
 495                                if (bt == ULONG_MAX)
 496                                        break;
 497                                seq_printf(m, " %ps", (void *)bt);
 498                        }
 499                        seq_putc(m, '\n');
 500                }
 501
 502        }
 503        put_task_struct(task);
 504        return 0;
 505}
 506
 507static int lstats_open(struct inode *inode, struct file *file)
 508{
 509        return single_open(file, lstats_show_proc, inode);
 510}
 511
 512static ssize_t lstats_write(struct file *file, const char __user *buf,
 513                            size_t count, loff_t *offs)
 514{
 515        struct task_struct *task = get_proc_task(file_inode(file));
 516
 517        if (!task)
 518                return -ESRCH;
 519        clear_all_latency_tracing(task);
 520        put_task_struct(task);
 521
 522        return count;
 523}
 524
 525static const struct file_operations proc_lstats_operations = {
 526        .open           = lstats_open,
 527        .read           = seq_read,
 528        .write          = lstats_write,
 529        .llseek         = seq_lseek,
 530        .release        = single_release,
 531};
 532
 533#endif
 534
 535static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 536                          struct pid *pid, struct task_struct *task)
 537{
 538        unsigned long totalpages = totalram_pages + total_swap_pages;
 539        unsigned long points = 0;
 540
 541        points = oom_badness(task, NULL, NULL, totalpages) *
 542                                        1000 / totalpages;
 543        seq_printf(m, "%lu\n", points);
 544
 545        return 0;
 546}
 547
 548struct limit_names {
 549        const char *name;
 550        const char *unit;
 551};
 552
 553static const struct limit_names lnames[RLIM_NLIMITS] = {
 554        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 555        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 556        [RLIMIT_DATA] = {"Max data size", "bytes"},
 557        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 558        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 559        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 560        [RLIMIT_NPROC] = {"Max processes", "processes"},
 561        [RLIMIT_NOFILE] = {"Max open files", "files"},
 562        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 563        [RLIMIT_AS] = {"Max address space", "bytes"},
 564        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 565        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 566        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 567        [RLIMIT_NICE] = {"Max nice priority", NULL},
 568        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 569        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 570};
 571
 572/* Display limits for a process */
 573static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 574                           struct pid *pid, struct task_struct *task)
 575{
 576        unsigned int i;
 577        unsigned long flags;
 578
 579        struct rlimit rlim[RLIM_NLIMITS];
 580
 581        if (!lock_task_sighand(task, &flags))
 582                return 0;
 583        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 584        unlock_task_sighand(task, &flags);
 585
 586        /*
 587         * print the file header
 588         */
 589       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 590                  "Limit", "Soft Limit", "Hard Limit", "Units");
 591
 592        for (i = 0; i < RLIM_NLIMITS; i++) {
 593                if (rlim[i].rlim_cur == RLIM_INFINITY)
 594                        seq_printf(m, "%-25s %-20s ",
 595                                   lnames[i].name, "unlimited");
 596                else
 597                        seq_printf(m, "%-25s %-20lu ",
 598                                   lnames[i].name, rlim[i].rlim_cur);
 599
 600                if (rlim[i].rlim_max == RLIM_INFINITY)
 601                        seq_printf(m, "%-20s ", "unlimited");
 602                else
 603                        seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 604
 605                if (lnames[i].unit)
 606                        seq_printf(m, "%-10s\n", lnames[i].unit);
 607                else
 608                        seq_putc(m, '\n');
 609        }
 610
 611        return 0;
 612}
 613
 614#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 615static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 616                            struct pid *pid, struct task_struct *task)
 617{
 618        long nr;
 619        unsigned long args[6], sp, pc;
 620        int res;
 621
 622        res = lock_trace(task);
 623        if (res)
 624                return res;
 625
 626        if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 627                seq_puts(m, "running\n");
 628        else if (nr < 0)
 629                seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 630        else
 631                seq_printf(m,
 632                       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 633                       nr,
 634                       args[0], args[1], args[2], args[3], args[4], args[5],
 635                       sp, pc);
 636        unlock_trace(task);
 637
 638        return 0;
 639}
 640#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 641
 642/************************************************************************/
 643/*                       Here the fs part begins                        */
 644/************************************************************************/
 645
 646/* permission checks */
 647static int proc_fd_access_allowed(struct inode *inode)
 648{
 649        struct task_struct *task;
 650        int allowed = 0;
 651        /* Allow access to a task's file descriptors if it is us or we
 652         * may use ptrace attach to the process and find out that
 653         * information.
 654         */
 655        task = get_proc_task(inode);
 656        if (task) {
 657                allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 658                put_task_struct(task);
 659        }
 660        return allowed;
 661}
 662
 663int proc_setattr(struct dentry *dentry, struct iattr *attr)
 664{
 665        int error;
 666        struct inode *inode = d_inode(dentry);
 667
 668        if (attr->ia_valid & ATTR_MODE)
 669                return -EPERM;
 670
 671        error = setattr_prepare(dentry, attr);
 672        if (error)
 673                return error;
 674
 675        setattr_copy(inode, attr);
 676        mark_inode_dirty(inode);
 677        return 0;
 678}
 679
 680/*
 681 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 682 * or euid/egid (for hide_pid_min=2)?
 683 */
 684static bool has_pid_permissions(struct pid_namespace *pid,
 685                                 struct task_struct *task,
 686                                 int hide_pid_min)
 687{
 688        if (pid->hide_pid < hide_pid_min)
 689                return true;
 690        if (in_group_p(pid->pid_gid))
 691                return true;
 692        return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 693}
 694
 695
 696static int proc_pid_permission(struct inode *inode, int mask)
 697{
 698        struct pid_namespace *pid = inode->i_sb->s_fs_info;
 699        struct task_struct *task;
 700        bool has_perms;
 701
 702        task = get_proc_task(inode);
 703        if (!task)
 704                return -ESRCH;
 705        has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
 706        put_task_struct(task);
 707
 708        if (!has_perms) {
 709                if (pid->hide_pid == HIDEPID_INVISIBLE) {
 710                        /*
 711                         * Let's make getdents(), stat(), and open()
 712                         * consistent with each other.  If a process
 713                         * may not stat() a file, it shouldn't be seen
 714                         * in procfs at all.
 715                         */
 716                        return -ENOENT;
 717                }
 718
 719                return -EPERM;
 720        }
 721        return generic_permission(inode, mask);
 722}
 723
 724
 725
 726static const struct inode_operations proc_def_inode_operations = {
 727        .setattr        = proc_setattr,
 728};
 729
 730static int proc_single_show(struct seq_file *m, void *v)
 731{
 732        struct inode *inode = m->private;
 733        struct pid_namespace *ns;
 734        struct pid *pid;
 735        struct task_struct *task;
 736        int ret;
 737
 738        ns = inode->i_sb->s_fs_info;
 739        pid = proc_pid(inode);
 740        task = get_pid_task(pid, PIDTYPE_PID);
 741        if (!task)
 742                return -ESRCH;
 743
 744        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 745
 746        put_task_struct(task);
 747        return ret;
 748}
 749
 750static int proc_single_open(struct inode *inode, struct file *filp)
 751{
 752        return single_open(filp, proc_single_show, inode);
 753}
 754
 755static const struct file_operations proc_single_file_operations = {
 756        .open           = proc_single_open,
 757        .read           = seq_read,
 758        .llseek         = seq_lseek,
 759        .release        = single_release,
 760};
 761
 762
 763struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 764{
 765        struct task_struct *task = get_proc_task(inode);
 766        struct mm_struct *mm = ERR_PTR(-ESRCH);
 767
 768        if (task) {
 769                mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 770                put_task_struct(task);
 771
 772                if (!IS_ERR_OR_NULL(mm)) {
 773                        /* ensure this mm_struct can't be freed */
 774                        mmgrab(mm);
 775                        /* but do not pin its memory */
 776                        mmput(mm);
 777                }
 778        }
 779
 780        return mm;
 781}
 782
 783static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 784{
 785        struct mm_struct *mm = proc_mem_open(inode, mode);
 786
 787        if (IS_ERR(mm))
 788                return PTR_ERR(mm);
 789
 790        file->private_data = mm;
 791        return 0;
 792}
 793
 794static int mem_open(struct inode *inode, struct file *file)
 795{
 796        int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 797
 798        /* OK to pass negative loff_t, we can catch out-of-range */
 799        file->f_mode |= FMODE_UNSIGNED_OFFSET;
 800
 801        return ret;
 802}
 803
 804static ssize_t mem_rw(struct file *file, char __user *buf,
 805                        size_t count, loff_t *ppos, int write)
 806{
 807        struct mm_struct *mm = file->private_data;
 808        unsigned long addr = *ppos;
 809        ssize_t copied;
 810        char *page;
 811        unsigned int flags;
 812
 813        if (!mm)
 814                return 0;
 815
 816        page = (char *)__get_free_page(GFP_TEMPORARY);
 817        if (!page)
 818                return -ENOMEM;
 819
 820        copied = 0;
 821        if (!mmget_not_zero(mm))
 822                goto free;
 823
 824        flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 825
 826        while (count > 0) {
 827                int this_len = min_t(int, count, PAGE_SIZE);
 828
 829                if (write && copy_from_user(page, buf, this_len)) {
 830                        copied = -EFAULT;
 831                        break;
 832                }
 833
 834                this_len = access_remote_vm(mm, addr, page, this_len, flags);
 835                if (!this_len) {
 836                        if (!copied)
 837                                copied = -EIO;
 838                        break;
 839                }
 840
 841                if (!write && copy_to_user(buf, page, this_len)) {
 842                        copied = -EFAULT;
 843                        break;
 844                }
 845
 846                buf += this_len;
 847                addr += this_len;
 848                copied += this_len;
 849                count -= this_len;
 850        }
 851        *ppos = addr;
 852
 853        mmput(mm);
 854free:
 855        free_page((unsigned long) page);
 856        return copied;
 857}
 858
 859static ssize_t mem_read(struct file *file, char __user *buf,
 860                        size_t count, loff_t *ppos)
 861{
 862        return mem_rw(file, buf, count, ppos, 0);
 863}
 864
 865static ssize_t mem_write(struct file *file, const char __user *buf,
 866                         size_t count, loff_t *ppos)
 867{
 868        return mem_rw(file, (char __user*)buf, count, ppos, 1);
 869}
 870
 871loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 872{
 873        switch (orig) {
 874        case 0:
 875                file->f_pos = offset;
 876                break;
 877        case 1:
 878                file->f_pos += offset;
 879                break;
 880        default:
 881                return -EINVAL;
 882        }
 883        force_successful_syscall_return();
 884        return file->f_pos;
 885}
 886
 887static int mem_release(struct inode *inode, struct file *file)
 888{
 889        struct mm_struct *mm = file->private_data;
 890        if (mm)
 891                mmdrop(mm);
 892        return 0;
 893}
 894
 895static const struct file_operations proc_mem_operations = {
 896        .llseek         = mem_lseek,
 897        .read           = mem_read,
