linux/fs/ubifs/super.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements UBIFS initialization and VFS superblock operations. Some
  25 * initialization stuff which is rather large and complex is placed at
  26 * corresponding subsystems, but most of it is here.
  27 */
  28
  29#include <linux/init.h>
  30#include <linux/slab.h>
  31#include <linux/module.h>
  32#include <linux/ctype.h>
  33#include <linux/kthread.h>
  34#include <linux/parser.h>
  35#include <linux/seq_file.h>
  36#include <linux/mount.h>
  37#include <linux/math64.h>
  38#include <linux/writeback.h>
  39#include "ubifs.h"
  40
  41/*
  42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
  43 * allocating too much.
  44 */
  45#define UBIFS_KMALLOC_OK (128*1024)
  46
  47/* Slab cache for UBIFS inodes */
  48static struct kmem_cache *ubifs_inode_slab;
  49
  50/* UBIFS TNC shrinker description */
  51static struct shrinker ubifs_shrinker_info = {
  52        .scan_objects = ubifs_shrink_scan,
  53        .count_objects = ubifs_shrink_count,
  54        .seeks = DEFAULT_SEEKS,
  55};
  56
  57/**
  58 * validate_inode - validate inode.
  59 * @c: UBIFS file-system description object
  60 * @inode: the inode to validate
  61 *
  62 * This is a helper function for 'ubifs_iget()' which validates various fields
  63 * of a newly built inode to make sure they contain sane values and prevent
  64 * possible vulnerabilities. Returns zero if the inode is all right and
  65 * a non-zero error code if not.
  66 */
  67static int validate_inode(struct ubifs_info *c, const struct inode *inode)
  68{
  69        int err;
  70        const struct ubifs_inode *ui = ubifs_inode(inode);
  71
  72        if (inode->i_size > c->max_inode_sz) {
  73                ubifs_err(c, "inode is too large (%lld)",
  74                          (long long)inode->i_size);
  75                return 1;
  76        }
  77
  78        if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
  79                ubifs_err(c, "unknown compression type %d", ui->compr_type);
  80                return 2;
  81        }
  82
  83        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
  84                return 3;
  85
  86        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
  87                return 4;
  88
  89        if (ui->xattr && !S_ISREG(inode->i_mode))
  90                return 5;
  91
  92        if (!ubifs_compr_present(ui->compr_type)) {
  93                ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
  94                           inode->i_ino, ubifs_compr_name(ui->compr_type));
  95        }
  96
  97        err = dbg_check_dir(c, inode);
  98        return err;
  99}
 100
 101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
 102{
 103        int err;
 104        union ubifs_key key;
 105        struct ubifs_ino_node *ino;
 106        struct ubifs_info *c = sb->s_fs_info;
 107        struct inode *inode;
 108        struct ubifs_inode *ui;
 109
 110        dbg_gen("inode %lu", inum);
 111
 112        inode = iget_locked(sb, inum);
 113        if (!inode)
 114                return ERR_PTR(-ENOMEM);
 115        if (!(inode->i_state & I_NEW))
 116                return inode;
 117        ui = ubifs_inode(inode);
 118
 119        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 120        if (!ino) {
 121                err = -ENOMEM;
 122                goto out;
 123        }
 124
 125        ino_key_init(c, &key, inode->i_ino);
 126
 127        err = ubifs_tnc_lookup(c, &key, ino);
 128        if (err)
 129                goto out_ino;
 130
 131        inode->i_flags |= S_NOCMTIME;
 132#ifndef CONFIG_UBIFS_ATIME_SUPPORT
 133        inode->i_flags |= S_NOATIME;
 134#endif
 135        set_nlink(inode, le32_to_cpu(ino->nlink));
 136        i_uid_write(inode, le32_to_cpu(ino->uid));
 137        i_gid_write(inode, le32_to_cpu(ino->gid));
 138        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 139        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 140        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 141        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 142        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 143        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 144        inode->i_mode = le32_to_cpu(ino->mode);
 145        inode->i_size = le64_to_cpu(ino->size);
 146
 147        ui->data_len    = le32_to_cpu(ino->data_len);
 148        ui->flags       = le32_to_cpu(ino->flags);
 149        ui->compr_type  = le16_to_cpu(ino->compr_type);
 150        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 151        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 152        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 153        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 154        ui->synced_i_size = ui->ui_size = inode->i_size;
 155
 156        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 157
 158        err = validate_inode(c, inode);
 159        if (err)
 160                goto out_invalid;
 161
 162        switch (inode->i_mode & S_IFMT) {
 163        case S_IFREG:
 164                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 165                inode->i_op = &ubifs_file_inode_operations;
 166                inode->i_fop = &ubifs_file_operations;
 167                if (ui->xattr) {
 168                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 169                        if (!ui->data) {
 170                                err = -ENOMEM;
 171                                goto out_ino;
 172                        }
 173                        memcpy(ui->data, ino->data, ui->data_len);
 174                        ((char *)ui->data)[ui->data_len] = '\0';
 175                } else if (ui->data_len != 0) {
 176                        err = 10;
 177                        goto out_invalid;
 178                }
 179                break;
 180        case S_IFDIR:
 181                inode->i_op  = &ubifs_dir_inode_operations;
 182                inode->i_fop = &ubifs_dir_operations;
 183                if (ui->data_len != 0) {
 184                        err = 11;
 185                        goto out_invalid;
 186                }
 187                break;
 188        case S_IFLNK:
 189                inode->i_op = &ubifs_symlink_inode_operations;
 190                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 191                        err = 12;
 192                        goto out_invalid;
 193                }
 194                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 195                if (!ui->data) {
 196                        err = -ENOMEM;
 197                        goto out_ino;
 198                }
 199                memcpy(ui->data, ino->data, ui->data_len);
 200                ((char *)ui->data)[ui->data_len] = '\0';
 201                break;
 202        case S_IFBLK:
 203        case S_IFCHR:
 204        {
 205                dev_t rdev;
 206                union ubifs_dev_desc *dev;
 207
 208                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 209                if (!ui->data) {
 210                        err = -ENOMEM;
 211                        goto out_ino;
 212                }
 213
 214                dev = (union ubifs_dev_desc *)ino->data;
 215                if (ui->data_len == sizeof(dev->new))
 216                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 217                else if (ui->data_len == sizeof(dev->huge))
 218                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 219                else {
 220                        err = 13;
 221                        goto out_invalid;
 222                }
 223                memcpy(ui->data, ino->data, ui->data_len);
 224                inode->i_op = &ubifs_file_inode_operations;
 225                init_special_inode(inode, inode->i_mode, rdev);
 226                break;
 227        }
 228        case S_IFSOCK:
 229        case S_IFIFO:
 230                inode->i_op = &ubifs_file_inode_operations;
 231                init_special_inode(inode, inode->i_mode, 0);
 232                if (ui->data_len != 0) {
 233                        err = 14;
 234                        goto out_invalid;
 235                }
 236                break;
 237        default:
 238                err = 15;
 239                goto out_invalid;
 240        }
 241
 242        kfree(ino);
 243        ubifs_set_inode_flags(inode);
 244        unlock_new_inode(inode);
 245        return inode;
 246
 247out_invalid:
 248        ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
 249        ubifs_dump_node(c, ino);
 250        ubifs_dump_inode(c, inode);
 251        err = -EINVAL;
 252out_ino:
 253        kfree(ino);
 254out:
 255        ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
 256        iget_failed(inode);
 257        return ERR_PTR(err);
 258}
 259
 260static struct inode *ubifs_alloc_inode(struct super_block *sb)
 261{
 262        struct ubifs_inode *ui;
 263
 264        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 265        if (!ui)
 266                return NULL;
 267
 268        memset((void *)ui + sizeof(struct inode), 0,
 269               sizeof(struct ubifs_inode) - sizeof(struct inode));
 270        mutex_init(&ui->ui_mutex);
 271        spin_lock_init(&ui->ui_lock);
 272        return &ui->vfs_inode;
 273};
 274
 275static void ubifs_i_callback(struct rcu_head *head)
 276{
 277        struct inode *inode = container_of(head, struct inode, i_rcu);
 278        struct ubifs_inode *ui = ubifs_inode(inode);
 279        kmem_cache_free(ubifs_inode_slab, ui);
 280}
 281
 282static void ubifs_destroy_inode(struct inode *inode)
 283{
 284        struct ubifs_inode *ui = ubifs_inode(inode);
 285
 286        kfree(ui->data);
 287        call_rcu(&inode->i_rcu, ubifs_i_callback);
 288}
 289
 290/*
 291 * Note, Linux write-back code calls this without 'i_mutex'.
 292 */
 293static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 294{
 295        int err = 0;
 296        struct ubifs_info *c = inode->i_sb->s_fs_info;
 297        struct ubifs_inode *ui = ubifs_inode(inode);
 298
 299        ubifs_assert(!ui->xattr);
 300        if (is_bad_inode(inode))
 301                return 0;
 302
 303        mutex_lock(&ui->ui_mutex);
 304        /*
 305         * Due to races between write-back forced by budgeting
 306         * (see 'sync_some_inodes()') and background write-back, the inode may
 307         * have already been synchronized, do not do this again. This might
 308         * also happen if it was synchronized in an VFS operation, e.g.