 898        .write          = mem_write,
 899        .open           = mem_open,
 900        .release        = mem_release,
 901};
 902
 903static int environ_open(struct inode *inode, struct file *file)
 904{
 905        return __mem_open(inode, file, PTRACE_MODE_READ);
 906}
 907
 908static ssize_t environ_read(struct file *file, char __user *buf,
 909                        size_t count, loff_t *ppos)
 910{
 911        char *page;
 912        unsigned long src = *ppos;
 913        int ret = 0;
 914        struct mm_struct *mm = file->private_data;
 915        unsigned long env_start, env_end;
 916
 917        /* Ensure the process spawned far enough to have an environment. */
 918        if (!mm || !mm->env_end)
 919                return 0;
 920
 921        page = (char *)__get_free_page(GFP_TEMPORARY);
 922        if (!page)
 923                return -ENOMEM;
 924
 925        ret = 0;
 926        if (!mmget_not_zero(mm))
 927                goto free;
 928
 929        down_read(&mm->mmap_sem);
 930        env_start = mm->env_start;
 931        env_end = mm->env_end;
 932        up_read(&mm->mmap_sem);
 933
 934        while (count > 0) {
 935                size_t this_len, max_len;
 936                int retval;
 937
 938                if (src >= (env_end - env_start))
 939                        break;
 940
 941                this_len = env_end - (env_start + src);
 942
 943                max_len = min_t(size_t, PAGE_SIZE, count);
 944                this_len = min(max_len, this_len);
 945
 946                retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
 947
 948                if (retval <= 0) {
 949                        ret = retval;
 950                        break;
 951                }
 952
 953                if (copy_to_user(buf, page, retval)) {
 954                        ret = -EFAULT;
 955                        break;
 956                }
 957
 958                ret += retval;
 959                src += retval;
 960                buf += retval;
 961                count -= retval;
 962        }
 963        *ppos = src;
 964        mmput(mm);
 965
 966free:
 967        free_page((unsigned long) page);
 968        return ret;
 969}
 970
 971static const struct file_operations proc_environ_operations = {
 972        .open           = environ_open,
 973        .read           = environ_read,
 974        .llseek         = generic_file_llseek,
 975        .release        = mem_release,
 976};
 977
 978static int auxv_open(struct inode *inode, struct file *file)
 979{
 980        return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
 981}
 982
 983static ssize_t auxv_read(struct file *file, char __user *buf,
 984                        size_t count, loff_t *ppos)
 985{
 986        struct mm_struct *mm = file->private_data;
 987        unsigned int nwords = 0;
 988
 989        if (!mm)
 990                return 0;
 991        do {
 992                nwords += 2;
 993        } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 994        return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
 995                                       nwords * sizeof(mm->saved_auxv[0]));
 996}
 997
 998static const struct file_operations proc_auxv_operations = {
 999        .open           = auxv_open,
1000        .read           = auxv_read,
1001        .llseek         = generic_file_llseek,
1002        .release        = mem_release,
1003};
1004
1005static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1006                            loff_t *ppos)
1007{
1008        struct task_struct *task = get_proc_task(file_inode(file));
1009        char buffer[PROC_NUMBUF];
1010        int oom_adj = OOM_ADJUST_MIN;
1011        size_t len;
1012
1013        if (!task)
1014                return -ESRCH;
1015        if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1016                oom_adj = OOM_ADJUST_MAX;
1017        else
1018                oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1019                          OOM_SCORE_ADJ_MAX;
1020        put_task_struct(task);
1021        len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1022        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1023}
1024
1025static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1026{
1027        static DEFINE_MUTEX(oom_adj_mutex);
1028        struct mm_struct *mm = NULL;
1029        struct task_struct *task;
1030        int err = 0;
1031
1032        task = get_proc_task(file_inode(file));
1033        if (!task)
1034                return -ESRCH;
1035
1036        mutex_lock(&oom_adj_mutex);
1037        if (legacy) {
1038                if (oom_adj < task->signal->oom_score_adj &&
1039                                !capable(CAP_SYS_RESOURCE)) {
1040                        err = -EACCES;
1041                        goto err_unlock;
1042                }
1043                /*
1044                 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1045                 * /proc/pid/oom_score_adj instead.
1046                 */
1047                pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1048                          current->comm, task_pid_nr(current), task_pid_nr(task),
1049                          task_pid_nr(task));
1050        } else {
1051                if ((short)oom_adj < task->signal->oom_score_adj_min &&
1052                                !capable(CAP_SYS_RESOURCE)) {
1053                        err = -EACCES;
1054                        goto err_unlock;
1055                }
1056        }
1057
1058        /*
1059         * Make sure we will check other processes sharing the mm if this is
1060         * not vfrok which wants its own oom_score_adj.
1061         * pin the mm so it doesn't go away and get reused after task_unlock
1062         */
1063        if (!task->vfork_done) {
1064                struct task_struct *p = find_lock_task_mm(task);
1065
1066                if (p) {
1067                        if (atomic_read(&p->mm->mm_users) > 1) {
1068                                mm = p->mm;
1069                                mmgrab(mm);
1070                        }
1071                        task_unlock(p);
1072                }
1073        }
1074
1075        task->signal->oom_score_adj = oom_adj;
1076        if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1077                task->signal->oom_score_adj_min = (short)oom_adj;
1078        trace_oom_score_adj_update(task);
1079
1080        if (mm) {
1081                struct task_struct *p;
1082
1083                rcu_read_lock();
1084                for_each_process(p) {
1085                        if (same_thread_group(task, p))
1086                                continue;
1087
1088                        /* do not touch kernel threads or the global init */
1089                        if (p->flags & PF_KTHREAD || is_global_init(p))
1090                                continue;
1091
1092                        task_lock(p);
1093                        if (!p->vfork_done && process_shares_mm(p, mm)) {
1094                                pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1095                                                task_pid_nr(p), p->comm,
1096                                                p->signal->oom_score_adj, oom_adj,
1097                                                task_pid_nr(task), task->comm);
1098                                p->signal->oom_score_adj = oom_adj;
1099                                if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1100                                        p->signal->oom_score_adj_min = (short)oom_adj;
1101                        }
1102                        task_unlock(p);
1103                }
1104                rcu_read_unlock();
1105                mmdrop(mm);
1106        }
1107err_unlock:
1108        mutex_unlock(&oom_adj_mutex);
1109        put_task_struct(task);
1110        return err;
1111}
1112
1113/*
1114 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1115 * kernels.  The effective policy is defined by oom_score_adj, which has a
1116 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1117 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1118 * Processes that become oom disabled via oom_adj will still be oom disabled
1119 * with this implementation.
1120 *
1121 * oom_adj cannot be removed since existing userspace binaries use it.
1122 */
1123static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1124                             size_t count, loff_t *ppos)
1125{
1126        char buffer[PROC_NUMBUF];
1127        int oom_adj;
1128        int err;
1129
1130        memset(buffer, 0, sizeof(buffer));
1131        if (count > sizeof(buffer) - 1)
1132                count = sizeof(buffer) - 1;
1133        if (copy_from_user(buffer, buf, count)) {
1134                err = -EFAULT;
1135                goto out;
1136        }
1137
1138        err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1139        if (err)
1140                goto out;
1141        if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1142             oom_adj != OOM_DISABLE) {
1143                err = -EINVAL;
1144                goto out;
1145        }
1146
1147        /*
1148         * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1149         * value is always attainable.
1150         */
1151        if (oom_adj == OOM_ADJUST_MAX)
1152                oom_adj = OOM_SCORE_ADJ_MAX;
1153        else
1154                oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1155
1156        err = __set_oom_adj(file, oom_adj, true);
1157out:
1158        return err < 0 ? err : count;
1159}
1160
1161static const struct file_operations proc_oom_adj_operations = {
1162        .read           = oom_adj_read,
1163        .write          = oom_adj_write,
1164        .llseek         = generic_file_llseek,
1165};
1166
1167static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1168                                        size_t count, loff_t *ppos)
1169{
1170        struct task_struct *task = get_proc_task(file_inode(file));
1171        char buffer[PROC_NUMBUF];
1172        short oom_score_adj = OOM_SCORE_ADJ_MIN;
1173        size_t len;
1174
1175        if (!task)
1176                return -ESRCH;
1177        oom_score_adj = task->signal->oom_score_adj;
1178        put_task_struct(task);
1179        len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1180        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1181}
1182
1183static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1184                                        size_t count, loff_t *ppos)
1185{
1186        char buffer[PROC_NUMBUF];
1187        int oom_score_adj;
1188        int err;
1189
1190        memset(buffer, 0, sizeof(buffer));
1191        if (count > sizeof(buffer) - 1)
1192                count = sizeof(buffer) - 1;
1193        if (copy_from_user(buffer, buf, count)) {
1194                err = -EFAULT;
1195                goto out;
1196        }
1197
1198        err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1199        if (err)
1200                goto out;
1201        if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1202                        oom_score_adj > OOM_SCORE_ADJ_MAX) {
1203                err = -EINVAL;
1204                goto out;
1205        }
1206
1207        err = __set_oom_adj(file, oom_score_adj, false);
1208out:
1209        return err < 0 ? err : count;
1210}
1211
1212static const struct file_operations proc_oom_score_adj_operations = {
1213        .read           = oom_score_adj_read,
1214        .write          = oom_score_adj_write,
1215        .llseek         = default_llseek,
1216};
1217
1218#ifdef CONFIG_AUDITSYSCALL
1219#define TMPBUFLEN 11
1220static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1221                                  size_t count, loff_t *ppos)
1222{
1223        struct inode * inode = file_inode(file);
1224        struct task_struct *task = get_proc_task(inode);
1225        ssize_t length;
1226        char tmpbuf[TMPBUFLEN];
1227
1228        if (!task)
1229                return -ESRCH;
1230        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1231                           from_kuid(file->f_cred->user_ns,
1232                                     audit_get_loginuid(task)));
1233        put_task_struct(task);
1234        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1235}
1236
1237static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1238                                   size_t count, loff_t *ppos)
1239{
1240        struct inode * inode = file_inode(file);
1241        uid_t loginuid;
1242        kuid_t kloginuid;
1243        int rv;
1244
1245        rcu_read_lock();
1246        if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1247                rcu_read_unlock();
1248                return -EPERM;
1249        }
1250        rcu_read_unlock();
1251
1252        if (*ppos != 0) {
1253                /* No partial writes. */
1254                return -EINVAL;
1255        }
1256
1257        rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1258        if (rv < 0)
1259                return rv;
1260
1261        /* is userspace tring to explicitly UNSET the loginuid? */
1262        if (loginuid == AUDIT_UID_UNSET) {
1263                kloginuid = INVALID_UID;
1264        } else {
1265                kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1266                if (!uid_valid(kloginuid))
1267                        return -EINVAL;