 309         * 'ubifs_link()'.
 310         */
 311        if (!ui->dirty) {
 312                mutex_unlock(&ui->ui_mutex);
 313                return 0;
 314        }
 315
 316        /*
 317         * As an optimization, do not write orphan inodes to the media just
 318         * because this is not needed.
 319         */
 320        dbg_gen("inode %lu, mode %#x, nlink %u",
 321                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 322        if (inode->i_nlink) {
 323                err = ubifs_jnl_write_inode(c, inode);
 324                if (err)
 325                        ubifs_err(c, "can't write inode %lu, error %d",
 326                                  inode->i_ino, err);
 327                else
 328                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 329        }
 330
 331        ui->dirty = 0;
 332        mutex_unlock(&ui->ui_mutex);
 333        ubifs_release_dirty_inode_budget(c, ui);
 334        return err;
 335}
 336
 337static void ubifs_evict_inode(struct inode *inode)
 338{
 339        int err;
 340        struct ubifs_info *c = inode->i_sb->s_fs_info;
 341        struct ubifs_inode *ui = ubifs_inode(inode);
 342
 343        if (ui->xattr)
 344                /*
 345                 * Extended attribute inode deletions are fully handled in
 346                 * 'ubifs_removexattr()'. These inodes are special and have
 347                 * limited usage, so there is nothing to do here.
 348                 */
 349                goto out;
 350
 351        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 352        ubifs_assert(!atomic_read(&inode->i_count));
 353
 354        truncate_inode_pages_final(&inode->i_data);
 355
 356        if (inode->i_nlink)
 357                goto done;
 358
 359        if (is_bad_inode(inode))
 360                goto out;
 361
 362        ui->ui_size = inode->i_size = 0;
 363        err = ubifs_jnl_delete_inode(c, inode);
 364        if (err)
 365                /*
 366                 * Worst case we have a lost orphan inode wasting space, so a
 367                 * simple error message is OK here.
 368                 */
 369                ubifs_err(c, "can't delete inode %lu, error %d",
 370                          inode->i_ino, err);
 371
 372out:
 373        if (ui->dirty)
 374                ubifs_release_dirty_inode_budget(c, ui);
 375        else {
 376                /* We've deleted something - clean the "no space" flags */
 377                c->bi.nospace = c->bi.nospace_rp = 0;
 378                smp_wmb();
 379        }
 380done:
 381        clear_inode(inode);
 382#ifdef CONFIG_UBIFS_FS_ENCRYPTION
 383        fscrypt_put_encryption_info(inode, NULL);
 384#endif
 385}
 386
 387static void ubifs_dirty_inode(struct inode *inode, int flags)
 388{
 389        struct ubifs_inode *ui = ubifs_inode(inode);
 390
 391        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 392        if (!ui->dirty) {
 393                ui->dirty = 1;
 394                dbg_gen("inode %lu",  inode->i_ino);
 395        }
 396}
 397
 398static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 399{
 400        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 401        unsigned long long free;
 402        __le32 *uuid = (__le32 *)c->uuid;
 403
 404        free = ubifs_get_free_space(c);
 405        dbg_gen("free space %lld bytes (%lld blocks)",
 406                free, free >> UBIFS_BLOCK_SHIFT);
 407
 408        buf->f_type = UBIFS_SUPER_MAGIC;
 409        buf->f_bsize = UBIFS_BLOCK_SIZE;
 410        buf->f_blocks = c->block_cnt;
 411        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 412        if (free > c->report_rp_size)
 413                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 414        else
 415                buf->f_bavail = 0;
 416        buf->f_files = 0;
 417        buf->f_ffree = 0;
 418        buf->f_namelen = UBIFS_MAX_NLEN;
 419        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 420        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 421        ubifs_assert(buf->f_bfree <= c->block_cnt);
 422        return 0;
 423}
 424
 425static int ubifs_show_options(struct seq_file *s, struct dentry *root)
 426{
 427        struct ubifs_info *c = root->d_sb->s_fs_info;
 428
 429        if (c->mount_opts.unmount_mode == 2)
 430                seq_puts(s, ",fast_unmount");
 431        else if (c->mount_opts.unmount_mode == 1)
 432                seq_puts(s, ",norm_unmount");
 433
 434        if (c->mount_opts.bulk_read == 2)
 435                seq_puts(s, ",bulk_read");
 436        else if (c->mount_opts.bulk_read == 1)
 437                seq_puts(s, ",no_bulk_read");
 438
 439        if (c->mount_opts.chk_data_crc == 2)
 440                seq_puts(s, ",chk_data_crc");
 441        else if (c->mount_opts.chk_data_crc == 1)
 442                seq_puts(s, ",no_chk_data_crc");
 443
 444        if (c->mount_opts.override_compr) {
 445                seq_printf(s, ",compr=%s",
 446                           ubifs_compr_name(c->mount_opts.compr_type));
 447        }
 448
 449        seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
 450
 451        return 0;
 452}
 453
 454static int ubifs_sync_fs(struct super_block *sb, int wait)
 455{
 456        int i, err;
 457        struct ubifs_info *c = sb->s_fs_info;
 458
 459        /*
 460         * Zero @wait is just an advisory thing to help the file system shove
 461         * lots of data into the queues, and there will be the second
 462         * '->sync_fs()' call, with non-zero @wait.
 463         */
 464        if (!wait)
 465                return 0;
 466
 467        /*
 468         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 469         * do this if it waits for an already running commit.
 470         */
 471        for (i = 0; i < c->jhead_cnt; i++) {
 472                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 473                if (err)
 474                        return err;
 475        }
 476
 477        /*
 478         * Strictly speaking, it is not necessary to commit the journal here,
 479         * synchronizing write-buffers would be enough. But committing makes
 480         * UBIFS free space predictions much more accurate, so we want to let
 481         * the user be able to get more accurate results of 'statfs()' after
 482         * they synchronize the file system.
 483         */
 484        err = ubifs_run_commit(c);
 485        if (err)
 486                return err;
 487
 488        return ubi_sync(c->vi.ubi_num);
 489}
 490
 491/**
 492 * init_constants_early - initialize UBIFS constants.
 493 * @c: UBIFS file-system description object
 494 *
 495 * This function initialize UBIFS constants which do not need the superblock to
 496 * be read. It also checks that the UBI volume satisfies basic UBIFS
 497 * requirements. Returns zero in case of success and a negative error code in
 498 * case of failure.
 499 */
 500static int init_constants_early(struct ubifs_info *c)
 501{
 502        if (c->vi.corrupted) {
 503                ubifs_warn(c, "UBI volume is corrupted - read-only mode");
 504                c->ro_media = 1;
 505        }
 506
 507        if (c->di.ro_mode) {
 508                ubifs_msg(c, "read-only UBI device");
 509                c->ro_media = 1;
 510        }
 511
 512        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 513                ubifs_msg(c, "static UBI volume - read-only mode");
 514                c->ro_media = 1;
 515        }
 516
 517        c->leb_cnt = c->vi.size;
 518        c->leb_size = c->vi.usable_leb_size;
 519        c->leb_start = c->di.leb_start;
 520        c->half_leb_size = c->leb_size / 2;
 521        c->min_io_size = c->di.min_io_size;
 522        c->min_io_shift = fls(c->min_io_size) - 1;
 523        c->max_write_size = c->di.max_write_size;
 524        c->max_write_shift = fls(c->max_write_size) - 1;
 525
 526        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 527                ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
 528                           c->leb_size, UBIFS_MIN_LEB_SZ);
 529                return -EINVAL;
 530        }
 531
 532        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 533                ubifs_errc(c, "too few LEBs (%d), min. is %d",
 534                           c->leb_cnt, UBIFS_MIN_LEB_CNT);
 535                return -EINVAL;
 536        }
 537
 538        if (!is_power_of_2(c->min_io_size)) {
 539                ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
 540                return -EINVAL;
 541        }
 542
 543        /*
 544         * Maximum write size has to be greater or equivalent to min. I/O
 545         * size, and be multiple of min. I/O size.
 546         */
 547        if (c->max_write_size < c->min_io_size ||
 548            c->max_write_size % c->min_io_size ||
 549            !is_power_of_2(c->max_write_size)) {
 550                ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
 551                           c->max_write_size, c->min_io_size);
 552                return -EINVAL;
 553        }
 554
 555        /*
 556         * UBIFS aligns all node to 8-byte boundary, so to make function in
 557         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 558         * less than 8.
 559         */
 560        if (c->min_io_size < 8) {
 561                c->min_io_size = 8;
 562                c->min_io_shift = 3;
 563                if (c->max_write_size < c->min_io_size) {
 564                        c->max_write_size = c->min_io_size;
 565                        c->max_write_shift = c->min_io_shift;
 566                }
 567        }
 568
 569        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 570        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 571
 572        /*
 573         * Initialize node length ranges which are mostly needed for node
 574         * length validation.