1268        }
1269
1270        rv = audit_set_loginuid(kloginuid);
1271        if (rv < 0)
1272                return rv;
1273        return count;
1274}
1275
1276static const struct file_operations proc_loginuid_operations = {
1277        .read           = proc_loginuid_read,
1278        .write          = proc_loginuid_write,
1279        .llseek         = generic_file_llseek,
1280};
1281
1282static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1283                                  size_t count, loff_t *ppos)
1284{
1285        struct inode * inode = file_inode(file);
1286        struct task_struct *task = get_proc_task(inode);
1287        ssize_t length;
1288        char tmpbuf[TMPBUFLEN];
1289
1290        if (!task)
1291                return -ESRCH;
1292        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1293                                audit_get_sessionid(task));
1294        put_task_struct(task);
1295        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1296}
1297
1298static const struct file_operations proc_sessionid_operations = {
1299        .read           = proc_sessionid_read,
1300        .llseek         = generic_file_llseek,
1301};
1302#endif
1303
1304#ifdef CONFIG_FAULT_INJECTION
1305static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1306                                      size_t count, loff_t *ppos)
1307{
1308        struct task_struct *task = get_proc_task(file_inode(file));
1309        char buffer[PROC_NUMBUF];
1310        size_t len;
1311        int make_it_fail;
1312
1313        if (!task)
1314                return -ESRCH;
1315        make_it_fail = task->make_it_fail;
1316        put_task_struct(task);
1317
1318        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1319
1320        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1321}
1322
1323static ssize_t proc_fault_inject_write(struct file * file,
1324                        const char __user * buf, size_t count, loff_t *ppos)
1325{
1326        struct task_struct *task;
1327        char buffer[PROC_NUMBUF];
1328        int make_it_fail;
1329        int rv;
1330
1331        if (!capable(CAP_SYS_RESOURCE))
1332                return -EPERM;
1333        memset(buffer, 0, sizeof(buffer));
1334        if (count > sizeof(buffer) - 1)
1335                count = sizeof(buffer) - 1;
1336        if (copy_from_user(buffer, buf, count))
1337                return -EFAULT;
1338        rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1339        if (rv < 0)
1340                return rv;
1341        if (make_it_fail < 0 || make_it_fail > 1)
1342                return -EINVAL;
1343
1344        task = get_proc_task(file_inode(file));
1345        if (!task)
1346                return -ESRCH;
1347        task->make_it_fail = make_it_fail;
1348        put_task_struct(task);
1349
1350        return count;
1351}
1352
1353static const struct file_operations proc_fault_inject_operations = {
1354        .read           = proc_fault_inject_read,
1355        .write          = proc_fault_inject_write,
1356        .llseek         = generic_file_llseek,
1357};
1358
1359static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1360                                   size_t count, loff_t *ppos)
1361{
1362        struct task_struct *task;
1363        int err;
1364        unsigned int n;
1365
1366        err = kstrtouint_from_user(buf, count, 0, &n);
1367        if (err)
1368                return err;
1369
1370        task = get_proc_task(file_inode(file));
1371        if (!task)
1372                return -ESRCH;
1373        WRITE_ONCE(task->fail_nth, n);
1374        put_task_struct(task);
1375
1376        return count;
1377}
1378
1379static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1380                                  size_t count, loff_t *ppos)
1381{
1382        struct task_struct *task;
1383        char numbuf[PROC_NUMBUF];
1384        ssize_t len;
1385
1386        task = get_proc_task(file_inode(file));
1387        if (!task)
1388                return -ESRCH;
1389        len = snprintf(numbuf, sizeof(numbuf), "%u\n",
1390                        READ_ONCE(task->fail_nth));
1391        len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1392        put_task_struct(task);
1393
1394        return len;
1395}
1396
1397static const struct file_operations proc_fail_nth_operations = {
1398        .read           = proc_fail_nth_read,
1399        .write          = proc_fail_nth_write,
1400};
1401#endif
1402
1403
1404#ifdef CONFIG_SCHED_DEBUG
1405/*
1406 * Print out various scheduling related per-task fields:
1407 */
1408static int sched_show(struct seq_file *m, void *v)
1409{
1410        struct inode *inode = m->private;
1411        struct task_struct *p;
1412
1413        p = get_proc_task(inode);
1414        if (!p)
1415                return -ESRCH;
1416        proc_sched_show_task(p, m);
1417
1418        put_task_struct(p);
1419
1420        return 0;
1421}
1422
1423static ssize_t
1424sched_write(struct file *file, const char __user *buf,
1425            size_t count, loff_t *offset)
1426{
1427        struct inode *inode = file_inode(file);
1428        struct task_struct *p;
1429
1430        p = get_proc_task(inode);
1431        if (!p)
1432                return -ESRCH;
1433        proc_sched_set_task(p);
1434
1435        put_task_struct(p);
1436
1437        return count;
1438}
1439
1440static int sched_open(struct inode *inode, struct file *filp)
1441{
1442        return single_open(filp, sched_show, inode);
1443}
1444
1445static const struct file_operations proc_pid_sched_operations = {
1446        .open           = sched_open,
1447        .read           = seq_read,
1448        .write          = sched_write,
1449        .llseek         = seq_lseek,
1450        .release        = single_release,
1451};
1452
1453#endif
1454
1455#ifdef CONFIG_SCHED_AUTOGROUP
1456/*
1457 * Print out autogroup related information:
1458 */
1459static int sched_autogroup_show(struct seq_file *m, void *v)
1460{
1461        struct inode *inode = m->private;
1462        struct task_struct *p;
1463
1464        p = get_proc_task(inode);
1465        if (!p)
1466                return -ESRCH;
1467        proc_sched_autogroup_show_task(p, m);
1468
1469        put_task_struct(p);
1470
1471        return 0;
1472}
1473
1474static ssize_t
1475sched_autogroup_write(struct file *file, const char __user *buf,
1476            size_t count, loff_t *offset)
1477{
1478        struct inode *inode = file_inode(file);
1479        struct task_struct *p;
1480        char buffer[PROC_NUMBUF];
1481        int nice;
1482        int err;
1483
1484        memset(buffer, 0, sizeof(buffer));
1485        if (count > sizeof(buffer) - 1)
1486                count = sizeof(buffer) - 1;
1487        if (copy_from_user(buffer, buf, count))
1488                return -EFAULT;
1489
1490        err = kstrtoint(strstrip(buffer), 0, &nice);
1491        if (err < 0)
1492                return err;
1493
1494        p = get_proc_task(inode);
1495        if (!p)
1496                return -ESRCH;
1497
1498        err = proc_sched_autogroup_set_nice(p, nice);
1499        if (err)
1500                count = err;
1501
1502        put_task_struct(p);
1503
1504        return count;
1505}
1506
1507static int sched_autogroup_open(struct inode *inode, struct file *filp)
1508{
1509        int ret;
1510
1511        ret = single_open(filp, sched_autogroup_show, NULL);
1512        if (!ret) {
1513                struct seq_file *m = filp->private_data;
1514
1515                m->private = inode;
1516        }
1517        return ret;
1518}
1519
1520static const struct file_operations proc_pid_sched_autogroup_operations = {
1521        .open           = sched_autogroup_open,
1522        .read           = seq_read,
1523        .write          = sched_autogroup_write,
1524        .llseek         = seq_lseek,
1525        .release        = single_release,
1526};
1527
1528#endif /* CONFIG_SCHED_AUTOGROUP */
1529
1530static ssize_t comm_write(struct file *file, const char __user *buf,
1531                                size_t count, loff_t *offset)
1532{
1533        struct inode *inode = file_inode(file);
1534        struct task_struct *p;
1535        char buffer[TASK_COMM_LEN];
1536        const size_t maxlen = sizeof(buffer) - 1;
1537
1538        memset(buffer, 0, sizeof(buffer));
1539        if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1540                return -EFAULT;
1541
1542        p = get_proc_task(inode);
1543        if (!p)
1544                return -ESRCH;
1545
1546        if (same_thread_group(current, p))
1547                set_task_comm(p, buffer);
1548        else
1549                count = -EINVAL;
1550
1551        put_task_struct(p);
1552
1553        return count;
1554}
1555
1556static int comm_show(struct seq_file *m, void *v)
1557{
1558        struct inode *inode = m->private;
1559        struct task_struct *p;
1560
1561        p = get_proc_task(inode);
1562        if (!p)
1563                return -ESRCH;
1564
1565        task_lock(p);
1566        seq_printf(m, "%s\n", p->comm);
1567        task_unlock(p);
1568
1569        put_task_struct(p);
1570
1571        return 0;
1572}
1573
1574static int comm_open(struct inode *inode, struct file *filp)
1575{
1576        return single_open(filp, comm_show, inode);
1577}
1578
1579static const struct file_operations proc_pid_set_comm_operations = {
1580        .open           = comm_open,
1581        .read           = seq_read,
1582        .write          = comm_write,
1583        .llseek         = seq_lseek,
1584        .release        = single_release,
1585};
1586
1587static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1588{
1589        struct task_struct *task;
1590        struct file *exe_file;
1591
1592        task = get_proc_task(d_inode(dentry));
1593        if (!task)
1594                return -ENOENT;
1595        exe_file = get_task_exe_file(task);
1596        put_task_struct(task);
1597        if (exe_file) {
1598                *exe_path = exe_file->f_path;
1599                path_get(&exe_file->f_path);
1600                fput(exe_file);
1601                return 0;
1602        } else
1603                return -ENOENT;
1604}
1605
1606static const char *proc_pid_get_link(struct dentry *dentry,
1607                                     struct inode *inode,
1608                                     struct delayed_call *done)
1609{
1610        struct path path;
1611        int error = -EACCES;
1612
1613        if (!dentry)
1614                return ERR_PTR(-ECHILD);
1615
1616        /* Are we allowed to snoop on the tasks file descriptors? */
1617        if (!proc_fd_access_allowed(inode))
1618                goto out;
1619
1620        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1621        if (error)
1622                goto out;
1623
1624        nd_jump_link(&path);
1625        return NULL;
1626out:
1627        return ERR_PTR(error);
1628}
1629
1630static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1631{
1632        char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1633        char *pathname;
1634        int len;
1635
1636        if (!tmp)
1637                return -ENOMEM;
1638
1639        pathname = d_path(path, tmp, PAGE_SIZE);
1640        len = PTR_ERR(pathname);
1641        if (IS_ERR(pathname))
1642                goto out;
1643        len = tmp + PAGE_SIZE - 1 - pathname;
1644
1645        if (len > buflen)
1646                len = buflen;
1647        if (copy_to_user(buffer, pathname, len))
1648                len = -EFAULT;
1649 out:
1650        free_page((unsigned long)tmp);
1651        return len;
1652}
1653
1654static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1655{
1656        int error = -EACCES;
1657        struct inode *inode = d_inode(dentry);
1658        struct path path;
1659
1660        /* Are we allowed to snoop on the tasks file descriptors? */
1661        if (!proc_fd_access_allowed(inode))
1662                goto out;
1663
1664        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1665        if (error)
1666                goto out;
1667
1668        error = do_proc_readlink(&path, buffer, buflen);
1669        path_put(&path);
1670out:
1671        return error;
1672}
1673
1674const struct inode_operations proc_pid_link_inode_operations = {
1675        .readlink       = proc_pid_readlink,
1676        .get_link       = proc_pid_get_link,
1677        .setattr        = proc_setattr,
1678};
1679
1680
1681/* building an inode */
1682
1683void task_dump_owner(struct task_struct *task, mode_t mode,
1684                     kuid_t *ruid, kgid_t *rgid)
1685{
1686        /* Depending on the state of dumpable compute who should own a
1687         * proc file for a task.
1688         */
1689        const struct cred *cred;
1690        kuid_t uid;
1691        kgid_t gid;
1692
1693        /* Default to the tasks effective ownership */
1694        rcu_read_lock();
1695        cred = __task_cred(task);
1696        uid = cred->euid;
1697        gid = cred->egid;
1698        rcu_read_unlock();
1699
1700        /*
1701         * Before the /proc/pid/status file was created the only way to read
1702         * the effective uid of a /process was to stat /proc/pid.  Reading
1703         * /proc/pid/status is slow enough that procps and other packages
1704         * kept stating /proc/pid.  To keep the rules in /proc simple I have
1705         * made this apply to all per process world readable and executable
1706         * directories.
1707         */
1708        if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1709                struct mm_struct *mm;
1710                task_lock(task);
1711                mm = task->mm;
1712                /* Make non-dumpable tasks owned by some root */
1713                if (mm) {
1714                        if (get_dumpable(mm) != SUID_DUMP_USER) {
1715                                struct user_namespace *user_ns = mm->user_ns;
1716
1717                                uid = make_kuid(user_ns, 0);
1718                                if (!uid_valid(uid))
1719                                        uid = GLOBAL_ROOT_UID;
1720
1721                                gid = make_kgid(user_ns, 0);
1722                                if (!gid_valid(gid))
1723                                        gid = GLOBAL_ROOT_GID;
1724                        }
1725                } else {
1726                        uid = GLOBAL_ROOT_UID;
1727                        gid = GLOBAL_ROOT_GID;
1728                }
1729                task_unlock(task);
1730        }
1731        *ruid = uid;
1732        *rgid = gid;
1733}
1734
1735struct inode *proc_pid_make_inode(struct super_block * sb,
1736                                  struct task_struct *task, umode_t mode)
1737{
1738        struct inode * inode;
1739        struct proc_inode *ei;
1740
1741        /* We need a new inode */
1742
1743        inode = new_inode(sb);
1744        if (!inode)
1745                goto out;
1746
1747        /* Common stuff */
1748        ei = PROC_I(inode);
1749        inode->i_mode = mode;
1750        inode->i_ino = get_next_ino();
1751        inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1752        inode->i_op = &proc_def_inode_operations;
1753
1754        /*
1755         * grab the reference to task.
1756         */
1757        ei->pid = get_task_pid(task, PIDTYPE_PID);
1758        if (!ei->pid)
1759                goto out_unlock;
1760
1761        task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1762        security_task_to_inode(task, inode);
1763
1764out:
1765        return inode;
1766
1767out_unlock:
1768        iput(inode);
1769        return NULL;
1770}
1771
1772int pid_getattr(const struct path *path, struct kstat *stat,
1773                u32 request_mask, unsigned int query_flags)
1774{
1775        struct inode *inode = d_inode(path->dentry);
1776        struct task_struct *task;
1777        struct pid_namespace *pid = path->dentry->d_sb->s_fs_info;
1778
1779        generic_fillattr(inode, stat);
1780
1781        rcu_read_lock();
1782        stat->uid = GLOBAL_ROOT_UID;
1783        stat->gid = GLOBAL_ROOT_GID;
1784        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1785        if (task) {
1786                if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1787                        rcu_read_unlock();
1788                        /*
1789                         * This doesn't prevent learning whether PID exists,
1790                         * it only makes getattr() consistent with readdir().
1791                         */
1792                        return -ENOENT;
1793                }
1794                task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1795        }
1796        rcu_read_unlock();
1797        return 0;
1798}
1799
1800/* dentry stuff */
1801
1802/*
1803 *      Exceptional case: normally we are not allowed to unhash a busy
1804 * directory. In this case, however, we can do it - no aliasing problems
1805 * due to the way we treat inodes.
1806 *
1807 * Rewrite the inode's ownerships here because the owning task may have
1808 * performed a setuid(), etc.
1809 *
1810 */
1811int pid_revalidate(struct dentry *dentry, unsigned int flags)
1812{
1813        struct inode *inode;
1814        struct task_struct *task;
1815
1816        if (flags & LOOKUP_RCU)
1817                return -ECHILD;
1818
1819        inode = d_inode(dentry);
1820        task = get_proc_task(inode);
1821
1822        if (task) {
1823                task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1824
1825                inode->i_mode &= ~(S_ISUID | S_ISGID);
1826                security_task_to_inode(task, inode);
1827                put_task_struct(task);
1828                return 1;
1829        }
1830        return 0;
1831}
1832
1833static inline bool proc_inode_is_dead(struct inode *inode)
1834{
1835        return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1836}
1837
1838int pid_delete_dentry(const struct dentry *dentry)
1839{
1840        /* Is the task we represent dead?
1841         * If so, then don't put the dentry on the lru list,
1842         * kill it immediately.
1843         */
1844        return proc_inode_is_dead(d_inode(dentry));
1845}
1846
1847const struct dentry_operations pid_dentry_operations =
1848{
1849        .d_revalidate   = pid_revalidate,
1850        .d_delete       = pid_delete_dentry,
1851};
1852
1853/* Lookups */
1854
1855/*
1856 * Fill a directory entry.
1857 *
1858 * If possible create the dcache entry and derive our inode number and
1859 * file type from dcache entry.
1860 *
1861 * Since all of the proc inode numbers are dynamically generated, the inode
1862 * numbers do not exist until the inode is cache.  This means creating the
1863 * the dcache entry in readdir is necessary to keep the inode numbers
1864 * reported by readdir in sync with the inode numbers reported
1865 * by stat.
1866 */
1867bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1868        const char *name, int len,
1869        instantiate_t instantiate, struct task_struct *task, const void *ptr)
1870{
1871        struct dentry *child, *dir = file->f_path.dentry;
1872        struct qstr qname = QSTR_INIT(name, len);
1873        struct inode *inode;
1874        unsigned type;
1875        ino_t ino;
1876
1877        child = d_hash_and_lookup(dir, &qname);
1878        if (!child) {
1879                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1880                child = d_alloc_parallel(dir, &qname, &wq);
1881                if (IS_ERR(child))
1882                        goto end_instantiate;
1883                if (d_in_lookup(child)) {
1884                        int err = instantiate(d_inode(dir), child, task, ptr);
1885                        d_lookup_done(child);
1886                        if (err < 0) {
1887                                dput(child);
1888                                goto end_instantiate;
1889                        }
1890                }
1891        }
1892        inode = d_inode(child);
1893        ino = inode->i_ino;
1894        type = inode->i_mode >> 12;
1895        dput(child);
1896        return dir_emit(ctx, name, len, ino, type);
1897
1898end_instantiate:
1899        return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1900}
1901
1902/*
1903 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1904 * which represent vma start and end addresses.
1905 */
1906static int dname_to_vma_addr(struct dentry *dentry,
1907                             unsigned long *start, unsigned long *end)
1908{
1909        if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1910                return -EINVAL;
1911
1912        return 0;
1913}
1914
1915static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1916{
1917        unsigned long vm_start, vm_end;
1918        bool exact_vma_exists = false;
1919        struct mm_struct *mm = NULL;
1920        struct task_struct *task;
1921        struct inode *inode;
1922        int status = 0;
1923
1924        if (flags & LOOKUP_RCU)
1925                return -ECHILD;
1926
1927        inode = d_inode(dentry);
1928        task = get_proc_task(inode);
1929        if (!task)
1930                goto out_notask;
1931
1932        mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1933        if (IS_ERR_OR_NULL(mm))
1934                goto out;
1935
1936        if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1937                down_read(&mm->mmap_sem);
1938                exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1939                up_read(&mm->mmap_sem);
1940        }
1941
1942        mmput(mm);
1943
1944        if (exact_vma_exists) {
1945                task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1946
1947                security_task_to_inode(task, inode);
1948                status = 1;
1949        }
1950
1951out:
1952        put_task_struct(task);
1953
1954out_notask:
1955        return status;
1956}
1957
1958static const struct dentry_operations tid_map_files_dentry_operations = {
1959        .d_revalidate   = map_files_d_revalidate,
1960        .d_delete       = pid_delete_dentry,
1961};
1962
1963static int map_files_get_link(struct dentry *dentry, struct path *path)
1964{
1965        unsigned long vm_start, vm_end;
1966        struct vm_area_struct *vma;
1967        struct task_struct *task;
1968        struct mm_struct *mm;
1969        int rc;
1970
1971        rc = -ENOENT;
1972        task = get_proc_task(d_inode(dentry));
1973        if (!task)
1974                goto out;
1975
1976        mm = get_task_mm(task);
1977        put_task_struct(task);
1978        if (!mm)
1979                goto out;
1980
1981        rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1982        if (rc)
1983                goto out_mmput;
1984
1985        rc = -ENOENT;
1986        down_read(&mm->mmap_sem);
1987        vma = find_exact_vma(mm, vm_start, vm_end);
1988        if (vma && vma->vm_file) {
1989                *path = vma->vm_file->f_path;
1990                path_get(path);
1991                rc = 0;
1992        }
1993        up_read(&mm->mmap_sem);
1994
1995out_mmput:
1996        mmput(mm);
1997out:
1998        return rc;
1999}
2000
2001struct map_files_info {
2002        fmode_t         mode;
2003        unsigned int    len;
2004        unsigned char   name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2005};
2006
2007/*
2008 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2009 * symlinks may be used to bypass permissions on ancestor directories in the
2010 * path to the file in question.
2011 */
2012static const char *
2013proc_map_files_get_link(struct dentry *dentry,
2014                        struct inode *inode,
2015                        struct delayed_call *done)
2016{
2017        if (!capable(CAP_SYS_ADMIN))
2018                return ERR_PTR(-EPERM);
2019
2020        return proc_pid_get_link(dentry, inode, done);
2021}
2022
2023/*
2024 * Identical to proc_pid_link_inode_operations except for get_link()
2025 */
2026static const struct inode_operations proc_map_files_link_inode_operations = {
2027        .readlink       = proc_pid_readlink,
2028        .get_link       = proc_map_files_get_link,
2029        .setattr        = proc_setattr,
2030};
2031
2032static int
2033proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2034                           struct task_struct *task, const void *ptr)
2035{
2036        fmode_t mode = (fmode_t)(unsigned long)ptr;
2037        struct proc_inode *ei;
2038        struct inode *inode;
2039
2040        inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2041                                    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2042                                    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2043        if (!inode)
2044                return -ENOENT;
2045
2046        ei = PROC_I(inode);
2047        ei->op.proc_get_link = map_files_get_link;
2048
2049        inode->i_op = &proc_map_files_link_inode_operations;
2050        inode->i_size = 64;
2051
2052        d_set_d_op(dentry, &tid_map_files_dentry_operations);
2053        d_add(dentry, inode);
2054
2055        return 0;
2056}
2057
2058static struct dentry *proc_map_files_lookup(struct inode *dir,
2059                struct dentry *dentry, unsigned int flags)
2060{
2061        unsigned long vm_start, vm_end;
2062        struct vm_area_struct *vma;
2063        struct task_struct *task;
2064        int result;
2065        struct mm_struct *mm;
2066
2067        result = -ENOENT;
2068        task = get_proc_task(dir);
2069        if (!task)
2070                goto out;
2071
2072        result = -EACCES;
2073        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2074                goto out_put_task;
2075
2076        result = -ENOENT;
2077        if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2078                goto out_put_task;
2079
2080        mm = get_task_mm(task);
2081        if (!mm)
2082                goto out_put_task;
2083
2084        down_read(&mm->mmap_sem);
2085        vma = find_exact_vma(mm, vm_start, vm_end);
2086        if (!vma)
2087                goto out_no_vma;
2088
2089        if (vma->vm_file)
2090                result = proc_map_files_instantiate(dir, dentry, task,
2091                                (void *)(unsigned long)vma->vm_file->f_mode);
2092
2093out_no_vma:
2094        up_read(&mm->mmap_sem);
2095        mmput(mm);
2096out_put_task:
2097        put_task_struct(task);
2098out:
2099        return ERR_PTR(result);
2100}
2101
2102static const struct inode_operations proc_map_files_inode_operations = {
2103        .lookup         = proc_map_files_lookup,
2104        .permission     = proc_fd_permission,
2105        .setattr        = proc_setattr,
2106};
2107
2108static int
2109proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2110{
2111        struct vm_area_struct *vma;
2112        struct task_struct *task;
2113        struct mm_struct *mm;
2114        unsigned long nr_files, pos, i;
2115        struct flex_array *fa = NULL;
2116        struct map_files_info info;
2117        struct map_files_info *p;
2118        int ret;
2119
2120        ret = -ENOENT;
2121        task = get_proc_task(file_inode(file));
2122        if (!task)
2123                goto out;
2124
2125        ret = -EACCES;
2126        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2127                goto out_put_task;
2128
2129        ret = 0;
2130        if (!dir_emit_dots(file, ctx))
2131                goto out_put_task;
2132
2133        mm = get_task_mm(task);
2134        if (!mm)
2135                goto out_put_task;
2136        down_read(&mm->mmap_sem);
2137
2138        nr_files = 0;
2139
2140        /*
2141         * We need two passes here:
2142         *
2143         *  1) Collect vmas of mapped files with mmap_sem taken
2144         *  2) Release mmap_sem and instantiate entries
2145         *
2146         * otherwise we get lockdep complained, since filldir()
2147         * routine might require mmap_sem taken in might_fault().