 575         */
 576        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 577        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 578        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 579        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 580        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 581        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 582
 583        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 584        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 585        c->ranges[UBIFS_ORPH_NODE].min_len =
 586                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 587        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 588        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 589        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 590        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 591        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 592        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 593        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 594        /*
 595         * Minimum indexing node size is amended later when superblock is
 596         * read and the key length is known.
 597         */
 598        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 599        /*
 600         * Maximum indexing node size is amended later when superblock is
 601         * read and the fanout is known.
 602         */
 603        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 604
 605        /*
 606         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 607         * about these values.
 608         */
 609        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 610        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 611
 612        /*
 613         * Calculate how many bytes would be wasted at the end of LEB if it was
 614         * fully filled with data nodes of maximum size. This is used in
 615         * calculations when reporting free space.
 616         */
 617        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 618
 619        /* Buffer size for bulk-reads */
 620        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 621        if (c->max_bu_buf_len > c->leb_size)
 622                c->max_bu_buf_len = c->leb_size;
 623        return 0;
 624}
 625
 626/**
 627 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 628 * @c: UBIFS file-system description object
 629 * @lnum: LEB the write-buffer was synchronized to
 630 * @free: how many free bytes left in this LEB
 631 * @pad: how many bytes were padded
 632 *
 633 * This is a callback function which is called by the I/O unit when the
 634 * write-buffer is synchronized. We need this to correctly maintain space
 635 * accounting in bud logical eraseblocks. This function returns zero in case of
 636 * success and a negative error code in case of failure.
 637 *
 638 * This function actually belongs to the journal, but we keep it here because
 639 * we want to keep it static.
 640 */
 641static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 642{
 643        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 644}
 645
 646/*
 647 * init_constants_sb - initialize UBIFS constants.
 648 * @c: UBIFS file-system description object
 649 *
 650 * This is a helper function which initializes various UBIFS constants after
 651 * the superblock has been read. It also checks various UBIFS parameters and
 652 * makes sure they are all right. Returns zero in case of success and a
 653 * negative error code in case of failure.
 654 */
 655static int init_constants_sb(struct ubifs_info *c)
 656{
 657        int tmp, err;
 658        long long tmp64;
 659
 660        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 661        c->max_znode_sz = sizeof(struct ubifs_znode) +
 662                                c->fanout * sizeof(struct ubifs_zbranch);
 663
 664        tmp = ubifs_idx_node_sz(c, 1);
 665        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 666        c->min_idx_node_sz = ALIGN(tmp, 8);
 667
 668        tmp = ubifs_idx_node_sz(c, c->fanout);
 669        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 670        c->max_idx_node_sz = ALIGN(tmp, 8);
 671
 672        /* Make sure LEB size is large enough to fit full commit */
 673        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 674        tmp = ALIGN(tmp, c->min_io_size);
 675        if (tmp > c->leb_size) {
 676                ubifs_err(c, "too small LEB size %d, at least %d needed",
 677                          c->leb_size, tmp);
 678                return -EINVAL;
 679        }
 680
 681        /*
 682         * Make sure that the log is large enough to fit reference nodes for
 683         * all buds plus one reserved LEB.
 684         */
 685        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 686        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 687        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 688        tmp /= c->leb_size;
 689        tmp += 1;
 690        if (c->log_lebs < tmp) {
 691                ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
 692                          c->log_lebs, tmp);
 693                return -EINVAL;
 694        }
 695
 696        /*
 697         * When budgeting we assume worst-case scenarios when the pages are not
 698         * be compressed and direntries are of the maximum size.
 699         *
 700         * Note, data, which may be stored in inodes is budgeted separately, so
 701         * it is not included into 'c->bi.inode_budget'.
 702         */
 703        c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 704        c->bi.inode_budget = UBIFS_INO_NODE_SZ;
 705        c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 706
 707        /*
 708         * When the amount of flash space used by buds becomes
 709         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 710         * The writers are unblocked when the commit is finished. To avoid
 711         * writers to be blocked UBIFS initiates background commit in advance,
 712         * when number of bud bytes becomes above the limit defined below.
 713         */
 714        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 715
 716        /*
 717         * Ensure minimum journal size. All the bytes in the journal heads are
 718         * considered to be used, when calculating the current journal usage.
 719         * Consequently, if the journal is too small, UBIFS will treat it as
 720         * always full.
 721         */
 722        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 723        if (c->bg_bud_bytes < tmp64)
 724                c->bg_bud_bytes = tmp64;
 725        if (c->max_bud_bytes < tmp64 + c->leb_size)
 726                c->max_bud_bytes = tmp64 + c->leb_size;
 727
 728        err = ubifs_calc_lpt_geom(c);
 729        if (err)
 730                return err;
 731
 732        /* Initialize effective LEB size used in budgeting calculations */
 733        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 734        return 0;
 735}
 736
 737/*
 738 * init_constants_master - initialize UBIFS constants.
 739 * @c: UBIFS file-system description object
 740 *
 741 * This is a helper function which initializes various UBIFS constants after
 742 * the master node has been read. It also checks various UBIFS parameters and
 743 * makes sure they are all right.
 744 */
 745static void init_constants_master(struct ubifs_info *c)
 746{
 747        long long tmp64;
 748
 749        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 750        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 751
 752        /*
 753         * Calculate total amount of FS blocks. This number is not used
 754         * internally because it does not make much sense for UBIFS, but it is
 755         * necessary to report something for the 'statfs()' call.
 756         *
 757         * Subtract the LEB reserved for GC, the LEB which is reserved for
 758         * deletions, minimum LEBs for the index, and assume only one journal
 759         * head is available.
 760         */
 761        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 762        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 763        tmp64 = ubifs_reported_space(c, tmp64);
 764        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 765}
 766
 767/**
 768 * take_gc_lnum - reserve GC LEB.
 769 * @c: UBIFS file-system description object
 770 *
 771 * This function ensures that the LEB reserved for garbage collection is marked
 772 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 773 * space to zero, because lprops may contain out-of-date information if the
 774 * file-system was un-mounted before it has been committed. This function
 775 * returns zero in case of success and a negative error code in case of
 776 * failure.
 777 */
 778static int take_gc_lnum(struct ubifs_info *c)
 779{
 780        int err;
 781
 782        if (c->gc_lnum == -1) {
 783                ubifs_err(c, "no LEB for GC");
 784                return -EINVAL;
 785        }
 786
 787        /* And we have to tell lprops that this LEB is taken */
 788        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 789                                  LPROPS_TAKEN, 0, 0);
 790        return err;
 791}
 792
 793/**
 794 * alloc_wbufs - allocate write-buffers.
 795 * @c: UBIFS file-system description object
 796 *
 797 * This helper function allocates and initializes UBIFS write-buffers. Returns
 798 * zero in case of success and %-ENOMEM in case of failure.
 799 */
 800static int alloc_wbufs(struct ubifs_info *c)
 801{
 802        int i, err;
 803
 804        c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
 805                            GFP_KERNEL);
 806        if (!c->jheads)
 807                return -ENOMEM;
 808
 809        /* Initialize journal heads */
 810        for (i = 0; i < c->jhead_cnt; i++) {
 811                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 812                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 813                if (err)
 814                        return err;
 815
 816                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 817                c->jheads[i].wbuf.jhead = i;
 818                c->jheads[i].grouped = 1;
 819        }
 820
 821        /*
 822         * Garbage Collector head does not need to be synchronized by timer.
 823         * Also GC head nodes are not grouped.
 824         */
 825        c->jheads[GCHD].wbuf.no_timer = 1;
 826        c->jheads[GCHD].grouped = 0;
 827
 828        return 0;
 829}
 830
 831/**
 832 * free_wbufs - free write-buffers.
 833 * @c: UBIFS file-system description object
 834 */
 835static void free_wbufs(struct ubifs_info *c)
 836{
 837        int i;
 838
 839        if (c->jheads) {
 840                for (i = 0; i < c->jhead_cnt; i++) {
 841                        kfree(c->jheads[i].wbuf.buf);
 842                        kfree(c->jheads[i].wbuf.inodes);
 843                }
 844                kfree(c->jheads);
 845                c->jheads = NULL;
 846        }
 847}
 848
 849/**
 850 * free_orphans - free orphans.
 851 * @c: UBIFS file-system description object
 852 */
 853static void free_orphans(struct ubifs_info *c)
 854{
 855        struct ubifs_orphan *orph;
 856
 857        while (c->orph_dnext) {
 858                orph = c->orph_dnext;
 859                c->orph_dnext = orph->dnext;
 860                list_del(&orph->list);
 861                kfree(orph);
 862        }
 863
 864        while (!list_empty(&c->orph_list)) {
 865                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
 866                list_del(&orph->list);
 867                kfree(orph);
 868                ubifs_err(c, "orphan list not empty at unmount");
 869        }
 870
 871        vfree(c->orph_buf);
 872        c->orph_buf = NULL;
 873}
 874
 875/**
 876 * free_buds - free per-bud objects.