2148         */
2149
2150        for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2151                if (vma->vm_file && ++pos > ctx->pos)
2152                        nr_files++;
2153        }
2154
2155        if (nr_files) {
2156                fa = flex_array_alloc(sizeof(info), nr_files,
2157                                        GFP_KERNEL);
2158                if (!fa || flex_array_prealloc(fa, 0, nr_files,
2159                                                GFP_KERNEL)) {
2160                        ret = -ENOMEM;
2161                        if (fa)
2162                                flex_array_free(fa);
2163                        up_read(&mm->mmap_sem);
2164                        mmput(mm);
2165                        goto out_put_task;
2166                }
2167                for (i = 0, vma = mm->mmap, pos = 2; vma;
2168                                vma = vma->vm_next) {
2169                        if (!vma->vm_file)
2170                                continue;
2171                        if (++pos <= ctx->pos)
2172                                continue;
2173
2174                        info.mode = vma->vm_file->f_mode;
2175                        info.len = snprintf(info.name,
2176                                        sizeof(info.name), "%lx-%lx",
2177                                        vma->vm_start, vma->vm_end);
2178                        if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2179                                BUG();
2180                }
2181        }
2182        up_read(&mm->mmap_sem);
2183
2184        for (i = 0; i < nr_files; i++) {
2185                p = flex_array_get(fa, i);
2186                if (!proc_fill_cache(file, ctx,
2187                                      p->name, p->len,
2188                                      proc_map_files_instantiate,
2189                                      task,
2190                                      (void *)(unsigned long)p->mode))
2191                        break;
2192                ctx->pos++;
2193        }
2194        if (fa)
2195                flex_array_free(fa);
2196        mmput(mm);
2197
2198out_put_task:
2199        put_task_struct(task);
2200out:
2201        return ret;
2202}
2203
2204static const struct file_operations proc_map_files_operations = {
2205        .read           = generic_read_dir,
2206        .iterate_shared = proc_map_files_readdir,
2207        .llseek         = generic_file_llseek,
2208};
2209
2210#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2211struct timers_private {
2212        struct pid *pid;
2213        struct task_struct *task;
2214        struct sighand_struct *sighand;
2215        struct pid_namespace *ns;
2216        unsigned long flags;
2217};
2218
2219static void *timers_start(struct seq_file *m, loff_t *pos)
2220{
2221        struct timers_private *tp = m->private;
2222
2223        tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2224        if (!tp->task)
2225                return ERR_PTR(-ESRCH);
2226
2227        tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2228        if (!tp->sighand)
2229                return ERR_PTR(-ESRCH);
2230
2231        return seq_list_start(&tp->task->signal->posix_timers, *pos);
2232}
2233
2234static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2235{
2236        struct timers_private *tp = m->private;
2237        return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2238}
2239
2240static void timers_stop(struct seq_file *m, void *v)
2241{
2242        struct timers_private *tp = m->private;
2243
2244        if (tp->sighand) {
2245                unlock_task_sighand(tp->task, &tp->flags);
2246                tp->sighand = NULL;
2247        }
2248
2249        if (tp->task) {
2250                put_task_struct(tp->task);
2251                tp->task = NULL;
2252        }
2253}
2254
2255static int show_timer(struct seq_file *m, void *v)
2256{
2257        struct k_itimer *timer;
2258        struct timers_private *tp = m->private;
2259        int notify;
2260        static const char * const nstr[] = {
2261                [SIGEV_SIGNAL] = "signal",
2262                [SIGEV_NONE] = "none",
2263                [SIGEV_THREAD] = "thread",
2264        };
2265
2266        timer = list_entry((struct list_head *)v, struct k_itimer, list);
2267        notify = timer->it_sigev_notify;
2268
2269        seq_printf(m, "ID: %d\n", timer->it_id);
2270        seq_printf(m, "signal: %d/%p\n",
2271                   timer->sigq->info.si_signo,
2272                   timer->sigq->info.si_value.sival_ptr);
2273        seq_printf(m, "notify: %s/%s.%d\n",
2274                   nstr[notify & ~SIGEV_THREAD_ID],
2275                   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2276                   pid_nr_ns(timer->it_pid, tp->ns));
2277        seq_printf(m, "ClockID: %d\n", timer->it_clock);
2278
2279        return 0;
2280}
2281
2282static const struct seq_operations proc_timers_seq_ops = {
2283        .start  = timers_start,
2284        .next   = timers_next,
2285        .stop   = timers_stop,
2286        .show   = show_timer,
2287};
2288
2289static int proc_timers_open(struct inode *inode, struct file *file)
2290{
2291        struct timers_private *tp;
2292
2293        tp = __seq_open_private(file, &proc_timers_seq_ops,
2294                        sizeof(struct timers_private));
2295        if (!tp)
2296                return -ENOMEM;
2297
2298        tp->pid = proc_pid(inode);
2299        tp->ns = inode->i_sb->s_fs_info;
2300        return 0;
2301}
2302
2303static const struct file_operations proc_timers_operations = {
2304        .open           = proc_timers_open,
2305        .read           = seq_read,
2306        .llseek         = seq_lseek,
2307        .release        = seq_release_private,
2308};
2309#endif
2310
2311static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2312                                        size_t count, loff_t *offset)
2313{
2314        struct inode *inode = file_inode(file);
2315        struct task_struct *p;
2316        u64 slack_ns;
2317        int err;
2318
2319        err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2320        if (err < 0)
2321                return err;
2322
2323        p = get_proc_task(inode);
2324        if (!p)
2325                return -ESRCH;
2326
2327        if (p != current) {
2328                if (!capable(CAP_SYS_NICE)) {
2329                        count = -EPERM;
2330                        goto out;
2331                }
2332
2333                err = security_task_setscheduler(p);
2334                if (err) {
2335                        count = err;
2336                        goto out;
2337                }
2338        }
2339
2340        task_lock(p);
2341        if (slack_ns == 0)
2342                p->timer_slack_ns = p->default_timer_slack_ns;
2343        else
2344                p->timer_slack_ns = slack_ns;
2345        task_unlock(p);
2346
2347out:
2348        put_task_struct(p);
2349
2350        return count;
2351}
2352
2353static int timerslack_ns_show(struct seq_file *m, void *v)
2354{
2355        struct inode *inode = m->private;
2356        struct task_struct *p;
2357        int err = 0;
2358
2359        p = get_proc_task(inode);
2360        if (!p)
2361                return -ESRCH;
2362
2363        if (p != current) {
2364
2365                if (!capable(CAP_SYS_NICE)) {
2366                        err = -EPERM;
2367                        goto out;
2368                }
2369                err = security_task_getscheduler(p);
2370                if (err)
2371                        goto out;
2372        }
2373
2374        task_lock(p);
2375        seq_printf(m, "%llu\n", p->timer_slack_ns);
2376        task_unlock(p);
2377
2378out:
2379        put_task_struct(p);
2380
2381        return err;
2382}
2383
2384static int timerslack_ns_open(struct inode *inode, struct file *filp)
2385{
2386        return single_open(filp, timerslack_ns_show, inode);
2387}
2388
2389static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2390        .open           = timerslack_ns_open,
2391        .read           = seq_read,
2392        .write          = timerslack_ns_write,
2393        .llseek         = seq_lseek,
2394        .release        = single_release,
2395};
2396
2397static int proc_pident_instantiate(struct inode *dir,
2398        struct dentry *dentry, struct task_struct *task, const void *ptr)
2399{
2400        const struct pid_entry *p = ptr;
2401        struct inode *inode;
2402        struct proc_inode *ei;
2403
2404        inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2405        if (!inode)
2406                goto out;
2407
2408        ei = PROC_I(inode);
2409        if (S_ISDIR(inode->i_mode))
2410                set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2411        if (p->iop)
2412                inode->i_op = p->iop;
2413        if (p->fop)
2414                inode->i_fop = p->fop;
2415        ei->op = p->op;
2416        d_set_d_op(dentry, &pid_dentry_operations);
2417        d_add(dentry, inode);
2418        /* Close the race of the process dying before we return the dentry */
2419        if (pid_revalidate(dentry, 0))
2420                return 0;
2421out:
2422        return -ENOENT;
2423}
2424
2425static struct dentry *proc_pident_lookup(struct inode *dir, 
2426                                         struct dentry *dentry,
2427                                         const struct pid_entry *ents,
2428                                         unsigned int nents)
2429{
2430        int error;
2431        struct task_struct *task = get_proc_task(dir);
2432        const struct pid_entry *p, *last;
2433
2434        error = -ENOENT;
2435
2436        if (!task)
2437                goto out_no_task;
2438
2439        /*
2440         * Yes, it does not scale. And it should not. Don't add
2441         * new entries into /proc/<tgid>/ without very good reasons.