 877 * @c: UBIFS file-system description object
 878 */
 879static void free_buds(struct ubifs_info *c)
 880{
 881        struct ubifs_bud *bud, *n;
 882
 883        rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
 884                kfree(bud);
 885}
 886
 887/**
 888 * check_volume_empty - check if the UBI volume is empty.
 889 * @c: UBIFS file-system description object
 890 *
 891 * This function checks if the UBIFS volume is empty by looking if its LEBs are
 892 * mapped or not. The result of checking is stored in the @c->empty variable.
 893 * Returns zero in case of success and a negative error code in case of
 894 * failure.
 895 */
 896static int check_volume_empty(struct ubifs_info *c)
 897{
 898        int lnum, err;
 899
 900        c->empty = 1;
 901        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
 902                err = ubifs_is_mapped(c, lnum);
 903                if (unlikely(err < 0))
 904                        return err;
 905                if (err == 1) {
 906                        c->empty = 0;
 907                        break;
 908                }
 909
 910                cond_resched();
 911        }
 912
 913        return 0;
 914}
 915
 916/*
 917 * UBIFS mount options.
 918 *
 919 * Opt_fast_unmount: do not run a journal commit before un-mounting
 920 * Opt_norm_unmount: run a journal commit before un-mounting
 921 * Opt_bulk_read: enable bulk-reads
 922 * Opt_no_bulk_read: disable bulk-reads
 923 * Opt_chk_data_crc: check CRCs when reading data nodes
 924 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
 925 * Opt_override_compr: override default compressor
 926 * Opt_err: just end of array marker
 927 */
 928enum {
 929        Opt_fast_unmount,
 930        Opt_norm_unmount,
 931        Opt_bulk_read,
 932        Opt_no_bulk_read,
 933        Opt_chk_data_crc,
 934        Opt_no_chk_data_crc,
 935        Opt_override_compr,
 936        Opt_ignore,
 937        Opt_err,
 938};
 939
 940static const match_table_t tokens = {
 941        {Opt_fast_unmount, "fast_unmount"},
 942        {Opt_norm_unmount, "norm_unmount"},
 943        {Opt_bulk_read, "bulk_read"},
 944        {Opt_no_bulk_read, "no_bulk_read"},
 945        {Opt_chk_data_crc, "chk_data_crc"},
 946        {Opt_no_chk_data_crc, "no_chk_data_crc"},
 947        {Opt_override_compr, "compr=%s"},
 948        {Opt_ignore, "ubi=%s"},
 949        {Opt_ignore, "vol=%s"},
 950        {Opt_err, NULL},
 951};
 952
 953/**
 954 * parse_standard_option - parse a standard mount option.
 955 * @option: the option to parse
 956 *
 957 * Normally, standard mount options like "sync" are passed to file-systems as
 958 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
 959 * be present in the options string. This function tries to deal with this
 960 * situation and parse standard options. Returns 0 if the option was not
 961 * recognized, and the corresponding integer flag if it was.
 962 *
 963 * UBIFS is only interested in the "sync" option, so do not check for anything
 964 * else.
 965 */
 966static int parse_standard_option(const char *option)
 967{
 968
 969        pr_notice("UBIFS: parse %s\n", option);
 970        if (!strcmp(option, "sync"))
 971                return MS_SYNCHRONOUS;
 972        return 0;
 973}
 974
 975/**
 976 * ubifs_parse_options - parse mount parameters.
 977 * @c: UBIFS file-system description object
 978 * @options: parameters to parse
 979 * @is_remount: non-zero if this is FS re-mount
 980 *
 981 * This function parses UBIFS mount options and returns zero in case success
 982 * and a negative error code in case of failure.
 983 */
 984static int ubifs_parse_options(struct ubifs_info *c, char *options,
 985                               int is_remount)
 986{
 987        char *p;
 988        substring_t args[MAX_OPT_ARGS];
 989
 990        if (!options)
 991                return 0;
 992
 993        while ((p = strsep(&options, ","))) {
 994                int token;
 995
 996                if (!*p)
 997                        continue;
 998
 999                token = match_token(p, tokens, args);
1000                switch (token) {
1001                /*
1002                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1003                 * We accept them in order to be backward-compatible. But this
1004                 * should be removed at some point.
1005                 */
1006                case Opt_fast_unmount:
1007                        c->mount_opts.unmount_mode = 2;
1008                        break;
1009                case Opt_norm_unmount:
1010                        c->mount_opts.unmount_mode = 1;
1011                        break;
1012                case Opt_bulk_read:
1013                        c->mount_opts.bulk_read = 2;
1014                        c->bulk_read = 1;
1015                        break;
1016                case Opt_no_bulk_read:
1017                        c->mount_opts.bulk_read = 1;
1018                        c->bulk_read = 0;
1019                        break;
1020                case Opt_chk_data_crc:
1021                        c->mount_opts.chk_data_crc = 2;
1022                        c->no_chk_data_crc = 0;
1023                        break;
1024                case Opt_no_chk_data_crc:
1025                        c->mount_opts.chk_data_crc = 1;
1026                        c->no_chk_data_crc = 1;
1027                        break;
1028                case Opt_override_compr:
1029                {
1030                        char *name = match_strdup(&args[0]);
1031
1032                        if (!name)
1033                                return -ENOMEM;
1034                        if (!strcmp(name, "none"))
1035                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1036                        else if (!strcmp(name, "lzo"))
1037                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1038                        else if (!strcmp(name, "zlib"))
1039                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1040                        else {
1041                                ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1042                                kfree(name);
1043                                return -EINVAL;
1044                        }
1045                        kfree(name);
1046                        c->mount_opts.override_compr = 1;
1047                        c->default_compr = c->mount_opts.compr_type;
1048                        break;
1049                }
1050                case Opt_ignore:
1051                        break;
1052                default:
1053                {
1054                        unsigned long flag;
1055                        struct super_block *sb = c->vfs_sb;
1056
1057                        flag = parse_standard_option(p);
1058                        if (!flag) {
1059                                ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1060                                          p);
1061                                return -EINVAL;
1062                        }
1063                        sb->s_flags |= flag;
1064                        break;
1065                }
1066                }
1067        }
1068
1069        return 0;
1070}
1071
1072/**
1073 * destroy_journal - destroy journal data structures.
1074 * @c: UBIFS file-system description object
1075 *
1076 * This function destroys journal data structures including those that may have
1077 * been created by recovery functions.
1078 */
1079static void destroy_journal(struct ubifs_info *c)
1080{
1081        while (!list_empty(&c->unclean_leb_list)) {
1082                struct ubifs_unclean_leb *ucleb;
1083
1084                ucleb = list_entry(c->unclean_leb_list.next,
1085                                   struct ubifs_unclean_leb, list);
1086                list_del(&ucleb->list);
1087                kfree(ucleb);
1088        }
1089        while (!list_empty(&c->old_buds)) {
1090                struct ubifs_bud *bud;
1091
1092                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1093                list_del(&bud->list);
1094                kfree(bud);
1095        }
1096        ubifs_destroy_idx_gc(c);
1097        ubifs_destroy_size_tree(c);
1098        ubifs_tnc_close(c);
1099        free_buds(c);
1100}
1101
1102/**
1103 * bu_init - initialize bulk-read information.
1104 * @c: UBIFS file-system description object
1105 */
1106static void bu_init(struct ubifs_info *c)
1107{
1108        ubifs_assert(c->bulk_read == 1);
1109
1110        if (c->bu.buf)
1111                return; /* Already initialized */
1112
1113again:
1114        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1115        if (!c->bu.buf) {
1116                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1117                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1118                        goto again;
1119                }
1120
1121                /* Just disable bulk-read */
1122                ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1123                           c->max_bu_buf_len);
1124                c->mount_opts.bulk_read = 1;
1125                c->bulk_read = 0;
1126                return;
1127        }
1128}
1129
1130/**
1131 * check_free_space - check if there is enough free space to mount.
1132 * @c: UBIFS file-system description object
1133 *
1134 * This function makes sure UBIFS has enough free space to be mounted in
1135 * read/write mode. UBIFS must always have some free space to allow deletions.
1136 */
1137static int check_free_space(struct ubifs_info *c)
1138{
1139        ubifs_assert(c->dark_wm > 0);
1140        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1141                ubifs_err(c, "insufficient free space to mount in R/W mode");
1142                ubifs_dump_budg(c, &c->bi);
1143                ubifs_dump_lprops(c);
1144                return -ENOSPC;
1145        }
1146        return 0;
1147}
1148
1149/**
1150 * mount_ubifs - mount UBIFS file-system.
1151 * @c: UBIFS file-system description object
1152 *
1153 * This function mounts UBIFS file system. Returns zero in case of success and
1154 * a negative error code in case of failure.
1155 */
1156static int mount_ubifs(struct ubifs_info *c)
1157{
1158        int err;
1159        long long x, y;
1160        size_t sz;
1161
1162        c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1163        /* Suppress error messages while probing if MS_SILENT is set */
1164        c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1165
1166        err = init_constants_early(c);
1167        if (err)
1168                return err;
1169
1170        err = ubifs_debugging_init(c);
1171        if (err)
1172                return err;
1173
1174        err = check_volume_empty(c);
1175        if (err)
1176                goto out_free;
1177
1178        if (c->empty && (c->ro_mount || c->ro_media)) {
1179                /*
1180                 * This UBI volume is empty, and read-only, or the file system
1181                 * is mounted read-only - we cannot format it.
1182                 */
1183                ubifs_err(c, "can't format empty UBI volume: read-only %s",
1184                          c->ro_media ? "UBI volume" : "mount");
1185                err = -EROFS;
1186                goto out_free;
1187        }
1188
1189        if (c->ro_media && !c->ro_mount) {
1190                ubifs_err(c, "cannot mount read-write - read-only media");
1191                err = -EROFS;
1192                goto out_free;
1193        }
1194
1195        /*
1196         * The requirement for the buffer is that it should fit indexing B-tree
1197         * height amount of integers. We assume the height if the TNC tree will
1198         * never exceed 64.
1199         */
1200        err = -ENOMEM;
1201        c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1202        if (!c->bottom_up_buf)
1203                goto out_free;
1204
1205        c->sbuf = vmalloc(c->leb_size);
1206        if (!c->sbuf)
1207                goto out_free;
1208
1209        if (!c->ro_mount) {
1210                c->ileb_buf = vmalloc(c->leb_size);
1211                if (!c->ileb_buf)
1212                        goto out_free;
1213        }
1214
1215        if (c->bulk_read == 1)
1216                bu_init(c);
1217
1218        if (!c->ro_mount) {
1219                c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1220                                               UBIFS_CIPHER_BLOCK_SIZE,
1221                                               GFP_KERNEL);
1222                if (!c->write_reserve_buf)
1223                        goto out_free;
1224        }
1225
1226        c->mounting = 1;
1227
1228        err = ubifs_read_superblock(c);
1229        if (err)
1230                goto out_free;
1231
1232        c->probing = 0;
1233
1234        /*
1235         * Make sure the compressor which is set as default in the superblock
1236         * or overridden by mount options is actually compiled in.
1237         */
1238        if (!ubifs_compr_present(c->default_compr)) {
1239                ubifs_err(c, "'compressor \"%s\" is not compiled in",
1240                          ubifs_compr_name(c->default_compr));
1241                err = -ENOTSUPP;
1242                goto out_free;
1243        }
1244
1245        err = init_constants_sb(c);
1246        if (err)
1247                goto out_free;
1248
1249        sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1250        sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1251        c->cbuf = kmalloc(sz, GFP_NOFS);
1252        if (!c->cbuf) {
1253                err = -ENOMEM;
1254                goto out_free;
1255        }
1256
1257        err = alloc_wbufs(c);
1258        if (err)
1259                goto out_cbuf;
1260
1261        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1262        if (!c->ro_mount) {
1263                /* Create background thread */
1264                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1265                if (IS_ERR(c->bgt)) {
1266                        err = PTR_ERR(c->bgt);
1267                        c->bgt = NULL;
1268                        ubifs_err(c, "cannot spawn \"%s\", error %d",
1269                                  c->bgt_name, err);
1270                        goto out_wbufs;
1271                }
1272                wake_up_process(c->bgt);
1273        }
1274
1275        err = ubifs_read_master(c);
1276        if (err)
1277                goto out_master;
1278
1279        init_constants_master(c);
1280
1281        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1282                ubifs_msg(c, "recovery needed");
1283                c->need_recovery = 1;
1284        }
1285
1286        if (c->need_recovery && !c->ro_mount) {
1287                err = ubifs_recover_inl_heads(c, c->sbuf);
1288                if (err)
1289                        goto out_master;
1290        }
1291
1292        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1293        if (err)
1294                goto out_master;
1295
1296        if (!c->ro_mount && c->space_fixup) {
1297                err = ubifs_fixup_free_space(c);
1298                if (err)
1299                        goto out_lpt;
1300        }
1301
1302        if (!c->ro_mount && !c->need_recovery) {
1303                /*
1304                 * Set the "dirty" flag so that if we reboot uncleanly we
1305                 * will notice this immediately on the next mount.
1306                 */
1307                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1308                err = ubifs_write_master(c);
1309                if (err)
1310                        goto out_lpt;
1311        }
1312
1313        err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1314        if (err)
1315                goto out_lpt;
1316
1317        err = ubifs_replay_journal(c);
1318        if (err)
1319                goto out_journal;
1320
1321        /* Calculate 'min_idx_lebs' after journal replay */
1322        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1323
1324        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1325        if (err)
1326                goto out_orphans;
1327
1328        if (!c->ro_mount) {
1329                int lnum;
1330
1331                err = check_free_space(c);
1332                if (err)
1333                        goto out_orphans;
1334
1335                /* Check for enough log space */
1336                lnum = c->lhead_lnum + 1;
1337                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1338                        lnum = UBIFS_LOG_LNUM;
1339                if (lnum == c->ltail_lnum) {
1340                        err = ubifs_consolidate_log(c);
1341                        if (err)
1342                                goto out_orphans;
1343                }
1344
1345                if (c->need_recovery) {
1346                        err = ubifs_recover_size(c);
1347                        if (err)
1348                                goto out_orphans;
1349                        err = ubifs_rcvry_gc_commit(c);
1350                        if (err)
1351                                goto out_orphans;
1352                } else {
1353                        err = take_gc_lnum(c);
1354                        if (err)
1355                                goto out_orphans;
1356
1357                        /*
1358                         * GC LEB may contain garbage if there was an unclean
1359                         * reboot, and it should be un-mapped.
1360                         */
1361                        err = ubifs_leb_unmap(c, c->gc_lnum);
1362                        if (err)
1363                                goto out_orphans;
1364                }
1365
1366                err = dbg_check_lprops(c);
1367                if (err)
1368                        goto out_orphans;
1369        } else if (c->need_recovery) {
1370                err = ubifs_recover_size(c);
1371                if (err)
1372                        goto out_orphans;
1373        } else {
1374                /*
1375                 * Even if we mount read-only, we have to set space in GC LEB
1376                 * to proper value because this affects UBIFS free space
1377                 * reporting. We do not want to have a situation when
1378                 * re-mounting from R/O to R/W changes amount of free space.
1379                 */
1380                err = take_gc_lnum(c);
1381                if (err)
1382                        goto out_orphans;
1383        }
1384
1385        spin_lock(&ubifs_infos_lock);
1386        list_add_tail(&c->infos_list, &ubifs_infos);
1387        spin_unlock(&ubifs_infos_lock);
1388
1389        if (c->need_recovery) {
1390                if (c->ro_mount)
1391                        ubifs_msg(c, "recovery deferred");
1392                else {
1393                        c->need_recovery = 0;
1394                        ubifs_msg(c, "recovery completed");
1395                        /*
1396                         * GC LEB has to be empty and taken at this point. But
1397                         * the journal head LEBs may also be accounted as
1398                         * "empty taken" if they are empty.
1399                         */
1400                        ubifs_assert(c->lst.taken_empty_lebs > 0);
1401                }
1402        } else
1403                ubifs_assert(c->lst.taken_empty_lebs > 0);
1404
1405        err = dbg_check_filesystem(c);
1406        if (err)
1407                goto out_infos;
1408
1409        err = dbg_debugfs_init_fs(c);
1410        if (err)
1411                goto out_infos;
1412
1413        c->mounting = 0;
1414
1415        ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1416                  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1417                  c->ro_mount ? ", R/O mode" : "");
1418        x = (long long)c->main_lebs * c->leb_size;
1419        y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1420        ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1421                  c->leb_size, c->leb_size >> 10, c->min_io_size,
1422                  c->max_write_size);
1423        ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1424                  x, x >> 20, c->main_lebs,
1425                  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1426        ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1427                  c->report_rp_size, c->report_rp_size >> 10);
1428        ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1429                  c->fmt_version, c->ro_compat_version,
1430                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1431                  c->big_lpt ? ", big LPT model" : ", small LPT model");
1432
1433        dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1434        dbg_gen("data journal heads:  %d",
1435                c->jhead_cnt - NONDATA_JHEADS_CNT);
1436        dbg_gen("log LEBs:            %d (%d - %d)",
1437                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1438        dbg_gen("LPT area LEBs:       %d (%d - %d)",
1439                c->lpt_lebs, c->lpt_first, c->lpt_last);
1440        dbg_gen("orphan area LEBs:    %d (%d - %d)",
1441                c->orph_lebs, c->orph_first, c->orph_last);
1442        dbg_gen("main area LEBs:      %d (%d - %d)",
1443                c->main_lebs, c->main_first, c->leb_cnt - 1);
1444        dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1445        dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1446                c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1447                c->bi.old_idx_sz >> 20);
1448        dbg_gen("key hash type:       %d", c->key_hash_type);
1449        dbg_gen("tree fanout:         %d", c->fanout);
1450        dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1451        dbg_gen("max. znode size      %d", c->max_znode_sz);
1452        dbg_gen("max. index node size %d", c->max_idx_node_sz);
1453        dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1454                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1455        dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1456                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1457        dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1458                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1459        dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1460                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1461                UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1462        dbg_gen("dead watermark:      %d", c->dead_wm);
1463        dbg_gen("dark watermark:      %d", c->dark_wm);
1464        dbg_gen("LEB overhead:        %d", c->leb_overhead);
1465        x = (long long)c->main_lebs * c->dark_wm;
1466        dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1467                x, x >> 10, x >> 20);
1468        dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1469                c->max_bud_bytes, c->max_bud_bytes >> 10,
1470                c->max_bud_bytes >> 20);
1471        dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1472                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1473                c->bg_bud_bytes >> 20);
1474        dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1475                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1476        dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1477        dbg_gen("commit number:       %llu", c->cmt_no);
1478
1479        return 0;
1480
1481out_infos:
1482        spin_lock(&ubifs_infos_lock);
1483        list_del(&c->infos_list);
1484        spin_unlock(&ubifs_infos_lock);
1485out_orphans:
1486        free_orphans(c);
1487out_journal:
1488        destroy_journal(c);
1489out_lpt:
1490        ubifs_lpt_free(c, 0);
1491out_master:
1492        kfree(c->mst_node);
1493        kfree(c->rcvrd_mst_node);
1494        if (c->bgt)
1495                kthread_stop(c->bgt);
1496out_wbufs:
1497        free_wbufs(c);
1498out_cbuf:
1499        kfree(c->cbuf);
1500out_free:
1501        kfree(c->write_reserve_buf);
1502        kfree(c->bu.buf);
1503        vfree(c->ileb_buf);
1504        vfree(c->sbuf);
1505        kfree(c->bottom_up_buf);
1506        ubifs_debugging_exit(c);
1507        return err;
1508}
1509
1510/**
1511 * ubifs_umount - un-mount UBIFS file-system.