2442         */
2443        last = &ents[nents];
2444        for (p = ents; p < last; p++) {
2445                if (p->len != dentry->d_name.len)
2446                        continue;
2447                if (!memcmp(dentry->d_name.name, p->name, p->len))
2448                        break;
2449        }
2450        if (p >= last)
2451                goto out;
2452
2453        error = proc_pident_instantiate(dir, dentry, task, p);
2454out:
2455        put_task_struct(task);
2456out_no_task:
2457        return ERR_PTR(error);
2458}
2459
2460static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2461                const struct pid_entry *ents, unsigned int nents)
2462{
2463        struct task_struct *task = get_proc_task(file_inode(file));
2464        const struct pid_entry *p;
2465
2466        if (!task)
2467                return -ENOENT;
2468
2469        if (!dir_emit_dots(file, ctx))
2470                goto out;
2471
2472        if (ctx->pos >= nents + 2)
2473                goto out;
2474
2475        for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2476                if (!proc_fill_cache(file, ctx, p->name, p->len,
2477                                proc_pident_instantiate, task, p))
2478                        break;
2479                ctx->pos++;
2480        }
2481out:
2482        put_task_struct(task);
2483        return 0;
2484}
2485
2486#ifdef CONFIG_SECURITY
2487static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2488                                  size_t count, loff_t *ppos)
2489{
2490        struct inode * inode = file_inode(file);
2491        char *p = NULL;
2492        ssize_t length;
2493        struct task_struct *task = get_proc_task(inode);
2494
2495        if (!task)
2496                return -ESRCH;
2497
2498        length = security_getprocattr(task,
2499                                      (char*)file->f_path.dentry->d_name.name,
2500                                      &p);
2501        put_task_struct(task);
2502        if (length > 0)
2503                length = simple_read_from_buffer(buf, count, ppos, p, length);
2504        kfree(p);
2505        return length;
2506}
2507
2508static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2509                                   size_t count, loff_t *ppos)
2510{
2511        struct inode * inode = file_inode(file);
2512        void *page;
2513        ssize_t length;
2514        struct task_struct *task = get_proc_task(inode);
2515
2516        length = -ESRCH;
2517        if (!task)
2518                goto out_no_task;
2519
2520        /* A task may only write its own attributes. */
2521        length = -EACCES;
2522        if (current != task)
2523                goto out;
2524
2525        if (count > PAGE_SIZE)
2526                count = PAGE_SIZE;
2527
2528        /* No partial writes. */
2529        length = -EINVAL;
2530        if (*ppos != 0)
2531                goto out;
2532
2533        page = memdup_user(buf, count);
2534        if (IS_ERR(page)) {
2535                length = PTR_ERR(page);
2536                goto out;
2537        }
2538
2539        /* Guard against adverse ptrace interaction */
2540        length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2541        if (length < 0)
2542                goto out_free;
2543
2544        length = security_setprocattr(file->f_path.dentry->d_name.name,
2545                                      page, count);
2546        mutex_unlock(&current->signal->cred_guard_mutex);
2547out_free:
2548        kfree(page);
2549out:
2550        put_task_struct(task);
2551out_no_task:
2552        return length;
2553}
2554
2555static const struct file_operations proc_pid_attr_operations = {
2556        .read           = proc_pid_attr_read,
2557        .write          = proc_pid_attr_write,
2558        .llseek         = generic_file_llseek,
2559};
2560
2561static const struct pid_entry attr_dir_stuff[] = {
2562        REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2563        REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2564        REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2565        REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2566        REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2567        REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2568};
2569
2570static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2571{
2572        return proc_pident_readdir(file, ctx, 
2573                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2574}
2575
2576static const struct file_operations proc_attr_dir_operations = {
2577        .read           = generic_read_dir,
2578        .iterate_shared = proc_attr_dir_readdir,
2579        .llseek         = generic_file_llseek,
2580};
2581
2582static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2583                                struct dentry *dentry, unsigned int flags)
2584{
2585        return proc_pident_lookup(dir, dentry,
2586                                  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2587}
2588
2589static const struct inode_operations proc_attr_dir_inode_operations = {
2590        .lookup         = proc_attr_dir_lookup,
2591        .getattr        = pid_getattr,
2592        .setattr        = proc_setattr,
2593};
2594
2595#endif
2596
2597#ifdef CONFIG_ELF_CORE
2598static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2599                                         size_t count, loff_t *ppos)
2600{
2601        struct task_struct *task = get_proc_task(file_inode(file));
2602        struct mm_struct *mm;
2603        char buffer[PROC_NUMBUF];
2604        size_t len;
2605        int ret;
2606
2607        if (!task)
2608                return -ESRCH;
2609
2610        ret = 0;
2611        mm = get_task_mm(task);
2612        if (mm) {
2613                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2614                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2615                                MMF_DUMP_FILTER_SHIFT));
2616                mmput(mm);
2617                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2618        }
2619
2620        put_task_struct(task);
2621
2622        return ret;
2623}
2624
2625static ssize_t proc_coredump_filter_write(struct file *file,
2626                                          const char __user *buf,
2627                                          size_t count,
2628                                          loff_t *ppos)
2629{
2630        struct task_struct *task;
2631        struct mm_struct *mm;
2632        unsigned int val;
2633        int ret;
2634        int i;
2635        unsigned long mask;
2636
2637        ret = kstrtouint_from_user(buf, count, 0, &val);
2638        if (ret < 0)
2639                return ret;
2640
2641        ret = -ESRCH;
2642        task = get_proc_task(file_inode(file));
2643        if (!task)
2644                goto out_no_task;
2645
2646        mm = get_task_mm(task);
2647        if (!mm)
2648                goto out_no_mm;
2649        ret = 0;
2650
2651        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2652                if (val & mask)
2653                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2654                else
2655                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2656        }
2657
2658        mmput(mm);
2659 out_no_mm:
2660        put_task_struct(task);
2661 out_no_task:
2662        if (ret < 0)
2663                return ret;
2664        return count;
2665}
2666
2667static const struct file_operations proc_coredump_filter_operations = {
2668        .read           = proc_coredump_filter_read,
2669        .write          = proc_coredump_filter_write,
2670        .llseek         = generic_file_llseek,
2671};
2672#endif
2673
2674#ifdef CONFIG_TASK_IO_ACCOUNTING
2675static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2676{
2677        struct task_io_accounting acct = task->ioac;
2678        unsigned long flags;
2679        int result;
2680
2681        result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2682        if (result)
2683                return result;
2684
2685        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2686                result = -EACCES;
2687                goto out_unlock;
2688        }
2689
2690        if (whole && lock_task_sighand(task, &flags)) {
2691                struct task_struct *t = task;
2692
2693                task_io_accounting_add(&acct, &task->signal->ioac);
2694                while_each_thread(task, t)
2695                        task_io_accounting_add(&acct, &t->ioac);
2696
2697                unlock_task_sighand(task, &flags);
2698        }
2699        seq_printf(m,
2700                   "rchar: %llu\n"
2701                   "wchar: %llu\n"
2702                   "syscr: %llu\n"
2703                   "syscw: %llu\n"
2704                   "read_bytes: %llu\n"
2705                   "write_bytes: %llu\n"
2706                   "cancelled_write_bytes: %llu\n",
2707                   (unsigned long long)acct.rchar,
2708                   (unsigned long long)acct.wchar,
2709                   (unsigned long long)acct.syscr,
2710                   (unsigned long long)acct.syscw,
2711                   (unsigned long long)acct.read_bytes,
2712                   (unsigned long long)acct.write_bytes,
2713                   (unsigned long long)acct.cancelled_write_bytes);
2714        result = 0;
2715
2716out_unlock:
2717        mutex_unlock(&task->signal->cred_guard_mutex);
2718        return result;
2719}
2720
2721static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2722                                  struct pid *pid, struct task_struct *task)
2723{
2724        return do_io_accounting(task, m, 0);
2725}
2726
2727static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2728                                   struct pid *pid, struct task_struct *task)
2729{
2730        return do_io_accounting(task, m, 1);
2731}
2732#endif /* CONFIG_TASK_IO_ACCOUNTING */
2733
2734#ifdef CONFIG_USER_NS
2735static int proc_id_map_open(struct inode *inode, struct file *file,
2736        const struct seq_operations *seq_ops)
2737{
2738        struct user_namespace *ns = NULL;
2739        struct task_struct *task;
2740        struct seq_file *seq;
2741        int ret = -EINVAL;
2742
2743        task = get_proc_task(inode);
2744        if (task) {
2745                rcu_read_lock();
2746                ns = get_user_ns(task_cred_xxx(task, user_ns));
2747                rcu_read_unlock();
2748                put_task_struct(task);
2749        }
2750        if (!ns)
2751                goto err;
2752
2753        ret = seq_open(file, seq_ops);
2754        if (ret)
2755                goto err_put_ns;
2756
2757        seq = file->private_data;
2758        seq->private = ns;
2759
2760        return 0;
2761err_put_ns:
2762        put_user_ns(ns);
2763err:
2764        return ret;
2765}
2766
2767static int proc_id_map_release(struct inode *inode, struct file *file)
2768{
2769        struct seq_file *seq = file->private_data;
2770        struct user_namespace *ns = seq->private;
2771        put_user_ns(ns);
2772        return seq_release(inode, file);
2773}
2774
2775static int proc_uid_map_open(struct inode *inode, struct file *file)
2776{
2777        return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2778}
2779
2780static int proc_gid_map_open(struct inode *inode, struct file *file)
2781{
2782        return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2783}
2784
2785static int proc_projid_map_open(struct inode *inode, struct file *file)
2786{
2787        return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2788}
2789
2790static const struct file_operations proc_uid_map_operations = {
2791        .open           = proc_uid_map_open,
2792        .write          = proc_uid_map_write,
2793        .read           = seq_read,
2794        .llseek         = seq_lseek,
2795        .release        = proc_id_map_release,
2796};
2797
2798static const struct file_operations proc_gid_map_operations = {
2799        .open           = proc_gid_map_open,
2800        .write          = proc_gid_map_write,
2801        .read           = seq_read,
2802        .llseek         = seq_lseek,
2803        .release        = proc_id_map_release,
2804};
2805
2806static const struct file_operations proc_projid_map_operations = {
2807        .open           = proc_projid_map_open,
2808        .write          = proc_projid_map_write,
2809        .read           = seq_read,
2810        .llseek         = seq_lseek,
2811        .release        = proc_id_map_release,
2812};
2813
2814static int proc_setgroups_open(struct inode *inode, struct file *file)
2815{
2816        struct user_namespace *ns = NULL;
2817        struct task_struct *task;
2818        int ret;
2819
2820        ret = -ESRCH;
2821        task = get_proc_task(inode);
2822        if (task) {
2823                rcu_read_lock();
2824                ns = get_user_ns(task_cred_xxx(task, user_ns));
2825                rcu_read_unlock();
2826                put_task_struct(task);
2827        }
2828        if (!ns)
2829                goto err;
2830
2831        if (file->f_mode & FMODE_WRITE) {
2832                ret = -EACCES;
2833                if (!ns_capable(ns, CAP_SYS_ADMIN))
2834                        goto err_put_ns;
2835        }
2836
2837        ret = single_open(file, &proc_setgroups_show, ns);
2838        if (ret)
2839                goto err_put_ns;
2840
2841        return 0;
2842err_put_ns:
2843        put_user_ns(ns);
2844err:
2845        return ret;
2846}
2847
2848static int proc_setgroups_release(struct inode *inode, struct file *file)
2849{
2850        struct seq_file *seq = file->private_data;
2851        struct user_namespace *ns = seq->private;
2852        int ret = single_release(inode, file);
2853        put_user_ns(ns);
2854        return ret;
2855}
2856
2857static const struct file_operations proc_setgroups_operations = {
2858        .open           = proc_setgroups_open,
2859        .write          = proc_setgroups_write,
2860        .read           = seq_read,
2861        .llseek         = seq_lseek,
2862        .release        = proc_setgroups_release,
2863};
2864#endif /* CONFIG_USER_NS */
2865