1512 * @c: UBIFS file-system description object
1513 *
1514 * Note, this function is called to free allocated resourced when un-mounting,
1515 * as well as free resources when an error occurred while we were half way
1516 * through mounting (error path cleanup function). So it has to make sure the
1517 * resource was actually allocated before freeing it.
1518 */
1519static void ubifs_umount(struct ubifs_info *c)
1520{
1521        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1522                c->vi.vol_id);
1523
1524        dbg_debugfs_exit_fs(c);
1525        spin_lock(&ubifs_infos_lock);
1526        list_del(&c->infos_list);
1527        spin_unlock(&ubifs_infos_lock);
1528
1529        if (c->bgt)
1530                kthread_stop(c->bgt);
1531
1532        destroy_journal(c);
1533        free_wbufs(c);
1534        free_orphans(c);
1535        ubifs_lpt_free(c, 0);
1536
1537        kfree(c->cbuf);
1538        kfree(c->rcvrd_mst_node);
1539        kfree(c->mst_node);
1540        kfree(c->write_reserve_buf);
1541        kfree(c->bu.buf);
1542        vfree(c->ileb_buf);
1543        vfree(c->sbuf);
1544        kfree(c->bottom_up_buf);
1545        ubifs_debugging_exit(c);
1546}
1547
1548/**
1549 * ubifs_remount_rw - re-mount in read-write mode.
1550 * @c: UBIFS file-system description object
1551 *
1552 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1553 * mode. This function allocates the needed resources and re-mounts UBIFS in
1554 * read-write mode.
1555 */
1556static int ubifs_remount_rw(struct ubifs_info *c)
1557{
1558        int err, lnum;
1559
1560        if (c->rw_incompat) {
1561                ubifs_err(c, "the file-system is not R/W-compatible");
1562                ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1563                          c->fmt_version, c->ro_compat_version,
1564                          UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1565                return -EROFS;
1566        }
1567
1568        mutex_lock(&c->umount_mutex);
1569        dbg_save_space_info(c);
1570        c->remounting_rw = 1;
1571        c->ro_mount = 0;
1572
1573        if (c->space_fixup) {
1574                err = ubifs_fixup_free_space(c);
1575                if (err)
1576                        goto out;
1577        }
1578
1579        err = check_free_space(c);
1580        if (err)
1581                goto out;
1582
1583        if (c->old_leb_cnt != c->leb_cnt) {
1584                struct ubifs_sb_node *sup;
1585
1586                sup = ubifs_read_sb_node(c);
1587                if (IS_ERR(sup)) {
1588                        err = PTR_ERR(sup);
1589                        goto out;
1590                }
1591                sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1592                err = ubifs_write_sb_node(c, sup);
1593                kfree(sup);
1594                if (err)
1595                        goto out;
1596        }
1597
1598        if (c->need_recovery) {
1599                ubifs_msg(c, "completing deferred recovery");
1600                err = ubifs_write_rcvrd_mst_node(c);
1601                if (err)
1602                        goto out;
1603                err = ubifs_recover_size(c);
1604                if (err)
1605                        goto out;
1606                err = ubifs_clean_lebs(c, c->sbuf);
1607                if (err)
1608                        goto out;
1609                err = ubifs_recover_inl_heads(c, c->sbuf);
1610                if (err)
1611                        goto out;
1612        } else {
1613                /* A readonly mount is not allowed to have orphans */
1614                ubifs_assert(c->tot_orphans == 0);
1615                err = ubifs_clear_orphans(c);
1616                if (err)
1617                        goto out;
1618        }
1619
1620        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1621                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1622                err = ubifs_write_master(c);
1623                if (err)
1624                        goto out;
1625        }
1626
1627        c->ileb_buf = vmalloc(c->leb_size);
1628        if (!c->ileb_buf) {
1629                err = -ENOMEM;
1630                goto out;
1631        }
1632
1633        c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1634                                       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1635        if (!c->write_reserve_buf) {
1636                err = -ENOMEM;
1637                goto out;
1638        }
1639
1640        err = ubifs_lpt_init(c, 0, 1);
1641        if (err)
1642                goto out;
1643
1644        /* Create background thread */
1645        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1646        if (IS_ERR(c->bgt)) {
1647                err = PTR_ERR(c->bgt);
1648                c->bgt = NULL;
1649                ubifs_err(c, "cannot spawn \"%s\", error %d",
1650                          c->bgt_name, err);
1651                goto out;
1652        }
1653        wake_up_process(c->bgt);
1654
1655        c->orph_buf = vmalloc(c->leb_size);
1656        if (!c->orph_buf) {
1657                err = -ENOMEM;
1658                goto out;
1659        }
1660
1661        /* Check for enough log space */
1662        lnum = c->lhead_lnum + 1;
1663        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1664                lnum = UBIFS_LOG_LNUM;
1665        if (lnum == c->ltail_lnum) {
1666                err = ubifs_consolidate_log(c);
1667                if (err)
1668                        goto out;
1669        }
1670
1671        if (c->need_recovery)
1672                err = ubifs_rcvry_gc_commit(c);
1673        else
1674                err = ubifs_leb_unmap(c, c->gc_lnum);
1675        if (err)
1676                goto out;
1677
1678        dbg_gen("re-mounted read-write");
1679        c->remounting_rw = 0;
1680
1681        if (c->need_recovery) {
1682                c->need_recovery = 0;
1683                ubifs_msg(c, "deferred recovery completed");
1684        } else {
1685                /*
1686                 * Do not run the debugging space check if the were doing
1687                 * recovery, because when we saved the information we had the
1688                 * file-system in a state where the TNC and lprops has been
1689                 * modified in memory, but all the I/O operations (including a
1690                 * commit) were deferred. So the file-system was in
1691                 * "non-committed" state. Now the file-system is in committed
1692                 * state, and of course the amount of free space will change
1693                 * because, for example, the old index size was imprecise.
1694                 */
1695                err = dbg_check_space_info(c);
1696        }
1697
1698        mutex_unlock(&c->umount_mutex);
1699        return err;
1700
1701out:
1702        c->ro_mount = 1;
1703        vfree(c->orph_buf);
1704        c->orph_buf = NULL;
1705        if (c->bgt) {
1706                kthread_stop(c->bgt);
1707                c->bgt = NULL;
1708        }
1709        free_wbufs(c);
1710        kfree(c->write_reserve_buf);
1711        c->write_reserve_buf = NULL;
1712        vfree(c->ileb_buf);
1713        c->ileb_buf = NULL;
1714        ubifs_lpt_free(c, 1);
1715        c->remounting_rw = 0;
1716        mutex_unlock(&c->umount_mutex);
1717        return err;
1718}
1719
1720/**
1721 * ubifs_remount_ro - re-mount in read-only mode.
1722 * @c: UBIFS file-system description object
1723 *
1724 * We assume VFS has stopped writing. Possibly the background thread could be
1725 * running a commit, however kthread_stop will wait in that case.