2866static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2867                                struct pid *pid, struct task_struct *task)
2868{
2869        int err = lock_trace(task);
2870        if (!err) {
2871                seq_printf(m, "%08x\n", task->personality);
2872                unlock_trace(task);
2873        }
2874        return err;
2875}
2876
2877#ifdef CONFIG_LIVEPATCH
2878static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2879                                struct pid *pid, struct task_struct *task)
2880{
2881        seq_printf(m, "%d\n", task->patch_state);
2882        return 0;
2883}
2884#endif /* CONFIG_LIVEPATCH */
2885
2886/*
2887 * Thread groups
2888 */
2889static const struct file_operations proc_task_operations;
2890static const struct inode_operations proc_task_inode_operations;
2891
2892static const struct pid_entry tgid_base_stuff[] = {
2893        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2894        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2895        DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2896        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2897        DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2898#ifdef CONFIG_NET
2899        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2900#endif
2901        REG("environ",    S_IRUSR, proc_environ_operations),
2902        REG("auxv",       S_IRUSR, proc_auxv_operations),
2903        ONE("status",     S_IRUGO, proc_pid_status),
2904        ONE("personality", S_IRUSR, proc_pid_personality),
2905        ONE("limits",     S_IRUGO, proc_pid_limits),
2906#ifdef CONFIG_SCHED_DEBUG
2907        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2908#endif
2909#ifdef CONFIG_SCHED_AUTOGROUP
2910        REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2911#endif
2912        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2913#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2914        ONE("syscall",    S_IRUSR, proc_pid_syscall),
2915#endif
2916        REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2917        ONE("stat",       S_IRUGO, proc_tgid_stat),
2918        ONE("statm",      S_IRUGO, proc_pid_statm),
2919        REG("maps",       S_IRUGO, proc_pid_maps_operations),
2920#ifdef CONFIG_NUMA
2921        REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2922#endif
2923        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2924        LNK("cwd",        proc_cwd_link),
2925        LNK("root",       proc_root_link),
2926        LNK("exe",        proc_exe_link),
2927        REG("mounts",     S_IRUGO, proc_mounts_operations),
2928        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2929        REG("mountstats", S_IRUSR, proc_mountstats_operations),
2930#ifdef CONFIG_PROC_PAGE_MONITOR
2931        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2932        REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2933        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2934#endif
2935#ifdef CONFIG_SECURITY
2936        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2937#endif
2938#ifdef CONFIG_KALLSYMS
2939        ONE("wchan",      S_IRUGO, proc_pid_wchan),
2940#endif
2941#ifdef CONFIG_STACKTRACE
2942        ONE("stack",      S_IRUSR, proc_pid_stack),
2943#endif
2944#ifdef CONFIG_SCHED_INFO
2945        ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2946#endif
2947#ifdef CONFIG_LATENCYTOP
2948        REG("latency",  S_IRUGO, proc_lstats_operations),
2949#endif
2950#ifdef CONFIG_PROC_PID_CPUSET
2951        ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2952#endif
2953#ifdef CONFIG_CGROUPS
2954        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2955#endif
2956        ONE("oom_score",  S_IRUGO, proc_oom_score),
2957        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2958        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2959#ifdef CONFIG_AUDITSYSCALL
2960        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2961        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2962#endif
2963#ifdef CONFIG_FAULT_INJECTION
2964        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2965        REG("fail-nth", 0644, proc_fail_nth_operations),
2966#endif
2967#ifdef CONFIG_ELF_CORE
2968        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2969#endif
2970#ifdef CONFIG_TASK_IO_ACCOUNTING
2971        ONE("io",       S_IRUSR, proc_tgid_io_accounting),
2972#endif
2973#ifdef CONFIG_HARDWALL
2974        ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2975#endif
2976#ifdef CONFIG_USER_NS
2977        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2978        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2979        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2980        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2981#endif
2982#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2983        REG("timers",     S_IRUGO, proc_timers_operations),
2984#endif
2985        REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2986#ifdef CONFIG_LIVEPATCH
2987        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
2988#endif
2989};
2990
2991static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2992{
2993        return proc_pident_readdir(file, ctx,
2994                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2995}
2996
2997static const struct file_operations proc_tgid_base_operations = {
2998        .read           = generic_read_dir,
2999        .iterate_shared = proc_tgid_base_readdir,
3000        .llseek         = generic_file_llseek,
3001};
3002
3003static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3004{
3005        return proc_pident_lookup(dir, dentry,
3006                                  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3007}
3008
3009static const struct inode_operations proc_tgid_base_inode_operations = {
3010        .lookup         = proc_tgid_base_lookup,
3011        .getattr        = pid_getattr,
3012        .setattr        = proc_setattr,
3013        .permission     = proc_pid_permission,
3014};
3015
3016static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3017{
3018        struct dentry *dentry, *leader, *dir;
3019        char buf[PROC_NUMBUF];
3020        struct qstr name;
3021
3022        name.name = buf;
3023        name.len = snprintf(buf, sizeof(buf), "%d", pid);
3024        /* no ->d_hash() rejects on procfs */
3025        dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3026        if (dentry) {
3027                d_invalidate(dentry);
3028                dput(dentry);
3029        }
3030
3031        if (pid == tgid)
3032                return;
3033
3034        name.name = buf;
3035        name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3036        leader = d_hash_and_lookup(mnt->mnt_root, &name);
3037        if (!leader)
3038                goto out;
3039
3040        name.name = "task";
3041        name.len = strlen(name.name);
3042        dir = d_hash_and_lookup(leader, &name);
3043        if (!dir)
3044                goto out_put_leader;
3045
3046        name.name = buf;
3047        name.len = snprintf(buf, sizeof(buf), "%d", pid);
3048        dentry = d_hash_and_lookup(dir, &name);
3049        if (dentry) {
3050                d_invalidate(dentry);
3051                dput(dentry);
3052        }
3053
3054        dput(dir);
3055out_put_leader:
3056        dput(leader);
3057out:
3058        return;
3059}
3060
3061/**
3062 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3063 * @task: task that should be flushed.
3064 *
3065 * When flushing dentries from proc, one needs to flush them from global
3066 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3067 * in. This call is supposed to do all of this job.
3068 *
3069 * Looks in the dcache for
3070 * /proc/@pid
3071 * /proc/@tgid/task/@pid
3072 * if either directory is present flushes it and all of it'ts children
3073 * from the dcache.
3074 *
3075 * It is safe and reasonable to cache /proc entries for a task until
3076 * that task exits.  After that they just clog up the dcache with
3077 * useless entries, possibly causing useful dcache entries to be
3078 * flushed instead.  This routine is proved to flush those useless
3079 * dcache entries at process exit time.
3080 *
3081 * NOTE: This routine is just an optimization so it does not guarantee
3082 *       that no dcache entries will exist at process exit time it
3083 *       just makes it very unlikely that any will persist.
3084 */
3085
3086void proc_flush_task(struct task_struct *task)
3087{
3088        int i;
3089        struct pid *pid, *tgid;
3090        struct upid *upid;
3091
3092        pid = task_pid(task);
3093        tgid = task_tgid(task);
3094
3095        for (i = 0; i <= pid->level; i++) {
3096                upid = &pid->numbers[i];
3097                proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3098                                        tgid->numbers[i].nr);
3099        }
3100}
3101
3102static int proc_pid_instantiate(struct inode *dir,
3103                                   struct dentry * dentry,
3104                                   struct task_struct *task, const void *ptr)
3105{
3106        struct inode *inode;
3107
3108        inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3109        if (!inode)
3110                goto out;
3111
3112        inode->i_op = &proc_tgid_base_inode_operations;
3113        inode->i_fop = &proc_tgid_base_operations;
3114        inode->i_flags|=S_IMMUTABLE;
3115
3116        set_nlink(inode, nlink_tgid);
3117
3118        d_set_d_op(dentry, &pid_dentry_operations);
3119
3120        d_add(dentry, inode);
3121        /* Close the race of the process dying before we return the dentry */
3122        if (pid_revalidate(dentry, 0))
3123                return 0;
3124out:
3125        return -ENOENT;
3126}
3127
3128struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3129{
3130        int result = -ENOENT;
3131        struct task_struct *task;
3132        unsigned tgid;
3133        struct pid_namespace *ns;
3134
3135        tgid = name_to_int(&dentry->d_name);
3136        if (tgid == ~0U)
3137                goto out;
3138
3139        ns = dentry->d_sb->s_fs_info;
3140        rcu_read_lock();
3141        task = find_task_by_pid_ns(tgid, ns);
3142        if (task)
3143                get_task_struct(task);
3144        rcu_read_unlock();
3145        if (!task)
3146                goto out;
3147
3148        result = proc_pid_instantiate(dir, dentry, task, NULL);
3149        put_task_struct(task);
3150out:
3151        return ERR_PTR(result);
3152}
3153
3154/*
3155 * Find the first task with tgid >= tgid
3156 *
3157 */
3158struct tgid_iter {
3159        unsigned int tgid;
3160        struct task_struct *task;
3161};
3162static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3163{
3164        struct pid *pid;
3165
3166        if (iter.task)
3167                put_task_struct(iter.task);
3168        rcu_read_lock();
3169retry:
3170        iter.task = NULL;
3171        pid = find_ge_pid(iter.tgid, ns);
3172        if (pid) {
3173                iter.tgid = pid_nr_ns(pid, ns);
3174                iter.task = pid_task(pid, PIDTYPE_PID);
3175                /* What we to know is if the pid we have find is the
3176                 * pid of a thread_group_leader.  Testing for task
3177                 * being a thread_group_leader is the obvious thing
3178                 * todo but there is a window when it fails, due to
3179                 * the pid transfer logic in de_thread.
3180                 *
3181                 * So we perform the straight forward test of seeing
3182                 * if the pid we have found is the pid of a thread
3183                 * group leader, and don't worry if the task we have
3184                 * found doesn't happen to be a thread group leader.
3185                 * As we don't care in the case of readdir.
3186                 */
3187                if (!iter.task || !has_group_leader_pid(iter.task)) {
3188                        iter.tgid += 1;
3189                        goto retry;
3190                }
3191                get_task_struct(iter.task);
3192        }
3193        rcu_read_unlock();
3194        return iter;
3195}
3196
3197#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3198
3199/* for the /proc/ directory itself, after non-process stuff has been done */
3200int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3201{
3202        struct tgid_iter iter;
3203        struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3204        loff_t pos = ctx->pos;
3205
3206        if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3207                return 0;
3208
3209        if (pos == TGID_OFFSET - 2) {
3210                struct inode *inode = d_inode(ns->proc_self);
3211                if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3212                        return 0;
3213                ctx->pos = pos = pos + 1;
3214        }
3215        if (pos == TGID_OFFSET - 1) {
3216                struct inode *inode = d_inode(ns->proc_thread_self);
3217                if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3218                        return 0;
3219                ctx->pos = pos = pos + 1;
3220        }
3221        iter.tgid = pos - TGID_OFFSET;
3222        iter.task = NULL;
3223        for (iter = next_tgid(ns, iter);
3224             iter.task;
3225             iter.tgid += 1, iter = next_tgid(ns, iter)) {
3226                char name[PROC_NUMBUF];
3227                int len;
3228
3229                cond_resched();
3230                if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3231                        continue;
3232
3233                len = snprintf(name, sizeof(name), "%d", iter.tgid);
3234                ctx->pos = iter.tgid + TGID_OFFSET;
3235                if (!proc_fill_cache(file, ctx, name, len,
3236                                     proc_pid_instantiate, iter.task, NULL)) {
3237                        put_task_struct(iter.task);
3238                        return 0;
3239                }
3240        }
3241        ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3242        return 0;
3243}
3244
3245/*
3246 * proc_tid_comm_permission is a special permission function exclusively
3247 * used for the node /proc/<pid>/task/<tid>/comm.