1726 */
1727static void ubifs_remount_ro(struct ubifs_info *c)
1728{
1729        int i, err;
1730
1731        ubifs_assert(!c->need_recovery);
1732        ubifs_assert(!c->ro_mount);
1733
1734        mutex_lock(&c->umount_mutex);
1735        if (c->bgt) {
1736                kthread_stop(c->bgt);
1737                c->bgt = NULL;
1738        }
1739
1740        dbg_save_space_info(c);
1741
1742        for (i = 0; i < c->jhead_cnt; i++)
1743                ubifs_wbuf_sync(&c->jheads[i].wbuf);
1744
1745        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1746        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1747        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1748        err = ubifs_write_master(c);
1749        if (err)
1750                ubifs_ro_mode(c, err);
1751
1752        vfree(c->orph_buf);
1753        c->orph_buf = NULL;
1754        kfree(c->write_reserve_buf);
1755        c->write_reserve_buf = NULL;
1756        vfree(c->ileb_buf);
1757        c->ileb_buf = NULL;
1758        ubifs_lpt_free(c, 1);
1759        c->ro_mount = 1;
1760        err = dbg_check_space_info(c);
1761        if (err)
1762                ubifs_ro_mode(c, err);
1763        mutex_unlock(&c->umount_mutex);
1764}
1765
1766static void ubifs_put_super(struct super_block *sb)
1767{
1768        int i;
1769        struct ubifs_info *c = sb->s_fs_info;
1770
1771        ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1772
1773        /*
1774         * The following asserts are only valid if there has not been a failure
1775         * of the media. For example, there will be dirty inodes if we failed
1776         * to write them back because of I/O errors.
1777         */
1778        if (!c->ro_error) {
1779                ubifs_assert(c->bi.idx_growth == 0);
1780                ubifs_assert(c->bi.dd_growth == 0);
1781                ubifs_assert(c->bi.data_growth == 0);
1782        }
1783
1784        /*
1785         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1786         * and file system un-mount. Namely, it prevents the shrinker from
1787         * picking this superblock for shrinking - it will be just skipped if
1788         * the mutex is locked.
1789         */
1790        mutex_lock(&c->umount_mutex);
1791        if (!c->ro_mount) {
1792                /*
1793                 * First of all kill the background thread to make sure it does
1794                 * not interfere with un-mounting and freeing resources.
1795                 */
1796                if (c->bgt) {
1797                        kthread_stop(c->bgt);
1798                        c->bgt = NULL;
1799                }
1800
1801                /*
1802                 * On fatal errors c->ro_error is set to 1, in which case we do
1803                 * not write the master node.
1804                 */
1805                if (!c->ro_error) {
1806                        int err;
1807
1808                        /* Synchronize write-buffers */
1809                        for (i = 0; i < c->jhead_cnt; i++)
1810                                ubifs_wbuf_sync(&c->jheads[i].wbuf);
1811
1812                        /*
1813                         * We are being cleanly unmounted which means the
1814                         * orphans were killed - indicate this in the master
1815                         * node. Also save the reserved GC LEB number.
1816                         */
1817                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1818                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1819                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1820                        err = ubifs_write_master(c);
1821                        if (err)
1822                                /*
1823                                 * Recovery will attempt to fix the master area
1824                                 * next mount, so we just print a message and
1825                                 * continue to unmount normally.
1826                                 */
1827                                ubifs_err(c, "failed to write master node, error %d",
1828                                          err);
1829                } else {
1830                        for (i = 0; i < c->jhead_cnt; i++)
1831                                /* Make sure write-buffer timers are canceled */
1832                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
1833                }
1834        }
1835
1836        ubifs_umount(c);
1837        ubi_close_volume(c->ubi);
1838        mutex_unlock(&c->umount_mutex);
1839}
1840
1841static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1842{
1843        int err;
1844        struct ubifs_info *c = sb->s_fs_info;
1845
1846        sync_filesystem(sb);
1847        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1848
1849        err = ubifs_parse_options(c, data, 1);
1850        if (err) {
1851                ubifs_err(c, "invalid or unknown remount parameter");
1852                return err;
1853        }
1854
1855        if (c->ro_mount && !(*flags & MS_RDONLY)) {
1856                if (c->ro_error) {
1857                        ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1858                        return -EROFS;
1859                }
1860                if (c->ro_media) {
1861                        ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1862                        return -EROFS;
1863                }
1864                err = ubifs_remount_rw(c);
1865                if (err)
1866                        return err;
1867        } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1868                if (c->ro_error) {
1869                        ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1870                        return -EROFS;
1871                }
1872                ubifs_remount_ro(c);
1873        }
1874
1875        if (c->bulk_read == 1)
1876                bu_init(c);
1877        else {
1878                dbg_gen("disable bulk-read");
1879                mutex_lock(&c->bu_mutex);
1880                kfree(c->bu.buf);
1881                c->bu.buf = NULL;
1882                mutex_unlock(&c->bu_mutex);
1883        }
1884
1885        ubifs_assert(c->lst.taken_empty_lebs > 0);
1886        return 0;
1887}
1888
1889const struct super_operations ubifs_super_operations = {
1890        .alloc_inode   = ubifs_alloc_inode,
1891        .destroy_inode = ubifs_destroy_inode,
1892        .put_super     = ubifs_put_super,
1893        .write_inode   = ubifs_write_inode,
1894        .evict_inode   = ubifs_evict_inode,
1895        .statfs        = ubifs_statfs,
1896        .dirty_inode   = ubifs_dirty_inode,
1897        .remount_fs    = ubifs_remount_fs,
1898        .show_options  = ubifs_show_options,
1899        .sync_fs       = ubifs_sync_fs,
1900};
1901
1902/**
1903 * open_ubi - parse UBI device name string and open the UBI device.
1904 * @name: UBI volume name
1905 * @mode: UBI volume open mode
1906 *
1907 * The primary method of mounting UBIFS is by specifying the UBI volume
1908 * character device node path. However, UBIFS may also be mounted withoug any
1909 * character device node using one of the following methods:
1910 *
1911 * o ubiX_Y    - mount UBI device number X, volume Y;
1912 * o ubiY      - mount UBI device number 0, volume Y;
1913 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1914 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1915 *
1916 * Alternative '!' separator may be used instead of ':' (because some shells
1917 * like busybox may interpret ':' as an NFS host name separator). This function
1918 * returns UBI volume description object in case of success and a negative
1919 * error code in case of failure.
1920 */
1921static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1922{
1923        struct ubi_volume_desc *ubi;
1924        int dev, vol;
1925        char *endptr;
1926
1927        /* First, try to open using the device node path method */
1928        ubi = ubi_open_volume_path(name, mode);
1929        if (!IS_ERR(ubi))
1930                return ubi;
1931
1932        /* Try the "nodev" method */
1933        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1934                return ERR_PTR(-EINVAL);
1935
1936        /* ubi:NAME method */
1937        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1938                return ubi_open_volume_nm(0, name + 4, mode);
1939
1940        if (!isdigit(name[3]))
1941                return ERR_PTR(-EINVAL);
1942
1943        dev = simple_strtoul(name + 3, &endptr, 0);
1944
1945        /* ubiY method */
1946        if (*endptr == '\0')
1947                return ubi_open_volume(0, dev, mode);
1948
1949        /* ubiX_Y method */
1950        if (*endptr == '_' && isdigit(endptr[1])) {
1951                vol = simple_strtoul(endptr + 1, &endptr, 0);
1952                if (*endptr != '\0')
1953                        return ERR_PTR(-EINVAL);
1954                return ubi_open_volume(dev, vol, mode);
1955        }
1956
1957        /* ubiX:NAME method */
1958        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1959                return ubi_open_volume_nm(dev, ++endptr, mode);
1960
1961        return ERR_PTR(-EINVAL);
1962}
1963
1964static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1965{
1966        struct ubifs_info *c;
1967
1968        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1969        if (c) {
1970                spin_lock_init(&c->cnt_lock);
1971                spin_lock_init(&c->cs_lock);
1972                spin_lock_init(&c->buds_lock);
1973                spin_lock_init(&c->space_lock);
1974                spin_lock_init(&c->orphan_lock);
1975                init_rwsem(&c->commit_sem);
1976                mutex_init(&c->lp_mutex);
1977                mutex_init(&c->tnc_mutex);
1978                mutex_init(&c->log_mutex);
1979                mutex_init(&c->umount_mutex);
1980                mutex_init(&c->bu_mutex);
1981                mutex_init(&c->write_reserve_mutex);
1982                init_waitqueue_head(&c->cmt_wq);
1983                c->buds = RB_ROOT;
1984                c->old_idx = RB_ROOT;
1985                c->size_tree = RB_ROOT;
1986                c->orph_tree = RB_ROOT;
1987                INIT_LIST_HEAD(&c->infos_list);
1988                INIT_LIST_HEAD(&c->idx_gc);
1989                INIT_LIST_HEAD(&c->replay_list);
1990                INIT_LIST_HEAD(&c->replay_buds);
1991                INIT_LIST_HEAD(&c->uncat_list);
1992                INIT_LIST_HEAD(&c->empty_list);
1993                INIT_LIST_HEAD(&c->freeable_list);
1994                INIT_LIST_HEAD(&c->frdi_idx_list);
1995                INIT_LIST_HEAD(&c->unclean_leb_list);
1996                INIT_LIST_HEAD(&c->old_buds);
1997                INIT_LIST_HEAD(&c->orph_list);
1998                INIT_LIST_HEAD(&c->orph_new);
1999                c->no_chk_data_crc = 1;
2000
2001                c->highest_inum = UBIFS_FIRST_INO;
2002                c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2003
2004                ubi_get_volume_info(ubi, &c->vi);
2005                ubi_get_device_info(c->vi.ubi_num, &c->di);
2006        }
2007        return c;
2008}
2009
2010#ifndef CONFIG_UBIFS_FS_ENCRYPTION
2011const struct fscrypt_operations ubifs_crypt_operations = {
2012        .is_encrypted           = __ubifs_crypt_is_encrypted,
2013};
2014#endif
2015
2016static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2017{
2018        struct ubifs_info *c = sb->s_fs_info;
2019        struct inode *root;
2020        int err;
2021
2022        c->vfs_sb = sb;
2023        /* Re-open the UBI device in read-write mode */
2024        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2025        if (IS_ERR(c->ubi)) {
2026                err = PTR_ERR(c->ubi);
2027                goto out;
2028        }
2029
2030        err = ubifs_parse_options(c, data, 0);
2031        if (err)
2032                goto out_close;
2033
2034        /*
2035         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2036         * UBIFS, I/O is not deferred, it is done immediately in readpage,
2037         * which means the user would have to wait not just for their own I/O
2038         * but the read-ahead I/O as well i.e. completely pointless.