3248 * It bypasses generic permission checks in the case where a task of the same
3249 * task group attempts to access the node.
3250 * The rationale behind this is that glibc and bionic access this node for
3251 * cross thread naming (pthread_set/getname_np(!self)). However, if
3252 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3253 * which locks out the cross thread naming implementation.
3254 * This function makes sure that the node is always accessible for members of
3255 * same thread group.
3256 */
3257static int proc_tid_comm_permission(struct inode *inode, int mask)
3258{
3259        bool is_same_tgroup;
3260        struct task_struct *task;
3261
3262        task = get_proc_task(inode);
3263        if (!task)
3264                return -ESRCH;
3265        is_same_tgroup = same_thread_group(current, task);
3266        put_task_struct(task);
3267
3268        if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3269                /* This file (/proc/<pid>/task/<tid>/comm) can always be
3270                 * read or written by the members of the corresponding
3271                 * thread group.
3272                 */
3273                return 0;
3274        }
3275
3276        return generic_permission(inode, mask);
3277}
3278
3279static const struct inode_operations proc_tid_comm_inode_operations = {
3280                .permission = proc_tid_comm_permission,
3281};
3282
3283/*
3284 * Tasks
3285 */
3286static const struct pid_entry tid_base_stuff[] = {
3287        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3288        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3289        DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3290#ifdef CONFIG_NET
3291        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3292#endif
3293        REG("environ",   S_IRUSR, proc_environ_operations),
3294        REG("auxv",      S_IRUSR, proc_auxv_operations),
3295        ONE("status",    S_IRUGO, proc_pid_status),
3296        ONE("personality", S_IRUSR, proc_pid_personality),
3297        ONE("limits",    S_IRUGO, proc_pid_limits),
3298#ifdef CONFIG_SCHED_DEBUG
3299        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3300#endif
3301        NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3302                         &proc_tid_comm_inode_operations,
3303                         &proc_pid_set_comm_operations, {}),
3304#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3305        ONE("syscall",   S_IRUSR, proc_pid_syscall),
3306#endif
3307        REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3308        ONE("stat",      S_IRUGO, proc_tid_stat),
3309        ONE("statm",     S_IRUGO, proc_pid_statm),
3310        REG("maps",      S_IRUGO, proc_tid_maps_operations),
3311#ifdef CONFIG_PROC_CHILDREN
3312        REG("children",  S_IRUGO, proc_tid_children_operations),
3313#endif
3314#ifdef CONFIG_NUMA
3315        REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3316#endif
3317        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3318        LNK("cwd",       proc_cwd_link),
3319        LNK("root",      proc_root_link),
3320        LNK("exe",       proc_exe_link),
3321        REG("mounts",    S_IRUGO, proc_mounts_operations),
3322        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3323#ifdef CONFIG_PROC_PAGE_MONITOR
3324        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3325        REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3326        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3327#endif
3328#ifdef CONFIG_SECURITY
3329        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3330#endif
3331#ifdef CONFIG_KALLSYMS
3332        ONE("wchan",     S_IRUGO, proc_pid_wchan),
3333#endif
3334#ifdef CONFIG_STACKTRACE
3335        ONE("stack",      S_IRUSR, proc_pid_stack),
3336#endif
3337#ifdef CONFIG_SCHED_INFO
3338        ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3339#endif
3340#ifdef CONFIG_LATENCYTOP
3341        REG("latency",  S_IRUGO, proc_lstats_operations),
3342#endif
3343#ifdef CONFIG_PROC_PID_CPUSET
3344        ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3345#endif
3346#ifdef CONFIG_CGROUPS
3347        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3348#endif
3349        ONE("oom_score", S_IRUGO, proc_oom_score),
3350        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3351        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3352#ifdef CONFIG_AUDITSYSCALL
3353        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3354        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3355#endif
3356#ifdef CONFIG_FAULT_INJECTION
3357        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3358        REG("fail-nth", 0644, proc_fail_nth_operations),
3359#endif
3360#ifdef CONFIG_TASK_IO_ACCOUNTING
3361        ONE("io",       S_IRUSR, proc_tid_io_accounting),
3362#endif
3363#ifdef CONFIG_HARDWALL
3364        ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3365#endif
3366#ifdef CONFIG_USER_NS
3367        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3368        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3369        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3370        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3371#endif
3372#ifdef CONFIG_LIVEPATCH
3373        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3374#endif
3375};
3376
3377static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3378{
3379        return proc_pident_readdir(file, ctx,
3380                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3381}
3382
3383static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3384{
3385        return proc_pident_lookup(dir, dentry,
3386                                  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3387}
3388
3389static const struct file_operations proc_tid_base_operations = {
3390        .read           = generic_read_dir,
3391        .iterate_shared = proc_tid_base_readdir,
3392        .llseek         = generic_file_llseek,
3393};
3394
3395static const struct inode_operations proc_tid_base_inode_operations = {
3396        .lookup         = proc_tid_base_lookup,
3397        .getattr        = pid_getattr,
3398        .setattr        = proc_setattr,
3399};
3400
3401static int proc_task_instantiate(struct inode *dir,
3402        struct dentry *dentry, struct task_struct *task, const void *ptr)
3403{
3404        struct inode *inode;
3405        inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3406
3407        if (!inode)
3408                goto out;
3409        inode->i_op = &proc_tid_base_inode_operations;
3410        inode->i_fop = &proc_tid_base_operations;
3411        inode->i_flags|=S_IMMUTABLE;
3412
3413        set_nlink(inode, nlink_tid);
3414
3415        d_set_d_op(dentry, &pid_dentry_operations);
3416
3417        d_add(dentry, inode);
3418        /* Close the race of the process dying before we return the dentry */
3419        if (pid_revalidate(dentry, 0))
3420                return 0;
3421out:
3422        return -ENOENT;
3423}
3424
3425static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3426{
3427        int result = -ENOENT;
3428        struct task_struct *task;
3429        struct task_struct *leader = get_proc_task(dir);
3430        unsigned tid;
3431        struct pid_namespace *ns;
3432
3433        if (!leader)
3434                goto out_no_task;
3435
3436        tid = name_to_int(&dentry->d_name);
3437        if (tid == ~0U)
3438                goto out;
3439
3440        ns = dentry->d_sb->s_fs_info;
3441        rcu_read_lock();
3442        task = find_task_by_pid_ns(tid, ns);
3443        if (task)
3444                get_task_struct(task);
3445        rcu_read_unlock();
3446        if (!task)
3447                goto out;
3448        if (!same_thread_group(leader, task))
3449                goto out_drop_task;
3450
3451        result = proc_task_instantiate(dir, dentry, task, NULL);
3452out_drop_task:
3453        put_task_struct(task);
3454out:
3455        put_task_struct(leader);
3456out_no_task:
3457        return ERR_PTR(result);
3458}
3459
3460/*
3461 * Find the first tid of a thread group to return to user space.
3462 *
3463 * Usually this is just the thread group leader, but if the users
3464 * buffer was too small or there was a seek into the middle of the
3465 * directory we have more work todo.
3466 *
3467 * In the case of a short read we start with find_task_by_pid.
3468 *
3469 * In the case of a seek we start with the leader and walk nr
3470 * threads past it.
3471 */
3472static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3473                                        struct pid_namespace *ns)
3474{
3475        struct task_struct *pos, *task;
3476        unsigned long nr = f_pos;
3477
3478        if (nr != f_pos)        /* 32bit overflow? */
3479                return NULL;
3480
3481        rcu_read_lock();
3482        task = pid_task(pid, PIDTYPE_PID);
3483        if (!task)
3484                goto fail;
3485
3486        /* Attempt to start with the tid of a thread */
3487        if (tid && nr) {
3488                pos = find_task_by_pid_ns(tid, ns);
3489                if (pos && same_thread_group(pos, task))
3490                        goto found;
3491        }
3492
3493        /* If nr exceeds the number of threads there is nothing todo */
3494        if (nr >= get_nr_threads(task))
3495                goto fail;
3496
3497        /* If we haven't found our starting place yet start
3498         * with the leader and walk nr threads forward.
3499         */
3500        pos = task = task->group_leader;
3501        do {
3502                if (!nr--)
3503                        goto found;
3504        } while_each_thread(task, pos);
3505fail:
3506        pos = NULL;
3507        goto out;
3508found:
3509        get_task_struct(pos);
3510out:
3511        rcu_read_unlock();
3512        return pos;
3513}
3514
3515/*
3516 * Find the next thread in the thread list.
3517 * Return NULL if there is an error or no next thread.
3518 *
3519 * The reference to the input task_struct is released.
3520 */
3521static struct task_struct *next_tid(struct task_struct *start)
3522{
3523        struct task_struct *pos = NULL;
3524        rcu_read_lock();
3525        if (pid_alive(start)) {
3526                pos = next_thread(start);
3527                if (thread_group_leader(pos))
3528                        pos = NULL;
3529                else
3530                        get_task_struct(pos);
3531        }
3532        rcu_read_unlock();
3533        put_task_struct(start);
3534        return pos;
3535}
3536
3537/* for the /proc/TGID/task/ directories */
3538static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3539{
3540        struct inode *inode = file_inode(file);
3541        struct task_struct *task;
3542        struct pid_namespace *ns;
3543        int tid;
3544
3545        if (proc_inode_is_dead(inode))
3546                return -ENOENT;
3547
3548        if (!dir_emit_dots(file, ctx))
3549                return 0;
3550
3551        /* f_version caches the tgid value that the last readdir call couldn't
3552         * return. lseek aka telldir automagically resets f_version to 0.
3553         */
3554        ns = inode->i_sb->s_fs_info;
3555        tid = (int)file->f_version;
3556        file->f_version = 0;
3557        for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3558             task;
3559             task = next_tid(task), ctx->pos++) {
3560                char name[PROC_NUMBUF];
3561                int len;
3562                tid = task_pid_nr_ns(task, ns);
3563                len = snprintf(name, sizeof(name), "%d", tid);
3564                if (!proc_fill_cache(file, ctx, name, len,
3565                                proc_task_instantiate, task, NULL)) {
3566                        /* returning this tgid failed, save it as the first
3567                         * pid for the next readir call */
3568                        file->f_version = (u64)tid;
3569                        put_task_struct(task);
3570                        break;
3571                }
3572        }
3573
3574        return 0;
3575}
3576
3577static int proc_task_getattr(const struct path *path, struct kstat *stat,
3578                             u32 request_mask, unsigned int query_flags)
3579{
3580        struct inode *inode = d_inode(path->dentry);
3581        struct task_struct *p = get_proc_task(inode);
3582        generic_fillattr(inode, stat);
3583
3584        if (p) {
3585                stat->nlink += get_nr_threads(p);
3586                put_task_struct(p);
3587        }
3588
3589        return 0;
3590}
3591
3592static const struct inode_operations proc_task_inode_operations = {
3593        .lookup         = proc_task_lookup,
3594        .getattr        = proc_task_getattr,
3595        .setattr        = proc_setattr,
3596        .permission     = proc_pid_permission,
3597};
3598
3599static const struct file_operations proc_task_operations = {
3600        .read           = generic_read_dir,
3601        .iterate_shared = proc_task_readdir,
3602        .llseek         = generic_file_llseek,
3603};
3604
3605void __init set_proc_pid_nlink(void)
3606{
3607        nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3608        nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3609}
3610