2039         *
2040         * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2041         * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2042         * writeback happening.
2043         */
2044        err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2045                                   c->vi.vol_id);
2046        if (err)
2047                goto out_close;
2048
2049        sb->s_fs_info = c;
2050        sb->s_magic = UBIFS_SUPER_MAGIC;
2051        sb->s_blocksize = UBIFS_BLOCK_SIZE;
2052        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2053        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2054        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2055                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2056        sb->s_op = &ubifs_super_operations;
2057        sb->s_xattr = ubifs_xattr_handlers;
2058        sb->s_cop = &ubifs_crypt_operations;
2059
2060        mutex_lock(&c->umount_mutex);
2061        err = mount_ubifs(c);
2062        if (err) {
2063                ubifs_assert(err < 0);
2064                goto out_unlock;
2065        }
2066
2067        /* Read the root inode */
2068        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2069        if (IS_ERR(root)) {
2070                err = PTR_ERR(root);
2071                goto out_umount;
2072        }
2073
2074        sb->s_root = d_make_root(root);
2075        if (!sb->s_root) {
2076                err = -ENOMEM;
2077                goto out_umount;
2078        }
2079
2080        mutex_unlock(&c->umount_mutex);
2081        return 0;
2082
2083out_umount:
2084        ubifs_umount(c);
2085out_unlock:
2086        mutex_unlock(&c->umount_mutex);
2087out_close:
2088        ubi_close_volume(c->ubi);
2089out:
2090        return err;
2091}
2092
2093static int sb_test(struct super_block *sb, void *data)
2094{
2095        struct ubifs_info *c1 = data;
2096        struct ubifs_info *c = sb->s_fs_info;
2097
2098        return c->vi.cdev == c1->vi.cdev;
2099}
2100
2101static int sb_set(struct super_block *sb, void *data)
2102{
2103        sb->s_fs_info = data;
2104        return set_anon_super(sb, NULL);
2105}
2106
2107static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2108                        const char *name, void *data)
2109{
2110        struct ubi_volume_desc *ubi;
2111        struct ubifs_info *c;
2112        struct super_block *sb;
2113        int err;
2114
2115        dbg_gen("name %s, flags %#x", name, flags);
2116
2117        /*
2118         * Get UBI device number and volume ID. Mount it read-only so far
2119         * because this might be a new mount point, and UBI allows only one
2120         * read-write user at a time.
2121         */
2122        ubi = open_ubi(name, UBI_READONLY);
2123        if (IS_ERR(ubi)) {
2124                if (!(flags & MS_SILENT))
2125                        pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2126                               current->pid, name, (int)PTR_ERR(ubi));
2127                return ERR_CAST(ubi);
2128        }
2129
2130        c = alloc_ubifs_info(ubi);
2131        if (!c) {
2132                err = -ENOMEM;
2133                goto out_close;
2134        }
2135
2136        dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2137
2138        sb = sget(fs_type, sb_test, sb_set, flags, c);
2139        if (IS_ERR(sb)) {
2140                err = PTR_ERR(sb);
2141                kfree(c);
2142                goto out_close;
2143        }
2144
2145        if (sb->s_root) {
2146                struct ubifs_info *c1 = sb->s_fs_info;
2147                kfree(c);
2148                /* A new mount point for already mounted UBIFS */
2149                dbg_gen("this ubi volume is already mounted");
2150                if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2151                        err = -EBUSY;
2152                        goto out_deact;
2153                }
2154        } else {
2155                err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2156                if (err)
2157                        goto out_deact;
2158                /* We do not support atime */
2159                sb->s_flags |= MS_ACTIVE;
2160#ifndef CONFIG_UBIFS_ATIME_SUPPORT
2161                sb->s_flags |= MS_NOATIME;
2162#else
2163                ubifs_msg(c, "full atime support is enabled.");
2164#endif
2165        }
2166
2167        /* 'fill_super()' opens ubi again so we must close it here */
2168        ubi_close_volume(ubi);
2169
2170        return dget(sb->s_root);
2171
2172out_deact:
2173        deactivate_locked_super(sb);
2174out_close:
2175        ubi_close_volume(ubi);
2176        return ERR_PTR(err);
2177}
2178
2179static void kill_ubifs_super(struct super_block *s)
2180{
2181        struct ubifs_info *c = s->s_fs_info;
2182        kill_anon_super(s);
2183        kfree(c);
2184}
2185
2186static struct file_system_type ubifs_fs_type = {
2187        .name    = "ubifs",
2188        .owner   = THIS_MODULE,
2189        .mount   = ubifs_mount,
2190        .kill_sb = kill_ubifs_super,
2191};
2192MODULE_ALIAS_FS("ubifs");
2193
2194/*
2195 * Inode slab cache constructor.
2196 */
2197static void inode_slab_ctor(void *obj)
2198{
2199        struct ubifs_inode *ui = obj;
2200        inode_init_once(&ui->vfs_inode);
2201}
2202
2203static int __init ubifs_init(void)
2204{
2205        int err;
2206
2207        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2208
2209        /* Make sure node sizes are 8-byte aligned */
2210        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2211        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2212        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2213        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2214        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2215        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2216        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2217        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2218        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2219        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2220        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2221
2222        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2223        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2224        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2225        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2226        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2227        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2228
2229        /* Check min. node size */
2230        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2231        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2232        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2233        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2234
2235        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2236        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2237        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2238        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2239
2240        /* Defined node sizes */
2241        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2242        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2243        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2244        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2245
2246        /*
2247         * We use 2 bit wide bit-fields to store compression type, which should
2248         * be amended if more compressors are added. The bit-fields are:
2249         * @compr_type in 'struct ubifs_inode', @default_compr in
2250         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2251         */
2252        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2253
2254        /*
2255         * We require that PAGE_SIZE is greater-than-or-equal-to
2256         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2257         */
2258        if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2259                pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2260                       current->pid, (unsigned int)PAGE_SIZE);
2261                return -EINVAL;
2262        }
2263
2264        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2265                                sizeof(struct ubifs_inode), 0,
2266                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2267                                SLAB_ACCOUNT, &inode_slab_ctor);
2268        if (!ubifs_inode_slab)
2269                return -ENOMEM;
2270
2271        err = register_shrinker(&ubifs_shrinker_info);
2272        if (err)
2273                goto out_slab;
2274
2275        err = ubifs_compressors_init();
2276        if (err)
2277                goto out_shrinker;
2278
2279        err = dbg_debugfs_init();
2280        if (err)
2281                goto out_compr;
2282
2283        err = register_filesystem(&ubifs_fs_type);
2284        if (err) {
2285                pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2286                       current->pid, err);
2287                goto out_dbg;
2288        }
2289        return 0;
2290
2291out_dbg:
2292        dbg_debugfs_exit();
2293out_compr:
2294        ubifs_compressors_exit();
2295out_shrinker:
2296        unregister_shrinker(&ubifs_shrinker_info);
2297out_slab:
2298        kmem_cache_destroy(ubifs_inode_slab);
2299        return err;
2300}
2301/* late_initcall to let compressors initialize first */
2302late_initcall(ubifs_init);
2303
2304static void __exit ubifs_exit(void)
2305{
2306        ubifs_assert(list_empty(&ubifs_infos));
2307        ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2308
2309        dbg_debugfs_exit();
2310        ubifs_compressors_exit();
2311        unregister_shrinker(&ubifs_shrinker_info);
2312
2313        /*
2314         * Make sure all delayed rcu free inodes are flushed before we
2315         * destroy cache.
2316         */
2317        rcu_barrier();
2318        kmem_cache_destroy(ubifs_inode_slab);
2319        unregister_filesystem(&ubifs_fs_type);
2320}
2321module_exit(ubifs_exit);
2322
2323MODULE_LICENSE("GPL");
2324MODULE_VERSION(__stringify(UBIFS_VERSION));
2325MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2326MODULE_DESCRIPTION("UBIFS - UBI File System");
2327